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Abstract

We consider tail empirical processes for long memory stochastic volatility models with

heavy tails and leverage. We show a dichotomous behaviour for the tail empirical process

with fixed levels, according to the interplay between the long memory parameter and

the tail index; leverage does not play a role. On the other hand, the tail empirical

process with random levels is not affected by either long memory or leverage. The tail

empirical process with random levels is used to construct a family of estimators of the

tail index, including the famous Hill estimator and harmonic mean estimators. The

limiting behaviour of these estimators is not affected by either long memory or leverage.

Furthermore, we consider estimators of risk measures such as Value-at-Risk and Expected

Shortfall. In these cases, the limiting behaviour is affected by long memory, but it is not

affected by leverage. The theoretical results are illustrated by simulation studies.
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Chapter 1

Introduction

1.1 Motivation and Goals

For financial data, such as returns on investments, we want to estimate extremal quan-

tities such as the probability of exceeding a very high level, high quantiles, or so-called

risk measures. Such quantities are of importance in other fields as well: for example,

environmental science (e.g. flood control) and engineering (e.g. risk assessment).

Financial data typically exhibit three widely accepted features not reflected in classi-

cal statistical models. Returns on investments are uncorrelated, but their squares, or

absolute values, are (highly) correlated. Such behaviour is known as long range depen-

dence or long memory. Log-returns are heavy tailed, that is - some moments of the

log-returns are infinite. Finally, past returns and future volatility are negatively depen-

dent. This phenomenon is referred to as the leverage effect. Typically, rising asset prices

are accompanied by declining volatility, and vice versa. The leverage effect has been

well documented in the economics literature. Any mathematical model approximating

the evolution of asset price should be able to generate long memory, heavy tails and the

leverage effect. This can be done through the use of stochastic volatility models.

In this class of stochastic processes, log-returns {Xj} are modelled as follows:

Xj = σjZj,

where {Zj} is a sequence of independent, identically distributed (i.i.d.) random variables

and {σ2
j} is the conditional variance or, more generally, a certain process which describes

3



Introduction 4

the volatility. In such a process, long memory is typically modelled through the sequence

{σj}, while the tails can be modelled either through the sequence {Zj} or through {σj},
or both. The well known GARCH processes (Nobel Prize in Economics, 2003) belong

to this class of models. In this case, the volatility sequence {σj} is heavy tailed unless

the distribution of Z0 has finite support, and leverage can be present. However, long

memory of squares cannot be modelled by the GARCH process. See [18] for more details

on GARCH models.

Consequently, to capture long range dependence, the so-called long memory stochastic

volatility (LMSV) model was introduced in [15]. An overview of stochastic volatility

models with long range dependence and their basic properties is given in [24] and in

[25]. In the original LMSV model, {Zj} is a sequence of i.i.d. standard normal random

variables, independent of the volatility sequence {σj}, assumed to be of the form σj =

exp(Yj), where {Yj} is a long memory Gaussian sequence. However, the independence

assumption excludes the possibility of modelling leverage effects.

Thus, motivated by the discussion above, in this thesis we consider the long memory

stochastic volatility model with leverage by allowing the sequences {Zj} and {σj} to

be dependent. Heavy tails are modelled through the sequence {Zj} and long memory

through the sequence {σj} which is of a general form σj = φ(Yj), where φ is a measur-

able function and {Yj} is a long memory Gaussian sequence. The model allows a general

dependence structure between {Yj} and {Zj}.

To address the problem of estimating extremal values, we consider the so-called tail

empirical process (TEP), a variation of the classical empirical process that takes into

account only large values. These limiting results are not only of theoretical interest,

but are applicable to different statistical procedures based on intermediate extremes.

It should be noted that the mathematical theory of the TEP in the case of dependent

random variables is much more involved than that of the usual empirical process and

has only been studied since the beginning of the 21st century. Indeed, in the case of

independent, identically distributed random variables, the asymptotic theory is given in

[34]. The corresponding theory for weakly dependent sequences is considered in [31],

[30], [29], [48], [42], [9], often under ad-hoc conditions. The most advanced theory is

presented in [32]. See also [23] for an extensive review in the i.i.d. case.

In this thesis, our goal is to study weak convergence of the tail empirical processes

associated with heavy tailed long memory stochastic volatility sequences with leverage.

In [39] the authors considered heavy tailed, long memory stochastic volatility models and
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obtained asymptotic results for the tail empirical processes. This was extended later to

the multiparameter situation in [40]. However, in the latter two articles leverage was ex-

cluded, greatly simplifying theoretical considerations. As evidenced in [41], the presence

of long memory, heavy tails and leverage may greatly affect the limiting behaviour of

relevant statistics.

As such, this thesis can be viewed as an extension of [39]. However, it should be

emphasized that the presence of leverage in the model creates additional theoretical

challenges.

1.2 Contribution and Structure

In the setting described above, we show a dichotomous limiting behaviour for the tail

empirical process that depends on the interplay between the strength of long memory

and the heaviness of the tails. Surprisingly, the effect of leverage is negligible in the limit

and hence the results are comparable to those in [39] where leverage is not present. The

extension of the asymptotic theory for tail empirical processes to the model

with leverage is the first major contribution of the thesis.

However, it should be pointed out clearly that the extension from models without

leverage to those with leverage is highly nontrivial from a theoretical point of view. In

[39] the authors were able to exploit the conditional independence of the sequence {Xj}
given {Yj}. Here this approach is not applicable and instead we use the Doob decompo-

sition of the tail empirical process into martingale and long memory parts. This makes

the proof of tightness technically very involved.

The TEP is then used to produce estimators of various quantities related to extremal

values. The first one, the so-called tail index, measures the heaviness of the tail of the

distribution of X0. The TEP is used to construct a family of estimators of the tail index,

including the famous Hill estimator (see [23] for results in the i.i.d. case) and harmonic

mean estimators (see [7] again for results in the i.i.d. case). Surprisingly, as already

noted in [39], the effect of long memory vanishes in the limit. This is very important

from a practical perspective.

The results on the tail empirical processes and tail index estimation are included in

the paper [8].
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Furthermore, we use the tail empirical process to construct estimators for two finan-

cial risk measures: Value-at-Risk and Expected Shortfall. It turns out that, in contrast

to the estimators of the tail index, the limiting behaviour is very complicated and de-

pends on an interplay between long memory and heaviness of the tails. These results are

new and thus the asymptotic behaviour of the estimators of the risk measures

in the case of LMSV models with leverage is the second major contribution

of this thesis.

This thesis consists of seven chapters and is organized as follows.

1.2.1 Chapter 2: Mathematical Foundations

Throughout Chapter 2, we present the mathematical background that will be used in the

remainder of the thesis. These concepts and tools include regular variation, second-order

regular variation, weak convergence, second-order stationary processes, long memory

processes (Sections 2.3 to 2.7), etc. This chapter ends with a discussion of the leverage

effect (Section 2.8), which, as noted before, is an important feature exhibited by financial

time series. It is worth mentioning that we have revisited the notion of second-order

regular variation (Section 2.4). This is the major contribution in this chapter and

it warrants a future publication.

The main references for this chapter are: [13, 23] (regular variation), [10, 11, 12, 51, 22]

(weak convergence), [17, 5, 6] (long memory).

1.2.2 Chapter 3: LMSV

In Chapter 3, we introduce the long memory stochastic volatility model (LMSV) with

leverage; see (3.1). We describe the model and state the relevant assumptions (Sec-

tion 3.2). The main contributions of this chapter are the so-called transfer theorems

(Section 3.3) and results related to no-bias conditions (Lemmas 3.4.1 and 3.4.2). Some

existing results such as Lemmas 3.3.3 and 3.3.7 have been adapted to the second-order

regular variation framework of this thesis. We illustrate these assumptions via two ex-

amples in Section 3.5.
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1.2.3 Chapter 4: Tail Empirical Processes

In Chapter 4, we look into the limiting behaviour of the tail empirical processes associated

with the LMSV model with leverage. Our contribution in this chapter is twofold. From

a theoretical point of view, the most important contribution is the proof of

weak convergence of the tail empirical process (with fixed and random levels)

in the presence of heavy tails, long memory and leverage; see Theorems 4.2.18

and 4.3.4. Due to the complicated dependence structure of the process, the proof is not at

all straightforward. From a practical point of view, the key result is that the asymptotic

behaviour of the tail empirical process with random levels is unaffected by the presence

of long memory and/or leverage in the model, and so in certain applications log-returns

{Xj} may be handled exactly as if they were i.i.d. heavy-tailed random variables. This

greatly enhances the utility of the LMSV model with leverage considered here.

The limiting behaviour of integral functionals of the TEP is considered in Theo-

rem 4.3.9. These functionals are used to construct a family of estimators of the tail in-

dex, including the famous Hill estimator and harmonic mean estimators (Section 4.3.3),

whose asymptotic normality is studied in Theorem 4.3.16.

The results from this chapter are published in [8].

1.2.4 Chapter 5: Risk measures

In Chapter 5, we estimate financial risk measures such as Value-at-Risk (VaR) and Ex-

pected Shortfall (ES). This is done under the assumption that returns of a portfolio are

heavy-tailed long memory sequences with leverage. We define the estimators of VaR in

(5.4a)-(5.4b) and subsequently study their asymptotic behaviour in Proposition 5.3.2 and

Theorems 5.3.3 and 5.3.5. Furthermore, we study the estimators of Expected Shortfall

in Proposition 5.4.5 and Theorems 5.4.6 and 5.4.8. It turns out that the limiting be-

haviour of these estimators is very complicated and depends on a fine interplay between

long memory and tails. This stems from the fact that the limiting behaviour of these

estimators needs to take into account asymptotics of both intermediate order statistics

and estimators of the tail index.

All the results presented in this chapter are new in the context of long

memory models.
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1.2.5 Chapter 6: Simulations

To illustrate our theory, we perform extensive numerical studies in Chapter 6.

1.2.6 Chapter 7: Conclusion

Chapter 7 concludes the thesis. In Section 7.1, we discuss in detail the technical assump-

tions imposed on the LMSV model. We propose future research directions in Section 7.2.

1.2.7 Summary of the contribution

• The results on second-order regular variation (Section 2.4) are partially new and

warrant a short publication.

• Most of the results in Section 3.3 are new except Lemmas 3.3.3 and 3.3.7.

• The results in Chapter 4 are new and have been accepted for publication in the

Electronic Journal of Statistics ([8]).

• The results in Chapter 5 are completely new and are derived from the tools devel-

oped in Chapters 3 and 4. We are preparing a publication based on these results.

• The theoretical results are illustrated by simulation studies in Chapter 6.



Chapter 2

Mathematical Foundations

2.1 Introductory Comments

This chapter provides the mathematical background and tools required in the upcoming

chapters. The sort of analytical tools that we are mainly concerned with are regular

variation, second-order regular variation, weak convergence of probability measures and

Hermite polynomials.

This chapter consists of the following sections. In section 2.3, we discuss regular

variation in terms of both real valued functions and random variables. In section 2.4, we

introduce a stronger property - second-order regular variation. In section 2.5, we present

some existing results about weak convergence of probability measures. In section 2.6, we

briefly discuss second-order stationary processes. In section 2.7, we discuss long memory

time series. Also, we review limit theorems for Hermite polynomials, the main tool used

for the analysis of long memory Gaussian sequences. Finally in section 2.8, we discuss

the leverage effect - a feature exhibited by financial time series.

2.2 General Inverses of Monotone Functions

Let I = [a, b] ⊂ R.

Definition 2.2.1. Let f be a real-valued, nondecreasing, right continuous function de-

fined on I. The generalized inverse of f , denoted by f←, is defined as follows:

f←(y) = inf{x ∈ I : f(x) ≥ y}, (2.1)

9
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for all y ∈ R for which there exists x ∈ I such that f(x) ≥ y. Otherwise, f←(y) = b.

It follows from Definition 2.2.1 that f← is nondecreasing and left continuous. In

addition, lim
y→−∞

f←(y) = a and lim
y→∞

f←(y) = b.

Proposition 2.2.2. Let f be a real-valued, nondecreasing, right continuous function

defined on I. Then, for x ∈ I and for every y ∈ R,

y ≤ f(x)⇔ f←(y) ≤ x,

y > f(x)⇔ f←(y) > x,

f (f←(y)) ≥ y.

Definition 2.2.3. Let f be a real valued, nondecreasing, left continuous function defined

on I. The generalized inverse of f , denoted by f→, is defined as follows:

f→(y) = sup{x ∈ I : f(x) ≤ y}, (2.2)

for all y ∈ R for which there exists x ∈ I such that f(x) ≤ y. Otherwise, f→(y) = a.

It follows from Definition 2.2.3, f→ is nondecreasing and right continuous.

Proposition 2.2.4. Let f be a real-valued, nondecreasing, left continuous function de-

fined on I. Then, for x ∈ I and for every y ∈ R,

y ≤ f(x)⇔ f→(y) ≥ x.

It is worthwhile to mention that if f is continuous, then f← and f→ coincide. In this

case,

f (f←(y)) = f← (f(y)) = y.

The next result plays a major role when it comes to deriving the limit theorems for

quantile processes (inverses of empirical processes).

Lemma 2.2.5. (Vervaat’s lemma)[23, p.357]

Let (fn(t))n be a sequence of nondecreasing functions on an interval [a, b]. Let g be a

function on the same interval with a nonnegative derivative, g′. Let (δn)n be a sequence

of nonnegative real numbers such that δn → 0, as n → ∞ and there exists a continuous

function h such that

fn(t)− g(t)

δn
→
n→∞

h(t),
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uniformly on [a, b]. Then,

f ∗n(t)− g∗(t)
δn

→
n→∞

−(g∗)′(t)h (g∗(t)) ,

uniformly on [g(a), g(b)], where g∗, f ∗1 , f
∗
2 , . . . are inverse functions (right or left contin-

uous or defined in any way consistent with monotonicity).

2.3 Regular Variation

The concept of regular variation was initially introduced in 1930 by Karamata. Since

then, regular variation has been extensively studied and finds numerous applications in

finance, economy, hydrology, applied probability, etc. This analytical property is required

when dealing with heavy-tailed phenomena as well as domains of attraction; see [47].

This section is structured as follows. First, we present slowly varying functions, the

cornerstone of this theory. Second, we tackle regularly varying real valued functions.

Finally, we discuss regularly varying random variables.

2.3.1 Slowly Varying Functions

Definition 2.3.1. [13, p.6-8]

A measurable function ` : (0,+∞)→ (0,+∞) is slowly varying at infinity if for all t > 0,

`(xt)

`(x)
→
x→∞

1. (2.3)

The convergence in (2.3) is uniform in t on each compact set in (0,∞). In the sequel,

SV∞ denotes the set of all slowly varying functions at infinity. Here are some noteworthy

examples of slowly varying functions: nonnegative constants, logarithms, and iterated

logarithms functions. For brevity, we will refer to functions satisfying (2.3) simply as

slowly varying functions.

Theorem 2.3.2 (Karamata representation theorem). [13, p.12]

The function ` is slowly varying if and only if it may be written in the form

`(x) = c(x) exp

(∫ x

a

η(y)

y
dy

)
, x ≥ a, (2.4)

for some a > 0, where x 7→ c(x) is measurable and c(x)→ c > 0, η(x)→ 0, as x→∞.
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Example 2.3.3. The function x 7→ lnx ∈ SV∞. Indeed,

lnx = exp

(∫ x

e

dt

t ln t

)
. (2.5)

Remark 2.3.4. The value of a in this theorem is unimportant since `, c, η may be

altered at will on finite intervals. One may choose working with a = 1 or a = 0 on taking

η = 0 on a neighbourhood of 0 to avoid divergence of integral at the origin, and one may

assume that c is bounded. See [13, p.12].

Next, we gather some closure properties that slowly varying functions satisfy.

Proposition 2.3.5. [13, p.16]

Let `, `1, `2, . . . , `k be nonnegative measurable functions on (0,∞).

i)- `1, `2 ∈ SV∞ ⇒ `1 + `2 ∈ SV∞.

ii)- `1, `2 ∈ SV∞ ⇒ `1`2 ∈ SV∞.

iii)- `1, `2 ∈ SV∞ ⇒
`1

`2

∈ SV∞.

iv)- ` ∈ SV∞ ⇒ `γ ∈ SV∞, for all γ ∈ R. In particular, ` ∈ SV∞ ⇒ 1/` ∈ SV∞.

v)- ` ∈ SV∞ ⇒ ∀γ > 0, xγ`(x)→∞; x−γ`(x)→ 0 as x→∞.

This property provides an insight on the asymptotic behaviour of a slowly vary-

ing function. It highlights that slowly varying functions are dominated by power

functions.

vi)- If `1, . . . `k ∈ SV∞ and r(x1, . . . , xk) is a rational function with positive coefficients,

then r(`1(x), . . . , `k(x)) ∈ SV∞.

Proof. i)- Assume that `i ∈ SV∞ for i = 1, 2. Equivalently, for all ε > 0, there exists

Mi = Mi(ε) > 0 such that

x ≥Mi ⇒ |`i(xt)− `i(x)| < ε`i(x).

We consider h(x, t) := (`1(xt) + `2(xt))− (`1(x) + `2(x)).

There exists M1 ∨M2 = M(ε) > 0 such that ∀x > 0, x ≥M(ε) implies

|h(x, t)| ≤ |`1(xt)− `1(x)|+ |`2(xt)− `2(x)|
≤ ε (`1(x) + `2(x)) ,

which is equivalent to writing `1 + `2 ∈ SV∞.
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ii)-iv)- These three proofs are straightforward applications of Definition 2.3.1.

v)- Assume that ` ∈ SV∞. By Theorem 2.3.2, it holds that for all x > 0,

`(x) = c(x) exp

(∫ x

a

η(y)

y
dy

)
,

for some a > 0 and η(x)→ 0, c(x)→ c0 > 0 as x→∞. Since η(x)→ 0, as x→∞
then for all ε > 0, there exists δ = δ(ε) > 0 such that x ≥ δ ⇒ |η(x)| < ε.

Therefore for all y ≥ a ∨ δ we have −ε ≤ η(y) ≤ ε. Consequently, we have

− ε ln
(x
a

)
≤
∫ x

a

η(y)

y
dy ≤ ε ln

(x
a

)
(x
a

)−ε
≤ exp

(∫ x

a

η(y)

y
dy

)
≤
(x
a

)ε
.

Hence for any γ > 0, by choosing ε < γ, we conclude that xγ`(x) → ∞ and

x−γ`(x)→ 0, as x→∞.

vi)- Without loss of generality, let ai, bi > 0,
k∑
i=1

bixi 6= 0 and

r(x1, . . . , xk) =
k∑
i=1

aixi/
k∑
i=1

bixi.

Assuming that `1, . . . , `k ∈ SV∞, we obtain for all x > 0,

r(`1(x), . . . , `k(x)) =

k∑
i=1

ai`i(x)

k∑
i=1

bi`i(x)

.

This proves that r(`1(x), . . . , `k(x)) ∈ SV∞ as a result of i)-iii).

Remark 2.3.6. The nonnegativity assumption in Proposition 2.3.5 plays a major role.

In general, SV∞ is not closed under subtraction. Although x 7→ lnx and x 7→ ln(1+x) ∈
SV∞, but neither x 7→ lnx − ln(1 + x) nor x 7→ ln(1 + x) − lnx is slowly varying. In

fact, setting h(x) = lnx− ln(1 + x) and applying l’Hospital’s rule to the following ratio

of functions yields that

lim
x→∞

h(xt)

h(x)
= lim

x→∞

ln
(

xt
1+xt

)
ln
(

x
1+x

) = lim
x→∞

1 + x

1 + xt
=

1

t
6= 1.
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Theorem 2.3.7 (Potter’s bounds). [13, p.25]

Let ` be a slowly varying function. Then, for all C > 1, ε > 0 there exists η = η(C, ε) ≥ 0

such that for x ≥ η, y ≥ η,

`(y)

`(x)
≤ C

[(y
x

)ε
∨
(y
x

)−ε]
. (2.6)

Furthermore, if ` is bounded away from 0 and ∞ on every compact subset of (0,∞),

then for all ε > 0, there exists C(ε) > 1 such that for x > 0, y > 0,

`(y)

`(x)
≤ C(ε)

[(y
x

)ε
∨
(y
x

)−ε]
. (2.7)

Theorem 2.3.8 (Karamata’s Theorem). [13, p.26; p.27], [44, p.9]

Let ` be a slowly varying function and a > 0. Then

• for γ > −1, as x→∞, ∫ x

a

uγ`(u) du ∼ xγ+1

γ + 1
`(x). (2.8)

• for γ < −1, as x→∞, ∫ ∞
x

uγ`(u) du ∼ − xγ+1

γ + 1
`(x) , (2.9)

where f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.

2.3.2 Regularly Varying Functions

Definition 2.3.9. [13, p.19]

A measurable function f : (0,∞)→ (0,∞) is said to be regularly varying at infinity with

index γ ∈ R if for all t > 0,

f(xt)

f(x)
→
x→∞

tγ. (2.10)

We will denote by RV∞(γ), the set of all regularly varying functions at infinity with

index γ. The parameter γ is called the index of regular variation. The convergence

in (2.10) is uniform in t, on compact subsets of (0,∞). From (2.10), a slowly varying

function is regularly varying function at infinity with null index. Typical examples of

regularly varying functions are: x 7→ xγ, x 7→ xγ ln(1 + x).
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Theorem 2.3.10 (Karamata’s Representation). [13, p.21]

A measurable function f is regularly varying at infinity with index γ if and only if there

exists a slowly varying function ` as in Theorem 2.3.2 such that for all x > 0,

f(x) = xγ`(x). (2.11)

Theorem 2.3.11 (Uniform Convergence Theorem). [13, p.22-23], [47, p.41]

If f is a regularly varying function at infinity with index γ ∈ R, then (2.10) holds

locally uniformly in t on compact intervals. If γ < 0, then uniform convergence holds on

intervals of the form [a,∞], a > 0. If γ > 0, then uniform convergence holds on intervals

(0, a], provided f is bounded on (0, a], for all a > 0.

The next result is about some closure properties of regularly varying functions.

Proposition 2.3.12. [13, p.22; p.26]

Let f , f1, f2, . . . , fk be measurable functions on (0,∞).

i)- f1 ∈ RV∞(γ1), f2 ∈ RV∞(γ2)⇒ f1 + f2 ∈ RV∞(max(γ1, γ2)).

ii)- f1 ∈ RV∞(γ1), f2 ∈ RV∞(γ2)⇒ f1f2 ∈ RV∞ (γ1 + γ2).

iii)- f1 ∈ RV∞(γ1), f2 ∈ RV∞(γ2)⇒ f1 ◦ f2 ∈ RV∞(γ1γ2).

iv)- f ∈ RV∞(γ)⇒ ∀λ ∈ R, (f)λ ∈ RV∞(λγ). In particular,

f ∈ RV∞(γ)⇒ 1/f ∈ RV∞(−γ).

v)- f ∈ RV∞(γ), γ 6= 0⇒ as x→∞, f(x)→∞ if γ > 0 and f(x)→ 0 if γ < 0.

Proof. i)- Assume that fi ∈ RV∞(γi) for i = 1, 2. Definition 2.3.9 and Theorem 2.3.10

yield that for all x > 0, t > 0, fi(x) = xγi`i(x), `i ∈ SV∞ and

fi(xt)

fi(x)
→
x→∞

tγi .

If γ1 = γ2, then the proof is immediate. Without loss of generality, assume that

γ1 < γ2. We have

(f1 + f2)(xt)

(f1 + f2)(x)
=
f1(xt)/f2(x) + f2(xt)/f2(x)

1 + f1(x)/f2(x)

On account of Proposition 2.3.5 [iii) and v)], it holds that

f1(x)

f2(x)
= x−(γ2−γ1) `1(x)

`2(x)
→
x→∞

0.
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This implies that f1(xt)
f2(x)

→ 0, as x→∞. Therefore, we get

(f1 + f2)(xt)

(f1 + f2)(x)
→
x→∞

tγ2 .

This means that f1 + f2 ∈ RV∞(max(γ1, γ2)).

ii)- Assume that fi ∈ RV∞(γi) for i = 1, 2. Again by Theorem 2.3.10, we have

fi(x) = xγi`i(x), where `i ∈ SV∞.

Therefore, (f1f2) (x) = xγ1+γ2(`1 × `2)(x). It holds by Proposition 2.3.5 [i] that

`1 × `2 ∈ SV∞. Thus, f1f2 is a regularly varying function with index γ1 + γ2, and

hence, the conclusion follows (cf. Theorem 2.3.10).

iii)- Assume that fi ∈ RV∞(γi) for i = 1, 2. Again by Theorem 2.3.10, we have for

x > 0, fi(x) = xγi`i(x), where `i ∈ SV∞. Therefore,

(f1 ◦ f2) (x) = f1 (f2(x)) = (xγ2`2(x))γ1 `1 (xγ2`2(x))

= xγ1γ2 (`2(x))γ1 `1 (xγ2`2(x)) = xγ1γ2`(x),

where x 7→ `(x) := (`2(x))γ1 `1 (xγ2`2(x)). We claim that ` ∈ SV∞. In fact,

`2 ∈ SV∞, so does x 7→ (`2(x))γ1 for γ1 > 0. Set ρ(x) = xγ2`2(x). Moreover, if

x 7→ `1(ρ(x)) ∈ SV∞, then x 7→ `(x) ∈ SV∞, as the product of two slowly varying

functions. It remains to show that x 7→ `1(ρ(x)) ∈ SV∞. Since `1 ∈ SV∞, then by

Theorem 2.3.2, we have for all x > 0,

`1(x) = c(x) exp

(∫ x

a

η(y)

y
dy

)
,

for some a > 0 and η(x)→ 0, c(x)→ c0 > 0 as x→∞. Therefore

`1(ρ(xt))

`1(ρ(x))
= exp

(∫ ρ(xt)

ρ(x)

η(y)

y
dy

)
.

We recall that η(x)→ 0 as x→∞. Therefore for all ε > 0, there exists δ = δ(ε) > 0

such that x ≥ δ ⇒ −ε < η(x) < ε. Consequently, we obtain

−ε ln

(
ρ(xt)

ρ(x)

)
<

∫ ρ(xt)

ρ(x)

η(y)

y
dy < ε ln

(
ρ(xt)

ρ(x)

)
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and hence for x sufficiently large,

−εγ2 ln t <

∫ ρ(xt)

ρ(x)

η(y)

y
dy < εγ2 ln t.

Since ε is arbitrary, then we conclude that

∫ ρ(xt)

ρ(x)

η(y)

y
dy → 0, as x→∞. Thus,

`1(ρ(xt))

`1(ρ(x))
→
x→∞

1.

iv)- Assume that f ∈ RV∞(γ). So, for all x > 0, f(x) = xγ`(x), where ` ∈ SV∞.

Consequently, for all λ ∈ R, fλ(x) = xγλ`λ(x). Since ` ∈ SV∞, so does `λ.

Therefore, fλ is a regularly varying function with index γλ. Thus, the desired result

holds (cf. Theorem 2.3.10). In particular, taking λ = −1 implies 1/` ∈ RV∞(−γ).

v)- Assume that f ∈ RV∞(γ). So, for all x > 0, f(x) = xγ`(x), where ` ∈ SV∞. The

rest of the proof works identically as in the proof of Proposition 2.3.5 [v].

Theorem 2.3.13 (Potter’s bounds). [13, p.25]

If f is a regularly varying function with index γ, i.e. f(x) = xγ`(x), then for all C > 1,

ε > 0; there exists η = η(C, ε) ≥ 0 such that for x, y ≥ η,

f(y)

f(x)
≤ C

((y
x

)γ+ε

∨
(y
x

)γ−ε)
. (2.12)

Furthermore, if ` is bounded away from 0 and ∞ on every compact subset of (0,∞), then

for all ε > 0, there exists C(ε) > 1 such that for x > 0, y > 0,

f(y)

f(x)
≤ C(ε)

((y
x

)γ+ε

∨
(y
x

)γ−ε)
. (2.13)

Theorem 2.3.14 (Karamata’s Theorem). [44, p.799], [13, p.26]

Let γ > −1. If f ∈ RV∞(γ) and integrable on (a, x) for any x > 0 and some a > 00,

then

∫ x

a

f(u) du ∈ RV∞(γ + 1) and

∫ x

a

f(u) du ∼ xf(x)

γ + 1
, as x→∞. (2.14)
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The next result provides a suitable framework under which the generalized inverse

function of a nondecreasing function is regularly varying.

Recall that for a real-valued, nondecreasing, right continuous function f defined on

I = [a, b], its generalized inverse function f← is defined by

f←(y) = inf{x ∈ I : f(x) ≥ y}. (2.15)

Proposition 2.3.15. [23, p.367]

If f is regularly varying at infinity with index γ > 0, then f← is regularly varying at

infinity with index 1/γ.

2.3.3 Regularly Varying Random Variables

In what follows, random variables that we are going to be dealing with are assumed to be

on a common probability space (Ω,F , P ). For any random variable W with distribution

function FW , we define its tail distribution function, F̄W , by

F̄W (x) := 1− FW (x).

Unless otherwise stated, we assume γ > 0 in what follows.

For simplicity, we consider nonnegative random variables only.

Definition 2.3.16. [44]

A random variable W is said to be regularly varying at infinity with index γ, if its tail

distribution function F̄W is regularly varying with index −γ, that is for all t > 0,

F̄W (xt)

F̄W (x)
→
x→∞

t−γ. (2.16)

The parameter γ is called the tail index and measures the heaviness of the tail of

X. The smaller γ is, the heavier is the right tail of the distribution of X. The Pareto

distribution, and distributions of the absolute values of t and Cauchy random variables

all have regularly varying tails. In what follows, we collect some properties satisfied by

regularly varying random variables.

Remark 2.3.17. If W is a regularly varying random variable with tail distribution

function F̄W , then Theorem 2.3.10 yields that

F̄W (x) = x−γ`W (x), (2.17)
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for some ` ∈ SV∞. Furthermore since F̄W is monotone non-increasing and bounded

above by 1, it follows that `W is bounded away from 0 and ∞ on any compact interval

of (0,∞). In later discussions, the following result will play a key role in justifying the

interchange between a limit and an integral.

Lemma 2.3.18 (Potter’s bounds). If W is a random variable such that F̄W ∈ RV∞(−γ),

then for all ε > 0 there exists C(ε) ≥ 1 such that for all x, y > 0,

F̄W (x/y)

F̄W (x)
≤ C(ε)

(
yγ+ε ∨ yγ−ε

)
. (2.18)

Proof. Since F̄W ∈ RV∞(−γ), then (2.17) and Theorem 2.3.7 yield

F̄W (x/y)

F̄W (x)
= yγ

`W (x/y)

`W (x)
≤ C(ε)

(
yγ+ε ∨ yγ−ε

)
.

Theorem 2.3.19 (Potter’s bounds). [50]

Let W be a regularly varying random variable with index γ > 0. Then for all ε > 0, there

exists C(ε) > 1 such that for all x ≥ 0, y > 0,

F̄W (x/y)

F̄W (x)
≤ C(ε) max(1, yγ+ε). (2.19)

Proof. We assume that W is a regularly varying random variable with index γ > 0.

If x = 0, then the desired bound holds with C = 1. From here on, we assume that x > 0.

If y ≤ 1, then F̄W (x/y) ≤ F̄W (x). Hence, the desired bound holds with C = 1.

If y > 1, then (2.17) ensures that

F̄W (x/y)

F̄W (x)
=

(x/y)−γ`W (x/y)

x−γ`W (x)
= yγ

`W (x/y)

`W (x)
·

So, by (2.7), we have ∀ε > 0, there exists C = C(ε) > 1 such that for x > 0, y > 1,

F̄W (x/y)

F̄W (x)
≤ Cyγ

(
x/y

x

)−ε
= Cyγ+ε.

The next result is known in the literature as Breiman’s Lemma. It provides a frame-

work under which a product of two random variables is regularly varying. This is critical

for later proofs.
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Lemma 2.3.20 (Breiman’s Lemma). [50, p.49]

Let V and W be two independent nonnegative random variables such that F̄V is regularly

varying with index −γ. If there exists ε > 0 such that E(W γ+ε) <∞, then

P (VW > x)

P (V > x)
→
x→∞

E(W γ). (2.20)

The meaning of (2.20) is that VW is regularly varying with index γ.

Proof. Assume that V is a regularly varying random variable with index γ. Define the

family of functions (Gx)x>0 by

Gx(y) :=
F̄V (x/y)

F̄V (x)
, y > 0 .

Clearly, as x goes to ∞, Gx converges to yγ. Moreover by (2.19), we have: ∀ε > 0, ∃
C = C(ε) > 1 such that for x ≥ 0, y > 0,

Gx(y) ≤ C(max(1, y))γ+ε.

Since E(W γ+ε) < ∞, the dominated convergence theorem ensures E (Gx(W )) →
x→∞

E (W γ), which is equivalent to (2.20).

Remark 2.3.21. We wrap up this section by discussing regular variation of other com-

mon functions related to either the distribution function, FW , or the tail distribution

function, F̄W , of a random variable W . These functions of interest are the following

generalized inverses in the sense of (2.15):

UW (t) = (1/F̄W )←(t) , (2.21a)

QW (t) = F←W (1− 1/t) , t > 1. (2.21b)

Assume that F̄W is strictly decreasing on the range of W . This implies that 1/F̄W is

strictly increasing. Therefore, if F̄W is regularly varying with index −γ, then UW is

regularly varying with index 1/γ, by Proposition 2.3.15. In addition, if F̄W is strictly

decreasing and continuous on the range of W , UW coincides with QW . This assumption

is in effect from now on.

