MAT5171 Assignment 2

Assignment 2 is based on material from Sections 22 and 25. Do Q1, and choose two from Q2-Q5.

Due date: February 10.
Exercise 1 Assume that $\mathrm{E}[|X|]<\infty$. Show that $\lim _{x \rightarrow \infty} x P(|X|>x)=0$.
Solution for Exercise 1 Note that $n 1\{|X|>n\} \leq|X| 1\{|X|>n\}$. Define $X_{n}=|X| 1\{|X|>n\}$. Since $X_{n} \leq|X|$, then by the dominated convergence theorem we have

$$
n P(|X|>n)=\mathrm{E}[n 1\{|X|>n\}] \leq \mathrm{E}[|X| 1\{|X|>n\}] \rightarrow 0
$$

This question will not be marked
Exercise 2 Problem 25.5 in the textbook.
Solution for Exercise 2 Recall that $A \triangle B(A \backslash B) \cup(B \backslash)$ and the latter events are disjoint. In order to prove that

$$
\lim _{x \rightarrow \infty} P\left(\{X \leq x\} \triangle\left\{X_{n} \leq x\right\}\right)=0
$$

we need to prove

$$
\begin{align*}
& \lim _{n \rightarrow \infty} P\left(\{X \leq x\} \backslash\left\{X_{n} \leq x\right\}\right)=0 \tag{1}\\
& \lim _{n \rightarrow \infty} P\left(\left\{X_{n} \leq x\right\} \backslash\{X \leq x\}\right)=0 \tag{2}
\end{align*}
$$

We will do a proof of (1) only. It is equivalent to

$$
\lim _{n \rightarrow \infty} P\left(\{X \leq x\} \backslash\left\{X_{n} \leq x\right\}\right)=\lim _{n \rightarrow \infty} P(X \leq x)-P\left(X_{n} \leq x, X \leq x\right)
$$

Thus it suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(X_{n} \leq x, X \leq x\right)=P(X \leq x) \tag{3}
\end{equation*}
$$

We assumed convergence in probability, which implies convergence in distribution, that is

$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=P(X \leq x)
$$

Note that for any $\epsilon>0$,

$$
\begin{equation*}
\left\{X_{n} \leq x\right\} \subset\left\{\left|X_{n}-X\right|>\epsilon\right\} \cup\{X \leq x+\epsilon\} \tag{4}
\end{equation*}
$$

We intersect the both sides with $\{X \leq x\}$ to get:

$$
\left\{X_{n} \leq x, X \leq x\right\} \subset\left\{\left|X_{n}-X\right|>\epsilon, X \leq x\right\} \cup\{X \leq x+\epsilon, X \leq x\}
$$

and thus

$$
\left\{X_{n} \leq x, X \leq x\right\} \subset\left\{\left|X_{n}-X\right|>\epsilon\right\} \cup\{X \leq x\}
$$

Since the probability is subadditive, we obtain

$$
P\left(X_{n} \leq x, X \leq x\right) \leq P\left(\left|X_{n}-X\right|>\epsilon\right)+P(X \leq x)
$$

Using the assumed convergence in probability we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(X_{n} \leq x, X \leq x\right) \leq P(X \leq x) \tag{5}
\end{equation*}
$$

Similarly to (4) we have

$$
\left\{X_{n} \leq x-\epsilon\right\} \subset\left\{\left|X_{n}-X\right|>\epsilon\right\} \cup\left\{X_{n} \leq x\right\}
$$

Taking intersection with $\{X \leq x\}$ yields

$$
\{X \leq x-\epsilon, X \leq x\} \subset\left\{\left|X_{n}-X\right|>\epsilon, X \leq x\right\} \cup\left\{X_{n} \leq x, X \leq x\right\}
$$

and hence

$$
\{X \leq x-\epsilon\} \subset\left\{\left|X_{n}-X\right|>\epsilon\right\} \cup\left\{X_{n} \leq x, X \leq x\right\}
$$

Therefore

$$
P(X \leq x-\epsilon) \leq P\left(\left|X_{n}-X\right|>\epsilon\right)+P\left(X_{n} \leq x, X \leq x\right)
$$

and

$$
\begin{equation*}
P(X \leq x-\epsilon) \leq \lim _{n \rightarrow \infty} P\left(X_{n} \leq x, X \leq x\right) \tag{6}
\end{equation*}
$$

Combining (5) and (6) and since ϵ is arbitrary, we finish the proof of (1).
Marking: 4 points. Note: you cannot write $P(X \leq x)=P(X \leq x-\epsilon)$ even if x is continuity point!

Exercise 3 Problem 25.7 in the textbook.
Solution for Exercise 3 We first prove that $X_{n} \Rightarrow X$ and $D_{n} \rightarrow_{P} 0$ yields $D_{n} X_{n} \Rightarrow 0$. We have for each $\epsilon>0$ and $x>0$,

$$
\begin{aligned}
\left\{\left|D_{n} X_{n}\right|>\epsilon\right\} & =\left\{\left|D_{n} X_{n}\right|>\epsilon,\left|D_{n}\right|<\epsilon / x\right\} \cup\left\{\left|D_{n} X_{n}\right|>\epsilon,\left|D_{n}\right| \geq \epsilon / x\right\} \\
& \subseteq\left\{\left|X_{n}\right|>x\right\} \cup\left\{\left|D_{n}\right| \geq \epsilon / x\right\} \\
& =\left\{X_{n}>x\right\} \cup\left\{X_{n}<-x\right\} \cup\left\{\left|D_{n}\right| \geq \epsilon / x\right\}
\end{aligned}
$$

