
MAT5171
Assignment 5

Assignment 5 is based on material from Sections 32-34.

Exercise 1 Let (S,G) be a measurable space and let µ be a measure on it.
Recall the definition of measure (fµ), where f : S → R+. Let h : S → R+.
Show that h(fµ) = (hf)µ. Set ν = fµ. then we need to prove hν = (hf)µ,
thus

∫
B
hdν =

∫
B

(hf)dµ for each set B
Furthermore, assume that h ∈ L1(S,G, fµ). Show that (fµ)(h) = µ(fh).
Hint: Consider first f and h to be indicators, then linear combinations of

indicators, then use the argument that any positive function can be approximated
by a linear combination.

Note: h(fµ) = (hf)µ is the equality of two measures; while (fµ)(h) = µ(fh)
is the equality of two numbers.

Solution for Exercise 1 We start with a simple function h =
∑n

i=1 ai1Ai
,

where ai ≥ 0, i = 1, . . . , n, and Ai, i = 1, . . . , n, is a disjoint partition of S.
Note that ν = fµ is a measure. Hence, h(fµ) = hν is also a measure. Take

B ∈ G to obtain

(h(fµ))(B) = (hν)(B) =

∫
B

hdν =

n∑
i=1

ai

∫
B

1Ai
dν

=

n∑
i=1

ai

∫
1B∩Ai

dν =

n∑
i=1

aiν(B ∩Ai)

=

n∑
i=1

ai

∫
B∩Ai

fdµ =

n∑
i=1

ai

∫
B

1Ai
fdµ

=

∫
B

n∑
i=1

ai1Aifdµ =

∫
B

hfdµ = ((hf)(µ))(B) .

This proves that h(fµ) = (hf)(µ) for simple functions h.
If function h is measurable, then it can be approximated by an increasing

sequence of simple functions. Monotone convergence theorem yields the result
for all measurable functions h.

Now, denote again ν = fµ. Then as in the first line of the above computation

(fµ)(h) = ν(h) =

∫
hdν =

∫
S

hdν = (h(fµ))(S)

and as in the last line of the above computation

µ(fh) =

∫
fhdµ = ((hf)(µ))(S) .

Since we proved above that the right hand-sides are equal, the left hand sides
are equal to each other as well. Note that we proved change of variables formula.
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Exercise 2 Let (Ω,F , P ) be a probability space and let H ⊆ F . Suppose that
Y : (Ω,F , P )→ (S1,G1) and X : (Ω,F , P )→ (S2,G2), where (S1,Y1), j = 1, 2,
are measurable spaces. Assume that Y is H-measurable and X is independent
of H. Let ϕ be measurable on the product space S1 × S2 such that ϕ(X,Y ) is
integrable.

Prove that E[ϕ(X,Y ) | H] = g(Y ), where g(y) = E[ϕ(X, y)].

Solution for Exercise 2 Some preliminary steps:

• Prove that
E[ψ(X) | H] = E[ψ(X)]

In order to prove it, verify the identity in Theorem 3, following the same
steps as in Exercise 3 below.

• Prove that
E[φ(Y ) | H] = φ(Y )

In order to prove it, verify the identity in Theorem 3, following the same
steps as in Exercise 3 below.

Let A ∈ H be arbitrary. We want to show that

E[g(Y )1A] = E[ϕ(X,Y )1A] .

The change of variables formula (applied twice) yields

E[g(Y )1A] =

∫
A

g(Y (ω))P (dω) =

∫
Y (A)

g(y)PY −1(dy)

=

∫
Y (A)

E[ϕ(X, y)]PY −1(dy) =

∫
Y (A)

(∫
Ω

ϕ(X, y)P (dω)

)
PY −1(dy)

=

∫
Y (A)

(∫
X(Ω)

ϕ(x, y)PX−1(dx)

)
PY −1(dy) .

