MAT5171
Assignment 4

Assignment 4 is based on material from Sections 26-27. Please do the
following questions: Q1 or Q2; Q3; Q4 or Q5; Q6 or Q7.

Exercise 1 (This is a part of the proof of the Lindeberg CLT. I did some steps
in class).

For each n > 1, let {X,,;,1 < j <r,} be a sequence of independent random
variables with mean zero and finite variance o, ; = E[X7]. Let S, = 37" | X

and s;, = 37" E[X7;]. Prove that

.1
lim — max aij =0.
n—oo Sy 1<j<rn

Solution: In Lindeberg CLT we have assumed the Lindeberg condition
lim 12/ X2.dP =0 (1)
oo SE e Xy vesn} '
Write
J’?Lj = E[XZ]'] = E[ij{|an| <esn}] + E[ng{‘an‘ > €sn}]
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For any positive numbers a;,

Thus, using (1),
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Since € can be chosen arbitrarily small, this finishes the proof. End of solution

Exercise 2 For eachn > 1, let {X,,;,1 < j <r,} be a sequence of independent
random variables with mean zero and finite variance. Let S,, = Z;;l Xy and



sn = >y BE[X7;]. Suppose that there exists § > 0 such that E[|X,,;**°] < 00

n

foralln>1and 1 <j <r, and

. R
i 20 Y EIX, [ =0. (2)
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Prove that for any € > 0,

lim - Z/ X2,dP=0. (3)
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Solution: Note that s
T
Hz >a} < —
fr>a)< s
for @ > 0. Thus
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/ X2,dP = BIX2, 11Xl > esn}] < 5oy BlIXos 7).
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Take the sum at both sides and divided both sides by s2. Then we get (3)
immediately from (2). End of solution.

Exercise 3 Compute the characteristic functions for random variables with the
following densities:

fla) = S exp(~al), —o0<w <00,

and L1
o) =iy

These densities are called double exponential and Cauchy, respectively.

—0<Tr<oo.

Solution: The characteristic function for the first case is

[ee] —\w\ [e’e] fe’e]
/ exp(itac)e dx = 0.5/ cos(tz)e ™ |*ldx + i0.5/ sin(tz)e”|*ldz .

. 2 oo

Note that sin(tz)e~®l is odd for each ¢. Similarly cos(tx)e™!*l is even for each
t. Thus the characteristic function is

/ cos(tx)e “dx .
0

Integrating by parts we get (1 +t2)~! (ok guys, I will not integrate by parts :))



For the second case I am showing a very nice solution of one of you: we proved
for the double exponential case that for fx (z) = 0.5 exp(—|z|) the characteristic
function is ¢x(t) = (1 + ¢2)~1. This means that

1+t =ox(t) = /OO exp(itz) fx (z)dw .

o

The inversion formula (Eq. (26.20) in the book) gives

0.5exp(—[z]) = fx(z) = % /_OO exp(—itw)x (t)dt = 2i /_OO exp(—itx)ﬁdt .
Thus,
> 1
exp(—|z|) = /_Oo exp(—itm)mdt . (4)

Now we are looking for the characteristic function of a Cauchy random vari-
able Y. We need to evaluate

oy (t) = /_oo exp(ilﬂ')ﬁdm .

Now, splitting

> , 1 > 1 Y e 1
/ exp(ltx)mdx :/ COS(tl’)mdﬁC +Z/ Sln(tx)mdx

— 00 — 00 — 00

and noting that the second part is zero, while cos(tz) = cos(—tx) we can see
that the sign of ¢ does not matter and hence

o0

oy (t) = [ exp(fitx)ﬂ_(%aﬁ)dz . (5)

Now, we can see that (5) is just (4) with the roles of ¢t and x switched. Thus

Py (t) = exp(—[t]) .
End of solution.

Exercise 4 Assume that X;, ¢ > 1, are i.i.d. random variables with mean
p. Let S, = X1+ ---+ X,,. Let ¢,(¢) be the characteristic function of S, /n
and let ¢ be the characteristic function of random variable X = p (that is,
X(w) = p for all w). Show that S,,/n converges in distribution to p if and only
if () = ().