2.4 Second-Order Regular Variation

In this section we introduce a second order regular variation, a stronger form of regular

variation.
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Let g be a regularly varying function with index γ ∈ R. The first use of second order

regular variation is to control the difference∣∣∣∣g(xt)

g(x)
− tγ

∣∣∣∣ . (2.22)

The second use is related to an approximation of high quantiles. Second-order regular

variation finds numerous applications in risk management and many other fields.

This section is structured as follows. First, we present second-order slowly vary-

ing functions. Second, we discuss second-order regularly varying real valued functions.

Finally, we discuss second-order regularly varying random variables.

2.4.1 Second-Order Slowly Varying Functions

There are various definitions of second order slow and regular variation in the literature.

The most common approach is via the asymptotic behaviour of the function, while an-

other approach is via a representation of the function. In the case of regular variation

the two approaches are equivalent; cf. the limiting behaviour in (2.10) and Karamata’s

Representation in Theorem 2.3.10.

For our purposes, the most suitable second order condition is the representation

defined in [39]. See also [28]. As we will demonstrate below, this approach implies

second order variation in terms of the limiting behaviour. However, equivalence appears

to be an open question.

Definition 2.4.1 ([39], [28]). A measurable function h is said to be second order slowly

varying at infinity with index ρ < 0 and the rate function η if for all x > 0,

h(x) = c∗ exp

(∫ x

1

η(u)

u
du

)
; (2.23)

with c∗ > 0, η : (0,∞)→ R is a bounded regularly varying function at infinity with index

ρ or η(x) = 0, for all x. Further, η is either nonnegative or nonpositive.

In the case that η(x) = 0 for all x sufficiently large, we set ρ = −∞. We denote by

2SV∞(ρ, η), the set of all second-order slowly varying functions at infinity.
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Example 2.4.2. Consider the following function

h(x) =
α + x−β

α + 1
, x, α, β > 0

= exp

(
ln

(
α + x−β

α + 1

))
= exp

(∫ x

1

−βu−β−1

α + u−β
du

)
.

Therefore h ∈ 2SV∞ (−β, η), with η(x) = −β/(1 + αxβ). Notice that η is nonpositive

and bounded by β. In addition, η ∈ RV∞(−β).

Second-order slowly varying functions satisfy the following equivalent representation

stated, but not proven, in Eq. (66) of [39].

Lemma 2.4.3 ([39]). If h is second-order slowly varying at infinity, then for all x > 0,

h(x) = h(1) +

(∫ x

1

η(u)h(u)

u
du

)
. (2.24)

Conversely, if (2.24) is satisfied, then (2.23) holds.

Proof. Notice that (2.23) implies c∗ = h(1). The derivative of (2.24) yields

h(1)
η(x)

x
exp

(∫ x

1

η(u)

u
du

)
= h′(x).

Using (2.23) and integrating this equation over the interval from 1 to t yields∫ t

1

η(x)h(x)

x
dx = h(t)− h(1).

The following result on the asymptotic behaviour of functions in 2SV∞(ρ, η) appears

to be new. In fact, (2.25) is frequently used as a definition of second order slow variation.

See Section 2.3 in [23] and Remark 2.4.6 below.

Lemma 2.4.4. Assume that (2.23) holds. Then for t ≥ 1,

h(xt)/h(x)− 1

η(x)
→
x→∞

tρ − 1

ρ
· (2.25)
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Proof. Assume without loss of generality that x ≥ 1. It follows from (2.23) that

h(xt)

h(x)
− 1 = exp

(∫ xt

x

η(u)

u
du

)
− 1

= exp

(
η(x)

∫ t

1

η(xv)

vη(x)
dv

)
− 1,

where the last equality holds by setting v = u/x. Since ρ < 0 and η ∈ RV∞(ρ), then

η(x) →
x→∞

0 and

∫ t

1

η(xv)

vη(x)
dv →

x→∞

∫ t

1

vρ−1 dv =
tρ − 1

ρ
,

where the integral above converges thanks to Theorem 2.3.11. Therefore, as x→∞,

h(xt)

h(x)
− 1 = η(x)

∫ t

1

η(xv)

vη(x)
dv +

1

2
exp (ξ∗)

(
η(x)

∫ t

1

η(xv)

vη(x)
dv

)2

h(xt)/h(x)− 1

η(x)
=

∫ t

1

η(xv)

vη(x)
dv

(
1 +

1

2
exp (ξ∗)

(
η(x)

∫ t

1

η(xv)

vη(x)
dv

))
.

Note that the Lagrange remainder ensures that

0 ≤ ξ∗ ≤
∫ t

1

∣∣∣∣η(xv)

vη(x)

∣∣∣∣ dv.
It follows that for t fixed, exp(ξ∗) is bounded as a function of x and therefore

1

2
exp (ξ∗)

(
η(x)

∫ t

1

η(xv)

vη(x)
dv

)
= o(1).

Next, we investigate some closure properties of second-order slowly varying functions

that appear to be new.

Lemma 2.4.5. Let h, h1 and h2 be measurable functions.

i) If h1 ∈ 2SV∞(ρ1, η1), h2 ∈ 2SV∞(ρ2, η2) and η1, η2 have the same sign, then

h1 + h2 ∈ 2SV∞(max(ρ1, ρ2), η1 + η2),

ii) If h1 ∈ 2SV∞(ρ1, η1), h2 ∈ 2SV∞(ρ2, η2) and η1, η2 are of the same sign, then

h1h2 ∈ 2SV∞(max(ρ1, ρ2), η1 + η2).
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iii) If h ∈ 2SV∞(ρ, η), then hp ∈ 2SV∞(ρ, pη), for all p ∈ R.

Proof. In what follows, we assume that hi ∈ 2SV∞(ρi, ηi), for i = 1, 2. Therefore,

hi(x) = hi(1) +

∫ x

1

ηi(u)hi(u)

u
du,

where ηi : (0,∞) → R is either nonpositive or nonnegative, bounded and regularly

varying function at infinity with index ρi.

i) Since hi ∈ 2SV∞(ρi, ηi), for i = 1, 2, then for all x > 0,

(h1 + h2)(x) = h1(1) + h2(1) +

∫ x

1

η1(u)h1(u) + η2(u)h2(u)

u
du

= (h1 + h2)(1) +

∫ x

1

η1(u)h1(u) + η2(u)h2(u)

(h1(u) + h2(u))u
(h1(u) + h2(u)) du .

Since for i = 1, 2, ηi ∈ RV∞(ρi), then for all x > 0, ηi(x) = xρih∗i (x), for some

slowly varying function h∗i . Therefore for all x > 0,

η(x) :=
η1(x)h1(x) + η2(x)h2(x)

(h1(x) + h2(x))

= xρ1
h∗1(x)h1(x)

h1(x) + h2(x)
+ xρ2

h∗2(x)h2(x)

h1(x) + h2(x)
·

The latter decomposition shows that η is a sum of two regularly varying functions

with indices ρ1 and ρ2, respectively. Thus, η ∈ RV∞(max(ρ1, ρ2)), by Proposi-

tion 2.3.12. In addition, since for all x > 0,

|η(x)| ≤
∣∣∣∣ h1(x)

h1(x) + h2(x)

∣∣∣∣ |η1(x)|+
∣∣∣∣ h2(x)

h1(x) + h2(x)

∣∣∣∣ |η2(x)| ≤ |η1(x)|+ |η2(x)|,

then η is bounded. Notice that if η1 and η2 are of the same sign over (0,∞), then

so is η as h1 and h2 are nonnegative by Theorem 2.3.10. Notice that η(x) ∼
x→∞

η1(x) + η2(x).

ii) Since hi ∈ 2RV∞(γ, ρi, ηi), for i = 1, 2, then for all x > 0,

(h1h2)(x) = c∗1c
∗
2 exp

(∫ x

1

(η1 + η2)(t)

t
dt

)
.

Further, η1 and η2 are bounded, nonnegative, nonincreasing, so is η1 + η2. Finally,

η1 + η2 ∈ RV∞(max(ρ1, ρ2)), thanks to Proposition 2.3.12.
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iii) Since h ∈ 2SV∞(ρ, η), then (2.23) yields that for all x > 0 and p ∈ R,

hp(x) = (c∗)p exp

(∫ x

1

pη(u)

u
du

)
.

This equivalent to writing hp ∈ 2SV∞(ρ, pη), since pη is either nonpositive or

nonnegative, bounded on (0,∞) and regularly varying with index ρ.

Remark 2.4.6. Functions satisfying (2.25) are referred to as extended regularly varying

with index ρ and the rate function η in [23]. In other words, any second-order slowly

varying function is extended regularly varying. As such, Theorem B.2.18 in [23] holds

and yields the following result.

Lemma 2.4.7 ([23]). If h is a second-order slowly varying function with index ρ < 0

and rate function η, then for all ε, δ > 0 there exists x0 = x0 (ε, δ) > 0 such that for all

x > x0, t > x0/x, ∣∣∣∣h(xt)− h(x)

η0(x)
− tρ − 1

ρ

∣∣∣∣ ≤ εtρ max
(
tδ, t−δ

)
,

where the rate function η0(x) = −ρ{h(∞)− h(x)} with h(∞) = lim
x→∞

h(x).

2.4.2 Second-Order Regularly Varying Functions

In analogy to the relation between slow and regular variation, we extend second order

slow variation to second order regular variation.

Definition 2.4.8 ([28], [39]). A measurable function g is said to be second order regularly

varying at infinity with indices γ ∈ R, ρ < 0 and the rate function η if for all x > 0,

g(x) = c∗xγ exp

(∫ x

1

η(u)

u
du

)
; (2.26)

with c∗ > 0, η : (0,∞)→ R is a bounded regularly varying function at infinity with index

ρ or η(x) = 0, for all x. Further, η is either nonnegative or nonpositive.

Henceforth 2RV∞(γ, ρ, η) denotes the set of all functions g such that (2.26) holds. In

the case that η(x) = 0 for all x sufficiently large, we set ρ = −∞. The rate function η is

the driving force of the concept of second-order regular variation.
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Example 2.4.9. Set g(x) = 0 for 0 < x < 1. Let α > 0, γ > 1. We have for all x ≥ 1,

g(x) =
1

2

(
x−α + x−αγ

)
= x−α exp

(
ln

(
1 + x−α(γ−1)

2

))
= x−α exp

(∫ x

1

α(γ − 1)t−α(γ−1)−1dt

1 + t−α(γ−1)

)
.

Therefore, g ∈ 2RV∞(−α,−α(γ − 1), η), where the rate function is defined as follows

η(x) = x−α(γ−1) α(γ − 1)

1 + x−α(γ−1)
=

α(γ − 1)

1 + xα(γ−1)
· (2.27)

Note that η is nonnegative, bounded by α(γ − 1). In addition, η ∈ RV∞(−α(γ − 1)).

Remark 2.4.10. Second-order regular variation implies regular variation. However, the

converse is not true. In fact, x 7→ xα lnx, with α ∈ R, is regularly varying at infinity with

index α but fails to be second-order regularly varying at infinity. Although η(x) = 1/ lnx

is nonnegative on [e,∞) and bounded above by 1, the Karamata representation (2.5)

shows that η ∈ SV∞.

The next result linking second-order regular variation to second-order slow variation

follows directly from Lemma 2.4.3.

Corollary 2.4.11. If g ∈ 2RV∞(γ, ρ, η), then there exists h ∈ 2SV∞(ρ, η) such that

g(x) = xγ
(
h(1) +

∫ x

1

η(u)h(u)

u
du

)
, (2.28)

where η : (0,∞)→ R is a bounded regularly varying function at infinity with index ρ or

η(x) = 0, for all x. Further, η is either nonnegative or nonpositive.

Lemma 2.4.12. Assume that (2.26) holds. Then for x ≥ 1, t > 0,

g(xt)/g(x)− tγ

η(x)
→
x→∞

tγ
tρ − 1

ρ
· (2.29)

Remark 2.4.13. We note that sometimes (2.29) is considered as the definition of second-

order regular variation. See Remark B.3.15 in [23].
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Proof. Assume without loss of generality that x ≥ 1. It follows from (2.26) that

g(xt)

g(x)
− tγ = tγ

(
exp

(∫ xt

x

η(u)

u
du

)
− 1

)
= tγ

(
exp

(
η(x)

∫ t

1

η(xv)

vη(x)
dv

)
− 1

)
,

where the last equality holds by setting v = u/x. The remainder of the proof is analogous

to that of Lemma 2.4.4.

Again, in analogy to second-order slow variation, we now investigate closure properties

of second-order regularly varying functions.

Lemma 2.4.14. Let g, g1 and g2 be measurable functions.

i) If gi ∈ 2RV∞(γi, ρi, ηi), for i = 1, 2 and η1, η2 are of the same sign, then

g1g2 ∈ 2RV∞(γ1 + γ2,max(ρ1, ρ2), η1 + η2).

ii) If g1 ∈ 2RV∞(γ, ρ1, η1), g2 ∈ 2RV∞(γ, ρ2, η2) and η1, η2 have the same sign, then

g1 + g2 ∈ 2RV∞(γ,max(ρ1, ρ2), η1 + η2),

iii) If g ∈ 2RV∞(γ, ρ, η), then gp ∈ 2RV∞(pγ, ρ, pη), for all p ∈ R.

The proof of this result is analogous to the proof of Lemma 2.4.5. We are finally

ready to state a bound for second-order regularly varying functions. Notice from Corol-

lary 2.4.11 that if g ∈ 2RV∞ (γ, ρ, η), then h(x) = g(x)/xγ ∈ 2SV∞ (ρ, η). Therefore

Lemma 2.4.7 applied to h(x) = g(x)/xγ and some simple manipulations yield:

Lemma 2.4.15 (Theorem 2.3.6 in [23]). If g is second order regularly varying at infinity

with indices γ ∈ R, ρ < 0 and the rate function η, then for all ε, δ > 0 there exists

x0 = x0 (ε, δ) > 0 such that for all x > x0, t > x0/x,∣∣∣∣g(xt)/g(x)− tγ

B0(x)
− tγ t

ρ − 1

ρ

∣∣∣∣ ≤ εtγ+ρ max
(
tδ, t−δ

)
, (2.30)

where B0(x) = −ρ
(

lim
x→∞

g(x)/xγ − g(x)/xγ
)

.
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2.4.3 Second-Order Regularly Varying Random Variables

Unless otherwise stated, α, ρ and c∗ are assumed to be strictly positive real

numbers in this whole subsection. We continue to assume that all random

variables are nonnegative.

Definition 2.4.16. A random variable W with tail distribution function F̄W is said to

be second-order regularly varying with indices −α,−ρ and the rate function η if F̄W ∈
2RV∞ (−α,−ρ, η), that is for all x > 0,

F̄W (x) = c∗x−α exp

(∫ x

1

η(u)

u
du

)
. (2.31)

Example 2.4.17. If W is Burr-distributed, then its tail distribution functions is

F̄W (x) = (1 + xβ)−α, x, α, β > 0

= x−αβ exp
(
−α ln

(
1 + x−β

))
= x−αβ exp(−α ln 2) exp

(
−α{ln

(
1 + x−β

)
− ln 2}

)
= 2−αx−αβ exp

(
α

∫ x

1

−βu−β−1

1 + u−β
du

)
.

Therefore, F̄W ∈ 2RV∞ (−αβ,−β, η), where for all x > 0, η is defined by

η(x) =
αβ

1 + xβ
·

Notice that η is nonnegative and bounded by αβ. In addition, η ∈ RV∞(−β).

Remark 2.4.18. Clearly, if F̄W ∈ 2RV∞ (−α,−ρ, η) with η 6≡ 0 then by Lemma 2.4.4,

F̄W (xt)/F̄W (x)− t−α

η(x)
→
x→∞

t−α
1− t−ρ

ρ
. (2.32)

Thanks to second-order regular variation we can control the speed of convergence of the

ratio F̄W (xt)/F̄W (x), as x → ∞. Pareto distributions are included in the definition of

second regular variation by allowing η(x) = 0 for x ≥ 1 and in this case

F̄W (xt)/F̄W (x)− t−α = 0, ∀t, x ≥ 1.

Lemma 2.4.19 ([39], p. 130). Assume that F̄W ∈ 2RV∞ (−α,−ρ, η). Then for any

ε > 0, there exists C = C(ε) > 0 such that for all t > 0, x ≥ 1,∣∣∣∣ F̄W (xt)

F̄W (x)
− t−α

∣∣∣∣ ≤ C|η(x)|
(
t−α−ρ+ε ∨ t−α−ρ−ε

)
. (2.33)
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In what follows, we discuss second-order regular variation of UW defined in (2.21a).

Remark 2.4.20. If UW ∈ 2RV∞(1/α,−ρ†, η†) (α > 0, ρ† > 0) then by Definition 2.4.8

UW (x) = c†x1/α exp

(∫ x

1

η†(u)

u
du

)
; (2.34)

where c† > 0 and η† ∈ RV∞(−ρ†) is either a nonpositive or nonnegative bounded function.

Further, by Lemma 2.4.4, UW ∈ 2RV∞(1/α,−ρ†, η†) implies

UW (xt)/UW (x)− t1/α

η†(x)
→
x→∞

t1/α
1− t−ρ†

ρ†
· (2.35)

The following result is a re-statement of Theorem 2.3.9 in [23] and holds under the

weaker assumption (2.35).

Lemma 2.4.21. Assume that UW ∈ 2RV∞(1/α,−ρ†, η†). Then for all ε, δ > 0 there

exists x0 = x0 (ε, δ) > 1 such that for all x > x0, t > x0/x,∣∣∣∣∣UW (xt)/UW (x)− t1/α

D0(x)
− t1/α1− t−ρ†

ρ†

∣∣∣∣∣ ≤ εt1/α−ρ
†
max

(
tδ, t−δ

)
, (2.36)

where

D0(x) = ρ†
{

x1/α

UW (x)
lim
s→∞

UW (s)

s1/α
− 1

}
.

Finally, how does second-order regular variation of F̄W apply to UW ? We were not

able to show equivalence between (2.31) and (2.34), however, we can justify equivalence

between (2.32) and (2.35). This question is addressed in the next two lemmas (see

Exercise 2.11 in [23]).

Lemma 2.4.22. Assume that F̄W is strictly decreasing and continuous. If (2.35) holds

with 1/α, −ρ†, η†, then (2.32) holds with −α, −ρ = −αρ†, η, where

η(x) = α2η†(U←W (x)). (2.37)

Proof. Assume that (2.35) holds. This is equivalent to writing

UW (U←W (x)t)/x− t1/α

η†(U←W (x))
→
x→∞

t1/α
1− t−ρ†

ρ†
·
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For x > 0, let

Gx(t) =
UW (U←W (x)t)

x
, t > 0 .

Since F̄W is strictly decreasing and continuous, we have

G←x (t) =
U←W (xt)

U←W (x)
=

F̄W (x)

F̄W (xt)
,

where the last equality holds by exploiting (2.21a). So, Vervaat’s Lemma 2.2.5 yields

F̄W (x)/F̄W (xt)− tα

η†(U←W (x))
→
x→∞

−tα1− t−αρ†

ρ†/α
·

As a consequence, the desired result follows by the Taylor expansion:

F̄W (xt)/F̄W (x)− t−α

α2η†(U←W (x))
→
x→∞

t−2α

(
−tα1− t−αρ†

ρ†α2/α

)
= t−α

1− t−αρ†

αρ†
·

Lemma 2.4.23. Assume that F̄W is strictly decreasing and continuous. If (2.32) holds

with −α, −ρ, η, then (2.35) holds with 1/α, −ρ† = −ρ/α, η†, where

η†(x) =
η(F̄←W (x))

α2
· (2.38)

Proof. Assume that F̄W ∈ 2RV∞(−α,−ρ, η). This implies that

F̄W (xt)/F̄W (x)− t−α

η(x)
→
x→∞

t−α
1− t−ρ

ρ
·

This is equivalent to writing

F̄W (F̄←W (x)t)/x− t−α

η(F̄←W (x))
→
x→∞

t−α
1− t−ρ

ρ̃
·

Under the assumption F̄W is strictly decreasing and continuous, we have(
F̄W (F̄←W (x)·)

x

)←
=
F̄←W (x·)
F̄←W (x)

=
UW (x)

UW (x·)
,

where the last equality holds by virtue of (2.21a). So, Vervaat’s Lemma 2.2.5 yields

UW (x)/UW (xt)− t−1/α

η(F̄←W (x))
→
x→∞

t−1/α1− tρ/α

αρ
·

Consequently, the desired result follows by the Taylor expansion

UW (xt)/UW (x)− t1/α

η(F̄←W (x))/α2
→
x→∞

−t2/α
(
t−1/α1− tρ/α

αρ/α2

)
= −t1/α t

ρ/α − 1

ρ/α
·
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We summarize this section as follows. The main point of the corollary below is that

in the following sections we will work with one single assumption on second order regular

variation that will imply the desired rate of convergence conditions for F̄W and UW .

Corollary 2.4.24. Assume that F̄W is strictly decreasing and continuous. If F̄W ∈
2RV∞ (−α,−ρ, η) then (2.32) and (2.35) hold, the latter with 1/α, −ρ† = −ρ/α and η†

given in (2.38).

2.5 Weak Convergence of Probability Measures

This section is organized as follows. We briefly present random elements of metric spaces.

Then, we discuss the Skorokhod topology and convergence of functionals of stochastic

processes. We wrap up with the following concepts: martingales, stationarity and ergod-

icity.

2.5.1 Random Elements of Metric Spaces

Let (S, d) be a metric space. As a regularity condition, we assume that (S, d) is separable,

meaning that there is a countable dense subset K such that

∀x ∈ S, ∀ε > 0, ∃ y ∈ K such that d(x, y) < ε. (2.39)

LetO be the class of open subsets of S. Define the Borel σ-field B(S) to be the smallest

σ-field generated by O, that is, B(S) = σ(O). Suppose (Ω,F , P ) is a probability space.

Definition 2.5.1. [51, p.77]

A random element X of (S,B(S)) is a measurable mapping from (Ω,F , P ) to (S,B(S)).

The probability distribution of X is the image probability measure, P ◦ X−1, on

(S,B(S)), induced by X , that is, for all A ∈ B(S),

P ◦X−1(A) = P (X ∈ A). (2.40)

where P is the probability measure on the underlying probability space (Ω,F , P ).

Definition 2.5.2. [51, p.77]

Let (S, d) be a separable metric space endowed with the Borel σ-field B(S) on S. We say
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that a sequence of probability measures (Pn)n on (S, d) converges weakly to a probability

measure P on (S, d), and we write Pn ⇒ P , if∫
S

f dPn →
n→∞

∫
S

f dP, (2.41)

for all f in C(S), the space of all continuous bounded real valued functions on S.

The metric d enters in by determining which functions f are continuous on S.

Definition 2.5.3. [51, p.77]

We say that a sequence of random elements (Xn)n of a metric space (S, d) converges in

distribution or converges weakly to a random element X of (S, d), and we write Xn ⇒ X,

if their corresponding image probability measures converge weakly, that is, if

P ◦X−1
n ⇒ P ◦X−1 on (S, d). (2.42)

Consequently, by virtue of Definition 2.5.3, it holds that

Corollary 2.5.4. [51, p.78]

Xn ⇒ X ⇔ E (f (Xn)) →
n→∞

E (f (X)) , for all f ∈ C(S). (2.43)

Theorem 2.5.5. (Skorokhod representation theorem)[51, p.78]

Suppose that Xn and X are random elements of (S,B(S)). Moreover if,

Xn ⇒ X in (S, d).

Then, there exist random elements Yn and Y , defined on (Ω,F , P ), such that

Yn
d
= Xn, Y

d
= X, (2.44)

Yn
a.s−−−→

n→∞
Y, (2.45)

where
d
= is understood to mean equality in distribution.

Theorem 2.5.6. (Cramer-Wold device)[51, p.104]

An arbitrary random vector (Xn,1, . . . , Xn,k) in Rk converges in distribution to random

vector (X1, . . . , Xk) in Rk, and we write

(Xn,1, . . . , Xn,k)⇒ (X1, . . . , Xk) in Rk, (2.46)

if and only if, for all a1, . . . , ak ∈ R,

k∑
j=1

ajXn,j ⇒
k∑
j=1

ajXj in R. (2.47)
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2.5.2 Skorokhod Topology

We present in this subsection spaces D[0, 1], D[a, b] and D(0,∞) endowed with the

Skorokhod J1 topology. These spaces are suitable when it comes to dealing with weak

convergence of stochastic processes. In this exposure, the standard Skorokhod space

D[0, 1] is our focal point. Indeed, results on this functional space can be extended to

more general aforementioned Skorokhod’s spaces (cf. Remark 2.5.13). See [10], [12].

Definition 2.5.7. [51]

An element of D = D[0, 1] is a right continuous R-valued function with left limits defined

on [0, 1]. We refer to such a function as càdlàg, a French acronym standing for continue

à droite, limite à gauche.

To define one of the distances between functions in D, let:

• e be the identity map on [0, 1] and

• Λ = {λ ∈ [0, 1][0,1] : λ is strictly increasing , λ and λ← are continuous}.

Then, the distance between two functions in D is measured by the standard J1 metric,

dJ1 , defined as follows:

dJ1 (x, y) = inf
λ∈Λ
{‖x ◦ λ− y‖ ∨ ‖λ− e‖}, (2.48)

where a ∨ b = max(a, b) and ‖x‖ = sup
0≤t≤1

|x(t)| is the uniform norm on C[0, 1], the space

of continuous functions on [0, 1].

The following theorem provides concrete criteria for convergence in distribution of

random elements Xn and X of the space D. It is a simplified version of Theorem 15.6 of

[10], appropriate when the limit X is continuous.

Theorem 2.5.8. [10, p. 28], [43, Lemma 2.5.6]

Let (Xn)n be a sequence of random elements with values in D[0, 1]. Suppose that

(Xn(t1), . . . Xn(tk))
d−→ (X(t1), . . . , X(tk)) , (2.49)

for all t1, . . . , tk ∈ [0, 1], that P (X(1) 6= X(1−)) = 0, and that

P (|Xn(t)−Xn(t1)| ≥ λ, |Xn(t2)−Xn(t)| ≥ λ) ≤ 1

λ2γ
(Fn(t2)− Fn(t1))2α (2.50)
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for t1 ≤ t ≤ t2 and n ≥ 1, where γ ≥ 0, α > 1
2
, and the functions Fn are all monotone

increasing or all monotone decreasing, and the sequence (Fn)n converges (uniformly on

[0, 1]) to a monotone continuous function F . Then

Xn ⇒ X in D[0, 1]. (2.51)

In what follows, we present a criterion under which the limit of distribution functions

remains a distribution function. This property is known as tightness.

Definition 2.5.9. [12]

A sequence of distribution functions (Fn)n is said to be tight if

∀ε > 0, ∃ a, b (a < b) : ∀n ≥ 1, Fn(a) < ε and Fn(b) > 1− ε.

Definition 2.5.10. [10]

A sequence of probability measures (µn)n on a separable metric space is said to be tight

if for all ε > 0, there exists a compact set K = K(ε) such that

µn(K) > 1− ε.

The following theorem is due to Prokhorov and provides the necessary and sufficient

conditions for tightness.

Theorem 2.5.11. [12]

A sequence of probability measures (µn)n on a separable metric space is tight if and only

if for any subsequence µnk , there exists a further subsequence that converges weakly to a

probability measure.

Corollary 2.5.12. [10]

Let (µn)n be a tight sequence of probability measures on a separable metric space. Assume

that any convergent subsequence µnk converges weakly to the same probability measure µ.

Then µn converges weakly to µ.

The following criterion, in terms of moments, is an alternative working version of

(2.50) when it comes to checking tightness on D[0, 1]:

E (|Xn(t)−Xn(t1)|γ |Xn(t2)−Xn(t)|γ) ≤ (Fn(t2)− Fn(t1))2α . (2.52)

Remark 2.5.13. More generally, for A, any subinterval (open or closed) of (0,∞), D(A)

is the class of càdlàg real-valued functions on A. The previous definitions and results
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are easily extended from D[0, 1] to D[a, b], for all 0 < a < b < ∞. Let (Xn)n and X be

elements of D(0,∞) and let Xn11[a,b] and X11[a,b] be their respective restrictions to [a, b],

0 < a < b <∞. If for all 0 < a < b <∞,

Xn11[a,b] ⇒ X11[a,b] in D[a, b], (2.53)

then as in Section 16 of [12], it follows that

Xn ⇒ X in D(0,∞). (2.54)

This criterion is appropriate when the limit, X, is continuous, as will always be the case

in this thesis.

We end this discussion by stating an alternative tightness criterion proposed in [22].

This will be used later in this thesis.

Theorem 2.5.14. [22, p.2]

Let (ξn)n≥1 be real valued stochastic processes defined on [0, 1] and whose paths are in

the Skorokhod space D[0, 1] almost surely. Furthermore, let all the finite dimensional

distributions of (ξn)n converge, as n → ∞, to the corresponding ones of a process ξ.

Assume that there are constants 1 < δ ≤ γ, c > 0, and a nonnegative sequence cn → 0,

as n→∞ such that, for all n ≥ 1, we have

E (|ξn(0)|γ) ≤ c, (2.55)

E (|ξn(t)− ξn(s)|γ) ≤ c|t− s|δ, (2.56)

whenever |t − s| ≥ cn. Furthermore, assume that the processes (ξn)n can be written as

the differences of nondecreasing processes (ξ◦n)n and (ξ◦◦n )n, and let the processes (ξ◦◦n )n
be such that:

max
j=1,...,ln

|ξ◦◦n (tj+1)− ξ◦◦n (tj)|
p−−−→

n→∞
0, (2.57)

where tj = jcn, for all j = 0, 1, . . . , ln with ln := [1/cn] and tln+1 := 1. Then the

processes (ξn)n converge weakly to ξ in D[0, 1]. Moreover, the limiting stochastic process

ξ has continuous paths almost surely.

Remark 2.5.15. We make the following observations:

1. The statement of Theorem 2.5.14 is also valid when ξn, n ≥ 1 can be written as the

differences of nonincreasing processes ξ◦n and ξ◦◦n .
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2. The statement of Theorem 2.5.14 is also valid for D[a, b], −∞ < a < b <∞, with

c = ca,b, tj = a+ jcn, j = 0, 1, . . . , ln

where ln is the integer part of b− a/cn that is ln := [(b− a)/cn] and tln+1 := b.

2.5.3 Convergence of Functionals of Stochastic Processes

The power of weak convergence theory comes from the fact that once a basic weak

convergence result has been established, then many other weak limits can be derived

from it, often using only continuity.

Theorem 2.5.16. [51, p.85]

If Xn ⇒ X in (S, d) and g : (S, d)→ (S ′, d′) is continuous, then

g (Xn)⇒ g (X) in (S ′, d′). (2.58)

Lemma 2.5.17. [12]

If Xn
d−−−→

n→∞
X and Yn

P−−−→
n→∞

a, where a ∈ R. Then,

(Xn, Yn)
d−−−→

n→∞
(X, a). (2.59)

The next result is Lemma 2.5.10 in [43].

Lemma 2.5.18. Let D1(0,∞) be the set of non-increasing functions in D(0,∞) and

C1(0,∞) be the set of continuous non-increasing and positive functions in C(0,∞).

Then, any map defined in D(0,∞) × C1(0,∞) is continuous at functions in C(0,∞) ×
C1(0,∞).

The next result is Corollary 2.5.11 in [43].

Corollary 2.5.19. For each n, let Γn be random elements of D(0,∞) and Φn random

elements of D1(0,∞). Suppose that

(Γn,Φn)
d−−−→

n→∞
(Γ,Φ)

and P (Γ ∈ C(0,∞)) = P (Φ ∈ C1(0,∞)) = 1. Then,

Γn ◦ Φn
d−−−→

n→∞
Γ ◦ Φ in D(0,∞).
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Theorem 2.5.20. [11, p.332]

Let M ≥ 1 and (X
(M)
n , Yn)n be a sequence of random elements of a metric space (S, d).

If for each M , and for all ε ≥ 0, the following hold

X(M)
n ⇒ X(M) as n→∞, (2.60a)

X(M) ⇒ X as M →∞, (2.60b)

lim
u→∞

lim sup
n→∞

P
(
d
(
X(M)
n , Yn

)
≥ ε
)

= 0. (2.60c)

Then, as n→∞, Yn converges weakly to X, that is, Yn ⇒ X.

2.6 Stationary Processes

In this section, we discuss a number of concepts about stationary processes with finite

second moment.

2.6.1 Stationarity and Ergodicity

In this subsection, we briefly present two properties of time series: stationarity and

ergodicity.

Definition 2.6.1. [33, p.328]

A random sequence (Xn)n is strictly stationary if for every k ≥ 1, the shifted sequence

(Xn+k)n has the same distribution, that is, for each m,

(Xk, . . . , Xk+m)
d
= (X0, . . . , Xm).

The sequence (Xn)n is said to be of second order if V ar(Xj) <∞, ∀ j.

Definition 2.6.2. [33, p.328]

A stationary sequence (Xn)n is ergodic if every shift-invariant event has probability 0 or

1.

Theorem 2.6.3. [33, p.328]

Let (Xn)n be a strictly stationary and ergodic sequence and f be a measurable function.

If E(|f(X)|) <∞, then with probability 1,

1

n

n∑
k=1

f(Xk) →
n→∞

E(f(X0)). (2.61)



Mathematical Foundations 38

Theorem 2.6.4. [46, p.10]

If (Xn)n is a strictly stationary and ergodic sequence and g : R∞ → R is a measurable

transformation such that Yk = g (Xk, Xk−1, . . .), then (Yn)n is a strictly stationary ergodic

sequence.

2.6.2 Linear Processes

Definition 2.6.5. [6, p. 43-44]

Let {εj, j ∈ Z} be a sequence of independent and identically distributed random variables.

A causal linear process or infinite order moving average process {Xj, j ∈ Z} is defined

by

Xj = µ+
∞∑
k=0

akεj−k,

where µ ∈ R and {ak, k ∈ Z} is a sequence of real numbers.