Here, µX = PX−1 and µY = PY −1 are the distributions of X and Y , respec-
tively. The assumptions of the theorem imply that X and Y are independent,
hence (together with Fubini theorem)

E[g(Y )1A] =

∫
Y (A)

(∫
X(Ω)

ϕ(x, y)µX(dx)

)
µY (dy)

=

∫
Y (A)×X(Ω)

ϕ(x, y)(µY × µX)(dx, dy) ,

where µX × µY is the product measure.
On the other hand, using again change of variables formula,

E[ϕ(X,Y )1A] =

∫
A

ϕ(X(ω), Y (ω))P (dω) =

∫
A′
ϕ(x, y)P (X,Y )−1(dx, dy)

=

∫
A′
ϕ(x, y)(µX × µY )(dx, dy) ,
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where P (X,Y )−1 is the distribution of (X,Y ), P (X,Y )−1 = µX × µY .
The only one thing that remains to show is to identify A′. However, note

that

(X,Y )−1(X(Ω)×Y (A)) = {ω ∈ Ω : X(ω) ∈ X(Ω), Y (ω) ∈ Y (A)} = {ω : ω ∈ A} = A .

Therefore, A′ = X(Ω)× Y (A).
Note: You cannot write∫

A

ϕ(X,Y )dP =

∫ ∫
ϕ(x, y)1Aν(dy)µ(dx) .

On the left hand side A ⊂ Ω, while on the right hand side A ∈????.

Exercise 3 Let (Ω,F , P ) be a probability space and let H ⊆ G ⊆ F . Let
X ∈ L1(Ω,F , P ), Prove the law of the iterated conditional expectations:

E[X | H] = E [E [X | G] | H]] .

Solution for Exercise 3 • Y = E[X | G]

• Z = E[Y | H]

• By the definition of the conditional expectation we have

E[Y 1H ] = E[Z1H ]

for each H ∈ H.

• Again, by the definition of the conditional expectation we have

E[Y 1G] = E[X1G]

for each G ∈ G.

• Since H ⊆ G, for all such sets H we also have E[Y 1H ] = E[X1H ].

• Thus, for all sets H ∈ H we have E[Z1H ] = E[X1H ]. Therefore, Z is a
version of E[X|H].

Exercise 4 Let (Ω,F , P ) be a probability space and let X ∈ L2(Ω,F , P ) (that
is, X has the second moment finite). Consider the following minimization
problem. Let H ⊆ F . Find a random variable Y ∈ L2(Ω,H, P ) which is
H-measurable such that

‖X − Y ‖2 = inf{‖X −W‖2 : W ∈ L2(Ω,H, P )} , (1)

where for any random variable Z, ‖Z‖2 = (E[Z2])1/2.
Prove that Y = E[X | H] solves the minimization problem.

Hint:
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• Show that a random variable Y solves (1) if and only if E[(X − Y )Z] = 0
for all Z ∈∈ L2(Ω,H, P ). Look when ‖X −W‖22 ≤ ‖X − Y ‖22 holds for
W = Y + αZ, α ∈ R.

• Show that the random variable Y that satisfies E[(X − Y )Z] = 0 for all
Z ∈∈ L2(Ω,H, P ) is the conditional expectation. Take Z(ω) = 1H(ω) for
H ∈ H. Then

E[(X − Y )1H ] = 0

for H ∈ H

Solution for Exercise 4 Assume that Y ∈ L2(Ω,H, P ) solves (1). We will
deduce its form. Consider W = Y + aZ,Z ∈ L2(Ω,H, P ), a ∈ R. Then

0 ≥ ‖X − Y − aZ‖22 − ‖X − Y ‖22 = a2E[Z2]− 2aE[(X − Y )Z] .

The equation 0 = a2E[Z2]− 2aE[(X − Y )Z] has two roots:

a = 0 , a = 2E[(X − Y )Z]/E[Z2].

Hence, the expression on the right hand side is negative for some values of a,
which is a contradiction. Hence, we must have E[(X − Y )Z] = 0.

Furthermore, if E[(X − Y )Z] = 0 for all Z ∈ L2(Ω,H, P ), then we can take
Z = 1H , H ∈ H. We obtain

E[X1H ] = E[Y 1H ] ,

hence the solution to the minimization problem is a version of the conditional
expectation.
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