From $D_{n} \rightarrow_{P} 0$ we obtain $\lim _{n \rightarrow \infty} P\left(\left|D_{n}\right| \geq \epsilon / x\right)=0$. Now, in the above calculation x can be chosen arbitrarily. Thus, we can choose it as a continuity point of the distribution of X. Moreover, we can choose X so large so that

$$
P(X>x)<\eta / 2, \quad P(X<-x)<\eta / 2 .
$$

Thus,

$$
P\left(X_{n}>x\right)=1-P\left(X_{n} \leq x\right) \rightarrow 1-P(X \leq x)=P(X>x)<\eta / 2
$$

and

$$
P\left(X_{n}<-x\right) \rightarrow P(X<-x)<\eta / 2
$$

and hence

$$
\limsup _{n \rightarrow \infty} P\left(\left|D_{n} X_{n}\right|>0\right) \leq \eta
$$

Since η is arbitrary, we have $D_{n} X_{n} \rightarrow_{P} 0$ and hence $D_{n} X_{n} \Rightarrow 0$.
Now, by the previous part, $\left(A_{n}-a\right) X_{n} \Rightarrow 0$ and hence

$$
\left(A_{n} X_{n}+B_{n}\right)-\left(a X_{n}+b\right)=\left(A_{n}-a\right) X_{n}+\left(B_{n}-b\right) \Rightarrow 0
$$

Since $h(x)=a x+b$ is continuous, the Continuous Mapping Theorem gives $a X_{n}+b \Rightarrow a X+b$. Using Theorem 25.4 we obtain the result.

Marking: 4 points.
Exercise 4 This is a modified Problem 25.1 from the textbook.
(a) Construct an example of a sequence of random variable such that the corresponding sequence of distributions converges, but densities do not converge. Hint: Consider densities $f_{n}(x)=1+\cos (2 \pi n x), x \in[0,1]$.
(b) Show by an example that the distributions with densities can converge weakly to a limit that has no density. Hint: Consider X_{n} exponentially distributed with the parameter λ_{n}.
(c) Show by na example that the discrete distributions can converge weakly to a distribution that has a density. Hint: We did one example in class, think about something else.

Solution for Exercise 4 (a) Consider the densities $f_{n}(x)=1+\cos (2 \pi n x)$, $x \in[0,1]$. Note that $\int_{0}^{1} f_{n}(x) d x=1$. Then the corresponding distribution functions are $F_{n}(x)=x+\frac{\sin (2 \pi n x)}{2 \pi n}, x \in[0,1]$. Clearly, for all $x \in[0,1]$ we have $\lim _{n \rightarrow \infty} F_{n}(x)=x$, that is $F_{n} \Rightarrow F$, where F is the cumulative distribution of the standard uniform random variable with the density $f(x)=1, x \in[0,1]$. On the other hand, $f_{n}(0)=2$ for each $n \geq 1$. Hence, $f_{n}(x)$ does not converge to $f(x)$ at $x=0$.
(b) Let $X_{n} \sim \operatorname{Exp}\left(\lambda_{n}\right)$, that is $P\left(X_{n}>x\right)=1-\lambda_{n} \exp \left(-\lambda_{n} x\right)$. Then for any $x>0$,

$$
P\left(X_{n}>x\right) \leq \frac{\operatorname{var}\left(X_{n}\right)}{x}=\frac{1}{\lambda_{n} x}
$$

If $\lambda_{n} \rightarrow \infty$, then $\lim _{n \rightarrow \infty} P\left(X_{n}>x\right)=0$. Hence, for all $x>0$, $\lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=1$. It follows that X_{n} converges weakly to X, that has point mass at zero. This argument works also for any sequence of positive random variables X_{n} such that $\operatorname{var}\left(X_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(c) Let X_{i} be i.i.d. sequence of any random variables with mean μ and variance σ^{2} (for example, X_{i} can be Bernoulli random variables, or Poisson random variables). According to central limit theorem,

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{\mathrm{d}} N\left(0, \sigma^{2}\right)
$$

and the limiting distribution has a density.
Marking: 4 points - 2 points for part a), 2 points for part b), additional points for a clever example in part c)

Exercise 5 This is a Problem 25.9 from the textbook:
Suppose that the distributions of random variables X_{n} and X have densities f_{n} and f. Show that if $f_{n}(x) \rightarrow f(x)$ for each x outside a set of Lebesgue measure 0 , then X_{n} converges weakly to X.

Solution for Exercise 5

$$
\left|P\left(X_{n} \leq x\right)-P(X \leq x)\right| \leq \int_{-\infty}^{x}\left|f_{n}(u)-f(u)\right| d u .
$$

Set $g_{n}(x)=\left|f_{n}(x)-f(x)\right|$. Let $A=\left\{x: f_{n}(x)\right.$ does not converge to $\left.f(x)\right\}$. We know that $\lambda(A)=0$, where λ is the Lebesgue measure. We note that $g_{n}(x) \leq 2 \max \left\{f_{n}(x), f(x)\right\}$ and

$$
\begin{aligned}
\int_{\infty}^{\infty} g_{n}(x) d x & \leq 2 \int_{\left\{x: f_{n}(x) \geq f(x)\right\}} f_{n}(x) d x+2 \int_{\left\{x: f_{n}(x) \leq f(x)\right\}} f(x) d x \\
& \leq 2 \int_{\infty}^{\infty} f_{n}(x) d x+2 \int_{-\infty}^{\infty} f(x) d x=4 .
\end{aligned}
$$

Since $g_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \notin A$, we have $\int_{-\infty}^{\infty} g_{n}(x) d x \rightarrow 0$. The result follows.

You can also play with positive an negative parts.
Marking: This question will not be marked.
Presentation 1 Theorem 25.6 in the textbook.