For simplicity, we assume hereafter that µ = 0. Causality is an important property

for predicting future values of the process. The next result is an immediate consequence

of Theorem 2.6.4.

Theorem 2.6.6. [46, p. 10]

Let {εj, j ∈ Z} be a sequence of independent and identically distributed random variables

with mean zero and finite variance. If
∞∑
j=0

α2
j <∞, then the linear transformation

Xk =
∞∑
j=0

αjεk−j

is a second-order strictly stationary ergodic process.

2.6.3 Martingales

For the purpose of this thesis, we only present two results: Rosenthal’s inequality in

Theorem 2.6.8 and the martingale Central Limit Theorem 2.6.9.

Definition 2.6.7. [46, p. 11-12]

Let (Xn)n be a sequence of integrable random variables on a probability space (Ω,F , P ).

Let {Fk} be an increasing sequence of sub-σ-algebras of F such that Xk is Fk-measurable.
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• A sequence {Xk} is a martingale relative to Fk if for all k = 1, 2, . . .

E (Xk‖Fk−1) = Xk−1, a.s.

• A sequence {Xk} is a martingale difference if

E (Xk‖Fk−1) = 0, a.s.

Theorem 2.6.8 (Rosenthal’s inequality). [36, p.23-24]

If {(Xn,Fn)} is a martingale difference sequence, Sn =
∑n

i=1Xi, and 2 ≤ p < ∞, then

there exists a constant Cp depending only on p such that

E (|Sn|p) ≤ Cp

E( n∑
i=1

E
(
X2
i ‖Fi−1

)) p
2

+
n∑
i=1

E (|Xi|p)

 .

Theorem 2.6.9. [38]

Let {(Xnk,Fn,k)}, k = 1, 2, ...;n = 1.2, ... be an array of random variables such that for

each n, {(Xnk,Fn,k)}k is a martingale difference sequence. If for all ε > 0,



kn∑
j=1

E
(
X2
nj11{|Xnj |>ε}‖Fn,j−1

) p−−−→
n→∞

0,

kn∑
j=1

V ar
(
X2
nj‖Fn,j−1

) p−−−→
n→∞

1.

(2.62)

Then,

kn∑
j=1

Xnj
d−−−→

n→∞
N ,

where N stands for a standard normal random variable.

2.7 Long Memory Processes

Trend, seasonality, cycles, stationarity, are commonly accepted qualitative features of

time series. In the early eighties, long memory was added to this list thanks to the

contribution of Granger et al. [35]. Since then, it is well known that time series tend to

have memories: short and long. Our focal point in this thesis is long memory. There are
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various mathematical ways of defining the existing types of memories of a time series. For

instance in the time domain approach, measures of dependence such as autocovariance

and autocorrelation functions are used. In the frequency approach, the notion of spectral

density is used. In this thesis, we only consider the time domain approach.

2.7.1 Different Types of Memory

Definition 2.7.1. [5, p.42]

Let {Xj, j ∈ Z} be a second order stationary process with autocovariance function (ACF)

γ(k) = Cov(Xj, Xj+k) = Cov(X0, Xk).

• {Xj, j ∈ Z} is said to have long memory (long range dependence) if its ACF, is

not absolutely summable, that is

∞∑
k=−∞

|γ(k)| =∞.

• {Xj, j ∈ Z} is said to have short memory if its ACF is absolutely summable, that

is

∞∑
k=−∞

|γ(k)| <∞. (2.63)

For the purposes of this thesis, we confine our attention to a more restrictive definition

of long range dependence.

Definition 2.7.2. [5, p.42]

Let {Xj, j ∈ Z} be a second order stationary process with autocovariance function γ. If

there exists a long memory parameter d ∈ (0, 1/2) and a slowly varying function `γ such

that

γ(k) = Cov(Xj, Xj+k) ∼ k−(1−2d)`γ(k), (2.64)

then {Xj, j ∈ Z} is called a stationary process with long memory.

Next, we apply these definitions to second-order stationary causal linear processes.

Definition 2.7.3. [6, p.45]

Let {Xj, j ∈ Z} be a second-order stationary causal linear process.
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• {Xj, j ∈ Z} has long memory if

aj = jd−1`a(j), (0 < d < 1/2), (2.65)

where `a is a slowly varying function.

• {Xj, j ∈ Z} has short memory if

∞∑
j=0

|aj| <∞ and
∞∑
j=0

aj 6= 0. (2.66)

Remark 2.7.4. Note that persistence, strong dependence and long-range dependence

are alternative terminologies for long memory. Short memory means that correlations are

quickly decaying. On the other hand, long memory means that correlations are slowly

decaying.

2.7.2 ARMA and FARIMA Models

In this subsection, we present examples of short- and long-memory processes such as the

ARMA and FARIMA models. We focus on second order processes only.

Definition 2.7.5. [49]

A time series {Xj, j ∈ Z} is said to be an AutoRegressive Moving Average process with

orders p and q and we write ARMA(p,q) if it is stationary and

φp(B)Xj = θq(B)εj, (2.67)

where {εj, j ∈ Z} is sequence of i.i.d. random variables with mean zero and finite vari-

ance, B is the backward shift operator, that is

BjXi = Bj−1 (BXi) = Xi−j, j = 0,±1,±2, . . . (2.68)

and where the autoregressive and moving average operators are respectively defined by

φp(B) = 1−
p∑
j=1

φjB
j and θq(B) = 1 +

p∑
j=1

θjB
j (2.69)

and are assumed to have no common roots.
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Second order ARMA models have summable covariances and hence have short mem-

ory [49].

FARIMA, or Fractionally AutoRegressive Integrated Moving Average, models were

introduced by Granger et al. [35], back in the early eighties. These models are alterna-

tively called ARFIMA (AutoRegressive Fractionally Integrated Moving Average).

Definition 2.7.6. [6]

A time series {Xj, j ∈ Z} is said to be a Fractionally AutoRegressive Integrated Moving

Average process and we write FARIMA(p, d, p) if

φp(B)(1−B)dXj = θq(B)εj (2.70)

where {εj, j ∈ Z} is sequence of i.i.d. random variables with mean zero and finite vari-

ance, d ∈ (0, 1/2) is a rational number called the differencing order or long memory

parameter.

The FARIMA(0, d, 0) model is a basic example of a long memory time series [6], [46].

Remark 2.7.7. The rationale behind the name FARIMA is that (1−B)dXj ∼ ARMA(p, q).

Notice that if φp(z) = θq(z) = 1, then we obtain the simplest autoregressive fraction-

ally integrated model known as the factional noise and defined as follows:

(1−B)dXj = εj . (2.71)

Thus

Xj = (1−B)−d εj =
∞∑
i=1

ψiB
iεj =

∞∑
i=1

ψiεj−i . (2.72)

The range for the differencing parameters is 0 < d < 1/2. The closer the value of d to

1/2, the higher the intensity of long memory displayed by the model. When d = 0, the

classical ARMA model is recovered. For d > 1/2, the model is nonstationary.

2.7.3 Hermite Polynomials

In this subsection, we present some analytical and probabilistic properties of Hermite

polynomials. These orthogonal polynomials are essential for the derivation of limit the-

orems of Gaussian long memory time series.



Mathematical Foundations 43

Definition 2.7.8. [5, p.68]

The k-th Hermite polynomial is defined to be

Hk(x) := (−1)kex
2/2 d

k

dxk
e−x

2/2, x ∈ R, k = 0, 1, 2, . . . (2.73)

Note that (2.73) is known as the Rodrigues Formula. Here are some Hermite poly-

nomials:

H0(x) = 1, H1(x) = x,H2(x) = x2 − 1, H3(x) = x3 − 3x.

The Hermite polynomials satisfy a number of analytical properties that we will explore

shortly.

Lemma 2.7.9. [45] The set (Hk)k of Hermite polynomials satisfies

Hk+1(x) = xHk(x)− kHk−1(x), k = 1, 2, . . .

Lemma 2.7.10. [45] The set (Hk)k of Hermite polynomials satisfies

Hk(x) = k!

[k/2]∑
n=0

(−1)n

2nn!(k − 2n)!
xk−2n, (2.74)

where [x] denotes the integer part of the real number x.

Lemma 2.7.11. The set (Hk)k of Hermite polynomials satisfies

Hk(−x) = (−1)kHk(x).

Proof. The Hermite expansion (2.74) yields for all x ∈ R, that

Hk(−x) = k!

[k/2]∑
n=0

(−1)n

2nn!(k − 2n)!
(−x)k−2n = k!

[k/2]∑
n=0

(−1)n+k−2n

2nn!(k − 2n)!
xk−2n

= k!

[k/2]∑
n=0

(−1)n(−1)k(−1)−2nxk−2n

2nn!(k − 2n)!
= (−1)kk!

[k/2]∑
n=0

(−1)nxk−2n

2nn!(k − 2n)!
= (−1)kHk(x).

It follows from Lemma 2.7.11 that any Hermite polynomial of the form H2p is even

and any of the form H2p+1 is odd, where p is a positive integer.
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Lemma 2.7.12. [6, p.111]

The set (Hk)k of Hermite polynomials forms an orthogonal basis in L2(R) with respect

to the weight function

φ(x) =
e−x

2/2

√
2π
· (2.75)

Remark 2.7.13. The rationale behind Lemma 2.7.12 is that

〈Hj(x), Hk(x)〉 =

∫ ∞
−∞

Hj(x)Hk(x)φ(x)dx = j!δjk, (2.76)

where δjk stands for the Kronecker’s symbol. Recall that L2(R) endowed with the scalar

product 〈·, ·〉 above forms a Hilbert space.

We now turn our attention to some probabilistic properties of Hermite polynomials.

Most importantly, we introduce the concept of Hermite rank in Definition 2.7.15, the

cornerstone for limit theorems for Hermite polynomials Theorems 2.7.22 and 2.7.23.

Corollary 2.7.14. [6, p.113, p.22]

If X is a standard normal random variable, then for k > 0

E (Hk(X)) = 0 , V ar (Hk(X)) = k! , Cov (Hj(X), Hk(X)) = j!δjk. (2.77)

If (X1, X2) is a pair of standard normal random variables with Cov(X1, X2) = ρ, then

Cov(Hj(X1), Hk(X2)) =

k!ρk if j = k,

0 if j 6= k.
(2.78)

Definition 2.7.15. [6, p.112]

Let X ∼ N(0, 1) and G be a measurable function such that:

E (G(X)) = 0 and E
(
G2(X)

)
<∞. (2.79)

The Hermite rank m of G is defined to be

m = inf{k ∈ N∗ : E (Hk(X)G(X)) 6= 0}, (2.80)

where N∗ = {1, 2, 3, . . .}.
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Lemma 2.7.16. [6, p.111]

Let X be a standard normal random variable and G be a measurable function such that

(2.79) holds. Then G(X) is uniquely represented in L2(R) by:

G(X) =
∞∑
k=1

µ(k)

k!
Hk(X). (2.81)

The sequence, (µ(k))k, of Hermite coefficients, is defined by

µ(k) := 〈Hk(X), G(X)〉 = E (Hk(X)G(X)) . (2.82)

Remark 2.7.17. If the Hermite rank of G is m, then the Hermite series of G is

G(X) =
∞∑
k=m

µ(k)

k!
Hk(X). (2.83)

Example 2.7.18. To illustrate the concept of Hermite rank, we first recall that if X ∼
N(0, 1), then E(G(X)) = 0, for any odd measurable function G. Moreover, the k-th

moment of X satisfies for all k, p ∈ N,

E
(
Xk
)

=


k!

2
k
2 ( k2 )!

if k = 2p,

0 if k = 2p+ 1.
(2.84)

We consider the following examples:

1. Let X ∼ N(0, 1). Take G(X) = H1(X). It follows that E (G(X)) = 0. Since

µ(1) = E (H1(X)G(X)) = E
(
X2
)

= 1 6= 0,

then, we conclude that G is of Hermite rank m = 1.

2. Let X ∼ N(0, 1). Take G(X) = H2(X). It follows that E (G(X)) = 0. We have

µ(1) = E (H1(X)G(X)) = E
(
X(X2 − 1)

)
= E

(
X3
)
− E(X) = 0.

Moreover, we have

µ(2) = E (H2(X)G(X)) = E(X4)− 2E(X2) + 1 = 2 6= 0.

Thus, G is of Hermite rank m = 2.
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3. Since Hermite polynomials are orthogonal, it is easily seen that the Hermite rank

of Hm is m.

4. Let X ∼ N(0, 1). Take G(X) = Hm(X) +Hk(X), with 1 < m < k. By (2.77),

E(G(X)) = 0 and µ(k) = 0, 1 ≤ k ≤ m− 1.

Consequently, we obtain

µ(m) = E(Hm(X)G(X)) = E
(
H2
m(X)

)
+ E (Hm(X)Hk(X)) = m! 6= 0.

Thus, G is of Hermite rank m.

5. Let X ∼ N(0, 1). Recall that the moment generating MX satisfies for all t ∈ R,

MX(t) = e
t2

2 and M ′
X(t) = E

(
XetX

)
= te

t2

2 .

Take G(X) = eX − E
(
eX
)
. Trivially, E(G(X)) = 0. We have

µ(1) = E (H1(X)G(X)) = E
(
XeX

)
− E

(
XE

(
eX
))

= M ′
X(1)− E(X)E

(
eX
)

=
√
e.

Thus, G is of Hermite rank m = 1.

The Hermite expansion of transformations of Gaussian random variables makes fea-

sible the computation of their moments.

Corollary 2.7.19. [6, p. 113]

Let X be a standard normal random variable and G be a measurable function such that

(2.79) holds. If G is of Hermite rank m, then

V ar(G(X)) = E
(
G2(X)

)
=

∞∑
k=m

(µ(k))2

k!
· (2.85)

If (X1, X2) is a pair of standard normal random variables with Cov(X1, X2) = ρ, then

Cov(G(X1), G(X2)) = E (G(X1)G(X2)) =
∞∑
k=1

(µ(k))2

k!
ρk. (2.86)

Proof. Let X ∼ N(0, 1) and G be a measurable function of Hermite rank m. We

V ar(G(X)) = V ar

(
∞∑
k=m

µ(k)

k!
Hk(X)

)
=

∞∑
k=m

(
µ(k)

k!

)2

V ar(Hk(X)) =
∞∑
k=m

(µ(k))2

k!
·
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Now assuming that X1 and X2 are standard normal, we obtain

E [G(X1)G(X2)] =
∞∑
i=1

∞∑
k=1

µ1(i)

i!

µ2(k)

k!
E [Hi(X1)Hk(X2)] =

∞∑
k=1

(µ(k))2

k!
ρk.

Note that the last line holds by virtue of (2.78).

Definition 2.7.20. [6, p.194]

Let B(·) denote a standard Brownian motion on R, m a positive integer and h ∈ R+

be such that 1 − 1/2m < h < 1. A Hermite-Rosenblatt process is a stochastic process

(ξm,h(u)) defined for all u ≥ 0 by,

ξm,h(u) = ω(m,h)

∫ ∞
−∞

∫ x1

−∞
· · ·
∫ xm−1

−∞

(∫ u

0

m∏
j=1

(s− xi)
h− 3

2
+ ds

)
dB(xm) · · · dB(x1),

where x+ := max(0, x) and ω(m,h) > 0 satisfies

ω2(m,h) =
m!(2m(h− 1) + 1)(m(h− 1) + 1)(∫∞

0
[x(x+ 1)]h−

3
2dx
)m ·

Remark 2.7.21. Note that the choice of the constant ω(m,h) assures that E
(
ξ2
m,h(1)

)
=

1. Due to symmetry of the following function,

(x1 · · ·xm) 7→
∫ u

0

m∏
j=1

(s− xi)
h− 3

2
+ ds,

the Hermite-Rosenblatt process can be alternatively represented as follows:

ξm,h(u) =
ω(m,h)

m!

∫
Rm

(∫ u

0

m∏
j=1

(s− xi)
h− 3

2
+ ds

)
dB(xm) · · · dB(x1).

If m = 1, then ξ1,h is a fractional Brownian motion with the Hurst parameter 1
2
< h < 1.

2.7.4 Limit Theorems for Gaussian Long Memory Processes

We present limit theorems for partial sums associated with a Hermite transformation of

a second-order stationary long memory Gaussian sequences.

Theorem 2.7.22. [6, p.228], [17]

Let (Yj)j be a stationary sequence of standard normal random variables with autocovari-

ance function γ(k) ∼ k2d−1`γ(k), where 0 < d < 1/2 and `γ is a slowly varying function

at infinity. Denote by Hm be the m-th Hermite polynomial.
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• If m(1− 2d) < 1, then for u ∈ [0, 1],

1

n1−m( 1
2
−d)
√
m!Cm`mγ (n)

[nu]∑
j=1

Hm(Yj)
d−−−→

n→∞
ξm,h(u) in D[0, 1], (2.87)

where ξm,h(·) is Hermite-Rosenblatt with h = d+ 1/2 and

Cm =
2

[1−m(1− 2d)][2−m(1− 2d)]
· (2.88)

• If m(1− 2d) > 1, then

1√
n

n∑
j=1

Hm(Yj)
d−−−→

n→∞
σmN , (2.89)

where N stands for the standard random variable and

σ2
m = lim

n→∞

1

n
Var

(
n∑
j=1

Hm(Yj)

)
∈ (0,∞) . (2.90)

We extend the previous result to an arbitrary measurable transformation of a Gaus-

sian long memory sequence.

Theorem 2.7.23. [6, p. 223, 229], [17]

Let {Yj, j ∈ Z} be a stationary sequence of standard normal random variables with au-

tocovariance function γ(k) ∼ k2d−1`γ(k), where 0 < d < 1/2 and `γ is a slowly varying

function at infinity. Let G be a measurable function of Hermite rank m.

• If m(1− 2d) < 1, then for u ∈ [0, 1],

1

n1−m( 1
2
−d)
√
m!Cm`mγ (n)

[nu]∑
j=1

G(Yj)
d−−−→

n→∞

µ(m)

m!
ξm,h(u) in D[0, 1]. (2.91)

where Cm is defined in (2.88) and µ(m) = E (Hm(Y0)G(Y0)). The limiting process

ξm,h(·) is Hermite-Rosenblatt with h = d+ 1/2.

• If m(1− 2d) > 1, then

1√
n

n∑
j=1

G(Yj)
d−−−→

n→∞
σN , (2.92)
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where N stands for the standard normal random variable and

σ2 =
∞∑
k=m

µ2(k)

k!
σ2
k <∞ (2.93)

and σ2
k is defined in (2.90).

Remark 2.7.24. Here are the striking facts about limit theorems under long memory:

• In the case of scenarios (2.89) and (2.92), where the long memory (as measured by

the parameter d), is not very strong, then the scaling for partial sums remains the

same as in the Central Limit Theorem, that is n1/2. We will call the regime (2.92)

weak long memory.

• However in the case of scenarios (2.87) and (2.91), where correlations decay very

slowly, the scaling of partial sums departs from n1/2. Actually, it is of the form nb,

with b = 1−m(1
2
−d) > 1/2. In a nutshell, in contrast with the weak long memory

regime, the long memory effect leads to nonstandard limit theorems. In addition,

under long memory one dimensional transformations of the form G(Yj) contribute

to the limiting distribution through the Hermite rank of G. We will call the regime

(2.91) strong long memory.

• The boundary case m(1 − 2d) = 1 is more delicate and will not be discussed. In

fact, the limiting random variable is a linear combination of ξm,h and N . These

random variables are uncorrelated but not independent. See [17].

2.8 Leverage Effect

In the financial literature, volatility depicts the magnitude of the price fluctuations dur-

ing a specified period of time. In other words, it is a measure of how much the price of

an asset moves each day (or week or month, and so on). See e.g. [19]. In general, higher

volatility is synonymous with higher profit or loss risk.

Now we turn our attention to another empirical behaviour of financial data: the

leverage effect. This phenomenon is understood as an asymmetric behaviour of stock

prices and is extensively discussed in [20]. The leverage effect refers to the observed

tendency of an asset’s volatility to be negatively correlated with the asset’s returns.

Typically, rising asset prices are accompanied by declining volatility, and vice versa. See
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[3]. Informally speaking (see [52, p. 167]), if Xj is the return at period j and σ2
j is the

return volatility at period j, then the leverage effect is a negative relationship between

E
(
lnσ2

j+1‖Xj

)
and Xj.

It follows from this informal definition that previous returns of a portfolio are neg-

atively correlated to future volatility. Note that future volatility is the predicted or

expected price fluctuation of a period of time until the option has expired. See [19].

The original modelling approach to the leverage is due to [37]. The authors consider

the following model:

Xj = σjZj , lnσ2
j = Yj , Yj = ρYj−1 + εj−1 ,

where |ρ| < 1, {(εj, Zj)} are i.i.d. normal vectors with mean zero, unit variance and

correlation ω. Under this set-up, we have the following representation

Yj =
∞∑
i=1

ρiεj−i.

Notice that the logarithm of the volatility can be written as

Yj+1 = ρYj + ωσ−1
j Xj + (εj − ωZj) .

Since (εj, Zj) are multivariate normal, then (εj, Zj)
d
= (ωZj + Wj, Zj), where Wj is a

standard normal random variable. Therefore, we have

E
(
lnσ2

j+1‖Xj, σj
)

= E
(
ρYj + ωσ−1

j Xj‖Xj, σj
)

+ E(εj − ωZj‖Xj, σj)

= ρYj + ωσ−1
j Xj = ρ lnσ2

j + ωσ−1
j Xj.

In fact, we have

E (εj − ωZj‖Xj, σj) = E(εj − ωZj‖Zj, σj) = E(εj − ωZj‖Zj)
= E (εj‖Zj)− ωZj = ωZj − ωZj = 0.

Thus, the expected log-volatility is a linear function of Xj whenever ω 6= 0, that is

E
(
lnσ2

j+1‖Xj

)
= µ+ νXj, (2.94)

where µ, ν are constants. This is a linear function in Xj. Hence, if ω < 0 and everything

else is held constant, a fall in the stock price (return) leads to an increase of future
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expected log-volatility. As such, (2.94) captures the leverage effect in the model that is

volatility tends to rise in response to bad news but to fall in response to good news.

Other modeling approaches to leverage can be found e.g. in [52] or [16]. The only differ-

ence lies in alternative specifications in the equation for lnσ2
j , allowing for an additional

random term.

2.9 Concluding Remarks

The quantitative analysis of time series requires mathematical tools such as those pre-

sented in this chapter: regular variation, second-order regular variation, second-order

stationary processes, long memory processes, Hermite polynomials, as well as leverage.

Since any mathematical model approximating the evolution of asset price should be

able to generate long memory, heavy tails and the leverage effect, then in the next chapter

we discuss heteroscedastic processes such as stochastic volatility models. In particular, we

are going to focus on the class of long memory stochastic volatility models with leverage.

The mathematical foundations explored throughout this chapter will help handling their

limiting behaviour.



Chapter 3

Long Memory Stochastic Volatility

Model with Leverage

3.1 Introductory Comments

Long memory time series have become increasingly popular since the pioneering work

of Granger et al. [35]. These models find various applications in hydrology, financial

risk management etc. Financial data such as return on investments exhibit three widely

accepted features:

1. Returns are uncorrelated, but their squares, or absolute values, are (highly) cor-

related. Such behaviour is known as long range dependence or long memory. We

refer to [26] for a detailed discussion about the long memory property of stock

market returns.

2. Log-returns are heavy tailed, that is - some moments of the log-returns are infinite.

3. Previous returns are negatively correlated with future volatility. Such behaviour is

referred to as the leverage effect. This means that rising asset prices are accompa-

nied by declining volatility, and vice versa.

These empirical findings have opened the door to stochastic volatility models. In this

class of stochastic processes, log-returns {Xj} are modeled as follows

Xj = σjZj,

where {Zj} is an i.i.d. sequence and {σ2
j} is the conditional variance or, more generally, a

certain process which stands as a proxy for the volatility. In such a process, long memory

52
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can only be modelled through the sequence {σj}, while the tails can be modelled either

through the sequence {Zj} or through {σj}, or both. The well known GARCH processes

belong to this class of models. The volatility sequence {σj} is heavy tailed unless the

distribution of Z0 has finite support, and leverage can be present. However, long memory

of squares cannot be modelled by the GARCH process.

In order to capture this feature, the so-called long memory stochastic volatility

(LMSV) model was introduced in [15]. An overview of stochastic volatility models with

long range dependence and their basic properties is given in [24] and in [25]. In the

classical LMSV model, {Zj} is a sequence of i.i.d. standard normal random variables,

independent of the volatility sequence {σj}, assumed to be of the form σj = exp(Yj),

where {Yj} is a long memory Gaussian sequence. However, the independence assump-

tion excludes the possibility of modelling leverage effects. For this, in the next section

we introduce the long memory stochastic volatility model with leverage.

We structure this chapter as follows. In section 3.2, we define the long memory

stochastic volatility model and provide its main assumptions. In section 3.3, we examine

in what way the heavy-tail and long memory assumptions on Zj and Yj, respectively, get

transferred to Xj. In section 3.4, we discuss no-bias conditions which will play a major

role in subsequent arguments. Finally, we give two examples in section 3.5.

3.2 Model: Description and Assumptions

The long memory stochastic volatility model with leverage is defined by

Xj = φ(Yj)Zj , j ∈ Z. (3.1)

A(i) The sequence {Yj} is strictly stationary and ergodic long memory Gaussian,

Yj =
∞∑
i=1

aiεj−i ,

where {εj} is a sequence of i.i.d. standard normal random variables and

aj = jd−1`a(j),
∞∑
j=1

a2
j = 1 .
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As a consequence,

γY (j) = Cov(Y0, Yj) ∼ j2d−1`Y (j).

Note that `a and `Y are slowly varying functions at infinity such that:

`Y (j) = `2
a(j)B(1− 2d, d),

where B(a, b) denotes the Beta function and 0 < d < 1
2

is referred to as the long

memory parameter (for details, see [6]). Furthermore, {(εj, Zj)} is a sequence of

i.i.d. random vectors. Let {Gj} be the minimal filtration generated by the random

vectors {(εj, Zj)}, that is

Gj := σ ({(εk, Zk) : k ≤ j}) , j ∈ Z . (3.2)

For each fixed j, εj and Zj may be dependent, but due to the construction above,

the random variables Yj and Zj are independent. However, there can be dependence

between the sequences {Zj} and {Yj}, allowing for leverage in the model.

A(ii) The random variables Zj are i.i.d. and the tail distribution function F̄Z = 1−FZ ∈
2RV∞(−α,−κ, η∗), with α, κ > 0. By (2.31), this means that for all x > 0,

F̄Z(x) = c∗x−α exp

(∫ x

1

η∗(u)

u
du

)
= x−α`∗(x), (3.3)

where c∗ > 0 and η∗ is either nonnegative or nonpositive, regularly varying with

index −κ and bounded - that is, there exists β > 0 such that for all x > 0,

|η∗(x)| ≤ β. (3.4)

A(iii) The function φ is a nonnegative measurable function and φ(Y0) is not equal to 0

with probability one. In addition, denote the Hermite rank of φα by m.

A(iv) Let kn →∞ be an increasing sequence of positive integers such that kn/n→ 0 and

let un be defined by un = F̄←X (kn/n) where F̄←X is the inverse function of the tail

distribution function F̄X of X. (As will be argued below, F̄X is continuous). For

ease of notation, we suppress dependence of kn on n, which is the standard practice

in the extreme value literature. For all n ≥ 1, let {an,m} and {bn,m} be such that:

an,m :=

(√
nF̄Z(un) +

n

bn,m

)
11{m(1−2d)<1} +

√
n11{m(1−2d)>1} , (3.5a)

bn,m := n1−m( 1
2
−d)

√
2m!(`Y (n))m

[(2d− 1)m+ 1][(2d− 1)m+ 2]
. (3.5b)
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an,mη
∗ (F̄←X (k/n)

)
= an,mη

∗(un) →
n→∞

0 . (3.6)

A(v) For all ε > 0, and α, β, κ > 0 as above,

E
(
(φ(Y ))2α+2β

)
+ E

(
(φ(Y ))2α−2β

)
<∞, (3.7a)

E
(
(φ(Y ))α+κ+ε

)
+ E

(
(φ(Y ))α+κ−ε) <∞. (3.7b)

Remark 3.2.1. The assumptions A(i)and A(iii) model long memory and leverage, while

A(ii) determines the tail behaviour. The remaining assumptions have to do with techni-

calities. For clarity throughout the remainder of the thesis, when referring to

the long memory stochastic volatility model with leverage, we suppose that

all the assumptions from A(i) to A(v) are satisfied. However, some results

do not require all the assumptions.

3.3 Transfer Theorems and Technicalities

In this section, we consider the long memory stochastic volatility model with leverage as

in (3.1). We examine in what way assumptions made on Z and Y transfer to X.

Under the assumption A(i), Xj is Gj-adapted, Yj is Gj−1-measurable. Therefore,

E
(
11{Xj>x}‖Gj−1

)
= E

(
11{φ(Yj)Zj>x}‖Gj−1

)
= F̄Z(x/φ(Yj)), x > 0 . (3.8)

This formula will play a crucial role in subsequent proofs.

Transfer of dependence. The next lemma deals with transfer of properties such as

stationarity, ergodicity and long range dependence.

Lemma 3.3.1. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then {Xj} is a strictly stationary and ergodic sequence. Further, if V ar(Zj) <

∞, then

V ar (Xj‖Gj−1) = (φ(Yj))
2 V ar(Zj) , (3.9a)

Cov(X0, Xj) = (E(Z0))2Cov(φ(Y0), φ(Yj)) =: γX(j) , (3.9b)

Cov
(
X2

0 , X
2
j

)
= (E(Z2

0))2Cov(φ2(Y0), φ2(Yj)) =: γX2(j) . (3.9c)
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Proof. Stationarity and ergodicity of Xj follows from Theorem 2.6.4. Since Yj is Gj−1-

measurable and Zj is independent from Gj−1, then

V ar (Xj‖Gj−1) = E
(
φ2(Yj)Z

2
j ‖Gj−1

)
− (E (φ(Yj)Zj‖Gj−1))2

= (φ(Yj))
2E(Z2

j )− (φ(Yj))
2(E(Zj))

2

= (φ(Yj))
2 Var(Zj) .

Furthermore,

γX(j) = Cov(X0, Xj) = Cov (φ(Y0)Z0, φ(Yj)Zj)

= E (φ(Y0)φ(Yj)Z0Zj)− E (φ(Y0))E(Z0)E (φ(Yj))E(Zj)

= E (φ(Y0)φ(Yj))E(Z0)E(Zj)− E (φ(Y0))E(Z0)E (φ(Yj))E(Zj)

= (E(Z0))2Cov(φ(Y0), φ(Yj)).

The calculation for (3.9c) is similar.

Remark 3.3.2. It turns out that the conditional variance of this stochastic process is ran-

dom, which is referred to as stochastic volatility. Under the assumptions of Lemma 3.3.1,

{Xj} may inherit long memory behaviour from {Yj}.

• If E(Z0) = 0, then the random variables {Xj} are always uncorrelated, regardless

the memory of {Yj};

• If E(Z0) 6= 0, then long memory properties of {Yj} are transferred to {Xj} via the

covariance function γφ(Y )(j) := Cov(φ(Y0), φ(Yj)). The behaviour of the latter was

studied in Corollary 2.7.19.

• Long memory properties of {Yj} are always transferred to {X2
j } via the covariance

function γφ2(Y )(j) := Cov(φ2(Y0), φ2(Yj)). The behaviour of the latter was studied

in Corollary 2.7.19.

Transfer of regular variation. The elementary consequence of A(ii) is that the

second-order regular variation of Z also implies that F̄Z is regularly varying at infin-

ity with index −α, that is

Jx(t) :=
F̄Z(xt)

F̄Z(x)
→
x→∞

T (t) =: t−α , (3.10)
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uniformly on compact subsets of (0,∞). Furthermore, since (3.7a) holds, then Breiman’s

Lemma 2.3.20 yields that

F̄X(x)

F̄Z(x)
→
x→∞

E(φα(Y )). (3.11)

This means that the random variables Z and X are tail equivalent. In other words, the

tail distribution of X is regularly varying with index −α as well - that is F̄X ∈ RV∞(−α).

Therefore,

Tx(t) :=
F̄X(xt)

F̄X(x)
→
x→∞

T (t) = t−α . (3.12)

Moreover,
(
F̄Z(un)/F̄X(un)

)
n

is a strictly positive sequence converging to a positive limit.

So, it is bounded away from zero and infinity, that is, there exists K > 0 such that for

all n ≥ 1,

1/λ0 < F̄Z(un)/F̄X(un) < λ0. (3.13)

Furthermore, A(ii) implies that F̄Z is continuous. So is F̄X , by (3.11).

Regular variation of F̄Z and F̄X yields different versions of Potter’s bounds (cf. [50],

[14, p. 25]). We state them the way they are used in this thesis. First, for all ε > 0,

there exists ω(ε) > 1 such that ∀ x ≥ 1, t > 0,

Jx(t) ≤ ω(ε) max
(
1, t−(α+ε)

)
. (3.14)

Further ∀ C > 1, ε > 0, there exists δ = δ(C; ε) ≥ 0 such that for x ≥ δ, t > 0,

Tx(t) ≤ C
(
t−(α+ε) ∨ t−(α−ε)) . (3.15)

Notice that (3.13) in conjunction with (3.15) yields

F̄Z(xt)

F̄X(x)
≤ λC

(
t−(α+ε) ∨ t−(α−ε)) . (3.16)

The next result precisely characterizes the tail distribution of X.