Re-phrasing: Assume that X;, i > 1, are i.i.d. random variables with mean
w. Let S, = Xy +--- 4+ X,,. Prove the weak law of large numbers using
characteristic functions.

Solution:



e Step 1:

on(t) = Elexp(itSp/n)] = E |:eXp (z’ti(Xl T Xn))]

e fon (i) o (15,
e fon ()] o (15,

it it
=%, (t/n) = (1 - %E[Xl] + smallerterms)” ~ (1 — %u)” — exp(ity) .
On the other hand
Elexp(itX)] = exp(itu) .
Thus, S, /n converges in distribution to p.

e Step 2: Since the limit is a constant, convergence in distribution is equiv-
alent to convergence in probability. Thus S,,/n converges in probability
to u.

End of solution.

Exercise 5 Let u be a probability measure on R such that p(A) = p(—A4),
where for A C R we write —A = {—z : x € A}. Prove that the characteristic
function of 4 is real. (Note that this is a converse of Q7 from Assignment 3).

Solution. The characteristic function is

o(t) = /00 exp(itr)pu(dr) = /

—00 —00

[ee] oo

cos(tz)p(dx) +i/ sin(tz)p(dz) .

—00

We need to show that the second part is zero. Write that part as

/0 sin(tx)u(dx) + /000 sin(tx)p(dz) .

—00

Do substitution v = —x and use p(du) = u(dz) to finish.
Note that this is an extension of the previous question - if the measure p is
symmetric, then the density is symmetric. End of solution.

Exercise 6 The central limit theorem states that the appropriately normalized
sum of i.i.d. random variables converges in distribution to a normal random
variables. That is, if X = (X1+---+X,)/n, E[X;] = pand VaR[X;] = ¢? < oo,
then

Vi, i= vn{X — u} = N(0,0?)

as n — oco. What is important that we do not make any distributional assump-
tions on random variables X1,..., X, except of the existence of the variance.
Question: what happens if we drop the finite variance assumption?



e Assume that X; are normal with mean zero and variance o2. Show that
V,, defined above is normal with mean zero and variance o2 for all n. For
this, compute E[exp(itV;,)] and show that it equals exp(—t202/2), which
is the characteristic function of N(0,0?).

e A random variable X is called a-stable with « € (0,2] and parameters
o, ,c (denoted by X ~ S(a,fB,0,¢), ¢ > 0, 8 € [-1,1], ¢ € R) if its
characteristic function is given by

ox(2) = exp(=y(2)) ,

W) = o®|z|*{1 — ifsgn(z) tan(ra/2)} + icz, ifa € (1,2], (©)
olz|{1 +i2Bsgn(z) log(|z|)} + icz , ifa=1.
Assume for simplicity that 8 = 0 and ¢ = 0. Then you can see that a = 2
agrees with the normal case. Note here that ¢ is no longer the variance
unless &« = 2. Indeed, for o < 2 the variance is infinite and hence CLT

does not apply.

Let S, = X1 + --- + X,, and assume that X are i.i.d. S(¢,0,0,0). Find
the sequence a,, such that S,,/a, has the same distribution as X;.

Solution: In the normal case, the characteristic function of V,, is
(ex(t/vn))"
For a N(0,0?) random variable, the characteristic function is
ox(t) = exp(t?0?/2)

Thus

(px(t/vn))" = (exp(n~'t?0?/2))" = exp(t?0?/2) ,
that is, the characteristic function of V,, is that of N (0, o?). Hence V,, is normal.
For the second part,

P8, /an(2) = P (2/an) = exp(—ni(z/an))
In case of S(«,0,0,0) and a € (1,2) we have ¥(z) = 0%|z|*. Thus
P8, /an(2) = P (2/an) = exp(—nip(z/an)) = exp(—no®|z["a, ) .
Choosing a, = n'/® we obtain that the characteristic function of n=%/*S,, is

exp(—c®|z|®). Thus, n=*/*S, has the same stable distribution for each n. In
particular, it cannot be normal. End of solution.

