
MAT5171
Assignment 4

Assignment 4 is based on material from Sections 26-27. Please do the
following questions: Q1 or Q2; Q3; Q4 or Q5; Q6 or Q7.

Exercise 1 (This is a part of the proof of the Lindeberg CLT. I did some steps
in class).

For each n ≥ 1, let {Xnj , 1 ≤ j ≤ rn} be a sequence of independent random
variables with mean zero and finite variance σ2

nj = E[X2
nj ]. Let Sn =

∑rn
j=1Xnj

and s2n =
∑rn
j=1 E[X2

nj ]. Prove that

lim
n→∞

1

s2n
max

1≤j≤rn
σ2
nj = 0 .

Solution: In Lindeberg CLT we have assumed the Lindeberg condition

lim
n→∞

1

s2n

rn∑
j=1

∫
{|Xnj |>εsn}

X2
njdP = 0 . (1)

Write

σ2
nj = E[X2

nj ] = E[X2
nj{|Xnj | ≤ εsn}] + E[X2

nj{|Xnj | > εsn}]
≤ E[ε2s2n{|Xnj | ≤ εsn}] + E[X2

nj{|Xnj | > εsn}]
≤ ε2s2n + E[X2

nj{|Xnj | > εsn}] .

For any positive numbers aj ,

max
1≤j≤rn

aj ≤
rn∑
j=1

aj .

Thus, using (1),

lim
n→∞

1

s2n
max

1≤j≤rn
σ2
nj ≤ lim

n→∞

1

s2n

rn∑
j=1

σ2
nj

≤ ε2 + lim
n→∞

1

s2n

rn∑
j=1

E[X2
nj{|Xnj | > εsn}] = ε2 .

Since ε can be chosen arbitrarily small, this finishes the proof. End of solution

Exercise 2 For each n ≥ 1, let {Xnj , 1 ≤ j ≤ rn} be a sequence of independent
random variables with mean zero and finite variance. Let Sn =

∑rn
j=1Xnj and
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s2n =
∑rn
j=1 E[X2

nj ]. Suppose that there exists δ > 0 such that E[|Xnj |2+δ] <∞
for all n ≥ 1 and 1 ≤ j ≤ rn and

lim
n→∞

1

s2+δn

rn∑
j=1

E[|Xnj |2+δ] = 0 . (2)

Prove that for any ε > 0,

lim
n→∞

1

s2n

rn∑
j=1

∫
{|Xnj |>εsn}

X2
njdP = 0 . (3)

Solution: Note that

1{x > a} < xδ

aδ

for a > 0. Thus∫
{|Xnj |>εsn}

X2
njdP = E[X2

nj1{|Xnj | > εsn}] ≤
1

εδsδn
E[|Xnj |2+δ] .

Take the sum at both sides and divided both sides by s2n. Then we get (3)
immediately from (2). End of solution.

Exercise 3 Compute the characteristic functions for random variables with the
following densities:

f(x) =
1

2
exp(−|x|) , −∞ < x <∞ ,

and

f(x) =
1

π

1

1 + x2
, −∞ < x <∞ .

These densities are called double exponential and Cauchy, respectively.

Solution: The characteristic function for the first case is∫ ∞
−∞

exp(itx)
e−|x|

2
dx = 0.5

∫ ∞
−∞

cos(tx)e−|x|dx+ i0.5

∫ ∞
−∞

sin(tx)e−|x|dx .

Note that sin(tx)e−|x| is odd for each t. Similarly cos(tx)e−|x| is even for each
t. Thus the characteristic function is∫ ∞

0

cos(tx)e−xdx .

Integrating by parts we get (1 + t2)−1 (ok guys, I will not integrate by parts :))
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For the second case I am showing a very nice solution of one of you: we proved
for the double exponential case that for fX(x) = 0.5 exp(−|x|) the characteristic
function is φX(t) = (1 + t2)−1. This means that

(1 + t2)−1 = φX(t) =

∫ ∞
∞

exp(itx)fX(x)dx .

The inversion formula (Eq. (26.20) in the book) gives

0.5 exp(−|x|) = fX(x) =
1

2π

∫ ∞
−∞

exp(−itx)φX(t)dt =
1

2π

∫ ∞
−∞

exp(−itx)
1

1 + t2
dt .

Thus,

exp(−|x|) =

∫ ∞
−∞

exp(−itx)
1

π(1 + t2)
dt . (4)

Now we are looking for the characteristic function of a Cauchy random vari-
able Y . We need to evaluate

φY (t) =

∫ ∞
−∞

exp(itx)
1

π(1 + x2)
dx .

Now, splitting∫ ∞
−∞

exp(itx)
1

π(1 + x2)
dx =

∫ ∞
−∞

cos(tx)
1

π(1 + x2)
dx+ i

∫ ∞
−∞

sin(tx)
1

π(1 + x2)
dx

and noting that the second part is zero, while cos(tx) = cos(−tx) we can see
that the sign of t does not matter and hence

φY (t) =

∫ ∞
−∞

exp(−itx)
1

π(1 + x2)
dx . (5)

Now, we can see that (5) is just (4) with the roles of t and x switched. Thus

φY (t) = exp(−|t|) .