Lemma 3.3.3. [39]

Let {Xj} be the long memory stochastic volatility model with leverage as in (3.1). The

tail distribution function of X is regularly varying with index −α, that is

F̄X(x) = x−αE [φα(Y )`∗ (x/φ(Y ))] , (3.17)

where ˜̀(x) := E [φα(Y )`∗ (x/φ(Y ))] is slowly varying at infinity and `∗ as in (3.3).
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Proof. The law of total expectation and (3.8) ensure that

F̄X(x) = P (φ(Y )Z > x) = E
(
F̄Z (x/φ(Y ))

)
.

Since F̄Z ∈ RV∞(−α), then F̄Z(x) = x−α`∗(x), for some `∗ ∈ SV∞, by (2.17). Therefore,

F̄X(x) = E
[
F̄Z (x/φ(Y ))

]
= x−αE [φα(Y )`∗ (x/φ(Y ))] =: x−α ˜̀(x).

Theorem 2.3.10 requires that it remains to show ˜̀∈ SV∞ - that is for all t > 0,

lim
x→∞

˜̀(xt)
˜̀(x)

= lim
x→∞

E [φα(Y )`∗ (xt/φ(Y )) /`∗(x)]

E [φα(Y )`∗ (x/φ(Y )) /`∗(x)]
= 1.

Since `∗ is bounded away from 0 and ∞ on every compact subset of (0,∞), then Theo-

rem 2.3.7 ensures that for all ε > 0, there exists C = C(ε) > 1, such that:

φα(Y )
`∗ (xt/φ(Y ))

`∗(x)
≤ C(tε ∨ t−ε)

(
φα−ε(Y ) + φα+ε(Y )

)
,

φα(Y )
`∗ (x/φ(Y ))

`∗(x)
≤ C

(
φα−ε(Y ) + φα+ε(Y )

)
.

As x goes to ∞, φα(Y )`∗ (xt/φ(Y )) /`∗(x) and φα(Y )`∗ (x/φ(Y )) /`∗(x) converge with

probability one to φα(Y ). Hence, (3.7a) and the Dominated Convergence Theorem yield

E [φα(Y )`∗ (xt/φ(Y )) /`∗(x)] →
x→∞

E [φα(Y )]

E [φα(Y )`∗ (x/φ(Y )) /`∗(x)] →
x→∞

E [φα(Y )] .

Differentiability of Jx. In the next two lemmas, we look into differentiability of Jx.

This is an ingredient for differentiability of Tx.

Lemma 3.3.4. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then for all x ≥ 1, t > 0,

J ′x(t)→ T ′(t) = −αt−α−1. (3.19)

Further, there exist β,Mα,β > 0 such that for all x ≥ 1, t > 0,

|J ′x(t)| ≤Mα,β

(
t−(α+β+1) ∨ t−(α−β+1)

)
. (3.20)
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Proof. Assume that (3.10) holds. It follows from (3.3) that if x ≥ 1, then

Jx(t) =
F̄Z(xt)

F̄Z(x)
= t−α exp

(∫ xt

x

η∗(u)

u
du

)
= t−α exp

(∫ t

1

η∗(xv)

v
dv

)
,

where the last equality holds by setting v = u/x. Therefore, for x ≥ 1 and t ≥ 1,

J ′x(t) = −αt−α−1 exp

(∫ t

1

η∗(xv)

v
dv

)
+ t−α−1η∗(xt) exp

(∫ t

1

η∗(xv)

v
dv

)
= t−1 (−α + η∗(xt)) Jx(t).

Similarly, for x ≥ 1 and 0 < t ≤ 1, J ′x(t) = t−1 (−α− η∗(xt)) Jx(t). Altogether ∀ t > 0,

J ′x(t) →
x→∞

−αt−α−1,

since η∗ ∈ RV∞(−κ) and (3.10) holds. Hence (3.19) is proven.

On the other hand, since η∗ is bounded, then there exists β > 0 such that |η∗(xv)| ≤ β.

Moreover by (2.13), Jx(t) ≤ C(β)
(
t−(α−β) ∨ t−(α+β)

)
. Therefore, for all x, t > 0,

|J ′x(t)| ≤ t−1 (α + |η∗(xt)|) Jx(t)
≤ C(β) (α + β)

(
t−(α+β+1) ∨ t−(α−β+1)

)
,

Setting Mα,β = C(β)(α + β) > 0, (3.20) is satisfied.

Lemma 3.3.5. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then for all x ≥ 1, t > 0,

d

dt
E(Jx(t/φ(Y ))) = E

(
d

dt
Jx(t/φ(Y ))

)
= E ((1/φ(Y ))J ′x(t/φ(Y ))) . (3.21)

Proof. By setting g(t) = E (Jx(t/φ(Y ))), it follows that for all h > 0, we have

g(t+ h)− g(t)

h
− E ((1/φ(Y ))J ′x(t/φ(Y )))

= E

(
Jx(t+ h/φ(Y ))− Jx(t/φ(Y ))

h
− J ′x(t/φ(Y )

φ(Y )

)
= E

((
Jx(t+ h/φ(Y ))− Jx(t/φ(Y ))

h/φ(Y )
− J ′x(t/φ(Y ))

)
1/φ(Y )

)
→
h→0

0,

by the Dominated Convergence Theorem. In fact since t 7→ Jx(t) is differentiable, then

Jx(t+ h/φ(Y ))− Jx(t/φ(Y ))

h/φ(Y )
− J ′x(t/φ(Y )) →

h→0
0.
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In addition, by the mean value theorem, there exists t < τ < t+ h such that∣∣∣∣Jx(t+ h/φ(Y ))− Jx(t/φ(Y ))

h/φ(Y )
− J ′x(t/φ(Y ))

∣∣∣∣ 1/φ(Y )

≤
(∣∣∣∣Jx(t+ h/φ(Y ))− Jx(t/φ(Y ))

h/φ(Y )

∣∣∣∣+ |J ′x(t/φ(Y ))|
)

1/φ(Y )

= (|1/φ(Y )J ′x(τ/φ(Y ))|+ J ′x(τ/φ(Y ))) 1/φ(Y )

≤ M∗
α,β

(
h1(τ)(φα+β−1(Y ) + φα−β−1(Y ))

)
+Mα,β

(
h2(t)(φα+β(Y ) + φα−β(Y ))

)
,

where the functions h1 and h2 are respectively defined by h1(τ) = τ−(α+β+1) ∨ τ−(α−β+1)

and h2(t) = t−(α+β+1) ∨ t−(α−β+1). Note that (3.20) justifies the last inequality.

Transfer of differentiability. The next lemma deals with the transfer of differentia-

bility from Z to X. For instance, the convergence in (3.19) is transferred to T ′x and the

bound in (3.20) is transferred to Tx.

Lemma 3.3.6. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then for all x ≥ 1, t > 0,

T ′x(t)→ T ′(t) , as x→∞, (3.22)

|T ′x(t)| ≤ K0

(
t−(α+β+1) ∨ t−(α−β+1)

)
, (3.23)

where K0 is a constant that does not depend on either t or x.

Proof. By virtue of (3.10), it holds that for all t > 0, x ≥ 1,

Tx(t) =
F̄Z(x)

F̄X(x)
E

(
F̄Z (xt/φ(Y ))

F̄Z(x)

)
=
F̄Z(x)E (Jx (t/φ(Y )))

F̄X(x)
·

Taking the derivative with respect to t and applying (3.21), we obtain

T ′x(t) =
F̄Z(x)

F̄X(x)
E

(
d

dt
Jx (t/φ(Y ))

)
=
F̄Z(x)E ((1/φ(Y ))J ′x (t/φ(Y )))

F̄X(x)
· (3.24)

The interchange of the integral and the derivative is allowed since (3.21) holds.

Furthermore, by (3.20) and (3.13), it holds that

|T ′x(t)| ≤ λ0E ((1/φ(Y )) |J ′x (t/φ(Y ))|)
≤ λ0ME

(
(1/φ(Y ))

(
(t/φ(Y ))−(α+β+1) ∨ (t/φ(Y ))−(α−β+1)

))
≤ λ0M

(
t−(α+β+1) ∨ t−(α−β+1)

) (
E
(
[φ(Y )]α+β

)
+ E

(
[φ(Y )]α−β

))
.
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Thus, setting δ0 = λ0M
(
E
(
[φ(Y )]α+β

)
+ E

(
[φ(Y )]α−β

))
, leads to the desired bound in

(3.22). The constant K0 is finite by (3.7a). To end the proof, notice that the dominated

convergence theorem and (3.19) yield

E (1/φ(Y )) J ′x (t/φ(Y )) →
x→∞

T ′(t)E (φα(Y )) .

Hence, convergence of T ′x to T ′, as x→∞ follows from (3.24) and (3.11).

Transfer of second-order regular variation. Does second-order regular variation

property on Z transfer to X? This question was examined in [39, p. 117]. It turns out

the answer is affirmative. Note that the present proof is adapted to Definition 2.4.16.

We provide a slight improvement of the rate function of F̄X . Note that the rate function

of F̄X , say η̃, is asymptotically proportional to η∗.

Lemma 3.3.7. [39, p. 117]

Let {Xj} be the long memory stochastic volatility model with leverage as in (3.1). The

tail distribution function of X is second-order regularly varying with indices −α and κ

and rate function η̃, that is in short F̄X ∈ 2RV∞(−α,−κ, η̃) with

η̃(x) =
E (φα(Y )η∗(x/φ(Y ))`∗(x/φ(Y )))

E (φα(Y )`∗(x/φ(Y )))
∼

x→∞

E (φα+κ(Y ))

E (φα(Y ))
η∗(x). (3.25)

The rate function η∗ as well as the slowly varying function `∗ are defined in (3.3).

Proof. Considering (3.17) in conjunction with (2.28) yield that

F̄X(x) = x−αE

(
φα(Y )

(
`∗(1) +

∫ x/φ(Y )

1

η∗(u)`∗(u)

u
du

))

= x−αE

(
φα(Y )

(
`∗(1) +

∫ x

φ(Y )

η∗(v/φ(Y ))`(v/φ(Y ))

v
dv

))
,

where the last equality holds thanks to the change of variables v = uφ(Y ). Therefore,

F̄X(x) = x−αE

(
φα(Y )

(
`∗(1)−

∫ φ(Y )

1

η∗(v/φ(Y ))`∗(v/φ(Y ))

v
dv

))

+x−αE

(
φα(Y )

∫ x

1

η∗(v/φ(Y ))`∗(v/φ(Y ))

v
dv

)
.

Now, the change of variables t = v/φ(Y ) yields that∫ φ(Y )

1

η∗(v/φ(Y ))`∗(v/φ(Y ))

v
dv = −

∫ 1/φ(Y )

1

η∗(t)`∗(t)

t
dt.
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As a consequence, the tail distribution of X becomes

F̄X(x) = x−α
(
E (φα(Y )`∗(1/φ(Y ))) +

∫ x

1

E (φα(Y )η∗(v/φ(Y ))`∗(v/φ(Y )))

v
dv

)
= x−α

(
˜̀(1) +

∫ x

1

E (φα(Y )η∗(v/φ(Y ))`∗(v/φ(Y )))

E (φα(Y )`∗(v/φ(Y )))
E (φα(Y )`∗(v/φ(Y )))

dv

v

)
= x−α

(
˜̀(1) +

∫ x

1

η̃(v)˜̀(v)

v
dv

)
,

where η̃ is defined in (3.25) and ˜̀(x) = E [φα(Y )`∗ (x/φ(Y ))]. Notice that η̃ is well

defined. In fact, for any ε > 0 such that P (Y ≥ ε) = δ > 0,

E [φα(Y )`∗ (x/φ(Y )) /`∗(x)] =
P (X > x)

P (Z > x)
≥ P (Y ≥ ε)P (Z > x/ε)

P (Z > x)
≥ δ inf

x>0

P (Z > x/ε)

P (Z > x)
·

It remains to show that η̃ is a bounded, nonnegative or nonpositive regularly varying

function at infinity with index −κ. Clearly η̃ is of the same sign as η∗ since φ, `∗ are

nonnegative. Further, for all x > 0, |η̃(x)| ≤ |η∗(x/φ(Y ))|. Since η∗ is bounded, then is

η̃. Also, note that η̃ ∈ RV∞(−κ). In fact, for all t > 0,

η̃(xt)

η̃(x)
=

{
E (φα(Y )η∗(xt/φ(Y ))`∗(xt/φ(Y )))

E (φα(Y )η∗(x/φ(Y ))`∗(x/φ(Y )))

}{
E (φα(Y )`∗(x/φ(Y )))

E (φα(Y )`∗(xt/φ(Y )))

}
·

Since x 7→ E [φα(Y )`∗ (x/φ(Y ))] ∈ SV∞, by (3.17), then the second factor in the right

hand side tends to 1, as x goes to infinity. On the other hand, the first factor of the right

hand side equals to

E (φα(Y )[η∗(xt/φ(Y ))/η∗(x)][`∗(xt/φ(Y ))/`∗(x)])

E (φα(Y )[η∗(x/φ(Y ))/η∗(x)][`∗(x/φ(Y ))/`∗(x)])
·

By Theorem 2.3.13 we have

φα(Y )

(
η∗(xt/φ(Y ))

η∗(x)

)(
`∗(xt/φ(Y ))

`∗(x)

)
≤ B(ε)f(t, ε, κ)(φα+κ−2ε(Y ) + 2φα+κ(Y ) + φα+κ+2ε(Y )),

where f(t, ε, κ) = (t−κ+ε ∨ t−κ−ε)(t−ε ∨ tε). We also have

φα(Y )

(
η∗(xt/φ(Y ))

η∗(x)

)(
`∗(xt/φ(Y ))

`∗(x)

)
→
x→∞

t−κφα+κ(Y ), w.p.1.

Therefore, the Dominated Convergence Theorem yields that

E (φα(Y )η∗(xt/φ(Y ))`∗(xt/φ(Y )))

E (φα(Y )η∗(x/φ(Y ))`∗(x/φ(Y )))
→
x→∞

t−κ.
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We wrap up this proof by showing asymptotic equivalence of η̃ and η∗:

η̃(x)

η∗(x)
=
E [φα(Y ) {η∗ (x/φ(Y )) /η∗(x)} {`∗ (x/φ(Y )) /`∗(x)}]

E [φα(Y )`∗ (x/φ(Y )) /`∗(x)]
→
x→∞

E(φα+κ(Y ))

E(φα)(Y )
·

Remark 3.3.8. It follows from (2.32) and Lemma 2.4.23 that

F̄X(tx)/F̄X(x)− t−α

η̃(x)
→
x→∞

t−α
1− t−κ

κ
(3.26a)

UX(xt)/UX(x)− t1/α

η̃†(x)
→
x→∞

t1/α
1− t−κ/α

κ/α
, (3.26b)

where η̃ is defined in (3.25) and

η̃†(x) = α−2η̃
(
F̄←X (x)

)
.

3.4 No-bias Conditions

Replacing Tx with its limit T induces bias in statistical inference. This bias is controlled

with the help of second-order regular variation. From [39] we have that for all ε > 0,

there exists C(ε) > 0, C1(ε) > 0 such that for all x ≥ 1, t > 0,

|Jx(t)− T (t)| ≤ C(ε)
(
t−(α+κ+ε) ∨ t−(α+κ−ε)) |η∗(x)| , (3.27a)

|Tx(t)− T (t)| ≤ C1(ε)
(
t−(α+κ+ε) ∨ t−(α+κ−ε)) |η̃(x)| . (3.27b)

The last bound follows from (3.25). Recall that m is the Hermite rank of φα, d the long

memory parameter and

an,m =

(√
nF̄Z(un) +

n

bn,m

)
11{m(1−2d)<1} +

√
n11{m(1−2d)>1} .

As a result, (3.6) implies that for all τ0 > 0,

an,m sup
t>τ0

|Jun(t)− T (t)| →
n→∞

0 (3.28a)

an,m sup
t>τ0

|Tun(t)− T (t)| →
n→∞

0. (3.28b)

Subsequently, we shall refer to (3.6) as the no-bias condition.
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Since F̄X is regularly varying at infinity with index −α, then UX(t) = QX(t) =

F←X (1− 1/t) is regularly varying with index 1/α. How then is QX affected by the no-

bias condition? In the next two Lemmas 3.4.1 and 3.4.2, we study some implications of

(3.6) on the quantile QX . These implications are essential for derivation of limit theorems

of measures of financial risk. This will be done in Chapter 5.

Lemma 3.4.1. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Let γ = 1/α. Assume that p = pn → 0, n/k →∞ and k/(np)→∞ as n→∞.

Then

lim
n→∞

{(
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

}
= 0 . (3.29)

Proof. Since FX is continuous and strictly increasing, then UX = QX . Using Lemma 2.4.21

with x = n/k, t = k/(np) yields that∣∣∣∣∣QX(1/p)/QX(n/k)− (k/(np))γ

D0(n/k)
−
(
k

np

)γ
1− (k/np)−ρ

†

ρ†

∣∣∣∣∣
≤ ε

(
k

np

)γ−ρ† {(
k

np

)δ
∨
(
k

np

)−δ}
,

where

D0(x) = ρ†
{

xγ

QX(x)
lim
s→∞

QX(s)

sγ
− 1

}
.

Choose δ < ρ†. Divide both sides by (k/(np))γ to get∣∣∣∣∣(k/(np))−γQX(1/p)/QX(n/k)− 1

D0(n/k)
− (k/np)−ρ

† − 1

−ρ†

∣∣∣∣∣
≤ ε

(
k

np

)−ρ† {(
k

np

)δ
∨
(
k

np

)−δ}
.

Since k/(np)→∞, then the right hand side converges to 0. Therefore, we have

lim
n→∞

(
k

np

)−γ
QX(1/p)/QX(n/k)− 1

D0(n/k)
=

1

ρ†
· (3.30)

Since D0(n/k)→ 0, as n→∞, then we conclude that

lim
n→∞

{(
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

}
= 0 .
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Lemma 3.4.2. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Assume that p = pn → 0, n/k → ∞ and k/(np) → ∞ as n → ∞. If (3.6)

holds, then

lim sup
n→∞

an,m

{(
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

}
= 0 . (3.31)

Proof. Since FX is continuous and strictly increasing, UX = QX . Applying Lemma 2.4.21

with x = n/k, t = k/(np) ensures that∣∣∣∣∣an,mQX(1/p)/QX(n/k)− (k/(np))γ

an,mD0(n/k)
−
(
k

np

)γ
1− (k/np)−ρ

†

ρ†

∣∣∣∣∣
≤ ε

(
k

np

)γ−ρ† {(
k

np

)δ
∨
(
k

np

)−δ}
,

where

D0(x) = ρ†
{

xγ

QX(x)
lim
s→∞

QX(s)

sγ
− 1

}
.

Choose δ < ρ†. Divide both sides by (k/(np))γ to get∣∣∣∣∣an,m ((k/(np))−γQX(1/p)/QX(n/k)− 1)

an,mD0(n/k)
− 1− (k/np)−ρ

†

ρ†

∣∣∣∣∣
≤ ε

(
k

np

)−ρ† {(
k

np

)δ
∨
(
k

np

)−δ}
.

Since k/(np)→∞, then the right hand side converges to 0. Therefore, we have

lim
n→∞

an,m
(k/(np))−γQX(1/p)/QX(n/k)− 1

an,mD0(n/k)
=

1

ρ†
· (3.32)

Note that (3.6) implies an,mD0(n/k)→ 0 as n→∞. Hence (3.31) holds.

3.5 Examples

In the examples below, we illustrate the various assumptions.

Example 3.5.1. Let the tail distribution function, F̄Z , be of the form:

F̄Z(x) =

1
2

(x−α + x−αγ) x ≥ 1

1 0 < x < 1.
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1. Notice that F̄Z fulfills (3.3). In fact, for all x ≥ 1,

F̄Z(x) = x−α exp

(∫ x

1

α(γ − 1)t−α(γ−1)−1dt

1 + t−α(γ−1)

)
.

Therefore, F̄Z ∈ 2RV∞(−α,−α(γ − 1), η∗), where the rate function is defined by

η∗(x) = x−α(γ−1) α(γ − 1)

1 + x−α(γ−1)
=

α(γ − 1)

1 + xα(γ−1)
∼

x→∞
xα(1−γ).

Note that η∗ is nonnegative, bounded by α(γ − 1). Also, η∗ ∈ RV∞(−α(γ − 1)).

2. We have for all x ≥ 1 and xt ≥ 1,

Jx(t) =
(xt)−α + (xt)−αγ

x−α + x−αγ
=

t−α

1 + x−α(γ−1)
+

t−αγ

1 + x−α(1−γ)
→
x→∞

T (t) =: t−α .

Therefore, (3.10) is proven.

3. Furthermore, we have for all x ≥ 1 and xt ≥ 1,

J ′x(t) =
x−α(−αt−α−1)

x−α + x−αγ
+
x−αγ(−αγt−αγ−1)

x−α + x−αγ
·

If x ≥ 1 and 0 < xt < 1, then J ′x(t) = 0. Thus, for x > 1 and t > 0,

|J ′x(t)| ≤
(

x−α

x−α + x−αγ

)
αt−α−1 +

(
x−αγ

x−α + x−αγ

)
αγt−αγ−1

≤ αt−α−1
(
1 + γtα(1−γ)

)
= αt−α−1 + αγt−α+α(1−γ)−1.

Hence (3.20) holds with M = α(1 + γ) and β = α(γ − 1).

4. Finally to get a sense of when (3.6) is satisfied, notice that F̄Z(x) ∼
x→∞

x−α. As a

result, F̄←Z (x) ∼
x→∞

x−1/α. Using the fact Z and X are tail equivalent (3.11), we

conclude that

F̄Z (un) ∼ k/n and un ∼ F̄←Z (k/n) = (n/k)1/α .

Recall (3.5a) and note that n/bn,m ≈ nm(1/2−d). So, it follows that

• If m(1− 2d) < 1, then
√
nF̄Z(un)|η∗(un)| → 0 as n→∞ if and only if

kγ−1/2/nγ−1 → 0, as n→∞.

On the other hand, n
bn,m
|η∗(un)| → 0 as n→∞ if and only if

nm(1/2−d)(k/n)γ−1 → 0, as n→∞.
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• If m(1− 2d) > 1, then
√
n|η∗(un)| → 0 if and only if

n3/2−γkγ−1 → 0, as n→∞.

Example 3.5.2 (Student-t distribution). Assume that a random variable X has a

Student-t density with ν degrees of freedom, that is the density is given by

f(x) = cν

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R ,

for some explicit constant cν . Then (cf. [23, Exercise 2.15])

F̄ (x) = cνν
ν/2x−ν

{
1 + dνx

−2 + o(x−4)
}
, as x→∞ ,

where dν is another explicit constant. This implies that the tail index is α = ν, while

the second order index is 2.

Thus, the no-bias condition (3.6) is satisfied in the following situations:

• If m(1− 2d) < 1, then
√
nF̄Z(un)|η∗(un)| → 0, as n→∞ if and only if

k1/2+2/νn−2/ν → 0, as n→∞.

On the other hand, n
bn,m
|η∗(un)| → 0, as n→∞ if and only if

nm(1/2−d)(k/n)2/ν → 0, as n→∞.

• If m(1− 2d) > 1, then
√
n|η∗(un)| → 0 if and only if

n1/2 (k/n)2/ν → 0, as n→∞.

3.6 Concluding Remarks

In this chapter, we have introduced the long memory stochastic volatility model with

leverage (3.1). We have described the model and stated its relevant assumptions. The

major contributions of this chapter are the so-called transfer theorems. Some existing

results such as Lemma 3.3.7 have been adapted to the second-order regular variation

framework of this thesis. We illustrate these assumptions via two simple examples (Sec-

tion 3.5).

To estimate extremal values of the interest in this thesis, it is important to study

the limiting behaviour of the so-called tail empirical process, a variation of the classical
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empirical process that takes into account only large values. This is an important tool

used in nonparametric estimation of extremal quantities. The mathematical theory of

the tail empirical process is much more involved than that of the usual empirical process

and has only been studied since the beginning of the 21st century.

The transfer theorems as well as the no-bias conditions discussed in the current

chapter will play a major role in the analysis of the limiting behaviour of the tail empirical

process associated with long memory stochastic volatility sequences with leverage. This

is the subject of the next chapter.



Chapter 4

Limit Theorems for the Tail

Empirical Processes

4.1 Introductory Comments

The tail empirical process (in short TEP) is an important tool used in nonparametric

estimation of extremal quantities, like the Hill estimator of the index of regular variation

or various risk measures.

Our goal is to study weak convergence for the tail empirical processes associated

with the LMSV with leverage. These results are not only of theoretical interest, but are

applicable to different statistical procedures based on intermediate extremes. A similar

problem was studied in the case of independent, identically distributed random variables

in [34], or for weakly dependent sequences in [30], [29], [48], [42]. In [39] the authors con-

sidered heavy tailed, long memory stochastic volatility models and obtained asymptotic

results for tail empirical processes. This was extended later on to the multiparameter

situation in [40]. However, in the latter two articles leverage was excluded, greatly sim-

plifying theoretical considerations. As evidenced in [41], the presence of long memory,

heavy tails and leverage may affect the limiting behaviour of relevant statistics.

It turns out that in the present setting, leverage does not affect the limiting behaviour

of the tail empirical process, and hence the results are comparable to those in [39] where

leverage is not present. The limiting behaviour depends only on the interplay between

the tail index α and the strength of long memory. However, it should be pointed out

clearly that the extension from models without leverage to those with leverage is highly

nontrivial from a theoretical point of view. In [39] the authors were able to exploit the

69
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conditional independence of the sequence {Xj} given {Yj}. Here this approach is not

applicable and instead we introduce a martingale-long memory decomposition of the tail

empirical process. This makes the proof of tightness technically very involved.

Furthermore, as in [39], for applications we must replace the unobservable sequence

un with appropriate order statistics. It turns out that the limiting behaviour of the re-

sulting TEP with random levels is not affected by either long memory or leverage. This,

through integral functionals, allows us to obtain limiting results for different estimators

of the tail index, including the classical Hill estimator (see [23] for results in the i.i.d.

case) or the more general class of harmonic mean estimators (see [7] again for results in

the i.i.d. case).

In summary, our contribution in this chapter is twofold. From a theoretical point

of view, our most important contribution is the proof of weak convergence of the tail

empirical process (with fixed and random levels) in the presence of heavy tails, long

memory and leverage. Due to the complicated dependence structure of the process, the

proof is not at all straightforward. From a practical point of view, the key result is that

the asymptotic behaviour of the tail empirical process with random levels is unaffected

by the presence of long memory and/or leverage in the model, and so in applications log

returns {Xj} may be handled exactly as if they were i.i.d. heavy-tailed random vari-

ables. This greatly enhances the utility of the LMSV model with leverage considered here.

The rest of the chapter is organized as follows. Throughout Section 4.2 up to the first

sub-section of Section 4.3, we establish central and non-central limit theorems for the

TEP via a “martingale-long memory decompostion”. In Section 4.2.4 we state our main

result on convergence of the tail empirical process with fixed levels (Theorem 4.2.18).

This theorem is complemented in Section 4.3.1 by the corresponding result for random

levels (Theorem 4.3.4). In Section 4.3.2 we prove weak convergence of integral functionals

of the tail empirical process, which provides a unified approach to central limit theorems

for estimators of the tail index (Theorem 4.3.16) in Section 4.3.3. We end with a brief

conclusion in Section 4.4.

The content of this chapter is published in the Electronic Journal of Statistics [8].
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4.2 Deterministic Levels

Consider the long memory stochastic volatility model with leverage defined in (3.1).

Recall that kn → ∞ is an increasing sequence of positive integers such that kn/n → 0

and un is defined by un = F̄−1
X (kn/n). As a consequence

un →∞ and nF̄Z(un)→∞. (4.1)

This section is devoted to the study of weak convergence of the tail empirical process

with deterministic levels un. We respectively establish central and non-central limit

theorems for the TEP via a “martingale-long memory decomposition” in Section 4.2.2

and Section 4.2.3.

Definition 4.2.1. The empirical tail distribution function of {Xj} is defined as:

T̃n(t) :=
1

k

n∑
j=1

11{Xj>unt} =
1

k

n∑
j=1

11{φ(Yj)Zj>unt} , t > 0. (4.2)

As opposed to the ordinary empirical distribution function which deals with the entire

distribution function, the tail empirical distribution function deals with extremes. We

define its inverse to be

T̃←n (y) := inf{x ∈ R : T̃n(x) ≤ y}. (4.3)

In the sequel, for notational convenience, let

Vj,n(t) := 11{Xj>unt} = 11{φ(Yj)Zj>unt} , Tn(t) = E
(
T̃n(t)

)
=
F̄X(unt)

F̄X(un)
· (4.4)

Definition 4.2.2. The tail empirical process of {Xj} is defined to be

S̃n(t) := k
(
T̃n(t)− Tun(t)

)
=

n∑
j=1

(Vj,n(t)− E (Vj,n(t))) , t > 0. (4.5)

In this chapter, our goal is to determine the asymptotic behaviour of S̃n under

suitable normalizations. To fulfill it, we take the following approach.

4.2.1 Methodology

The structure of the model considered in (3.1) suggests the following “martingale-long

memory Doob decomposition”:

S̃n(t) := Mn(t) + Ln(t), t > 0, (4.6)
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where the summands Mn and Ln are respectively defined as follows:

Mn(t) :=
n∑
j=1

[Vj,n(t)− E (Vj,n(t)‖Gj−1)] , (4.7a)

Ln(t) :=
n∑
j=1

[E (Vj,n(t)‖Gj−1)− E (Vj,n(t))] . (4.7b)

We will call Mn the martingale part and Ln the long memory part. To establish

weak convergence of S̃n under suitable normalizations, we will establish weak conver-

gence for Mn and Ln, suitably normalized. This will then determine the appropriate

normalization for S̃n. The process Mn will be handled with a classical martingale Cen-

tral Limit Theorem. Subsequently, the process Ln will be handled with a limit theorem

for Hermite polynomials (cf. Theorem 2.7.23).

4.2.2 Weak Convergence of the Martingale Part

We consider in this section the process Mn defined in (4.7a) by

Mn(t) =
n∑
j=1

4jMn(t), t > 0, (4.8)

where the summands 4jMn’s are defined as follows:

4jMn(t) := Vj,n(t)− E(Vj,n(t)‖Gj−1). (4.9)

We claim that (Mn(t))n is a G-martingale. In fact:

• (4jMn(t))j is adapted to the filtration G and 4jMn(t) is integrable.

• (4jMn(t))j is a martingale difference since:

E(4jMn(t)‖Gj−1) = E(Vj,n(t)‖Gj−1)− E(Vj,n(t)‖Gj−1) = 0, w.p.1.

Theorem 4.2.3. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then,

Mn(·)√
k

d−−−→
n→∞

(B ◦ T )(·), (4.10)

in D(0,∞) equipped with the Skorokhod J1 topology. Note that B(·) is a standard Brow-

nian motion on (0,∞), that is, a continuous path process with stationary independent

increments, B(0) = 0 and B(1) ∼ N , with N being a standard normal random variable.
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Proof. In Proposition 4.2.7, we prove convergence of the finite-dimensional distributions

of properly scaled Mn(·), while in Proposition 4.2.12, we show its tightness. Proposi-

tions 4.2.7 and 4.2.12 complete the proof of Theorem 4.2.3.

Convergence of variance.

Lemma 4.2.4. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then,

Var

(
Mn(t)√

k

)
→
n→∞

t−α. (4.11)

Proof. We start the proof by observing that for all t > 0, E (4jMn(t)) = 0. We have

Var(4jMn(t)) = E
(
(4jMn(t))2

)
− (E(4jMn(t)))2

= E
(
(Vj,n(t)− E(Vj,n(t)‖Gj−1))2)

= E(Vj,n(t))− E
(
(E(Vj,n(t)‖Gj−1))2) .

Since Yj and Zj are independent, by (3.11),

lim
n→∞

E(Vj,n(t))

F̄Z(un)
= lim

n→∞

F̄X(unt)

F̄Z(un)
= lim

n→∞

F̄X(unt)

F̄X(un)

F̄X(un)

F̄Z(un)
= t−αE(φα(Yj)),

which is equivalent to writing E(Vj,n(t)) ∼ t−αE(φα(Yj))F̄Z(un) as n→∞.
On the other hand, recalling that Yj is Gj−1-measurable, we have

lim
n→∞

E
(
(E(Vj,n(t)‖Gj−1))2)

(F̄Z(un))2
= lim

n→∞
E

((
E(Vj,n(t)‖Gj−1)

F̄Z(un)

)2
)

= lim
n→∞

E
(
(Jun (t/φ(Y )))2) .

Due to the regular variation of (Zj)j, we have for all t > 0, ε > 0,

Jun (t/φ(Y ))
a.s−−−→

n→∞
t−αφα(Y )

Jun (t/φ(Y )) ≤ C(ε)t−(α+ε) max
(
1, φα+ε(Y )

)
,

where C(ε) is a constant depending on ε, but not on n. The latter bound follows from

Potter’s bound (cf. (3.14)). Therefore, the dominated convergence theorem ensures that

lim
n→∞

E
(
(E (Vj,n(t)‖Gj−1))2)

(F̄Z(un))2
= t−2αE(φ2α(Yj)),
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where we used (3.7a). Equivalently, E
(
(E(Vj,n(t)‖Gj−1))2) ∼ t−2αE(φ2α(Yj))(F̄Z(un))2,

as n→∞. Thus, as n→∞,

Var(4jMn(t)) ∼ t−αE (φα(Yj)) F̄Z(un)− t−2αE
(
φ2α(Yj)

) (
F̄Z(un)

)2

∼ t−αE(φα(Yj))F̄Z(un) ∼ t−αF̄X(un),

by Breiman’s Lemma (3.11) and since the second term of the difference above is domi-

nated by the first one. Also, we proved that

E
[
(4jMn(t))2

]
∼ t−αF̄X(un). (4.12)

Hence, using the fact that (4jMn(t))j is a stationary martingale difference sequence,

Var(Mn(t)) = Var

(
n∑
j=1

4jMn(t)

)
=

n∑
j=1

Var(4jMn(t))

= nVar(41Mn(t)) ∼ nt−αF̄X(un) as n→∞.