Exercise 7 (An unexpected CLT)
Assume that X are i.i.d. with the density

fl@)=cilz[7%, 2] > e

for some constants ¢y, co.



e Find the relation between c; and cs;
e Verify that E[X?] = oo and E[X;] = 0;

e Let S, = X7 +---+X,. Find the constants a,, such that S,,/a,, converges
to a normal distribution with mean zero and variance 1.
Hint: Introduce the truncated variables Y; = X;1{|X;| < b;} with b, =

\/nlog(n). Use the Borel-Cantelli lemma to conclude that X; = Y; except
for finitely many choice of j. Show that the assumptions of the Lindeberg
CLT hold for the sequence Y.

Solution: The relation between ¢; and ¢y comes from solving ffooo flx)dx = 1.
We get ¢; = c3. I will use for simplicity ¢; = ¢ = 1. Since the density is

symmetric, the mean must be zero. Moreover,
o0 o0
/ 22 |z|"3dx = 2/ z7t = 2log(z) | |°°, + o0 .
0

— 00

Let §n =Y + - +Y,. We note first that since the random variables X; are
symmetric, then E[Y,,] = 0. Furthermore, since ¢; = ¢y = 1,

bn
E[Y?] = E[X21{|X,| < b,}] = 2/ z2x3dx = 21og(b,)
1

= 2log(+v/n) + 2log(logn) = log(n) + 2log(logn) .

Note that

2
BV _ L g oloslos(m)

n1—>H;o log(n) n—o0 log(n)

Because log(log(n)) is of a smaller order than log(n) (that is log(log(n))/log(n) —
0, we do not need to bother about the second part. Now,

spi=Y B[Y7] = log(i)+2) log(log(i)) .
i=1 =1

=1

Then
Zlog(i) R~ / log(z)dx = {zlog(z) — 2} |T=nlog(n) —n+1.
i=1 1
Hence,
lim s
n=oo nlog(n)
Now,

brn
E[|Y,*] = E[| X, 2 1{|X,| < b,}] = 2/1 23r73dr = 2(b, — 1) = 2(v/nlog(n) — 1)



and thus

Z [1V; ]3] —2Zflog —221

=1

Similarly as before

Z\[log / Vi log(z)dz ~ constant n®/2log(n)

and thus

_ log( ) 1
SZE YiP nlog( o2 = ogta 2 0

Thus, we checked the criteria for the Lindeberg CLT and thus

Sn
vnlogn

We want to conclude CLT for S,,. For this it suffices to show that

4 N(0,1).

P(X,, #Y,,infinitely often) =0 . (7)

Here comes Borel-Cantelli. First,

P(X,, # Y,) = P(|X,| > b,) :2/ g% de = -2 [P°=1b,>
b

and

9 1
Zb Zilog( I < 00 .

n=1 n=1

Thus, (7) holds. End of solution.
Summary on central limit theorems

Assume that X; are i.i.d. and symmetric (so that the mean is zero, if the mean
exists). Let S,, = X7 4+ --- + X,,. Of course, this symmetry is not crucial, but
simplifies things.

(a) If X; are N(0,0?), then S,/+/n is N(0,0?) for each n (Q6);

(b) If X; have finite variance, then S, /+/n converges in distribution to N (0, o?)
(classical CLT);

(c) If X; are a-stable with index « € (0,2) (as in (6)), then S, /n!/® is again
a-stable for each n.

(d) More generally, if random variables X; have the density that behaves
like |z|~*~ ! as 2 — oo (a € (0,2)), then S, /n'/* converges to a-stable
random variable as n — oco.



()

What is the link between (c) and (d)? Stable random variables, with char-
acteristic function exp(—|z|%) have the densities that behave like |x|~*~1.
You can refer to so-called Tauberian theorems. So part (d) is a general-
ization of part (c).

A further generalization of (d) involves densities like |x|~*~1¢(z), where
¢(x) varies slowly at infinity: for each ¢t > 0, lim,_, o ¢(tz)/¢(x) = 1. For
example, ¢(x) = log(z). Then S,/a, converges to a-stable with a, =
n'/%¢1(n) where £1(n) is related to £(n).

The case of the densities like |z~ is delicate. The variance is infinite
here. But in Q7 you saw that S, /¢, converges to normal, but ¢, is no

longer +/n, rather y/nlog(n).