End of solution.

Exercise 4 Assume that Xi, i ≥ 1, are i.i.d. random variables with mean
µ. Let Sn = X1 + · · · + Xn. Let ϕn(t) be the characteristic function of Sn/n
and let ϕ be the characteristic function of random variable X = µ (that is,
X(ω) = µ for all ω). Show that Sn/n converges in distribution to µ if and only
if ϕn(t)→ ϕ(t).

Re-phrasing: Assume that Xi, i ≥ 1, are i.i.d. random variables with mean
µ. Let Sn = X1 + · · · + Xn. Prove the weak law of large numbers using
characteristic functions.

Solution:
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• Step 1:

ϕn(t) = E[exp(itSn/n)] = E

[
exp

(
it

1

n
(X1 + · · ·+Xn)

)]
= E

[
exp

(
it

1

n
X1

)
· · · exp

(
it

1

n
Xn

)]
= E

[
exp

(
it

1

n
X1

)]
· · ·E

[
exp

(
it

1

n
Xn

)]
= ϕnX1

(t/n) = (1− it

n
E[X1] + smallerterms)n ≈ (1− it

n
µ)n → exp(itµ) .

On the other hand
E[exp(itX)] = exp(itµ) .

Thus, Sn/n converges in distribution to µ.

• Step 2: Since the limit is a constant, convergence in distribution is equiv-
alent to convergence in probability. Thus Sn/n converges in probability
to µ.

End of solution.

Exercise 5 Let µ be a probability measure on R such that µ(A) = µ(−A),
where for A ⊆ R we write −A = {−x : x ∈ A}. Prove that the characteristic
function of µ is real. (Note that this is a converse of Q7 from Assignment 3).

Solution. The characteristic function is

φ(t) =

∫ ∞
−∞

exp(itx)µ(dx) =

∫ ∞
−∞

cos(tx)µ(dx) + i

∫ ∞
−∞

sin(tx)µ(dx) .

We need to show that the second part is zero. Write that part as∫ 0

−∞
sin(tx)µ(dx) +

∫ ∞
0

sin(tx)µ(dx) .

Do substitution u = −x and use µ(du) = µ(dx) to finish.
Note that this is an extension of the previous question - if the measure µ is

symmetric, then the density is symmetric. End of solution.

Exercise 6 The central limit theorem states that the appropriately normalized
sum of i.i.d. random variables converges in distribution to a normal random
variables. That is, if X̄ = (X1+· · ·+Xn)/n, E[Xj ] = µ and VaR[Xj ] = σ2 <∞,
then

Vn :=
√
n{X̄ − µ} ⇒ N(0, σ2)

as n→∞. What is important that we do not make any distributional assump-
tions on random variables X1, . . . , Xn except of the existence of the variance.

Question: what happens if we drop the finite variance assumption?
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• Assume that Xj are normal with mean zero and variance σ2. Show that
Vn defined above is normal with mean zero and variance σ2 for all n. For
this, compute E[exp(itVn)] and show that it equals exp(−t2σ2/2), which
is the characteristic function of N(0, σ2).

• A random variable X is called α-stable with α ∈ (0, 2] and parameters
σ, β, c (denoted by X ∼ S(α, β, σ, c), σ > 0, β ∈ [−1, 1], c ∈ R) if its
characteristic function is given by

ϕX(z) = exp(−ψ(z)) ,

ψ(z) =

{
σα|z|α{1− iβsgn(z) tan(πα/2)}+ icz , if α ∈ (1, 2] ,

σ|z|{1 + i 2πβsgn(z) log(|z|)}+ icz , if α = 1 .
(6)

Assume for simplicity that β = 0 and c = 0. Then you can see that α = 2
agrees with the normal case. Note here that σ is no longer the variance
unless α = 2. Indeed, for α < 2 the variance is infinite and hence CLT
does not apply.

Let Sn = X1 + · · ·+Xn and assume that Xj are i.i.d. S(α, 0, σ, 0). Find
the sequence an such that Sn/an has the same distribution as X1.

Solution: In the normal case, the characteristic function of Vn is(
ϕX(t/

√
n)
)n

For a N(0, σ2) random variable, the characteristic function is

ϕX(t) = exp(t2σ2/2)

Thus (
ϕX(t/

√
n)
)n

=
(
exp(n−1t2σ2/2)

)n
= exp(t2σ2/2) ,

that is, the characteristic function of Vn is that of N(0, σ2). Hence Vn is normal.
For the second part,

ϕSn/an(z) = ϕnX(z/an) = exp(−nψ(z/an))

In case of S(α, 0, σ, 0) and α ∈ (1, 2) we have ψ(z) = σα|z|α. Thus

ϕSn/an(z) = ϕnX(z/an) = exp(−nψ(z/an)) = exp(−nσα|z|αa−αn ) .