Hence, the desired result follows.

Remark 4.2.5. We note that the above result is valid under the assumption

E(φ2α+ε(Y )) <∞

instead of (3.7a).

Convergence of the marginal distributions.

Proposition 4.2.6. Let {Xj} be the long memory stochastic volatility model with lever-

age as in (3.1). Then for all t > 0,

Mn(t)√
k

d−−−→
n→∞

t−
α
2N , (4.13)

where N stands for a standard normal random variable.

This limiting distribution coincides with the one defined in Theorem 4.2.3, that is,

t−
α
2N d

= (B ◦ T ) (t). (4.14)

Note that
d
= refers to equality in distribution.
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Proof. We recall that (4jMn)j is a martingale difference. We define

M∗
n(t) :=

Mn(t)√
k

(4.15)

4jM
∗
n(t) :=

4jMn(t)√
k

=
Vj,n(t)− E(Vj,n(t)‖Gj−1)√

k
· (4.16)

To prove Proposition 4.2.6, it is sufficient to show that ∀ t, ε > 0, (cf. Theorem 2.6.9)

n∑
j=1

E
(
(4jM

∗
n(t))2‖Gj−1

) p−−−→
n→∞

t−α, (4.17a)

n∑
j=1

E
(
(4jM

∗
n(t))2 11{|4jM∗n(t)|>ε}‖Gj−1

) p−−−→
n→∞

0. (4.17b)

• We begin by proving (4.17a). By definition, we have for all t > 0,

E
(
(4jM

∗
n(t))2‖Gj−1

)
=
V ar(Vj,n(t)‖Gj−1)

nF̄X(un)

=
E ((Vj,n(t))2‖Gj−1)− (E(Vj,n(t)‖Gj−1))2

nF̄X(un)
·

So, to show (4.17a), it suffices to prove the following set of conditions:

1

nF̄X(un)

n∑
j=1

E
(
(Vj,n(t))2‖Gj−1

) p−−−→
n→∞

t−α (4.18a)

1

nF̄X(un)

n∑
j=1

(E(Vj,n(t)‖Gj−1))2 p−−−→
n→∞

0. (4.18b)

• First of all, let us prove (4.18a). We have

1

nF̄X(un)

n∑
j=1

E
(
(Vj,n(t))2‖Gj−1

)
=

1

nF̄X(un)

n∑
j=1

E
(
11{φ(Yj)Zj>unt}‖Gj−1

)
=

1

nF̄X(un)

n∑
j=1

F̄Z (unt/φ(Yj)) =
F̄Z(un)

nF̄X(un)

n∑
j=1

F̄Z (unt/φ(Yj))

F̄Z(un)

=
F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (t/φ(Yj))− t−αφα(Yj) + t−αφα(Yj)

)
=

F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (t/φ(Yj))− t−αφα(Yj)

)
+

F̄Z(un)

ntαF̄X(un)

n∑
j=1

φα(Yj).
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Then, (3.11), ergodicity and Slutsky’s theorem yield w.p.1 that

F̄Z(un)

ntαF̄X(un)

n∑
j=1

φα(Yj) →
n→∞

t−α.

We are left to show negligibility of the second term. It is sufficient to prove

In :=
F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (t/φ(Yj))− t−αφα(Yj)

)
= op(1).

In fact, by stationarity of (Yj)j, second order regular variation and (3.27a), we have

E(|In|) ≤ KC|η∗(un)|E
((
t[φ(Y )]−1

)−κ−α (
t[φ(Y )]−1 ∨ t−1φ(Y )

)ε)
≤ KC|η∗(un)|

(
t−κ−α+εE(φα+κ−ε(Y )) + t−κ−α−εE(φα+κ+ε(Y ))

)
≤ KC

(
t−(α+κ+ε) ∨ t−(α+κ−ε)) [E(φα+κ−ε(Y )) + E(φα+κ+ε(Y ))]|η∗(un)|.

The second inequality holds by using the fact that for any nonnegative random

variables X, Y , we have X ∨ Y ≤ X + Y .

Moreover, the sum of expectations in the last inequality is finite by (3.7b).

Therefore, E(|In|) →
n→∞

0. Consequently, n→∞, In
p−→ 0. Hence, (4.18a) is proven.

• Second of all, we prove (4.18b). Potter’s bounds (cf. (3.14)), yields ∀t > 0, δ > 0,

1

nF̄X(un)

n∑
j=1

E
(
(Vj,n(t))2‖Gj−1

)
=

1

nF̄X(un)

n∑
j=1

(
F̄Z (unt/φ(Yj))

)2

=
F̄ 2
Z(un)

nF̄X(un)

n∑
j=1

(Jun (t/φ(Yj)))
2 ≤ CF̄ 2

Z(un)

nF̄X(un)

n∑
j=1

(
1 ∨ t−1φ(Yj)

)2(δ+α)

≤ F̄ 2
Z(un)

F̄X(un)

(
C + C(t, δ)

(
1

n

n∑
j=1

φ2(δ+α)(Yj)

))
p−−−→

n→∞
0.

It is important to note that C(t, δ) is a constant depending on t and δ but not on

n. Note that the last inequality holds by ergodicity and Slutsky’s Theorem. Thus,

(4.18b) is proven and hence, so is (4.17a).

• To prove the Lindeberg condition (4.17b), we observe that

|4jM
∗
n(t)| = 1√

k
|Vj,n(t)− E (Vj,n(t)‖Gj−1)| ≤ 1√

k
→
n→∞

0.

So, for arbitrary ε > 0, 11{|4jM∗n(t)|>ε} = 0, for all n sufficiently large. Thus, (4.17b)

is trivially fulfilled.
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Finite dimensional convergence of the martingale part

Proposition 4.2.7. Let {Xj} be the long memory stochastic volatility model with lever-

age as in (3.1). Then for any set of points t1, . . . , tk > 0,(
Mn(ti)√

k

)
1≤i≤k

d−−−→
n→∞

(B ◦ T (ti))1≤i≤k , (4.19)

where W denotes a standard Brownian motion. The covariance matrix of this limiting

Gaussian process is therefore

Σ =
(
(ti ∨ tm)−α

)k
i,m=1

. (4.20)

In Lemma 4.2.11, we use the Cramer-Wold device (cf. Theorem 2.5.6) for the proof.

In turn, the proof of Lemma 4.2.11 is supported by Lemma 4.2.8 and Lemma 4.2.10, which

serve to check the set of conditions (2.62) of Theorem 2.6.9 for

k∑
i=1

aiMn(ti)√
k
· (4.21)

Lemma 4.2.8. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then for all t > 0,

Cov

(
Mn(s)√

k
,
Mn(t)√

k

)
→
n→∞

(s ∨ t)−α. (4.22)

Remark 4.2.9. It will be clear from the proof that the lemma holds under the assump-

tion E(φα+ε(Y )) <∞ instead of (3.7a).

Proof. We consider the sequence (Mn)n as defined in (4.8). Since

Cov (Mn(s),Mn(t)) = Cov

(
n∑
j=1

4jMn(s),
n∑
p=1

4pMn(t)

)

=
n∑

j,p=1
j 6=p

Cov (4jMn(s),4pMn(t)) +
n∑
j=1

Cov (4jMn(s),4jMn(t))

= 0 +
n∑
j=1

Cov (4jMn(s),4jMn(t)) .
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It follows that

Cov (Mn(s),Mn(t)) =
n∑
j=1

Cov (Vj,n(s)− E(Vj,n(s)‖Gj−1), Vj,n(t)− E(Vj,n(t)‖Gj−1))

=
n∑
j=1

(Cov(Vj,n(s), Vj,n(t))− Cov[Vj,n(s), E(Vj,n(t)‖Gj−1)))

−
n∑
j=1

Cov(E(Vj,n(s)‖Gj−1), Vj,n(t)) +
n∑
j=1

(Cov(E(Vj,n(s)‖Gj−1), E(Vj,n(t)‖Gj−1)))

=
n∑
j=1

(Cov(Vj,n(s), Vj,n(t))− Cov(E(Vj,n(s)‖Gj−1), E(Vj,n(t)‖Gj−1))) ,

where the last equality holds by the following fact:

Cov(X,E(Y ‖F)) = Cov(E(X‖F), Y ) = Cov(E(X‖F), E(Y ‖F)).

Therefore,

Cov

(
Mn(s)√

k
,
Mn(t)√

k

)
=

1

nF̄X(un)

n∑
j=1

Cov (Vj,n(s), Vj,n(t))

− 1

nF̄X(un)

n∑
j=1

Cov (E(Vj,n(s)‖Gj−1), E(Vj,n(t)‖Gj−1)) .

Note that

Cov(Vj,n(s), Vj,n(t)) = E(Vj,n(s)Vj,n(t))− E(Vj,n(s))E(Vj,n(t))

= E
(
11{Xj>uns}11{Xj>unt}

)
− E

(
11{Xj>uns}

)
E
(
11{Xj>unt}

)
= E

(
11{Xj>un(s∨t)}

)
− F̄X(uns)F̄X(unt)

= F̄X (un(s ∨ t))− F̄X(uns)F̄X(unt),

and

Cov(E(Vj,n(s)‖Gj−1), E(Vj,n(t)‖Gj−1))

= E (E(Vj,n(s)‖Gj−1)E(Vj,n(t)‖Gj−1))− E(Vj,n(s))E(Vj,n(t))

= E
(
F̄Z
(
un[φ(Yj)]

−1s
)
F̄Z
(
un[φ(Yj)]

−1t
))
− F̄X(uns)F̄X(unt).
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Thus, by the stationarity of (Yj)j and regular variation of {Xj}, we have

Cov

(
Mn(s)√

k
,
Mn(t)√

k

)
=

1

n

n∑
j=1

F̄X (un(s ∨ t))− E
(
F̄Z (un[φ(Yj)]

−1s) F̄Z (un[φ(Yj)]
−1t)

)
F̄X(un)

=
F̄X (un(s ∨ t))

F̄X(un)
−
E
(
F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

)
F̄X(un)

= (s ∨ t)−α(1 + o(1)) +O

(
E
(
F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

)
F̄X(un)

)
.

On the other hand, by Breiman’s Lemma (3.11), we have w.p.1,

lim
n→∞

F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

F̄X(un)
= lim

n→∞

F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

E(φα(Y ))F̄Z(un)
= 0.

Moreover, by Potter’s bounds (cf. (3.14)), we have

F̄Z (un[φ(Y )]−1s)

F̄Z(un)
≤ C(ε)s−(α+ε) max

(
1, φα+ε(Y )

)
.

where C(ε) is a constant depending on ε, but not on n.

Furthermore, since for all t > 0, F̄Z (un[φ(Y )]−1t) ≤ 1, then

F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

E(φα(Y ))F̄Z(un)
≤ K(s, ε) max

(
1, φα+ε(Y )

)
,

where K(s, ε) is a constant depending on s and ε, but not on n. So, the dominated

convergence theorem guarantees the following:

E
(
F̄Z (un[φ(Y )]−1s) F̄Z (un[φ(Y )]−1t)

)
F̄X(un)

→
n→∞

0. (4.23)

Thus, (4.22) holds.

Lemma 4.2.10. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then for any set of points a1, . . . , ak ∈ R and t1, . . . , tk > 0,

Var

(
k∑
i=1

aiMn(ti)√
k

)
→
n→∞

k∑
i=1

a2
i (ti)

−α + 2
∑

1≤i<m≤k

aiam(ti ∨ tm)−α. (4.24)
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Proof. By definition, we have for all a1, . . . , ak ∈ R and t1, . . . , tk > 0,

Var

(
k∑
i=1

aiMn(ti)√
k

)
=

k∑
i=1

a2
iVar

(
Mn(ti)√

k

)
+ 2

∑
i<m

Cov

(
Mn(ti)√

k
,
Mn(tm)√

k

)
.

Furthermore, by Lemma 4.2.4, we have for all ti > 0:

Var

(
Mn(ti)√

k

)
→
n→∞

(ti)
−α.

By Lemma 4.2.8, we have for all ti, tm > 0:

Cov

(
Mn(ti)√

k
,
Mn(tm)√

k

)
→
n→∞

(ti ∨ tm)−α.

Thus, the result follows.

To complete the proof of Proposition 4.2.7, we use the Cramer-Wold device which

boils our task down to proving one dimensional weak convergence, that is (4.25).

Lemma 4.2.11. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then for any set of points a1, . . . , ak ∈ R and t1, . . . , tk > 0,

k∑
i=1

aiMn(ti)√
k

d−−−→
n→∞

k∑
i=1

aiB ◦ T (ti). (4.25)

Proof. We have for all a1, . . . , ak ∈ R and t1, . . . , tk > 0,

k∑
i=1

aiMn(ti) =
k∑
i=1

n∑
j=1

ai4jMn(ti) =
n∑
j=1

k∑
i=1

ai4jMn(ti) =:
n∑
j=1

4jMn(t1, . . . , tk),

where

4jMn(t1, . . . , tk) :=
k∑
i=1

ai4jMn(ti), (4.26a)

4jM
∗
n(t1, . . . , tk) :=

k∑
i=1

ai4jM
∗
n(ti). (4.26b)

We recall that the summands 4jMn and 4jM
∗
n are respectively defined in (4.9) and

(4.16). We claim that (4jMn)j is a martingale difference. In fact, for all t1, . . . , tk > 0,

• E (|4jMn(t1, . . . , tk)|) = E

(∣∣∣∣ k∑
i=1

ai4jMn(ti)

∣∣∣∣) ≤ k∑
i=1

|ai|E(|4jMn(ti)|) <∞.
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• E (4jMn(t1, . . . , tk)‖Gj−1) =
k∑
i=1

aiE (4jMn(ti)‖Gj−1) = 0, w.p.1.

Since (4jMn(t1, . . . , tk))j is a martingale difference sequence, then by Theorem 2.6.9,

proving Lemma 4.2.11 is equivalent to showing for all t1, . . . , tk, ε > 0,

n∑
j=1

E
(
(4jM

∗
n(t1, . . . , tk))

2‖Gj−1

) p−−−→
n→∞

k∑
i=1

a2
i t
−α
i + 2

∑
i<m

aiam(ti ∨ tm)−α, (4.27a)

n∑
j=1

E
(
(4jM

∗
n(t1, . . . , tk))

211{|4jM∗n(t1,...,tk)|>ε‖Gj−1}
) p−−−→

n→∞
0. (4.27b)

We begin by proving (4.27a). By definition, we have

n∑
j=1

E
(
(4jM

∗
n(t1, . . . , tk))

2‖Gj−1

)
=

n∑
j=1

E

( k∑
i=1

ai4jM
∗
n(ti)

)2

‖Gj−1


=

n∑
j=1

k∑
i=1

a2
iE
(
(4jM

∗
n(ti))

2‖Gj−1

)
+ 2

n∑
j=1

∑
i<m

aiamE (4jM
∗
n(ti)4jM

∗
n(tm)‖Gj−1)

=
k∑
i=1

a2
i

n∑
j=1

E
(
(4jM

∗
n(ti))

2‖Gj−1

)
+ 2

∑
i<m

aiam

n∑
j=1

E (4jM
∗
n(ti)4jM

∗
n(tm)‖Gj−1) .

From (4.18a), we have that for ti > 0,
n∑
j=1

E
(
(4jM

∗
n(ti))

2‖Gj−1

) p−−−→
n→∞

t−αi .

In addition, we claim that for all ti, tm > 0,
n∑
j=1

E (4jM
∗
n(ti)4jM

∗
n(tm)‖Gj−1)

p−−−→
n→∞

(ti ∨ tm)−α. (4.28)

In fact, we have by definition

E (4jM
∗
n(ti)4jM

∗
n(tm)‖Gj−1) =

1

nF̄X(un)
Cov (Vj,n(ti), Vj,n(tm)‖Gj−1)

=
E (Vj,n(ti)Vj,n(tm)‖Gj−1)

nF̄X(un)
− E (Vj,n(ti)‖Gj−1)E (Vj,n(tm)‖Gj−1)

nF̄X(un)
·

It follows that establishing (4.28) is sufficient to proving

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)Vj,n(tm)‖Gj−1)
p−−−→

n→∞
(ti ∨ tm)−α, (4.29a)

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)‖Gj−1)E (Vj,n(tm)‖Gj−1)
p−−−→

n→∞
0. (4.29b)
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Let us start with (4.29a). By definition, We have

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)Vj,n(tm)‖Gj−1) =
1

nF̄X(un)

n∑
j=1

F̄Z
(
un[φ(Yj)]

−1(ti ∨ tm)
)

=
F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (ti ∨ tm/φ(Yj))− (ti ∨ tm)−αφα(Yj) + (ti ∨ tm)−αφα(Yj)

)
= An +Bn.

The summands An and Bn are respectively defined as follows:

An : =
F̄Z(un)

n(ti ∨ tm)αF̄X(un)

n∑
j=1

φα(Yj),

Bn : =
F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (ti ∨ tm/φ(Yj))− (ti ∨ tm)−αφα(Yj)

)
=

F̄Z(un)

nF̄X(un)

n∑
j=1

(Jun (ti ∨ tm/φ(Yj))− T (ti ∨ tm/φ(Yj))) .

First of all, consider An. By ergodicity, we have w.p.1,

1

n

n∑
j=1

φα(Yj) →
n→∞

E (φα(Yj)) .

Slutsky’s Theorem and (3.11) allow us to conclude w.p.1,

An → (ti ∨ tm)−α, as n→∞.

Next, consider Bn. Showing Bn
p−−−→

n→∞
0 is equivalent to proving

B∗n :=
1

n

n∑
j=1

(Jun (ti ∨ tm/φ(Yj))− T (ti ∨ tm/φ(Yj)))
p−−−→

n→∞
0.

Stationarity of {Yj}, the second order regular variation and (3.27a) yield

E(|B∗n|) ≤ E (|Jun (ti ∨ tm/φ(Y ))− T (ti ∨ tm/φ(Yj))|)

≤ C(ε)E

((
ti ∨ tm
φ(Y )

)−(κ+α+ε)

∨
(
ti ∨ tm
φ(Y )

)−(κ+α−ε)
)
|η∗(un)|

≤ K(ε)(ti ∨ tm)−(κ+α+ε) ∨ (ti ∨ tm)−(κ+α−ε)|η∗(un)| →
n→∞

0,
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where K(ε) = C(ε)
(
E
(
(φ(Y ))κ+α+ε)+ E

(
(φ(Y ))κ+α−ε)) is a constant depending on ε

but not on n. Consequently, as n→∞, B∗n
p−→ 0.

This finishes the proof of (4.29a).

We continue with (4.29b). By Potter’s bounds, we have ∀ δ > 0,

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)‖Gj−1)E (Vj,n(tm)‖Gj−1)

=
1

nF̄X(un)

n∑
j=1

F̄Z
(
un[φ(Yj)]

−1ti
)
F̄Z
(
un[φ(Yj)]

−1tm
)

=
F̄ 2
Z(un)

nF̄X(un)

n∑
j=1

Jun (ti/φ(Yj)) Jun (tm/φ(Yj))

≤ C(δ)B(δ)F̄ 2
Z(un)

nF̄X(un)

n∑
j=1

((
1 ∨ t−1

i φ(Yj)
) (

1 ∨ t−1
m φ(Yj)

))(δ+α)

=
C(δ)B(δ)F̄ 2

Z(un)

nF̄X(un)

n∑
j=1

(
1 ∨ t−(δ+α)

i φ(δ+α)(Yj)
) (

1 ∨ t−(δ+α)
m φ(δ+α)(Yj)

)
≤ C(δ)B(δ)F̄ 2

Z(un)

nF̄X(un)

n∑
j=1

(
1 +

(
t−1
i φ(Yj)

)α+δ
)(

1 +
(
t−1
m φ(Yj)

)α+δ
)

=
C(δ)B(δ)F̄ 2

Z(un)

nF̄X(un)

n∑
j=1

(
1 +

(
t
−(α+δ)
i + t−(α+δ)

m

)
φ(α+δ)(Yj) + (titm)−(α+δ)φ2(α+δ)(Yj)

)
=
F̄ 2
Z(un)

F̄X(un)

(
R(δ) +

K(ti, δ) +G(tm, δ)

n

n∑
j=1

φ(δ+α)(Yj) +
I(ti, tm, δ)

n

n∑
j=1

φ2(δ+α)(Yj)

)
,

where C(δ), B(δ), R(δ), K(ti, δ), G(tm, δ) and I(ti, tm, δ) are constants depending on

ti, tm and δ but not on n. Note that the last inequality holds due to the fact that

X ∨ Y ≤ X + Y , for nonnegative random variables X and Y . Regular variation of (Xj)j

and (Zj)j, ergodicity and Slutsky’s Theorem yield

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)‖Gj−1)E (Vj,n(tm)‖Gj−1)
p−−−→

n→∞
0.

Hence Slutsky’s Theorem completes the proof of (4.29b) and hence the proof of (4.27a).

To prove the Lindeberg condition (4.27b), we observe that

|4jM
∗
n(t)| = 1√

k
|Vj,n(t)− E (Vj,n(t)‖Gj−1)| ≤ 1√

k
→
n→∞

0.
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So, for arbitrary ε > 0, 11{|4jM∗n(t)|>ε} = 0, for all n sufficiently large. Thus, (4.27b) is

trivially fulfilled.

Tightness of the martingale part

This section is entirely devoted to the study of tightness of Mn properly scaled as it

appears in Proposition 4.2.12. The proof of tightness requires tedious and technical

calculations. In the sequel, we consider for ease of notation the following setup: for all

0 < s < t <∞, let

Vj,n(s, t) := Vj,n(s)− Vj,n(t) = 11{uns<φ(Yj)Zj<unt}, (4.30a)

4jMn(s, t) := Vj,n(s, t)− E (Vj,n(s, t)‖Gj−1) , (4.30b)

Mn(s, t) := Mn(s)−Mn(t) =
n∑
j=1

4jMn(s, t), (4.30c)

4jM
∗
n(s, t) :=

4jMn(s, t)√
k

and M∗
n(s, t) :=

Mn(s, t)√
k
· (4.30d)

Proposition 4.2.12. Let {Xj} be the long memory stochastic volatility model with lever-

age as in (3.1). Then the process Mn/
√
k is tight.

The proof consists of checking the tightness conditions (2.55)-(2.57) of Theorem 2.5.14.

We state and prove Lemma 4.2.13 and Lemma 4.2.14 as prerequisite for Lemma 4.2.15,

which corresponds to (2.55). Next, we establish Lemma 4.2.16, which corresponds to

(2.57) in Theorem 2.5.14. We wrap up the proof of Proposition 4.2.12 at the end of the

section.

Lemma 4.2.13. If X is a nonnegative random variable, then

E
(
(X − E (X‖G))4) ≤ 8E

(
X4
)
. (4.31)

Proof. Assume that X is a nonnegative random variable. We have

E
(
(X − E (X‖G))4) = E

(
X4
)
− 4E

(
X3E (X‖G)

)
+ 6E

(
X2 (E (X‖G))2)

−4E
(
X3
(
E (X‖G)3))+ E

(
(E (X‖G))4)

≤ E
(
X4
)

+ 6E
(
X2 (E (X‖G))2)+ E

(
(E (X‖G))4)

≤ 2E
(
X4
)

+ 6E
(
X2
(
E
(
X2‖G

)))
,

where the last inequality holds by the tower property and Jensen’s inequality.

E
(
X2
(
E
(
X2‖G

)))
= E

(
E
(
X2E

(
X2‖G

)
‖G
))

= E
((
E
(
X2‖G

))2
)
≤ E

(
X4
)
,
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where the first equality holds by the tower property, the second, by measurability, and

finally, the last inequality, by Jensen’s inequality. Thus, the desired result holds.

Lemma 4.2.14. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then,

E
(
(M∗

n(s, t))4) ≤ 2C4K
2E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))2)+

16C4

nF̄X(un)
|Tun(s)− Tun(t)| ,

where C4 stands for Rosenthal’s constant (cf. Theorem 2.6.8) and K comes from (3.13).

Proof. By Rosenthal’s inequality, it holds that (cf. Theorem 2.6.8)

E
(
(M∗

n(s, t))4) ≤ C4

 n∑
j=1

E
(
(4jM

∗
n(s, t))4)+ E

( n∑
j=1

E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))2
 .

• By stationarity of (4jM
∗
n(s, t))j and Lemma 4.2.13, we obtain that

n∑
j=1

E
(
(4jM

∗
n(s, t))4) = nE

(
(41M

∗
n(s, t))4) =

E
(
(41Mn(s, t))4)
n
(
F̄X(un)

)2

≤
8E
(
(V1,n(t, s))4)

n
(
F̄X(un)

)2 =
8E (V1,n(t, s))

n
(
F̄X(un)

)2 =
8
(
F̄X(uns)− F̄X(unt)

)
n
(
F̄X(un)

)2 ·

So, it follows that

n∑
j=1

E
(
(4jM

∗
n(s, t))4) ≤ 8

nF̄X(un)
|Tun(s)− Tun(t)| · (4.32)

• On the other hand, we have

E

( n∑
j=1

E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))2
 = E

(
n∑
j=1

(
E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))2

)

+ 2E

(
n∑
i<j

E
(
(4iM

∗
n(s, t))2 ‖Gi−1

)
E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))
.

i) Stationarity of (4jM
∗
n(s, t))j, Jensen’s inequality, and Lemma 4.2.13 yield

E

(
n∑
j=1

(
E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))2

)
= nE

((
E
(
(41M

∗
n(t, s))2 ‖G0

))2
)

≤ nE
(
(41M

∗
n(s, t))4) ≤ 8E (V1,n(t, s))

n
(
F̄X(un)

)2 =
8

nF̄X(un)
|Tun(s)− Tun(t)| .
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ii) Cauchy-Schwartz’s inequality and stationarity of (4jM
∗
n(s, t))j ensure that

2E

(
n∑
i<j

E
(
(4iM

∗
n(s, t))2 ‖Gi−1

)
E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))
≤ 2n(n− 1)E

((
E
(
(41M

∗
n(s, t))2 ‖G0

))2
)

=
2n(n− 1)(
nF̄X(un)

)2E
((
E
(
(41Mn(s, t))2 ‖G0

))2
)

≤ 2(
F̄X(un)

)2E
(
(E (V1,n(s, t)‖G0))2)

≤ 2

(
F̄Z(un)

F̄X(un)

)2

E

((
F̄Z (uns/φ(Y ))

F̄Z(un)
− F̄Z (unt/φ(Y ))

F̄Z(un)

)2
)
.

Therefore, by the same argument as in (3.13), it follows that for n ≥ 1,

E

( n∑
j=1

E
(
(4jM

∗
n(s, t))2 ‖Gj−1

))2
 ≤ 8

nF̄X(un)
|Tun(s)− Tun(t)| (4.33)

+2K2E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))2) .

Thus, (4.32) and (4.33) imply that for all n ≥ 1,

E
(
(M∗

n(s, t))4) ≤ 2C4K
2E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))2)

+
16C4

nF̄X(un)
|Tun(s)− Tun(t)| . (4.34)

Lemma 4.2.15. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then for all 0 < a ≤ s, t ≤ b <∞, there exists Ca,b,4 > 0 such that

E
(
(M∗

n(s, t))4) ≤ Ca,b,4

(
|s− t|
nF̄X(un)

+ (s− t)2

)
. (4.35)

Proof. By the mean value theorem and (3.20), there exists τ = τ(ω) ∈ (s, t), such that:

E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))2) = (s− t)2E

((
J ′un

(
[φ(Y )]−1τ

)
[φ(Y )]−1

)2
)

≤ (M(s− t))2E

(((
[φ(Y )]−1τ

)−(α+β+1) ∨
(
[φ(Y )]−1τ

)−(α−β+1)
[φ(Y )]−1

)2
)

≤ (M(s− t))2E

((
[φ(Y )]α+β

τα+β+1
∨ [φ(Y )]α−β

τα−β+1

)2
)
≤ Ca,b (s− t)2 ,
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where Ca,b =
(
M max

(
a−α−1

(
a−β ∨ bβ

)))2
E
((

[φ(Y )]α+β + [φ(Y )]α−β
)2
)

. The constant

is finite by (3.7a). Hence, (4.34) becomes:

E
(
(M∗

n(s, t))4) ≤ 16C4

nF̄X(un)
|Tun(s)− Tun(t)|+ 2C4Ca,bK

2(s− t)2 .

Again by the mean value theorem, there exists τ ∗ ∈ (s, t) such that:

E
(
(M∗

n(s, t))4) ≤ 16C4

nF̄X(un)
|s− t|T ′un(τ ∗) + 2K2C4Ca,b(s− t)2.

Therefore (3.21) allows us to use (3.23) in order to obtain

E
(
(M∗

n(s, t))4) ≤ 16C4K0

nF̄X(un)

(
a−α−1

(
a−β ∨ bβ

))
|s− t|+ 2K2C4Ca,b(s− t)2.

Thus, the desired result holds by taking

Ca,b,4 = max
(
16C4K0

(
a−α−1

(
a−β ∨ bβ

))
, 2K2C4Ca,b

)
.

Lemma 4.2.16. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then the process M∗
n can be decomposed as a difference of two non-increasing

processes M◦
n and M◦◦

n , that is

M∗
n(t) = M◦

n(t)−M◦◦
n (t), (4.36)

where the summand processes M◦
n and M◦◦

n are respectively defined by for all t > 0:

M◦
n(t) =

1√
k

n∑
j=1

Vj,n(t) (4.37a)

M◦◦
n (t) =

1√
k

n∑
j=1

F̄Z (unt/φ(Yj)) . (4.37b)

Furthermore,

max
0≤i≤ln

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)| p−−−→
n→∞

0 , (4.38)

where

ti,n :=
i

nF̄X(un)
, ln =

[
(b− a)nF̄X(un)

]
, tln+1 := b− a,

with [·] denoting the integer part.
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Proof. Recall that (3.10) yields Jun(t) = F̄Z(unt)/F̄Z(un). The decomposition in (4.36)

is straightforward from (4.8). We have

M◦◦
n (t) :=

1√
k

n∑
j=1

F̄Z (unt/φ(Yj))

=
√
k
F̄Z(un)

nF̄X(un)

n∑
j=1

Jun (t/φ(Yj)) .

It follows that for 0 ≤ i ≤ ln−1,

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|

=

∣∣∣∣M◦◦
n

(
a+

i+ 1

nF̄X(un)

)
−M◦◦

n

(
a+

i

nF̄X(un)

)∣∣∣∣
=
√
k
F̄Z(un)

nF̄X(un)

n∑
j=1

∣∣∣∣Jun (a+ ti+1,n

φ(Yj)

)
− Jun

(
a+ ti,n
φ(Yj)

)∣∣∣∣
≤ Kn−1

√
k

n∑
j=1

∣∣∣∣Jun (a+ ti+1,n

φ(Yj)

)
− Jun

(
a+ ti,n
φ(Yj)

)∣∣∣∣ ,
where the last inequality holds by (3.13). The mean value theorem and (3.20) yield that

there exists τi,n,j = τi,n,j(ω) ∈ (ti,n, ti,n+1), which depends on φ(Yj), such that if i ≤ ln−1,

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|

≤ K
√
k

n∑
j=1

1

nF̄X(un)φ(Yj)

∣∣∣∣J ′un (a+ τi,n,j
φ(Yj)

)∣∣∣∣
≤ MK

n
√
k

n∑
j=1

1

φ(Yj)

((
a+ τi,n,j
φ(Yj)

)−α−β−1

∨
(
a+ τi,n,j
φ(Yj)

)−α+β−1
)

≤ MK√
k

max
(
a−α−1

(
a−β ∨ bβ

)) 1

n

n∑
j=1

(
φα+β(Yj) + φα−β(Yj)

)
.

Consequently,

max
0≤i≤ln−1

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|

≤ K√
k

(
1

n

n∑
j=1

(
φα+β(Yj) + φα−β(Yj)

)) p−−−→
n→∞

0.

The last convergence holds by the Law of Large Numbers and the assumption (3.7a).
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For i = ln, since M◦◦
n is monotone and b < a+ ln+1

nF̄X(un)
, we obtain∣∣M◦◦

n

(
a+ tln+1,n

)
−M◦◦

n (a+ tln,n)
∣∣ = |M◦◦

n (b)−M◦◦
n (a+ tln,n)|

≤
∣∣∣∣M◦◦

n

(
a+

ln + 1

nF̄X(un)

)
−M◦◦

n

(
a+

ln
nF̄X(un)

)∣∣∣∣ .
By the same argument as above the last term converges to zero in probability.

Proof of Proposition 4.2.12.

Proof. We recall the notation of Theorem 2.5.14. Let

γ = 4, δ = 2, cn = 1/nF̄X(un) and ξn = M∗
n.

Lemma 4.2.16 yields (2.57) on the interval [a, b] (cf. the second remark following Theo-

rem 2.5.14).

Letting s = a and t→∞ in the statement of Lemma 4.2.14 we obtain via (3.14)

E
(
(M∗

n(a))4) ≤ 2C4K
2E
(
(Jun (a/φ(Y )))2)+

16C4

nF̄X(un)
Tun(a)

≤ 2C4K
2C2(β)

(
1 + a−2(α+β)E

(
φ2(α+β)(Y ) )) + o(1) ,

hence the fourth moment is bounded proving the first part of (2.55).

From Lemma 4.2.15, if moreover |s− t| ≥ cn = 1/(nF̄X(un)), we obtain

E
(
(M∗

n(s, t))4) ≤ Ca,b,4

(
|s− t|
nF̄X(un)

+ (s− t)2

)
≤ 2Ca,b,4(s− t)2.

This completes the proof of (2.55). Hence, by Theorem 2.5.14 and the subsequent remark

we conclude that the process M∗
n is tight in D[a, b], where 0 < a < b <∞. Since a, b are

arbitrary this implies tightness on D(0,∞).

4.2.3 Weak Convergence of the Long Memory Part

In this section we consider the process Ln defined in (4.7b). Our goal is to determine the

asymptotic behaviour of Ln suitably normalized. Recall (2.88), that is

Cm =
2

[1−m(1− 2d)][2−m(1− 2d)]
·
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Theorem 4.2.17. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1).

• If m(1− 2d) < 1, then

Ln(t)

kbn,m/n

d−−−→
n→∞

µφ,α(m)T (t)

m!E (φα(Y ))
ξm,d+1/2(1) in D(0,∞). (4.39)

The limiting random variable, ξm,d+1/2(1), is Hermite-Rosenblatt.

• If m(1− 2d) > 1, then

√
nLn(t)

k

d−−−→
n→∞

t−α
σN

E (φα(Y ))
in D(0,∞), (4.40)

where σ2 is defined in (2.93) and N denotes a standard normal random variable.

Proof. By (4.7b), (3.10) and the fact that E(Vj,n(t) = E (E(Vj,n(t))||Gj−1), we have

Ln(t)

F̄Z(un)
=

n∑
j=1

(
F̄Z (unt/φ(Yj))

F̄Z(un)
− E

(
F̄Z (unt/φ(Yj))

F̄Z(un)

))

=
n∑
j=1

(Jun (t/φ(Yj))− E (Jun (t/φ(Yj)))) .

By regular variation of (Zj)j, it holds w.p.1 that

Jun (t/φ(Yj)) →
n→∞

T (t/φ(Yj)) := t−αφα(Yj).

This motivates the following decomposition:

Ln(t)

F̄Z(un)
=

3∑
j=1

Ln,j(t), (4.41)

where the summands Ln,j’s are respectively defined as follows:

Ln,1(t) :=
n∑
j=1

[Jun (t/φ(Yj))− T (t/φ(Yj))] , (4.42a)

Ln,2(t) :=
n∑
j=1

[T (t/φ(Yj))− E (T (t/φ(Yj)))] , (4.42b)

Ln,3(t) :=
n∑
j=1

[E (T (t/φ(Yj)))− E (Jun (t/φ(Yj)))] . (4.42c)
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We start by establishing weak convergence of Ln,2. Notice that

Ln,2(t) = t−α
n∑
j=1

(φα(Yj)− E(φα(Yj))) = t−α
n∑
j=1

Gα(Yj),

where Gα(·) = φα(·)−E (φα(·)). Then, if m denotes the Hermite rank of Gα, we obtain:

µφ,α(m) = E (Hm(Y )Gα(Y )) = E (Hm(Y )φα(Y )) .

Assume first that m(1− 2d) < 1. Therefore, by Theorem 2.7.23, if m(1− 2d) < 1, then

for t > t0 > 0,

Ln,2(t)

bn,m
=

t−α

bn,m

n∑
j=1

Gα(Yj)
d−−−→

n→∞

µφ,α(m)T (t)

m!
ξm,d+1/2(1),

in the uniform topology on every compact subset of (0,∞). It remains to show that

Ln,1 +Ln,3 is negligible, when divided by bn,m. By stationarity of {Yj}, (3.27a), (3.6) and

(3.7b), we have for every t0 > 0,

1

bn,m
E

(
sup
t>t0

|Ln,1(t)|
)
≤ n

bn,m
E

(
sup
t>t0

|Jun (t/φ(Y ))− T (t/φ(Y ))|
)

≤ C(ε)E

(
sup
t>t0

(
(t/φ(Y ))−(κ+α+ε) ∨ (t/φ(Y ))−(κ+α−ε)

)) n

bn,m
|η∗(un)|

≤ K(ε) sup
t>t0

(
t−(κ+α+ε) ∨ t−(κ+α−ε)) n

bn,m
|η∗(un)| →

n→∞
0,

where K(ε) = C(ε) (E (φα+κ+ε(Y )) + E (φα+κ−ε(Y ))) is a constant depending on ε but

not on n. This allows us to conclude that

1

bn,m
E

(
sup
t>t0

|Ln,1(t)|
)

= o (1) . (4.43)

Finally, we consider the process Ln,3. Since

1

bn,m
sup
t>t0

|Ln,3(t)| ≤ 1

bn,m
E

(
sup
t>t0

|Ln,1(t)|
)
→
n→∞

0.

Then, we conclude that

1

bn,m
sup
t>t0

|Ln,3(t)| = oP (1) . (4.44)

Altogether, (Ln,1 + Ln,3)/bn,m is negligible on compact subsets of (0,∞). Therefore,

Ln(t)

bn,mF̄Z(un)E (φα(Y ))

d−−−→
n→∞

µφ,α(m)T (t)

m!E (φα(Y ))
ξm,d+1/2(1) in D(0,∞).
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Thus (3.11) and Slutsky’s Theorem end the proof of (4.39) for the case m(1− 2d) < 1.

Now, assume that m(1−2d) > 1. We keep the same notation and the decompositions

as for the previous case. By Theorem 2.7.23, if m(1− 2d) > 1, we have

Ln,2(t)√
n

d−−−→
n→∞

σt−αN , in D(0,∞),

where σ2 is defined in (2.93). Moreover, by (3.6),

1√
n
E

(
sup
t>t0

|Ln,1(t)|
)
≤ K(ε)

n√
n
|η∗(un)| sup

t>t0

(
t−(κ+α+ε) ∨ t−(κ+α−ε)) →

n→∞
0.

The corresponding argument applies to Ln,3. Thus,

Ln(t)

F̄Z(un)E (φα(Y ))
√
n

d−−−→
n→∞

t−α
σN

E (φα(Y ))
in D(0,∞).

Again, Breiman’s Lemma and Slutsky’s Theorem finish the proof for m(1− 2d) > 1.

4.2.4 Weak convergence of the TEP with Deterministic Levels

The main result of this section is Theorem 4.2.18. It essentially pertains to the dif-

ferent regimes to which the appropriately scaled process S̃n defined in (4.5) converges

weakly. In other words, depending on the interplay between the rates of convergence in

Theorem 4.2.3 and Theorem 4.2.17, the asymptotic behaviour of S̃n is dominated either

by the martingale part Mn or the long memory part Ln, defined in (4.7a) and (4.7b),

respectively.

Theorem 4.2.18. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1).

• If m(1− 2d) < 1 and bn,m
n

√
k → 0, as n→∞, then

S̃n(t)√
k

d−−−→
n→∞

(B ◦ T )(t) in D(0,∞). (4.45)

• If m(1− 2d) < 1 and bn,m
n

√
k →∞, as n→∞, then

S̃n(t)

kbn,m/n

d−−−→
n→∞

µφ,α(m)T (t)

m!E(φα(Y ))
ξm,d+1/2(1) in D(0,∞). (4.46)

• If m(1− 2d) > 1, then (4.45) holds.
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Proof. Let m(1− 2d) < 1. It follows from the decomposition in (4.6) that

S̃n(t)√
k

=
Mn(t)√

k
+

Ln(t)

bn,mF̄X(un)

bn,m
n

√
k.

Assume that Theorems 4.2.3 and 4.2.17 hold. If bn,m
n

√
k → 0, as n→∞, then

Ln(t)

bn,mF̄X(un)

bn,m
n

√
k = oP (1),

uniformly in t on all compact subsets of (0,∞). Thus, (4.45) follows. Again, the

martingale-long memory decomposition (cf. (4.6)) yields that

S̃n(t)

kbn,m/n
=
Mn(t)√

k

1

bn,m

√
n

F̄X(un)
+

Ln(t)

bn,mF̄X(un)
·

Analogously, assume that Theorems 4.2.3 and 4.2.17 hold. If bn,m
n

√
k → ∞, as n → ∞,

then

Mn(t)√
k

1

bn,m

√
n

F̄X(un)
= oP (1).

Thus, (4.46) follows by Slutsky’s Theorem. Now if m(1− 2d) > 1, then

S̃n(t)√
k

=
Mn(t)√

k
+

Ln(t)√
nF̄X(un)

F̄X(un)√
F̄X(un)

·

By (4.40) and since F̄X(un)→ 0 as n→∞, (4.45) follows.

Remark 4.2.19. We note that leverage has no effect on the limiting distribution. Long

memory affects the limiting behaviour. We have a dichotomous behaviour, according to

strength of long memory (that is, the value of the parameter d that appears explicitly in

the definition of bn,m). In the long memory case, the limiting random variable, ξm,d+1/2(1),

is Hermite-Rosenblatt. It is non-Gaussian unless m = 1.

Remark 4.2.20. If bn,m
n

√
k → c ∈ (0,∞), then S̃n(t)/

√
k converges to a linear combina-

tion of the processes that appear on the right-hand sides of (4.45) and (4.46). However,

the dependence structure is unclear.

Remark 4.2.21. Since the distribution FX is not known, the upper quantiles un cannot

be observed. Therefore, in the following section we replace un with an appropriate order

statistic.
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4.3 Random Levels

The tail empirical process defined in (4.5) is unobservable because F̄X(un) is unknown.

Therefore, the choice of a suitable level un is conditioned on the knowledge of F̄X . So,

any result based on such a tail empirical process is purely theoretical. This motivates

the introduction of a data based tail empirical process (see Definition 4.3.1).

Let X1, . . . , Xn be a sample from a stochastic volatility model defined in (3.1). Let

X(1) ≤ · · · ≤ X(i) ≤ · · · ≤ X(n) be their corresponding order statistics. Let FX denote

their distribution function. The quantile function F̄←X is defined by

F̄←X (p) = inf{x ∈ R : F̄X(x) ≤ p}, 0 < p < 1.

Choose a sequence of integers (kn)n such that as n→∞,

k := kn →∞ and k/n→ 0. (4.47)

Let Fn,X denote the usual empirical distribution function defined by

Fn,X(x) :=
1

n

n∑
j=1

11{Xj≤x} , t > 0.

Consequently, F̄n,X(x) = 1 − Fn,X(x). Let un = F̄←X (n/k). By continuity of F̄X , {un}
satisfies F̄X(un) = k/n. So, un →∞ and nF̄X(un)→∞. Let

F̄←n,X(p) = inf{x ∈ R : F̄n,X(x) ≤ p}, 0 < p < 1.

Then F̄←n,X (k/n) = X(n−k). Thus, it is natural to approximate un with X(n−k).

4.3.1 Weak Convergence of the TEP with Random Levels

This section is devoted to the study of weak convergence of the tail empirical process

with random levels defined below in (4.49).

Definition 4.3.1. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1).

• The empirical tail distribution function with random levels of {Xj} is

T̂n(t) :=
1

k

n∑
j=1

11{Xj>X(n−k)t} , t > 0. (4.48)
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• The tail empirical process with random levels of {Xj} is

Ŝn(t) := k
(
T̂n(t)− T (t)

)
. (4.49)

Our goal is to determine the limiting behaviour of the process Ŝn.

Remark 4.3.2. The centering Tun used in (4.5) is not desirable since it depends on n.

So, for statistical purposes, we will need to replace Tun by its limit T . For this, we require

the no-bias condition (3.6). This yields the introduction of the following TEP:

S̃∗n(t) : = k
(
T̃n(t)− T (t)

)
= nF̄X(un)

(
T̃n(t)− T (t)

)
, t > 0.

Under the no-bias condition (3.6) we have (3.28b), and hence the results for Theo-

rem 4.2.18 remain valid for the process S̃∗n. For notational convenience, we introduce the

sequence (ρn)n, defined by

ρn :=
X(n−k)

un
· (4.50)

The next result is about convergence in distribution of (ρn)n jointly with S̃∗n. This will

serve as an ingredient for establishing weak convergence of Ŝn.

Lemma 4.3.3. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1).

• If m(1− 2d) < 1 and bn,m
n

√
k → 0, or m(1− 2d) > 1, then as n→∞,(

S̃∗n(t)√
k

,
√
k

(
X(n−k)

un
− 1

))
d−−−→

n→∞

(
(B ◦ T )(t) ,

B(1)

α

)
. (4.51)

• If m(1− 2d) < 1 and bn,m
n

√
k →∞ then as n→∞,(

n

kbn,m
S̃∗n(t) ,

n

bn,m

(
X(n−k)

un
− 1

))
d−−−→

n→∞

(
µφ,α(m)

m!E(φα(Y ))
T (t)ξm,d+1/2(1),

µφ,α(m)

αm!E(φα(Y ))
ξm,d+1/2(1)

)
. (4.52)

These two joint weak convergences hold in D(0,∞)× R.
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Proof. For conciseness, we prove (4.51); the proof of (4.52) is analogous. Recall that

D1(0,∞) and C1(0,∞) are respectively the set of non-increasing functions in D(0,∞)

and the set of continuous non-increasing and positive functions in C(0,∞). We haveS̃∗n/
√
k ∈ D(0,∞) , B ◦ T ∈ C(0,∞),

T← ∈ D1(0,∞) , T← ∈ C1(0,∞) .

Therefore, Corollary 2.5.19 yields

S̃∗n√
k
◦ T← d−−−→

n→∞
B in D(0,∞).

This is equivalent to writing

√
k
{
T̃un ◦ T←(t)− t

}
d−−−→

n→∞
W (t).

By Skorokhod’s representation Theorem 2.5.5, there exist a probability space and pro-

cesses Z†n, B† and T̃ †n such that:

Z†n
d
=

S̃∗n√
k
◦ T← , B†

d
= B , Z†n

a.s−−−→
n→∞

B† ,

T †un(·) :=
Z†n(T (·))√

k
+ T (·) d

= T̃un(·).

We note that almost sure convergence of Z†n to B† is uniform on compact subsets of

(0,∞). Recall that T← is non-increasing. Moreover, T †un is almost surely non-increasing

since T †un
d
= T̃un . So, T ◦ T †←n is almost surely nondecreasing. Vervaat’s Lemma 2.2.5

holds and yields

√
k
{
T ◦ T †←n (t)− t

} a.s−−−→
n→∞

−B†(t) in D(0,∞).

In particular, for t = 1, we get

√
k
{
T ◦ T †←n (1)− 1

} a.s−−−→
n→∞

−B†(1).

But Taylor’s expansion yields{
T ◦ T †←n (1)− 1

}
=

{
T [T †←n (1)]− T [T←(1)]

}
= T ′[T←(1)]

(
T †←n (1)− 1

) (
1 + oa.s

(
T †←n (1)− 1

))
.
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It follows that
√
kT ′(1)

(
T †←n (1)− 1

) a.s−−−→
n→∞

−B†(1).

As a result, this convergence holds in distribution as well. Going back to the initial

probability space, since T †un
d
= T̃un and T †←n (1)

d
= T̃←n (1) = ρn, we obtain

√
k

(
X(n−k)

un
− 1

)
d−−−→

n→∞

B(1)

α
·

We are now ready to establish weak convergence for the tail empirical process Ŝn.

Notice that by introducing random levels, the tail empirical process vanishes at 1 and

∞, which forces the limiting process to be of a bridge type. More surprisingly, the in-

troduction of random levels causes the effect of long memory to disappear. The reason

for this, as will be seen in the proof, is that the limiting behaviour of Ŝn follows infor-

mally from the continuous mapping theorem applied to S̃∗n and
X(n−k)
un

. Thanks to the

degenerate structure of the limiting process for S̃∗n (that is, a random variable scaled by

a deterministic function), the long memory effect cancels out. Once again, the presence

of leverage does not affect the limit.

Theorem 4.3.4. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Then,

Ŝn(t)√
k

d−−−→
n→∞

B (T (t))− T (t)B(1), (4.53)

in D(0,∞) equipped with the Skorokhod J1 topology. The limiting process B (T (·)) −
T (·)B(1) is a centered time-changed Brownian bridge on [1,∞). Further, for each t > 0,

B (T (t))− T (t)B(1)
d
=

(
t−α + t−2α − 2

(
t−α ∧ t−2α

))1/2N , (4.54)

where N stands for a standard normal random variable.

Proof. The process Ŝn defined in (4.49) can be decomposed as follows:

Ŝn(t) = Ŝn,1(t) + Ŝn,2(t) + Ŝn,3(t),

where the summands Ŝn,j’s are respectively defined as follows:

Ŝn,1(t) = nF̄X(un)
(
T̃n (ρnt)− Tun (ρnt)

)
, (4.55)

Ŝn,2(t) = nF̄X(un) (Tun (ρnt)− T (ρnt)) , (4.56)

Ŝn,3(t) = nF̄X(un) (T (ρnt)− T (t)) . (4.57)
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Since Ŝn,1(t) = S̃n (ρnt), T̃n (ρn) = 1 and T (ρnt) = T (ρn)T (t), then

Ŝn(t) =
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
+ T (t)S̃n (ρn) + Ŝn,2(t) + Ŝn,3(t)

=
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
+ nF̄X(un)T (t)

(
T̃n (ρn)− Tun (ρn)

)
+ Ŝn,2(t) + Ŝn,3(t)

=
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
+ nF̄X(un)T (t) (1− Tun (ρn)) + Ŝn,3(t) + Ŝn,2(t)

=
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
− nF̄X(un)T (t) (Tun (ρn)− T (ρn)) + Ŝn,2(t). (4.58)

Notice that the last two terms combined in (4.58) are negligible thanks to the no-bias

condition (3.6) (cf. (3.28b)) and the fact that ρn = 1 + oP (1), that is for all t0 > 0,

sup
t≥t0

| − nF̄X(un)T (t) (Tun (ρn)− T (ρn)) + Ŝn,2(t)|√
k

= oP (1).

Hence, (4.53) holds if yielded by the first term in (4.58). This will be proven in Propo-

sition 4.3.5.

Proposition 4.3.5. Under the conditions of Theorem 4.3.4, we have

S̃n (ρnt)− T (t)S̃n (ρn)√
k

d−−−→
n→∞

B (T (t))− T (t)B(1), (4.59)

in D(0,∞) equipped with the Skorokhod J1 topology.

Proof. The “martingale-long memory decomposition” in (4.6) yields

S̃n (ρnt)− T (t)S̃n (ρn)√
k

=

(
Mn(ρnt)− T (t)Mn(ρn)√

k

)
+

(
Ln(ρnt)− T (t)Ln(ρn)√

k

)
.

(4.60)

The idea is that in Lemma 4.3.6, we will prove that the first term in (4.60) converges to

the right hand side of (4.59) while in Lemma 4.3.7, we will prove that the second term

in (4.60) is negligible.

Lemma 4.3.6. Under the conditions of Theorem 4.3.4, we have

Mn(ρnt)− T (t)Mn(ρn)√
k

d−−−→
n→∞

B (T (t))− T (t)B(1), (4.61)

in D(0,∞) equipped with the Skorokhod J1 topology.
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Proof. Since weak convergence to a continuous limit implies uniform convergence on

compact sets, then by virtue of (4.10) and (4.51), we conclude that

Mn(ρnt)− T (t)Mn(ρn)√
k

d−−−→
n→∞

B (T (t))− T (t)B(1),

in D(0,∞). In fact, the following hold

Mn(ρnt)√
k

d−−−→
n→∞

B (T (t)) in D(0,∞) and
Mn(ρn)√

k

d−−−→
n→∞

B (T (1)) .

In addition, taking into account (4.19), we obtain for all t > 0,

V ar (B(T (t))− T (t)B(1)) = V ar (B(T (t))) + T 2(t)V ar (B(1))

−2T (t)Cov (B(T (t)), B(1))

= t−α + t−2α − 2(t−α ∧ t−2α).

Since the limiting process B (T (t))−T (t)B(1) is a centered time-change Brownian bridge,

therefore Gaussian, we conclude (4.54).

Lemma 4.3.7. Under the conditions of Theorem 4.3.4, we have for each t0 > 0,

sup
t≥t0

(
Ln(ρnt)− T (t)Ln(ρn)√

k

)
= oP (1) .

Proof. It follows from (4.41) that

Ln(ρnt)− T (t)Ln(ρn)√
k

=
F̄Z(un)√

k

3∑
j=1

(Ln,j(ρnt)− T (t)Ln,j(ρn)) ,

where the summands Ln,j are respectively defined in (4.42a)-(4.42c). Recall the proof of

Theorem 4.2.17. There, the term Ln,2 yielded the long memory limit. The main point

of the proof of the present lemma is that the term Ln,2(ρnt) − T (t)Ln,2(ρn) vanishes.

As such, the long memory part does not contribute to the limiting behaviour of the tail

empirical process with random levels. For sake of conciseness, let for t > 0,

λ(t) := t−(α+κ+ε) ∨ t−(α+κ−ε) + t−α

Θn,j :=
1√
k

sup
t≥t0

(
F̄Z(un) |Ln,j(ρnt)− T (t)Ln,j(ρn)|

)
, j = 1, 3

ζn := ρ−(α+κ+ε)
n

(
1

n

n∑
j=1

φ−(α+κ+ε)(Yj)

)
+ ρ−(α+κ−ε)

n

(
1

n

n∑
j=1

φα+κ−ε(Yj)

)
.
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i) First, we have by (3.27a)

|Ln,1(ρnt)− T (t)Ln,1(ρn)| ≤
n∑
j=1

|Jun (ρnt/φ(Yj))− T (ρnt/φ(Yj))|

+ T (t)
n∑
j=1

|Jun (ρn/φ(Yj))− T (ρn/φ(Yj))|

≤ C(ε)|η∗(un)|
n∑
j=1

(
(ρnt/φ(Yj))

−(α+κ+ε) ∨ (ρnt/φ(Yj))
−(α+κ−ε)

)
+ C(ε)T (t)|η∗(un)|

n∑
j=1

(
(ρn/φ(Yj))

−(α+κ+ε) ∨ (ρn/φ(Yj))
−(α+κ−ε)

)
≤ nC(ε)λ(t)|η∗(un)|ζn. (4.62)

As a consequence, we obtain for all t0 > 0,

Θn,1 ≤ C(ε) sup
t≥t0

λ(t)

√
F̄Z(un)

F̄X(un)

√
nF̄Z(un)|η∗(un)|ζn = oP (1).

In fact, by ergodicity, for δ = α + κ− ε or δ = −(α + κ+ ε), with w.p.1,

1

n

n∑
j=1

φδ(Yj) →
n→∞

E
(
φδ(Y1)

)
.

Moreover, since ρn = 1 + oP (1), so are ρ
−(α+κ+ε)
n and ρ

−(α+κ−ε)
n , by the continuous

mapping theorem. Hence, ζn = OP (1). On account of (3.11) and (3.6),√
F̄Z(un)

F̄X(un)

√
nF̄Z(un)|η∗(un)| = o(1).

ii) Second, since Ln,2(ρnt) = (ρnt)
−α

n∑
j=1

(φα(Yj)− E (φα(Yj))) and

T (t)Ln,2(ρn) = t−αρ−αn

n∑
j=1

(φα(Yj)− E (φα(Yj))), it follows that

Ln,2(ρnt)− T (t)Ln,2(ρn) = 0. (4.63)

iii) As for the third term, we recall again from (3.27a)

|Jun(t/φ(Y1))− T (t/φ(Y1))| ≤ C(ε)
(

(t/φ(Y1))−(α+κ+ε) ∨ (t/φ(Y1))−(α+κ−ε)
)
|η∗(un)| .
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Applying Jensen’s inequality, we have

|Ln,3(t)| = n|E(Jun(t/φ(Y1)))− E(T (t/φ(Y1)))|
≤ nE(|Jun(t/φ(Y1))− T (t/φ(Y1))|)
≤ nBC|η∗(un)|

(
t−(α+κ+ε) ∨ t−(α+κ−ε)) .

As a consequence, we obtain

|Ln,3(ρnt)− T (t)Ln,3(ρn)| ≤ nBC|η∗(un)|Λ(t)
(
ρ−(α+κ+ε)
n ∨ ρ−(α+κ−ε)

n

)
. (4.64)

The same argument as the one used for Θn,1 yields for all t0 > 0, Θn,3 = oP (1).

Remark 4.3.8. We note that to get the convergence (4.61) of the martingale part with

random levels, we used Theorem 4.2.3. However, to prove that the long memory part

with random levels is negligible, we did not use Theorem 4.2.17. The reason for this is

that the long memory part with random levels vanishes due to the no-bias condition. As

such, we do not need to consider cases m(1 − 2d) < 1 or m(1 − 2d) > 1 as we did in

Theorem 4.2.17.

4.3.2 Weak Convergence of Integral Functionals

The power of weak convergence theory comes from the fact that many diverse results

emerge as corollaries of a basic convergence theorem. As we shall see in Theorem 4.3.9,

our main convergence Theorem 4.3.4 can be extended to integral functionals of the TEP.

This in turn yields a unified approach to establishing weak convergence of estimators of

the tail index (see Section 4.3.3) and makes estimation of risk measures feasible as will

be seen in Chapter 5. In what follows, r denotes a nonnegative integer.

Theorem 4.3.9. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). If α > 2(1− r), then

1√
k

∫ ∞
1

Ŝn(t)

tr
dt

d−−−→
n→∞

∫ ∞
1

B (T (t))−B(1)T (t)

tr
dt. (4.65)

Proof. We first show finiteness of the limiting variance of the random variable in the

right-hand side of (4.65). This implies that the limiting process in (4.65) is Gaussian
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since it is a continuous linear functional of a Gaussian process. Since α > 2(1 − r), we

have

V ar

(∫ ∞
1

B (T (t))−B(1)T (t)

tr
dt

)
= V ar

(∫ ∞
1

B(T (t))

tr
dt−B(1)

∫ ∞
1

t−α−r dt

)
= V ar

(∫ ∞
1

B(T (t))

tr
dt

)
+

V ar (B(1))

(α + r − 1)2

− 2

α + r − 1
Cov

(
B(1),

∫ ∞
1

B(T (t))

tr
dt

)
=

α

(α + r − 1)2(α + 2r − 2)
<∞. (4.66)

In fact, by Fubini’s theorem and (4.14), we have

V ar

(∫ ∞
1

B(T (t))

tr
dt

)
= E

(∫ ∞
1

B(T (t))

tr
dt

∫ ∞
1

B(T (s))

sr
ds

)
= 2

∫ ∞
1

(∫ ∞
s

E (B2(T (t)))

tr
dt

)
ds

sr

=
2

(α + r − 1)(α + 2r − 2)
·

Moreover,

Cov

(
B(1),

∫ ∞
1

B(T (t))

tr
dt

)
= E

(
B(1)

∫ ∞
1

B(T (t))

tr
dt

)
=

∫ ∞
1

E (B(T (t))B(1))

tr
dt

=
1

α + r − 1
· (4.67)

The calculations above justify the limiting variance. In what follows, we will check

the assumptions of Theorem 2.5.20 to establish weak convergence of the process in the

left-hand side of (4.65). To do so, let M ≥ 1 and decompose

1√
k

∫ ∞
1

Ŝn(t)

tr
dt =

1√
k

∫ M

1

Ŝn(t)

tr
dt+

1√
k

∫ ∞
M

Ŝn(t)

tr
dt .

Since the integral functionals are continuous only over compact intervals, then the

continuous mapping theorem and (4.53) yield

1√
k

∫ M

1

Ŝn(t)

tr
dt

d−−−→
n→∞

∫ M

1

B (T (t))−B(1)T (t)

tr
dt.
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Also, by (4.66), we have

lim
M→∞

V ar

(∫ ∞
M

B (T (t))−B(1)T (t)

tr
dt

)
= 0.

Hence, ∫ M

1

B (T (t))−B(1)T (t)

tr
dt

d−−−−→
M→∞

∫ ∞
1

B (T (t))−B(1)T (t)

tr
dt.

Thus, (4.65) holds if we establish (2.60c), that is, ∀ ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ 1√
k

∫ ∞
M

Ŝn(t)

tr
dt

∣∣∣∣∣ ≥ ε

)
= 0.

This will be proven in Proposition 4.3.10.

Proposition 4.3.10. Under the conditions of Theorem 4.3.9, we have for all ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ 1√
k

∫ ∞
M

Ŝn(t)

tr
dt

∣∣∣∣∣ ≥ ε

)
= 0. (4.68)

Proof. Recall the definition of ρn in (4.50) and the decomposition (4.58), that is:

Ŝn(t) =
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
− nF̄X(un)T (t) (Tun (ρn)− T (ρn)) + Ŝn,2(t).

Since it is hard to work with random levels, we go back to the process with the

deterministic threshold. We have for all ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

Ŝn(t)

tr
√
k
dt

∣∣∣∣∣ ≥ ε

3

)

≤ lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

S̃n (ρnt)− T (t)S̃n (ρn)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

3

)

+ lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∫ ∞
M

nF̄X(un)T (t) (Tun (ρn)− T (ρn))

tr
√
k

dt

∣∣∣∣ ≥ ε

3

)
+ lim

M→∞
lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

Ŝn,2(t)

tr
√
k
dt

∣∣∣∣∣ ≥ ε

3

)
. (4.69)

Therefore, (4.68) holds if these three upper bounds in (4.69) vanish. We will show this

in Lemmas 4.3.11 to 4.3.13, respectively.
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Lemma 4.3.11. Under the conditions of Theorem 4.3.9, we have for each ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

S̃n(ρnt)− T (t)S̃n(ρn)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

)
= 0. (4.70)

Proof. For ease of notation, let

AMn := P

(∣∣∣∣∣
∫ ∞
M

S̃n(ρnt)− T (t)S̃n(ρn)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

)
.

The change of variable v = ρnt yields that

AMn = P

(
|ρn|m−1

∣∣∣∣∣
∫ ∞
Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

)
.

Since ρn = 1 + oP (1), then it suffices to deal with

ÃMn = P

(∣∣∣∣∣
∫ ∞
Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

)
.

We have

ÃMn ≤ ÃM,1
n + ÃM,2

n ,

where

ÃM,1
n = P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2

)
,

ÃM,2
n = P

(∣∣∣∣∣
∫ ∞
M

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2

)
·

In what follows, we establish negligibility of both terms. For the first one, we will apply

directly weak convergence result for the process:

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

·

For the second term, we will proceed with the martingale-long memory decomposition.

1. We establish negligibility of ÃM,1
n . Let δ ≥ 0. We have

ÃM,1
n ≤ P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2
, |ρn − 1| < δ

)

+P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2
, |ρn − 1| ≥ δ

)

≤ P

(∫ M(1+δ)

M(1−δ)

∣∣∣∣∣ S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

∣∣∣∣∣ dv ≥ ε

2

)
+ P (|ρn − 1| ≥ δ) .
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• lim sup
n→∞

P (|ρn − 1| ≥ δ) = 0, since ρn = 1 + oP (1).

• By weak convergence of S̃n, ρn = 1 + oP (1) and Markov’s inequality, we get

lim sup
n→∞

P

(∫ M(1+δ)

M(1−δ)

∣∣∣∣∣ S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

∣∣∣∣∣ dv ≥ ε

2

)

≤ 2

ε
E

(∫ M(1+δ)

M(1−δ)

|B(T (v))− T (v)B(1)|
vr

dv

)

≤ 2

ε

∫ M(1+δ)

M(1−δ)

E (|B(T (v))− T (v)B(1)|)
vr

dv .

Let N denote a standard normal random variable. Recall that

B(T (v))
d
= v−α/2N and E|N | =

√
2/π .

So, it follows that

lim
M→∞

∫ M(1+δ)

M(1−δ)

E (|B(T (v))− T (v)B(1)|)
vr

dv

≤ lim
M→∞

√
2/π

∫ M(1+δ)

M(1−δ)

(
v−(α/2+r) + v−(α+r)

)
dv = 0,

as long as α > 2(1− r). Thus, the term ÃM,1
n is negligible.

2. Now, we establish negligibility of ÃM,2
n . By virtue of the decomposition (4.6),

ÃM,2
n ≤ P

(∣∣∣∣∫ ∞
M

Mn(v)− T (v/ρn)Mn(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
+P

(∣∣∣∣∫ ∞
M

Ln(v)− T (v/ρn)Ln(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
.

• We deal with the martingale part first. To do so, set

BM,1
n = P

(∣∣∣∣∫ ∞
M

Mn(v)

vr
√
k
dv

∣∣∣∣ ≥ ε

8

)
,

BM,2
n = P

(∣∣∣∣Mn(ρn)√
k

∣∣∣∣ ραn ∫ ∞
M

dv

vα+r
≥ ε

8

)
.

It follows that

P

(∣∣∣∣∫ ∞
M

Mn(v)− T (v/ρn)Mn(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
≤ BM,1

n +BM,2
n .
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Since {∆jMn} is a stationary martingale difference sequence, then

BM,1
n ≤ 64

ε2k

n∑
j=1

V ar

(∫ ∞
M

∆jMn(v)

vr
dv

)
≤ 64n

ε2k
E

[(∫ ∞
M

∆1Mn(v)

vr
dv

)2
]

≤ 64n

ε2k
E

[(∫ ∞
M

V1(v)

vr
dv

)2
]
≤ 128n

ε2k
E

[(∫ ∞
M

∫ ∞
s

V1(t)

tr
dt

)
ds

sr

]
.

Notice that E [V1(t)] = E[F̄Z(unt/φ(Y1))]. Furthermore, by (3.13) and (3.15),

F̄Z(unt/φ(Y1))

F̄X(un)
≤ λC

(
t−α+εφα−ε(Y1) ∨ t−α−εφα+ε(Y1)

)
.

Therefore, since M ≥ 1, we have

BM,1
n ≤ 128λkC

kε2
E

(∫ ∞
M

∫ ∞
s

t−α+εφα−ε(Y1) ∨ t−α−εφα+ε(Y1)

tr
dt

)
ds

sr

≤ 128λC

ε2
E
(
φα−ε(Y1) + φα+ε(Y1)

)(∫ ∞
M

∫ ∞
s

t−α+ε

tr
dt

)
ds

sr
=

1

ε2
O(M−α+ε−2r+2) .

As M → ∞, the latter expression vanishes whenever α > 2(1 − r) and ε <

α− 2(1− r).
Since BM,1

n decreases as ε increases, it is negligible for all ε > 0.