Choosing an = n1/α we obtain that the characteristic function of n−1/αSn is
exp(−σα|z|α). Thus, n−1/αSn has the same stable distribution for each n. In
particular, it cannot be normal. End of solution.

Exercise 7 (An unexpected CLT)
Assume that Xj are i.i.d. with the density

f(x) = c1|x|−3 , |x| > c2

for some constants c1, c2.
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• Find the relation between c1 and c2;

• Verify that E[X2
1 ] =∞ and E[X1] = 0;

• Let Sn = X1 + · · ·+Xn. Find the constants an such that Sn/an converges
to a normal distribution with mean zero and variance 1.

Hint: Introduce the truncated variables Yj = Xj1{|Xj | < bj} with bn =√
n log(n). Use the Borel-Cantelli lemma to conclude that Xj = Yj except

for finitely many choice of j. Show that the assumptions of the Lindeberg
CLT hold for the sequence Yj .

Solution: The relation between c1 and c2 comes from solving
∫∞
−∞ f(x)dx = 1.

We get c1 = c22. I will use for simplicity c1 = c2 = 1. Since the density is
symmetric, the mean must be zero. Moreover,∫ ∞

−∞
x2|x|−3dx = 2

∫ ∞
0

x−1 = 2 log(x) | |∞−∞ +∞ .

Let S̃n = Y1 + · · · + Yn. We note first that since the random variables Xj are
symmetric, then E[Yn] = 0. Furthermore, since c1 = c2 = 1,

E[Y 2
n ] = E[X2

n1{|Xn| < bn}] = 2

∫ bn

1

x2x−3dx = 2 log(bn)

= 2 log(
√
n) + 2 log(log n) = log(n) + 2 log(log n) .

Note that

lim
n→∞

E[Y 2
n ]

log(n)
= 1 + lim

n→∞
2

log(log(n))

log(n)
= 1 .

Because log(log(n)) is of a smaller order than log(n) (that is log(log(n))/ log(n)→
0, we do not need to bother about the second part. Now,

s2n :=

n∑
i=1

E[Y 2
i ] =

n∑
i=1

log(i) + 2

n∑
i=1

log(log(i)) .

Then

n∑
i=1

log(i) ≈
∫ n

1

log(x)dx = {x log(x)− x} |n1= n log(n)− n+ 1 .

Hence,

lim
n→∞

s2n
n log(n)

= 1 .

Now,

E[|Yn|3] = E[|Xn|31{|Xn| < bn}] = 2

∫ bn

1

x3x−3dx = 2(bn − 1) = 2(
√
n log(n)− 1)
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and thus

n∑
i=1

E[|Yi|3] = 2

n∑
i=1

√
i log(i)− 2

n∑
i=1

1 .

Similarly as before

n∑
i=1

√
i log(i) ≈

∫ n

1

√
x log(x)dx ∼ constant n3/2 log(n)

and thus

s−3n

n∑
i=1

E[|Yi|3] ∼ n3/2 log(n)

(n log(n))3/2
=

1

(log(n))1/2
→ 0 .

Thus, we checked the criteria for the Lindeberg CLT and thus

S̃n√
n log n

d→ N(0, 1) .

We want to conclude CLT for Sn. For this it suffices to show that

P (Xn 6= Yn, infinitely often) = 0 . (7)

Here comes Borel-Cantelli. First,

P (Xn 6= Yn) = P (|Xn| > bn) = 2

∫ ∞
bn

x−3dx = −x−2 |∞bn= b−2n

and
∞∑
n=1

b−2n =
∑
n=1

1

n(log(n))2
<∞ .

Thus, (7) holds. End of solution.

Summary on central limit theorems

Assume that Xj are i.i.d. and symmetric (so that the mean is zero, if the mean
exists). Let Sn = X1 + · · · + Xn. Of course, this symmetry is not crucial, but
simplifies things.

(a) If Xj are N(0, σ2), then Sn/
√
n is N(0, σ2) for each n (Q6);

(b) IfXj have finite variance, then Sn/
√
n converges in distribution toN(0, σ2)

(classical CLT);

(c) If Xj are α-stable with index α ∈ (0, 2) (as in (6)), then Sn/n
1/α is again

α-stable for each n.

(d) More generally, if random variables Xj have the density that behaves
like |x|−α−1 as x → ∞ (α ∈ (0, 2)), then Sn/n

1/α converges to α-stable
random variable as n→∞.
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(e) What is the link between (c) and (d)? Stable random variables, with char-
acteristic function exp(−|z|α) have the densities that behave like |x|−α−1.
You can refer to so-called Tauberian theorems. So part (d) is a general-
ization of part (c).

(f) A further generalization of (d) involves densities like |x|−α−1`(x), where
`(x) varies slowly at infinity: for each t > 0, limx→∞ `(tx)/`(x) = 1. For
example, `(x) = log(x). Then Sn/an converges to α-stable with an =
n1/α`1(n) where `1(n) is related to `(n).

(g) The case of the densities like |x|−3 is delicate. The variance is infinite
here. But in Q7 you saw that Sn/cn converges to normal, but cn is no
longer

√
n, rather

√
n log(n).
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