We can omit ραn when dealing with BM,2
n since ρn = 1 + oP (1). We have

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣Mn(ρn)√
k

∣∣∣∣ > (α + r − 1)Mα+r−1ε/8

)
= lim

M→∞
P
(
|W (1)| > (α + r − 1)Mα+r−1ε/8

)
= 0,

since α > 2(1− r) > 0. Therefore, the term BM,2
n is negligible.

In summary, the martingale part is negligible.

• We deal with the long memory part. Recall (4.42a)-(4.42c). Then

P

(∣∣∣∣∫ ∞
M

Ln(v)− T (v/ρn)Ln(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
≤

3∑
j=1

P

(
F̄Z(un)

∫ ∞
M

|Ln,j(v)− T (v/ρn)Ln,j(ρn)|
vr
√
k

dv ≥ ε

12

)
︸ ︷︷ ︸

IMn,j

.

Recalling from (4.63) that |Ln,2(ρnt)− T (t)Ln,2(ρn)| = 0, then IMn,2 = 0. So,

it remains only to deal with IMn,1 and IMn,3. By (4.62), we have

IMn,1 ≤ P

(
C(ε)nF̄Z(un)|η∗(un)|√

k
ζn

∫ ∞
M

Λ(v/ρn)

vr
dv ≥ ε

12

)
,
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where Λ(t) = t−α +
(
t−(κ+α+ε) ∨ t−(κ+α+ε)

)
. We have∫ ∞

M

Λ(v/ρn)

vr
dv ≤ ραn

∫ ∞
M

v−(α+r) dv + ρκ+α+ε
n

∫ ∞
M

v−(κ+α+ε+r) dv

+ρκ+α−ε
n

∫ ∞
M

v−(κ+α−ε+r) dv

= OP (1)O(M−(α+r)+ε+1) .

By ergodicity, ζn = OP (1). Since
√
k|η∗(un)| → 0, as n → ∞, nF̄X(un) = k

and F̄X(un) ∼ E(φα(Y ))F̄Z(un), as n→∞, we have that

C(ε)nF̄Z(un)|η∗(un)|√
k

(∫ ∞
M

Λ(v/ρn)

vr
dv

)
ζn

p−−−→
n→∞

0.

This shows that lim
n→∞

IMn,1 = 0, for all M ≥ 1. On the other hand, by (4.64),

F̄Z(un) |Ln,3(v)− T (v/ρn)Ln,3(ρn)|
≤ nBC|η∗(un)|F̄Z(un)

(
ρ−(κ+α+ε)
n ∨ ρ−(κ+α−ε)

n

)
λ (v/ρn) .

It follows that

P

(
F̄Z(un)

∫ ∞
M

|Ln,3(v)− T (v/ρn)Ln,3(ρn)|
vrk

≥ ε

12

)
≤ P

(
CBnF̄Z(un)|η∗(un)|√

k

(
ρ−(κ+α+ε)
n ∨ ρ−(κ+α−ε)

n

) ∫ ∞
M

Λ(v/ρn)

vr
dv ≥ ε

12

)
.

Hence, the term is negligible by the same argument as for IMn,1. Thus, we get

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∫ ∞
M

Ln(v)− T (v/ρn)Ln(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

12

)
= 0 .

Therefore, Ã2
n,M is negligible.

This finishes the proof of (4.70).

Lemma 4.3.12. Under the conditions of Theorem 4.3.9, we have for each ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

T (t)
√
k (Tun(ρn)− T (ρn))

tr
dt

∣∣∣∣∣ ≥ ε

)
= 0. (4.71)

Proof. Notice that
√
k {Tun(ρn)− T (ρn)} = oP (1) by (3.28b). Since

∫∞
M
t−(α+r)dt <∞,

then (4.71) holds.
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Lemma 4.3.13. Under the conditions of Theorem 4.3.9, we have for all ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞
M

Ŝn,2(t)

tr
√
k
dt

∣∣∣∣∣ ≥ ε

)
= 0. (4.72)

Proof. The definition of Ŝn,2 in (4.56), the change of variable z = ρnt and (3.27b) yield

ρr−1
n

√
k

∫ ∞
ρnM

∣∣∣∣Tun(z)− T (z)

zr

∣∣∣∣ dz ≤ Cρr−1
n

√
k|η∗(un)|

∫ ∞
ρnM

(
z−α−κ−r+ε ∨ z−α−κ−r−ε

)
dv

= Cρr−1
n

√
k|η∗(un)|(ρnM)−(α+κ+r−ε)+1

α + κ+ r − ε− 1
·

Since α > 2(1− r), we also have α + κ+ r − 1 > 0. Therefore, the integral is negligible

since ρn → 1 in probability and
√
k|η∗(un)| → 0, as n→∞.

Remark 4.3.14. The limiting process in (4.65) is the same as in the i.i.d. case. The

long memory and leverage effect do not influence the limiting behaviour of such integral

functionals. Furthermore, we have∫ ∞
1

B (T (t))−B(1)T (t)

tr
dt

d
=

α1/2N
(α + r − 1)(α + 2r − 2)1/2

, (4.73)

where N is a standard normal random variable. It should be noted that

Cov

(
B(1),

∫ ∞
1

B(T (t))−B(1)T (t)

tr
dt

)
= E

(
B(1)

∫ ∞
1

B(T (t))−B(1)T (t)

tr
dt

)
=

∫ ∞
1

E (B(T (t))B(1))

tr
dt−

∫ ∞
1

T (t)E (B2(1))

tr
dt

=
1

α + r − 1
− 1

α + r − 1
= 0, (4.74)

where the last equality holds by virtue of (4.67).

4.3.3 Tail Index Estimation - Harmonic Moment Estimators

We consider the long memory stochastic volatility model with leverage defined in (3.1).

Since the tail distribution of X is regularly varying with index −α, then this raises

the question of estimating the index of regular variation α. To answer this question,

we restrict our attention to the Harmonic Moment Estimators (HME) γ̂r,k of order r
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of γ := 1/α. This class of estimators were studied in [7]. We aim at studying their

asymptotic normality. We get started with the construction of such estimators. It

follows from (3.10) that for all r ≥ 0,

ζr :=

∫ ∞
1

T (t)

tr
dt =

1

α + r − 1
· (4.75)

If ζ̂r,k denotes an estimator of ζr, then the plug-in method together with (4.48) yield

ζ̂r,k =

∫ ∞
1

T̂n(t)

tr
dt =

∫ ∞
1

1

k

n∑
j=1

11{X(j)>X(n−k)t}
dt

tr
=

1

k

n∑
j=1

∫ ∞
1

11{ X(j)
X(n−k)

>t

}dt
tr
·

Furthermore, since t ≥ 1, then we have

ζ̂r,k =
1

k

k∑
j=1

∫ X(n−j+1)
X(n−k)

1

dt

tr

=


1
r−1

[
1− 1

k

k∑
j=1

(
X(n−k)

X(n−j+1)

)r−1
]

if r 6= 1,

1
k

k∑
j=1

ln

(
X(n−j+1)

X(n−k)

)
if r = 1.

To derive the estimators of γ = 1/α, we solve for 1/α in (4.75) and obtain

ζr =
1

α + r − 1
⇒ 1

α
=

ζr
1 + (1− r)ζr

·

Thanks to the plug-in method, we derive the HMEs below:

γ̂r,k =
ζ̂r,k

1 + (1− r)ζ̂r,k
(4.76)

=


1
r−1

( 1
k

k∑
j=1

(
X(n−k)

X(n−j+1)

)r−1
)−1

− 1

 if r 6= 1 ,

1
k

k∑
j=1

ln

(
X(n−j+1)

X(n−k)

)
if r = 1 .

(4.77)

• The HME that corresponds to r = 1 is the Hill estimator of γ = 1/α.

• The HME that corresponds to r = 2 is the t-Hill estimator of γ, that is

γ̂2,k =

(
1

k

k∑
j=1

X(n−k)

X(n−j+1)

)−1

− 1 . (4.78)



Limit Theorems for the Tail Empirical Processes 110

From now on, we are interested in studying the limiting behaviour of these Harmonic

Moment Estimators. The next result will serve as a building block for the asymptotic

normality of γ̂r,k.

Theorem 4.3.15. Under the assumptions of Theorem 4.3.9,

√
k
(
ζ̂r,k − ζr

)
d−−−→

n→∞

∫ ∞
1

B (T (t))−B(1)T (t)

tr
dt. (4.79)

Proof. We observe that

√
k
(
ζ̂r,k − ζr

)
=
√
k

(∫ ∞
1

T̂n(t)

tr
dt−

∫ ∞
1

T (t)

tr
dt

)
=

1√
k

∫ ∞
1

Ŝn(t)

tr
dt ,

As a consequence, (4.79) follows from Theorem 4.3.9.

We are now ready to deal with asymptotic normality of the Harmonic Moment Es-

timators of order r of 1/α. The next result provides a unified approach to central limit

theorems for estimators of the tail index α.

Theorem 4.3.16. Under the assumptions of Theorem 4.3.9 and if α > 2(1− r),

√
k (γ̂r,k − γ)

d−−−→
n→∞

(α + r − 1)√
α3(α + 2r − 2)

N , (4.80)

where N is a standard random variable.

Proof. We observe from (4.76) that γ̂r,k = g
(
ζ̂r,k

)
, where g is defined by

g(x) =
x

1 + (1− r)x
·

Therefore (4.80) follows from (4.79) in conjunction with the δ-method.

Remark 4.3.17. The striking fact about (4.80) is that the asymptotic behaviour of

Harmonic Moment Estimators is unaffected either by long memory or leverage.

• the Hill and t-Hill estimators are asymptotically normal (AN), that is

γ̂1,k ∼ AN

(
γ,

1

kα2

)
and γ̂2,k ∼ AN

(
γ,

(α + 1)2

kα3 (α + 2)

)
, (4.81)
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• The limiting variance of the HMEs γ̂r,k is

v2(r) =
(α + r − 1)2

α3(α + 2r − 2)
·

Consequently, if α > 2(1−r), then the minimal limiting variance of γ̂r,k: is attained

at r = 1. In fact,

dv2(r)

dr
=

2(α + r − 1)(r − 1)

α3(α + 2r − 2)2
and

d2v2
r

dr2
|r=1=

2

α10
> 0.

4.4 Concluding Remarks

In this chapter, we have considered the heavy-tailed long memory stochastic volatility

model with leverage given in (3.1). We have studied the limiting behaviour of the tail

empirical process with both fixed and random levels (Theorems 4.2.18 and 4.3.4). We

have shown a dichotomous behaviour for the tail empirical process with fixed levels,

according to the interplay between the long memory parameter d and the tail index

α; leverage does not play a role in the limiting results, but makes proofs technically

involved. On the other hand, the tail empirical process with random levels is unaffected

by either long memory or leverage. Further, we have proven the weak convergence of

integral functionals (Theorem 4.3.9). The tail empirical process with random levels is

used to construct a family of estimators of the tail index, including the famous Hill

estimator and harmonic mean estimators. Consequently, all HMEs of the tail index of

{Xj} remain valid for this model and have the same asymptotic behaviour as in the case

of i.i.d. observations (Theorem 4.3.16).

In the next chapter, we consider the asymptotic behaviour of estimators of risk measures

in the context of the long memory stochastic volatility models with leverage.



Chapter 5

Estimation of Financial Risk

Measures

5.1 Introductory Comments

This chapter deals with statistics of financial risk of a portfolio. By financial risk, we

refer to the prospect of financial loss. Financial institutions are exposed to various forms

of financial risk during the course of their transactions. Here are some common types of

financial risk:

• market risk (the risk of loss or gain arising from unexpected changes in market

prices, such as security prices) or market rates (e.g., such as interest or exchange

rates). The existing forms of market risk are discussed in detail in [19],

• credit risk (the risk of loss arising from the failure of a counterparty to make a

promised payment),

• operational risk (the risk of loss arising from the failures of internal systems (acci-

dents) or the people who operate in them (fraud, ethics, etc)).

• liquidity risk (the risk that assets cannot be sold or bought as and when required).

Financial risk management is essential in order to make these institutions resilient to

future events with adverse effects. It is mainly concerned with quantifying market risk

(measurement or estimation) and decision making. Three approaches are usually con-

sidered when it comes to financial risk measurement or estimation.

112
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The first approach stems from portfolio-theory, in which an investor relies heavily on

the performance of the expected return and the magnitude of the standard deviation. In

this mean-variance approach, returns are assumed to be normally distributed. It turns

out that the standard deviation of a return is interpreted as a financial risk measure.

The higher the variance, the riskier the asset. However, this measure of risk is of limited

use because it captures only volatility and fails to quantify likely losses of financial

institutions. The normality assumption is also very questionable.

The second approach is based on Value-at-Risk (VaR), a measure of financial risk

that captures not only the volatility of assets of a portfolio but also the maximum of the

likely losses of a portfolio. Unlike the mean-variance approach, returns are assumed to

follow an arbitrary distribution. VaR has a number of serious drawbacks. It captures

only risks that are quantifiable. It fails for instance to capture either operational risks

or liquidity risks. In the presence of very non-normal distributions, VaR turns out not

to be a reliable (and perhaps not even useful) risk measure. We refer to [27] and [1] for

a detailed discussion about the limitations of Value-at-Risk.

The third approach is based on coherent risk measures, which capture the size of a

potential loss of a financial institution (see Definition 5.2.1). These financial risk mea-

sures are alternatives to Value-at-Risk and were introduced in [4] in the late nineties.

See also [1]. One such coherent risk measure is the so-called Expected Shortfall (cf. [1])

Our goal in this chapter is to estimate financial risk measures associated with the long

memory stochastic volatility model with leverage under the second and third approaches

only. To do so, we use the tail empirical process. We use the results of Chapter 4 to

investigate the asymptotic behaviour of the estimators of Value-at-Risk and Expected

Shortfall.

This chapter is organized as follows. Coherent risk measures are introduced in sec-

tion 5.2. In section 5.3, we give an overview of Value-at-Risk and study the asymptotic

behaviour of estimators of VaR. In section 5.4, we present Expected Shortfall, a natural

coherent alternative to VaR. We study the asymptotic behaviours of its estimators.

5.2 Coherent Financial Risk Measures

In this section we present the defining properties of coherent financial risk measures.

These properties are known as axioms of coherence and were introduced in [4].
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Definition 5.2.1. [4]

Let L be the set of all real valued random variables (future values of portfolios). A

financial risk measure % : L → R is said to be coherent if it is

C(i) normalized, that is %(0) = 0.

C(ii) monotonically decreasing, that is, for all L1, L2 ∈ L,

L1 ≤ L2 ⇒ % (L2) ≤ % (L1) .

C(iii) subadditive, that is for all L1, L2 ∈ L,

% (L1 + L2) ≤ % (L1) + % (L2) .

C(iv) positively homogeneous, that is for all L ∈ L, a > 0,

% (aL) = a%(L).

C(v) transitionally invariant that is, for all L ∈ L, b ∈ R,

% (L+ b) = % (L)− b.

Remark 5.2.2. What do these axioms of coherence mean concretely? The rationale

behind C(i) is that the risk of holding no assets is zero. The rationale behind C(ii) is

that a portfolio with greater future returns has less risk. The meaning of C(iii) is that

the aggregate portfolio risk is less than or equal to the sum of the individual risks of the

assets that compose this portfolio. Positive homogeneity C(iv) implies that the risk of

a position is proportional to its size. In financial risk management, the implication of

axiom C(v) is that addition of a sure amount of capital reduces the risk by the same

amount.

Thanks to these axioms of coherence, financial risks can be effectively regulated and

managed. For instance, when it comes to decision making, coherent financial risk mea-

sures are more reliable than the other existing traditional financial risk measures (stan-

dard deviation, Value-at-Risk). Note that subadditivity reflects an expectation that

when we aggregate individual risks, they diversify or, at worst, do not increase. It means

that aggregating risks does not increase overall risk [27].
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5.3 Value-at-Risk (VaR)

In this section, we briefly present Value-at-Risk, derive its estimators and establish their

limit theorems. This statistic represents the maximum likely loss over some target pe-

riod - the most we expect to lose over that period, at a specified probability level. The

different methodologies to compute VaR are discussed in [19].

Definition 5.3.1. [1],[27]

Let L be a continuous random variable with a distribution function FL and p ∈ (0, 1).

The Value-at-Risk (or more precisely, p-VaR) is defined to be

VaRp(L) = F←L (1− p) = QL(1/p) , (5.1)

where F←L is the left-continuous inverse of FL and QL(t) = F←L (1− 1/t) , t > 1.

5.3.1 Estimation of VaR

Value-at-Risk fails to be a coherent risk measure. In fact, VaR is not subadditive [1].

Why is its estimation still so important? In fact, the asymptotic behaviours of many

estimators of coherent risk measures depend on those of VaR. This is illustrated in Sec-

tion 5.4.1, where estimation of expected shortfall depends on estimation of VaR.

Let (X1, . . . , Xn) be a sample from the long memory stochastic volatility model with

leverage considered in (3.1). Let X(1) ≤ · · · ≤ X(i) ≤ · · · ≤ X(n) be the corresponding

order statistics. Recall that FX denotes the common distribution function of the Xi’s.

Our goal is to estimate QX(1/p) when p is very small. Note that

E

(
n∑
j=1

11{Xj>QX(1/p)}

)
= np.

This means that the expected number of observations above QX(1/p), np, is also very

small. We assume that p depends on n and p = pn → 0, as n → ∞. If Fn denotes the

empirical distribution function of the sample (X1, . . . , Xn), then the empirical estimate

of QX(1/p) is

F←n (1− p) = X(n−[np]) . (5.2)
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However, for a very small value of p, this procedure is not very reliable since for p1 6= p2

such that [np1] = [np2], the values QX(1/p1) and QX(1/p2) may differ significantly, but

both values will be estimated by the same X(n−[np1]). In particular, for all p < 1/n,

QX(1/p) will be always estimated by X(n).

To address this, let k be an intermediate sequence, that is k = kn →∞ and k/n→ 0.

Notice that if F̄X(x) = x−α, then F←X (1− p) = p−
1
α . So recalling that γ = 1/α, we have

QX(1/p) = p−γ and QX(n/k) = (k/n)−γ .

Therefore, we obtain
QX(1/p)

QX(n/k)
=

(
k

np

)γ
.

Since the tail distribution of X is regularly varying with index −α (cf. (3.17)), then

QX(1/p)

QX(n/k)
=

(
k

np

)γ
(1 + o(1)) (5.3)

as long as (k/np) is bounded away from 0 and ∞ or k/(np) → ∞. The latter case is

what we are really interested in. By (5.2), QX(n/k) can be estimated by X(n−k). This

suggests the following estimators of QX(1/p):

Q̃X(1/p) = X(n−k)

(
k

np

)γ
, if α known (5.4a)

Q̂X(1/p) = X(n−k)

(
k

np

)γ̂
, otherwise. (5.4b)

Note that γ̂ denotes an estimator of γ = 1/α. To study the asymptotic behaviour of

VaR, limit theorems for the intermediate order statistics X(n−k) and those for estimators

of the tail index α are required. Recall that these limit theorems were already studied

in Lemma 4.3.3 and Theorem 4.3.16, respectively.

5.3.2 Limit Theorems for VaR

In light of these estimators of Value-at-Risk, we are in position to investigate through-

out this subsection their limiting behaviours under the assumptions of the long mem-

ory stochastic volatility model with leverage studied in Chapters 2 and 3. We start in

Proposition 5.3.2 with the class of estimators (5.4a) and then wrap up in Theorems 5.3.3

and 5.3.5 with the class of estimators (5.4b).
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Proposition 5.3.2. Let {Xj} be the long memory stochastic volatility model with lever-

age as in (3.1). Then we have the following:

• If m(1− 2d) < 1 and bn,m
n

√
k → 0 or m(1− 2d) > 1, then

√
k

{
Q̃X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

B(1)

α
· (5.5)

• If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m

{
Q̃X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.6)

Proof. Since k = nF̄X(un), then un = F←X (1− k/n) = QX(n/k). Thus,{
Q̃X(1/p)

QX(1/p)
− 1

}
=

{
X(n−k)

un

(
k

np

)γ
QX(n/k)

QX(1/p)
− 1

}
=

(
k

np

)γ
QX(n/k)

QX(1/p)

{
X(n−k)

un
− 1

}
+

{(
k

np

)γ
QX(n/k)

QX(1/p)
− 1

}
=

(
k

np

)γ
QX(n/k)

QX(1/p)

{(
X(n−k)

un
− 1

)
−

((
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

)}
. (5.7)

The result follows by Lemma 4.3.3, Lemma 3.4.1 and Lemma 3.4.2.

We continue with the situation where α is unknown and investigate the asymptotic

behaviour of the Value-at-Risk estimator Q̂X(1/p). In what follows, we replace the

unknown value of γ = 1/α with the harmonic moment estimator γ̂r,k of order r, as

defined in (4.76).

In the following theorem, we consider two limiting schemes, when k/(np) → ∞
(relevant in practice) and k/(np) → ν ∈ (0,∞). The latter case is not relevant in

practice, but may explain the results of some finite sample simulation studies.

Theorem 5.3.3. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Let N denote a standard normal variable.

1. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k → 0

or m(1− 2d) > 1, then

√
k

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞
N

√
1

α2
+

(α + r − 1)2 ln2 ν

α3(α + 2r − 2)
. (5.8)
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2. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1−2d) < 1 and bn,m
n

√
k →∞,

then

n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.9)

3. Assume that k/np→∞, as n→∞ and moreover if m(1−2d) < 1 and bn,m
n

√
k → 0

or m(1− 2d) > 1, then

√
k

ln (k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

(α + r − 1)√
α3(α + 2r − 2)

N . (5.10)

4. Assume that k/np→∞, as n→∞ If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m ln (k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞
0. (5.11)

Proof. In what follows, for simplicity we write γ̂ for γ̂r,k. Further, notice that

n

bn,m
√
k

=
1

bn,m

√
n

F̄X(un)
. (5.12)

Write the following decomposition

Q̂X(1/p)

QX(1/p)
− 1 =

{
Q̃X(1/p)

QX(1/p)
− 1

}
+
Q̂X(1/p)− Q̃X(1/p)

QX(1/p)
·

Bearing in mind un = QX(n/k), the first-order Taylor expansion applied to γ̂ 7→ (k/np)γ̂

around γ yields

Q̂X(1/p)− Q̃X(1/p)

QX(1/p)
=

X(n−k)

un

QX(n/k)

QX(1/p)

{(
k

np

)γ̂
−
(
k

np

)γ}

=
X(n−k)

un

QX(n/k)

QX(1/p)

{(
k

np

)γ
ln

(
k

np

)
(γ̂ − γ) +Rn

}
= Cn

{
ln

(
k

np

)
(γ̂ − γ) +

(
k

np

)−γ
Rn

}
,

where Rn is the Lagrange form of the remainder term, that is

Rn =
1

2

(
k

np

)γ̃
ln2

(
k

np

)
(γ̂ − γ)2 ,
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for some random variable γ̃ such that |γ̃ − γ| ≤ |γ̂ − γ| and Cn is defined as follows:

Cn :=
X(n−k)

un

(
k

np

)γ
QX(n/k)

QX(1/p)
.

In light of Lemma 4.3.3 and (5.3), Cn
p−−−→

n→∞
1. Therefore, we have

Q̂X(1/p)

QX(1/p)
− 1 =

{
Q̃X(1/p)

QX(1/p)
− 1

}
+ Cn

{
ln

(
k

np

)
(γ̂ − γ) +

(
k

np

)−γ
Rn

}
.

1. Assume that k/np→ ν, 0 < ν <∞, m(1−2d) < 1 and bn,m
n

√
k → 0 or m(1−2d) >

1. We have

√
k

{
Q̂X(1/p)

QX(1/p)
− 1

}
=
√
k

{
Q̃X(1/p)

QX(1/p)
− 1

}
(5.13)

+ Cn ln

(
k

np

)√
k (γ̂ − γ) +

(
k

np

)−γ
Cn
√
kRn.

Since
√
k (γ̂ − γ) = Op(1), by (4.80), then(
k

np

)−γ√
kRn =

1

2

(
k

np

)γ̃−γ
ln2 (k/np)√

k

{√
k (γ̂ − γ)

}2

= op(1). (5.14)

As noted above, Cn
p→ 1. Thus, using (5.5) and (4.80), we conclude that

√
k

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

B(1)

α
+

(α + r − 1) ln ν√
α3(α + 2r − 2)

N .

Recalling that B(1) is a standard normal random variable and taking into account

(4.74) and the joint convergence, we have (5.8) (in other words, estimators of the

tail index and order statistics are asymptotically uncorrelated).

2. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1−2d) < 1 and bn,m
n

√
k →∞,

then

n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}
=

n

bn,m

{
Q̃X(1/p)

QX(1/p)
− 1

}

+ ln

(
k

np

)
Cn

n

bn,m
√
k

√
k (γ̂ − γ) + Cn

(
k

np

)−γ
n

bn,m
Rn.
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Since
√
k (γ̂ − γ) = Op(1), by (4.80), then(

k

np

)−γ
n

bn,m
Rn =

1

2k

(
k

np

)γ̃−γ
n

kbn,m
ln2

(
k

np

){√
k (γ̂ − γ)

}2

=
1

2

(
k

np

)γ̃−γ (
n

bn,m
√
k

)(
ln2 (k/np)√

k

){√
k (γ̂ − γ)

}2

= op(1).

We already know that Cn
p→ 1. Taking into account (5.6), (5.9) follows.

3. Now, assume that k/np → ∞, as n → ∞. If m(1 − 2d) < 1 and bn,m
n

√
k → 0 or

m(1− 2d) > 1, then

√
k

ln (k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}
=

1

ln (k/np)

√
k

{
Q̃X(1/p)

QX(1/p)
− 1

}
︸ ︷︷ ︸

=:In

+ Cn
√
k (γ̂ − γ) + Cn

(
k

np

)−γ √
k

ln (k/np)
Rn .

By (5.5) the term In converges in probability to zero. We already know that

Cn
p→ 1. Since

√
k (γ̂ − γ) = Op(1) (by (4.80)), we have

(k/np)γ̃−γ = e
√
k(γ̃−γ)

ln(k/np)√
k = Op(1), (5.15)

and we obtain(
k

np

)−γ √
k

ln (k/np)
Rn =

1

2

(
k

np

)γ̃−γ √
k

ln(k/np)
ln2 (k/np) (γ̂ − γ)2

=
1

2
OP (1)

(
ln (k/np)√

k

){√
k (γ̂ − γ)

}2

= op(1).

By virtue of (4.80), we get (5.10).

4. Assume that k/np→∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m ln(k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}
=

1

ln(k/np)

n

bn,m

{
Q̃X(1/p)

QX(1/p)
− 1

}
︸ ︷︷ ︸

=:Jn

+ Cn
n

bn,m
√
k

√
k (γ̂ − γ) + Cn

(
k

np

)−γ
n

bn,m ln(k/np)
Rn.
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Again, as before Jn = oP (1). Since
√
k (γ̂ − γ) = Op(1), then by (5.15),(

k

np

)−γ
n

bn,m ln(k/np)
Rn =

1

2

(
k

np

)γ̃−γ
n

bn,m ln (k/np)
ln2 (k/np) (γ̂ − γ)2

=
1

2
e
√
k(γ̃−γ) ln(k/np)/

√
k

(
n

bn,m
√
k

)(
ln (k/np)√

k

){√
k (γ̂ − γ)

}2

= op(1).

As a consequence, assuming that Lemma 3.4.1, (5.6) and (4.80) hold, we obtain

(5.11).

Remark 5.3.4. Generally speaking, when returns are assumed to exhibit heavy-tails,

long range dependence and leverage, estimation of VaR is influenced in a dichotomous

way either by heavy-tails or long memory. The striking fact about this estimation is

that the leverage effect does not contribute at all. This is demonstrated in the following

scenarios:

1. In case of (5.8) the limiting behaviour is affected by both order statistics and

estimation of the tail index.

2. In case of (5.9) the limiting behaviour is affected by limiting behaviour of order

statistics only. Estimation of the tail index does not play any role.

3. In case of (5.10) the limiting behaviour is affected by estimation of the tail index

only.

4. In case of (5.11) we end up with a degenerate limit. This is addressed in the

following result by imposing more detailed conditions.

Theorem 5.3.5. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1). Assume that k/np→∞. If m(1− 2d) < 1 and

bn,m
n

√
k/ ln(k/np)→∞, (5.16)

then

n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.17)
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Proof. We have

n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}
=

n

bn,m

{
Q̃X(1/p)

QX(1/p)
− 1

}

+ ln

(
k

np

)
Cn

n

bn,m
√
k

√
k (γ̂ − γ) + Cn

(
k

np

)−γ
n

bn,m
Rn.

We already know that Cn
p→ 1. Since

√
k (γ̂ − γ) = Op(1) by (4.80), then under assump-

tion (5.16), the second term on the right hand side is op(1). Finally, we have(
k

np

)−γ
n

bn,m
Rn =

1

2k

(
k

np

)γ̃−γ
n

bn,m
ln2

(
k

np

){√
k (γ̂ − γ)

}2

=
1

2

(
k

np

)γ̃−γ (
n

bn,m
√
k

)(
ln2 (k/np)√

k

){√
k (γ̂ − γ)

}2

= op(1).

Taking into account (5.6), (5.9) follows.

Remark 5.3.6. We note that (5.16) automatically implies bn,m
n

√
k → ∞. However, we

do not know what happens if

bn,m
n

√
k →∞ but

bn,m
n

√
k/ ln(k/np)→ 0.

We now turn our attention to Expected Shortfall.

5.4 Expected Shortfall (ES)

As previously discussed, a number of deficiencies make VaR unsatisfactory as a financial

risk measure. Since VaR is simply a quantile, it lacks subadditivity, a serious limitation.

To get around the limitations of VaR, in [4] the authors introduced coherent measures

as alternatives to VaR. It turns out that Expected Shortfall (ES) is the natural coherent

alternative to VaR [1]. The coherence of expected shortfall is extensively discussed in

[2]. ES can be simply viewed as the excess mean function - that is the average value of

all values exceeding a certain threshold of the VaR. The ES is also called the Conditional

Tail Expectation (CTE) when the distribution of returns is continuous.

Our goal in this section is to establish limit theorems for estimators of ES. Before

doing so, we define Expected Shortfall and derive its estimators.
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Definition 5.4.1. [1]

Let L be the profit-loss of a portfolio on a specified time horizon and let p ∈ (0, 1) be

some specified probability level. The expected shortfall of the portfolio is then defined as

ESp(L) = E (L‖L > QL(1/p)) =: θL(p). (5.18)

5.4.1 Estimation of Expected Shortfall

Recall that γ = 1/α. Notice that if L is standard Pareto distributed and α > 1, then

θL(p) = E (L‖L > QL(1/p)) =
1

(1− γ)pγ
. (5.19)

Lemma 5.4.2. Let L be a random variable whose tail distribution F̄L is regularly varying

at infinity with index −α where α > 1. Then as p→ 0,

θL(p) ∼ 1

1− γ
QL(1/p). (5.20)

Proof. By definition, we have

θL(p) =
E
(
L11{L>QL(1/p)}

)
F̄L (QL(1/p))

= −

∫ ∞
QL(1/p)

uF̄L(du)

F̄L (QL(1/p))
·

By integrating by parts the right hand side and applying (2.17), we obtain

E
(
L11{L>QL(1/p)}

)
= −

[
uF̄L(u)

]∞
QL(1/p)

+

∫ ∞
QL(1/p)

u−α`L(u) du

∼
QL(1/p)→∞

QL(1/p)F̄L (QL(1/p)) +
Q1−α
L (1/p)

α− 1
`L (QL(1/p)) ,

by Theorem 2.3.8. Notice that QL(1/p)→∞ if and only if p→ 0. Therefore,

E (L‖L > QL(1/p)) ∼
p→0

QL(1/p) +
(QL(1/p))1−α `L (QL(1/p))

(α− 1)F̄L (QL(1/p))

∼
p→0

QL(1/p) +
QL(1/p)

α− 1

∼
p→0

α

α− 1
QL(1/p).
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Remark 5.4.3. It follows from Lemma 5.4.2 that estimators of Expected Shortfall can

be defined as:

θ̃L(p) =
1

1− γ
Q̃L(1/p), if α known (5.21a)

θ̂L(p) =
1

1− γ̂
Q̂L(1/p), otherwise. (5.21b)

The bottom line is that estimation of Expected Shortfall relies on estimation of VaR.

Notice that Expected Shortfall blows up for values of α ≤ 1. Recall that it is exactly

under these circumstances that the mean of a Pareto distributed random variable fails

to exist. That is why this scenario is excluded in Lemma 5.4.2 and it must be assumed

that the tail index α > 1 when dealing with estimation of Expected Shortfall.

5.4.2 Limit Theorems for Expected Shortfall

In this subsection, we investigate the limiting behaviours of estimators of Expected Short-

fall. This is done in Proposition 5.4.5 and Theorems 5.4.6 and 5.4.8, respectively. We

get started with Lemma 5.4.4, an ingredient for proofs of the above results.

Lemma 5.4.4. Let {Xj} be the long memory stochastic volatility model with leverage as

in (3.1). Then if α > 1,

lim
n→∞

an,m

{
QX(1/p)

(1− γ)θX(p)
− 1

}
= 0 . (5.22)

Proof. We have

an,m

{
QX(1/p)

(1− γ)θX(p)
− 1

}
= an,m

{
QX(1/p)

(1− γ)θX(p)
−
(
k

np

)−γ
QX(1/p)

QX(n/k)

}

+ an,m

{(
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

}

∼
p→0

an,m

{
1−

(
k

np

)−γ
QX(1/p)

QX(n/k)

}
+ an,m

{(
k

np

)−γ
QX(1/p)

QX(n/k)
− 1

}
,

on account of (5.20). Therefore as n→∞, Lemma 3.4.2 yields (5.22).

Proposition 5.4.5. Let {Xj} be the long memory stochastic volatility model with lever-

age as in (3.1). Then if α > 1, we have the following:
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• If m(1− 2d) < 1 and bn,m
n

√
k → 0 or m(1− 2d) > 1, then

√
k

{
θ̃X(p)

θX(p)
− 1

}
d−−−→

n→∞

B(1)

α
· (5.23)

• If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m

{
θ̃X(p)

θX(p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.24)

Proof. We have the following decomposition:{
θ̃X(p)

θX(p)
− 1

}
=

{
Q̃X(1/p)

(1− γ)θX(p)
− 1

}

=

{
Q̃X(1/p)

QX(1/p)
− 1

}
+

{
QX(1/p)

(1− γ)θX(p)
− 1

}
Q̃X(1/p)

QX(1/p)
·

If m(1 − 2d) < 1 and bn,m
n

√
k → 0 or m(1 − 2d) > 1, then (5.5) and Lemma 5.4.4 yield

(5.23).

If m(1− 2d) < 1 and bn,m
n

√
k →∞, then (5.24) follows by (5.6) and Lemma 5.4.4.

We continue with the situation where α is unknown and investigate the asymptotic

behaviour of the Expected Shortfall estimator θ̂X(1/p). In what follows, we replace the

unknown value of γ = 1/α with the harmonic moment estimator γ̂ = γ̂r,k of order r, as

defined in (4.76).

Theorem 5.4.6. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1) with α > 1. Let N denote a standard normal variable.

1. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k → 0

or m(1− 2d) > 1, then

√
k

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞
N

√
1

α2
+

(α + r − 1)2

α3(α + 2r − 2)

{
α

α− 1
+ ln ν

}2

. (5.25)

2. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1−2d) < 1 and bn,m
n

√
k →∞,

then

n

bn,m

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.26)
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3. Assume that k/np → ∞, as n → ∞. If m(1 − 2d) < 1 and bn,m
n

√
k → 0 or

m(1− 2d) > 1, then

√
k

ln (k/np)

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞

(α + r − 1)√
α3(α + 2r − 2)

N . (5.27)

4. Assume that k/np→∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m ln (k/np)

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞
0. (5.28)

Proof. Similarly to the proof of Proposition 5.4.5, we have the following decomposition{
θ̂X(p)

θX(p)
− 1

}
=

{
Q̂X(1/p)

(1− γ̂)θX(p)
− 1

}

=

{
Q̂X(1/p)

QX(1/p)
− 1

}
+
Q̂X(1/p)

QX(1/p)︸ ︷︷ ︸
=:An

QX(1/p)

(1− γ)θX(p)︸ ︷︷ ︸
=:an

1

(1− γ̂)︸ ︷︷ ︸
=:Bn

{γ̂ − γ}

+

{
QX(1/p)

(1− γ)θX(p)
− 1

}
Q̂X(1/p)

QX(1/p)
·

Theorem 5.3.3 implies that under any of its conditions, An converges in probability to

1. Also, Theorem 4.3.16 gives that Bn converges in probability to (1− γ)−1. Finally, an

converges to 1 by Lemma 5.4.4. Thus, by Slutsky’s theorem, An and an can be replaced

by 1, while Bn can be replaced by (1− γ)−1 and we will denote this change by ≈ in the

calculations that follow.

1. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k → 0

or m(1− 2d) > 1, then

√
k

{
θ̂X(p)

θX(p)
− 1

}
≈
√
k

{
Q̂X(1/p)

QX(1/p)
− 1

}

+
1

(1− γ)

√
k (γ̂ − γ) +

√
k

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

Since the limiting behaviour of Q̂X(1/p) involves the limiting behaviour of the
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intermediate order statistics and γ̂, we need to further decompose it using (5.13):

√
k

{
θ̂X(p)

θX(p)
− 1

}
≈
√
k

{
Q̃X(1/p)

QX(1/p)
− 1

}

+

{
1

1− γ
+ ln

(
k

np

)}√
k {γ̂ − γ}+

(
k

np

)−γ√
kRn.

+
√
k

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

By Lemma 5.4.4, the last term in the line above is o(1). Using (5.14), Theo-

rems 4.3.16 and 5.3.3, we obtain

√
k

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞

B(1)

α
+

(α + r − 1)√
α3(α + 2r − 2)

{
1

1− γ
+ ln ν

}
N .

Thus (5.25) follows since estimators of the tail index and order statistics are asymp-

totically uncorrelated by (4.74).

2. Assume that k/np→ ν, 0 < ν <∞, as n→∞. If m(1−2d) < 1 and bn,m
n

√
k →∞,

then

n

bn,m

{
θ̂X(p)

θX(p)
− 1

}
≈ n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}

+
1

(1− γ)

n

bn,m
√
k

√
k (γ̂ − γ) +

n

bn,m

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

Theorems 4.3.16 and 5.3.3 and Lemma 5.4.4 yield (5.26).

3. Assume that k/np → ∞, as n → ∞. If m(1 − 2d) < 1 and bn,m
n

√
k → 0 or

m(1− 2d) > 1, then

√
k

ln (k/np)

{
θ̂X(p)

θX(p)
− 1

}
≈

√
k

ln (k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}

+
1

ln (k/np)

√
k{γ̂ − γ}
1− γ

+

√
k

ln (k/np)

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

Theorems 4.3.16 and 5.3.3 and Lemma 5.4.4 yield (5.27).
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4. Assume that k/np→∞, as n→∞. If m(1− 2d) < 1 and bn,m
n

√
k →∞, then

n

bn,m ln (k/np)

{
θ̂X(p)

θX(p)
− 1

}
≈ n

bn,m ln (k/np)

{
Q̂X(1/p)

QX(1/p)
− 1

}

+
1

(1− γ)

n

bn,m
√
k ln (k/np)

√
k (γ̂ − γ) +

n

bn,m ln (k/np)

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

Theorems 4.3.16 and 5.3.3 and Lemma 5.4.4 yield (5.28).

Remark 5.4.7. In general, as was the case with VaR, when returns of a portfolio are

assumed to exhibit heavy-tails, long range dependence and leverage, estimation of ES

is influenced in a dichotomous way either by heavy-tails or long memory, while leverage

does not contribute at all. As before, this is demonstrated in the following scenarios:

1. In the case scenario (5.25) the limiting behaviour is affected by both order statistics

and estimation of the tail index.

2. In the case scenario (5.26) the limiting behaviour is affected by limiting behaviour

of order statistics only. Estimation of the tail index does not play any role.

3. In the case scenario (5.27) the limiting behaviour is affected by estimation of the

tail index only.

4. In the case scenario (5.28) we end up with a degenerate limit. This is addressed in

the result by imposing more detailed conditions.

The next result addresses the degeneracy observed in (5.28).

Theorem 5.4.8. Let {Xj} be the long memory stochastic volatility model with leverage

as in (3.1) with α > 1. Assume that k/np → ∞. If m(1 − 2d) < 1 and (5.16) holds,

then

n

bn,m

{
θ̂X(p)

θX(p)
− 1

}
d−−−→

n→∞

µφ,α(m)ξm,d+1/2(1)

αm!E(φα(Y ))
· (5.29)

Proof. We have

n

bn,m

{
θ̂X(p)

θX(p)
− 1

}
≈ n

bn,m

{
Q̂X(1/p)

QX(1/p)
− 1

}

+
1

(1− γ)

n

bn,m
√
k

√
k (γ̂ − γ) +

n

bn,m

{
QX(1/p)

(1− γ)θX(p)
− 1

}
·

Theorems 4.3.16 and 5.3.5 and Lemma 5.4.4 yield (5.29).
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5.5 Concluding Remarks

Throughout this chapter, we have discussed estimation of financial risk using two ap-

proaches: Value-at-Risk and Expected Shortfall under the assumptions that returns of a

portfolio are heavy-tailed long memory sequences with leverage (3.1).

We have derived estimators of VaR in (5.4a)-(5.4b) and subsequently studied their

asymptotic behaviour in Proposition 5.3.2 and Theorems 5.3.3 and 5.3.5. We have shown

that these estimators are consistent and are functions of both intermediate order statistics

and Harmonic Moment Estimators of the index of regular variation. Therefore to prove

limit theorems for estimators of VaR, we have used convergence of intermediate order

statistics and asymptotic normality of HMEs.

On the other hand, we have derived estimators of ES and investigated their limiting

behaviour in Proposition 5.4.5 and Theorems 5.4.6 and 5.4.8. We have shown that

the estimators of ES are consistent and depend not only on those of VaR but also on

HMEs (5.21a)-(5.21b). This justifies the importance of VaR despite its deficiencies and

confirms the fact ES is a natural coherent alternative to VaR. To establish the asymptotic

behaviour of the estimators of ES, we have used the asymptotic normality of HMEs and

limit theorems for estimators of VaR.

The conclusion we reach is that when returns of a portfolio are assumed to exhibit

heavy-tails, long memory and leverage, estimators of VaR and ES are not affected by

the leverage effect at all, while heavy tails and long memory influence the estimators in

a dichotomous way.



Chapter 6

Simulation Studies

6.1 Introductory Comments

In this chapter, we perform some numerical studies to illustrate the following theoretical

results obtained in the preceding chapters:

1. tail index estimation using the Hill estimator,

2. estimation of Value-at-Risk,

3. and estimation of Expected Shortfall.

For this, three types of data are considered:

• iid data (Pareto or the absolute value of Student-t);

• the long memory stochastic volatility model without leverage, with {Zj, j = 1, . . . , n}
either Pareto or the absolute value of Student-t;

• the long memory stochastic volatility model with leverage.

For the Student-t distribution, recall that the tail index α is equal to the number of

degrees of freedom. For the LMSV models (without and with leverage) we choose the

long memory parameter d as d = 0.1 or d = 0.4.

In what follows, the term Hill plot refers to the type of plot where an estimator (of

the tail index, Value-at-Risk, Expected Shortfall, etc.) is plotted against the number of

order statistics used in the evaluation of the estimator. From a practical perspective,

the Hill plot is used to choose k, an appropriate number of order statistics, from a stable

130
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region of the plot.

This chapter is structured as follows. In Sections 6.2 and 6.3, we do experiments

aiming at graphing Hill plots of the following estimators: Hill estimator, Value-at-Risk

and Expected Shortfall using iid data and the LMSV model, respectively. In Sections 6.4

and 6.5 we perform Monte Carlo simulation studies for the aforementioned estimators.

In Section 6.6 we perform Monte Carlo simulations for the Hill estimator in the case of

the LMSV model with leverage. All figures appear in Section 6.7.

Our simulations illustrate the following:

• Estimation in the case of Student-t noise is usually very biased, regardless of the

presence of long memory or leverage.

• Long range dependence does not affect the behaviour of the Hill estimator,

as indicated by our theory.

• Long range dependence affects the behaviour of the estimators of VaR and

ES, as indicated by our theory.

• Leverage does not affect the behaviour of the Hill estimator, as indicated

by our theory.

The main message of these experiments is that the quality of the estimators depends

largely on the underlying distribution of the noise, with a lot of bias and instability in

the case of the Student-t distribution. Long memory does not play any role in the case

of the Hill estimator, but influences the asymptotics of the estimators of Value-At-Risk

and Expected Shortfall. Leverage does not play any role in the case of the Hill estimator.

6.2 Simulations for i.i.d data

6.2.1 Experiment 1: Hill Plots for Hill Estimator

In this experiment, we assume that Xj are independent and identically Pareto or Student

distributed with parameter α. We simulated 1000 observations from these two distribu-

tions with the following choices for the parameter: α = 2 and α = 4, respectively. On the

left panel of Figure 6.1, we plotted estimates of the reciprocal of the tail index 1/α of the
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Pareto distribution using the Hill estimator. On the right panel of Figure 6.1 we plotted

the corresponding estimates for the Student-t distribution. We note the instability of

the Hill estimator when dealing with the Student-t distribution.

6.2.2 Experiment 2: Hill Plots for Value-at-Risk

In this experiment, we assume that Xj are independent and identically Pareto or Stu-

dent distributed with parameter α. We simulated 1000 observations from these two

distributions with the following choices for the parameter α = 2 and α = 4, respectively.

Value-at-Risk, QX(1/p), is estimated by Q̂X(1/p) defined in (5.4b). On the left panel

of Figure 6.2, we plotted estimates of the ratio Q̂X(1/p)/QX(1/p) for the level p = 0.05

using the Pareto distribution. On the right panel of Figure 6.2 we plotted those for the

Student-t distribution. Recall that the quantile function QX(1/p) is

QX(1/p) = 2(1/2− p)

√
1

2p(1− p)
, α = 2 ,

QX(1/p) = sign(1− p)2

√
cos(1

3
arccos(

√
4p(1− p)))√

4p(1− p)
− 1 , α = 4 .

We note some consistency in the Pareto case but again instability and bias in the Student

case.

6.2.3 Experiment 3: Hill Plots for Expected Shortfall

In this experiment, we assume that Xj are independent and identically Pareto or Stu-

dent distributed with parameter α. We simulated 1000 observations from these two

distributions with the following choices for the parameter α = 2 and α = 4, respectively.

Expected Shortfall θX(p) is estimated by θ̂X(p) defined in (5.21b). On the left panel of

Figure 6.3, we plotted estimates of the ratio θ̂X(p)/θX(p) with the level p = 0.05 using the

Pareto distribution. On the right panel of Figure 6.3 we plotted those for the Student-t

distribution. Again, we observe relatively good behaviour for the Pareto distribution and

bias in the Student case.
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6.3 Simulations for the LMSV Model

We simulate 1000 observations from the long memory stochastic volatility model:

Xj = exp(σYj))Zj , j = 1, . . . , 1000 (6.1)

where

1) Zj is a regularly varying sequence of random variables with index −α (again, either

Pareto or Student).

2) Yj is a fractional Gaussian noise sequence, that is, Cov(Y0, Yj) ∼ j2d−1, with the

long memory parameter d ∈ (0, 1/2). This is simulated using the R command

fracdiff.

3) σ > 0. Throughout this section, the variability parameter is σ = 0.1.

6.3.1 Experiment 1: Hill Plots for Hill Estimator

On the left panel of Figure 6.4, the long memory parameter d is chosen to be 0.1. We

plotted estimates of the reciprocal of the tail index 1/α of the Pareto distribution using

the Hill estimator for α = 2 and α = 4, respectively.

On the right panel of Figure 6.4, the long memory parameter d is chosen to be 0.4.

The quality of the estimator does not depend on the long memory parameter.

As for the Student case, we proceed similarly with the long memory parameter d

being 0.1 and 0.4 on the left and right panel of Figure 6.5, respectively. We observe

again instability of the Hill estimator regardless the memory parameter.

In summary, the tail index estimation using the Hill estimator is unaffected by long

memory.

6.3.2 Experiment 2: Hill Plots for Value-at-Risk

In this experiment, we plotted estimates of the ratio Q̂X(1/p)/QX(1/p) for the level

p = 0.05 using the LMSV model as in (6.1). In Figure 6.6, we used as noise the Pareto

distribution for α = 2 and 4, respectively. On the left panel, the long memory parameter

d is chosen to be 0.1 while on its right panel it is 0.4. Figure 6.7 is similar with the

Student-t distribution as noise. The estimation of Value-at-Risk is good in the case of

Pareto noise for α = 2, d = 0.1 and α = 4, d = 0.4. In the case of Student noise, it is

good only for α = 2.
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6.3.3 Experiment 3: Hill Plots for Expected Shortfall

We plotted estimates of the ratio θ̂X(p)/θX(p) for the level p = 0.05 using the LMSV

model as in (6.1). In Figure 6.8, we considered as noise the Pareto distribution with

α = 2 and 4, respectively. On the left panel, the long memory parameter d is chosen

to be 0.1 while on its right panel it is 0.4. Figure 6.9 is analogous for Student-t noise.

When d = 0.4, the estimation of Expected Shortfall is good in the case of Pareto noise.

In the Student case, it is only good for d = 0.4 but α = 2.

6.4 Monte Carlo Simulations for i.i.d data

6.4.1 Experiment 1: Boxplots for Hill Estimator

In this experiment we produced boxplots for the estimates of the reciprocal of the tail

index 1/α using the Hill estimator. For this, we simulated n = 1000 observations from

either the Pareto or Student-t distributions with α = 2 and α = 4, respectively. In

Figures 6.10 and 6.11, we deal with the Pareto distribution while in Figures 6.12 and

6.13, we consider the Student-t distribution. These estimates are obtained from 1000

Monte Carlo simulations, for the following number of order statistics in both figures:

k = 0.05 ∗ n (left panel), k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (right panel). We

note that

• for the Pareto case, the estimator is unbiased;

• for the Student case, the bias increases with k;

• the larger k is, the smaller the variability is, as suggested by the asymptotic theory.

6.4.2 Experiment 2: Boxplots for Value-at-Risk

In this experiment, we display boxplots for the ratio Q̂X(1/p)/QX(1/p) for the level

p = 0.05. To do so, we simulated n = 1000 observations from the Pareto distribution for

α = 2 and α = 4, in Figures 6.14 and 6.15 respectively. These estimates are obtained

from 1000 Monte Carlo iterations, for the following number of order statistics in both

figures: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right panel).

In Figures 6.16 and 6.17, the same procedure is repeated with data being generated with

Student noise. We note that
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• variability decreases with k, as suggested by the asymptotic theory;

• for both Pareto and Student noise, we have several estimates that differ significantly

from the true value;

• estimates for the Student case are biased, but there is less bias for α = 4 than for

α = 2.

6.4.3 Experiment 3: Boxplots for Expected Shortfall

In this experiment, we display boxplots of the ratio θ̂X(p)/θX(p) for the level p = 0.05.

To do so, we simulated n = 1000 observations from the Pareto distribution for α = 2 and

α = 4, in Figures 6.18 and 6.19 respectively. These estimates are obtained from 1000

Monte Carlo iterations, for the following selected choice of the number of order statistics

in both figures: k = 0.05 ∗ n (left panel), k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n
(right panel). In Figures 6.20 and 6.21, the same procedure is repeated with data being

generated from the Student distribution.

• variability decreases with k, as suggested by the asymptotic theory;

• for both Pareto and Student noise, we have several estimates that differ significantly

from the true value;

• estimates for the Student case are very biased for α = 2, but there is a little bias

for α = 4.

6.5 Monte Carlo Simulations for LMSV data

6.5.1 Experiment 1: Boxplots for Hill Estimator

In this experiment we produce boxplots for the estimates 1/α̂k of the reciprocal of the

tail index 1/α using the Hill estimator. For this, we simulated n = 1000 observations

from the LMSV model defined in (6.1) with d = 0.1 and d = 0.4. In Figures 6.22 and

6.23, we consider the Pareto distribution while in Figures 6.24 and 6.25, we consider

the Student-t distribution with α = 2, 4 in both cases. These estimates are obtained

from 1000 Monte Carlo simulations, for the following selected choice of the number of

order statistics in both figures: k = 0.05 ∗ n (top panel), k = 0.1 ∗ n (middle panel) and

k = 0.2 ∗ n (bottom panel).
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• There is no difference between boxplots for both long memory parameters, as sug-

gested by the theory.

6.5.2 Experiment 2: Boxplots for Value-at-Risk

In this experiment, we produced boxplots for the ratio Q̂X(1/p)/QX(1/p) for the level

p = 0.05 using the LMSV model as in (6.1) with long memory parameters d = 0.1

and d = 0.4. In Figures 6.26 and 6.27, we considered the Pareto distribution while in

Figures 6.28 and 6.29, we considered the Student-t distribution with α = 2, 4 in both

cases. These estimates are obtained from 1000 Monte Carlo simulations, for the following

selected choice of the number of order statistics in both figures: k = 0.05∗n (top panel),

k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).

• We note that variability for d = 0.4 is bigger than for d = 0.1 (unlike in the

Hill estimator case), as suggested by the asymptotic theory, since long memory

dominates.

6.5.3 Experiment 3: Boxplots for Expected Shortfall

In this experiment, we produced boxplots for the ratio θ̂X(p)/θX(p) for the level p = 0.05

using the LMSV model as in (6.1) with long memory parameters d = 0.1 and d = 0.4.

In Figures 6.30 and 6.31, we considered the Pareto distribution while in Figures 6.32

and 6.33, we considered the Student-t distribution with α = 2, 4 in both cases. These

estimates are obtained from 1000 Monte Carlo simulations, for the following selected

choice of the number of order statistics in both figures: k = 0.05∗n (top panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (bottom panel).

• We note that variability for d = 0.4 is bigger than for d = 0.1 (similarly as for Value-

at-Risk, but unlike the Hill estimator), as suggested by the asymptotic theory, since

long memory dominates.

• There is a lot of bias in the case α = 2 for both Pareto and Student noise (the

ratios in Figures 6.30 and 6.32 should be centered around 1). Again, this is not

related to long memory or leverage.
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6.6 Simulations for the LMSV Model with Leverage

In this section we illustrate the lack of influence of leverage on the asymptotic distribution

of the Hill estimator, as indicated by our theory. The simulation set-up is as follows:

• The sequence {Zj, j = 1, . . . , n} is simulated from a Pareto distribution with tail

index α = 2 or α = 4.

• The long memory sequence {Yj, j = 1, . . . , n} is simulated in two ways using

fracdiff.sim function from R:

– First, we simulate innov sequence using rnorm command, independent from

everything else. This innov sequence is fed into the fracdiff.sim. The result

of that function is a long memory Gaussian sequence having (approximately)

the same finite dimensional distributions as Yj =
∑∞

i=1 aiεj−i. Then we set

X = exp(0.1Y )Z. In this case there is no leverage.

– Second, we obtain the innov sequence via the following procedure:

innovj = ρΦ−1(FZ(Zj+1)) +
√

1− ρ2Nj ,

where ρ ∈ (0, 1), FZ is the distribution function of Z0, Φ−1 is the quantile func-

tion for the standard normal distribution and Nj are i.i.d. standard normal

random variables. This way, the innovation sequence is standard normal and

is not independent from {Zj, j = 1, . . . , n}, allowing for the leverage effect.

The results are presented in Figures 6.34-6.37 for α = 2, 4 and d = 0.1, 0.4. We compare

the Monte Carlo simulations for the first (no-leverage) and the second (leverage) simu-

lation methods. The following numbers of order statistics are used: k = 0.05 ∗ n (top

panel), k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).

• We note very little difference between the performance of the Hill estimator in the

two cases.
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6.7 Figures

Figure 6.1: Estimation of the reciprocal of the tail index using the Hill estimator (iid

case). The horizontal lines indicate the true values of 1/α. Left panel: Pareto; Right

panel: Student-t. Top panel: α = 2; Bottom panel: α = 4.
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Figure 6.2: Estimation of Value-at-Risk (iid case). The horizontal lines indicate the

true ratio 1. Left panel: Pareto; Right panel: Student-t. Top panel: α = 2; Bottom

panel: α = 4.

Figure 6.3: Estimation of Expected Shortfall (iid case). The horizontal lines indicate

the true ratio 1. Left panel: Pareto; Right panel: Student-t. Top panel: α = 2; Bottom

panel: α = 4.
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Figure 6.4: Estimation of the reciprocal of the tail index using the Hill estimator (LMSV

case). The horizontal lines indicate the true values of 1/α. Left panel: d = 0.1; Right

panel: d = 0.4. Top panel: Pareto with α = 2; Bottom panel: Pareto with α = 4.

Figure 6.5: Estimation of the reciprocal of the tail index using the Hill estimator (LMSV

case). The horizontal lines indicate the true values of 1/α. Left panel: d = 0.1; Right

panel: d = 0.4. Top panel: Student-t with α = 2; Bottom panel: Student-t with α = 4.
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Figure 6.6: Estimation of the Value-at-Risk (LMSV case). The horizontal lines indicate

the true ratio 1. Left panel: d = 0.1; Right panel: d = 0.4. Top panel: Pareto with

α = 2; Bottom panel: Pareto with α = 4.

Figure 6.7: Estimation of the Value-at-Risk (LMSV case). The horizontal lines indicate

the true ratio 1. Left panel: d = 0.1; Right panel: d = 0.4. Top panel: Student-t with

α = 2; Bottom panel: Student-t with α = 4.
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Figure 6.8: Estimation of the Expected Shortfall (LMSV case). The horizontal lines

indicate the true ratio 1. Left panel: d = 0.1; Right panel: d = 0.4. Top panel: Pareto

with α = 2; Bottom panel: Pareto with α = 4.

Figure 6.9: Estimation of the Expected Shortfall (LMSV case). The horizontal lines

indicate the true ratio 1. Left panel: d = 0.1; Right panel: d = 0.4. Top panel: Student-t

with α = 2; Bottom panel: Student-t with α = 4.
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Figure 6.10: Boxplots for Hill estimator using Pareto distribution (iid case). The true

value of 1/α is 1/2. Number of order statistics used: k = 0.05∗n (left panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (right panel).

Figure 6.11: Boxplots for Hill estimator using Pareto distribution (iid case). The true

value of 1/α is 1/4. Number of order statistics used: k = 0.05∗n (left panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (right panel).
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Figure 6.12: Boxplots for Hill estimator using Student distribution (iid case). The true

value of 1/α is 1/2. Number of order statistics used: k = 0.05∗n (left panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (right panel).

Figure 6.13: Boxplots for Hill estimator using Student distribution (iid case). The true

value of 1/α is 1/4. Number of order statistics used: k = 0.05∗n (left panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (right panel).
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Figure 6.14: Boxplots for Value-at-Risk (iid Pareto case, α = 2). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).

Figure 6.15: Boxplots for Value-at-Risk (iid Pareto case, α = 4). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).
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Figure 6.16: Boxplots for Value-at-Risk (iid Student case, α = 2). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).

Figure 6.17: Boxplots for Value-at-Risk (iid Student case, α = 4). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).
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Figure 6.18: Boxplots for Expected Shortfall (iid Pareto case, α = 2). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).

Figure 6.19: Boxplots for Expected Shortfall (iid Pareto case, α = 4). Number of order

statistics used: k = 0.05∗n (left panel), k = 0.1∗n (middle panel) and k = 0.2∗n (right

panel).
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Figure 6.20: Boxplots for Expected Shortfall (iid Student case, α = 2). Number of

order statistics used: k = 0.05 ∗n (left panel), k = 0.1 ∗n (middle panel) and k = 0.2 ∗n
(right panel).

Figure 6.21: Boxplots for Expected Shortfall (iid Student case, α = 4). Number of

order statistics used: k = 0.05 ∗n (left panel), k = 0.1 ∗n (middle panel) and k = 0.2 ∗n
(right panel).
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Figure 6.22: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). The true

value of 1/α is 1/2. Number of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.23: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). The true

value of 1/α is 1/4. Number of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.24: Boxplots for Hill estimator for LMSV model with Student noise with index

α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). The true

value of 1/α is 1/2. Number of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.25: Boxplots for Hill estimator for LMSV model with Student noise with index

α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). The true

value of 1/α is 1/4. Number of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n
(middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.26: Boxplots for Value-At-Risk for LMSV model with Pareto noise with index

α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). Number

of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n (middle panel) and k = 0.2∗n
(bottom panel).
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Figure 6.27: Boxplots for Value-At-Risk for LMSV model with Pareto noise with index

α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). Number

of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n (middle panel) and k = 0.2∗n
(bottom panel).
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Figure 6.28: Boxplots for Value-At-Risk for LMSV model with Student noise with index

α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). Number

of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n (middle panel) and k = 0.2∗n
(bottom panel).
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Figure 6.29: Boxplots for Value-At-Risk for LMSV model with Student noise with index

α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel). Number

of order statistics used: k = 0.05∗n (top panel), k = 0.1∗n (middle panel) and k = 0.2∗n
(bottom panel).
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Figure 6.30: Boxplots for Expected Shortfall for LMSV model with Pareto noise with

index α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel).

Number of order statistics used: k = 0.05 ∗n (top panel), k = 0.1 ∗n (middle panel) and

k = 0.2 ∗ n (bottom panel).
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Figure 6.31: Boxplots for Expected Shortfall for LMSV model with Pareto noise with

index α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel).

Number of order statistics used: k = 0.05 ∗n (top panel), k = 0.1 ∗n (middle panel) and

k = 0.2 ∗ n (bottom panel).
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Figure 6.32: Boxplots for Expected Shortfall for LMSV model with Student noise with

index α = 2. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel).

Number of order statistics used: k = 0.05 ∗n (top panel), k = 0.1 ∗n (middle panel) and

k = 0.2 ∗ n (bottom panel).
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Figure 6.33: Boxplots for Expected Shortfall for LMSV model with Student noise with

index α = 4. The memory parameter is d = 0.1 (left panel) and d = 0.4 (right panel).

Number of order statistics used: k = 0.05 ∗n (top panel), k = 0.1 ∗n (middle panel) and

k = 0.2 ∗ n (bottom panel).
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Figure 6.34: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 2 and the memory parameter d = 0.1. Left panel: model without leverage; Right

panel: model with leverage. Number of order statistics used: k = 0.05 ∗ n (top panel),

k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.35: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 2 and the memory parameter d = 0.4. Left panel: model without leverage; Right

panel: model with leverage. Number of order statistics used: k = 0.05 ∗ n (top panel),

k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.36: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 4 and the memory parameter d = 0.1. Left panel: model without leverage; Right

panel: model with leverage. Number of order statistics used: k = 0.05 ∗ n (top panel),

k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).
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Figure 6.37: Boxplots for Hill estimator for LMSV model with Pareto noise with index

α = 4 and the memory parameter d = 0.4. Left panel: model without leverage; Right

panel: model with leverage. Number of order statistics used: k = 0.05 ∗ n (top panel),

k = 0.1 ∗ n (middle panel) and k = 0.2 ∗ n (bottom panel).



Chapter 7

Conclusion

There are various forms of risk (operational risk, liquidity risk, credit risk, etc.) that

financial institutions deal with on a regular basis. In response to extreme events with

adverse effects, financial institutions use risk management to ensure their resilience and

solvency. In this regard, in this thesis we have focused on some quantitative aspects of

risk management (Chapter 5). With the help of the asymptotic theory for tail empir-

ical processes (Chapter 4), we have studied estimation of Value-at-Risk and Expected

Shortfall under the assumptions that returns of a portfolio are heavy-tailed, long mem-

ory sequences with leverage as defined in (3.1). While estimation of both VaR and ES is

unaffected by leverage, heavy-tails and long range dependence do influence the limiting

behaviour in a dichotomous manner. These theoretical results have been illustrated in

the simulation studies done in Chapter 6.

There are a number of questions about the assumptions of the LMSV model with

leverage and some technicalities that we discuss below in section 7.1. Then, we wrap

with some future research directions in section 7.2.

7.1 Comments on Assumptions and Technicalities

• The Gaussian assumption on Yj can be easily replaced with Yj being an infinite

order moving average process. Instead of using Hermite polynomials, convergence

of the long memory part can be concluded using tools such as Appell polynomials

or a version of martingale approximation. See [6, Section 4.2.5].

• Second-order regular variation is needed to handle the bias induced by convergence
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in (3.10) and (3.12). In the i.i.d. case, instead of (3.6) it suffices to assume that√
nF̄Z(un)|η∗(un)| → 0 (cf. Theorem 3.3.5 in [23]; note that the bias condition

(3.3.9) there is written in a different form). Here, due to dependence, we have the

additional restriction.

Through the relationships kn = nF̄X(un) and (3.11), the bias assumption restricts

the number of order statistics that can be used in the construction of the Hill

estimator.

• We excluded the case of d = 0 which yields short memory. It is justified in [21]

that in the case of short memory, the stochastic volatility sequence {Xj} is mixing

and limiting results for tail empirical processes can be concluded from [48].

• For clarity, throughout Chapters 3 to 5 we work under all assumptions introduced

in Section 3.2. For some partial results not all the assumptions are needed. Indeed,

for the tail empirical process with deterministic levels, instead of A(ii), only regular

variation is needed, while the moment conditions (3.7a)-(3.7a) can be replaced with

a weaker assumption, E ((φ(Y ))α+ε) < ∞ for some ε > 0, in order to guarantee

that the tail distribution F̄X is regularly varying. For the tail empirical process

with random levels and for the Hill estimator, a version of second-order regular

variation is needed.

In our method of proof, we utilize second-order regular variation for the tail em-

pirical process with deterministic levels. Possibly, with another method of proof,

this could be avoided.

• More specifically, for finite dimensional convergence of the martingale part (Propo-

sition 4.2.7) the moment condition (3.7a) is not needed, but second-order regular

variation plays a crucial role in the proof. The no-bias condition (3.6) is not used.

• Lemma 4.2.14 does not require any distributional assumption on Z. Also, the

moment conditions are not needed. Lemma 4.2.15 requires the moment assumption

(3.7a). Only regular variation of Z is needed; second-order regular variation is

not required. Lemma 4.2.16 again requires only (3.7a). In summary, the proof of

tightness of the martingale part (Proposition 4.2.12) requires only regular variation

and the moment condition (3.7a).

• Thus, weak convergence of the martingale part requires all assumptions except for

(3.6).
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• Weak convergence of the long memory part (Theorem 4.2.17) needs (3.7b) and

second order regular variation with (3.6).

7.2 Further Research Directions

There are several open questions that we intend to pursue:

• The model should be extended to multivariate data. We expect that the techniques

developed in the thesis should be applicable.

• Bootstrap techniques, in particular for estimation of risk measures, should be de-

veloped. There are challenges stemming both from long memory and the delicate

structure of the tail empirical process.

• The volatility sequence {σj} could be extended to include heavy tails. This will

require new methodology.

• Our methodology can be applied to inference problems for other families of risk

measures such as convex risk measures.

• Techniques should be developed for the detection and estimation of a change point

in the model.
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