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(Vn,Wn)
d→ (V,W )

iff

aVn + bWn
d→ aV + bW

for any choice of a, b For example, Vn =
√
n(X̄ − µ) and V is normal: P (Vn ≤

x)→ Φ(x) Here: P (Vn ≤ x,Wn ≤ y)→ F (x, y)

2 Laws of Large Numbers. Maximal Inequali-
ties. Convergence of Random Series (Chapter
22)

Make sure that you are familiar with the following topics:

• Markov and Chebyshev inequality;

• Basic properties of the expectation;

• Borel-Cantelli lemma;

What we covered?

• In class I discussed material related to Section 22 in the textbook (Patrick
Billingsley, Probability and Measure - I am using the anniversary edition).

• More specifically, I discussed in class:

– A simple version of the weak law of large numbers: if {Xi, i ≥ 1}
are i.i.d. random variables with finite variance and Sn =

∑n
i=1Xi,

then Sn/n converges in probability to E[X1]. The proof is simple:
we need to show that

lim
n→∞

P

(∣∣∣∣Snn − E[X1]

∣∣∣∣ > ε

)
= 0

for each ε > 0. In order to do this we apply Chebyshev inequality.
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– A simple version of the strong law of large numbers: if {Xi, i ≥ 1} are
i.i.d. random variables with finite fourth moment and Sn =

∑n
i=1Xi,

then Sn/n converges in almost surely to E[X1]. The proof:

∗ Assume for simplicity that E[X1] = 0;

∗ Calculate E[S4
n];

∗ Use Markov inequality to get P (|Sn| > nε) ≤ C/n2, where C is
a constant;

∗ Since
∑∞
n=1 P (|Sn| > nε) <∞, use the Borel-Cantelli lemma to

get that

P

(∣∣∣∣Snn
∣∣∣∣ > ε infinitely often

)
= 0 .

This means that Sn/n converges almost surely to 0.

∗ Note that this method will not work by assuming finite variance
only. Indeed, then we can only obtain P (|Sn| > nε) ≤ C/n and
the Borel-Cantelli lemma is not applicable.

– Proof of Theorem 22.1 - strong law of large numbers, assuming only
that the mean is finite. Method of proof:

∗ Introduce truncated variables Yk = 1{Xk ≤ k}. These random
variables are independent, but have different distribution. In
particular, limk→∞ E[Yk] = E[X1];

∗ Consider the truncated sum S∗n =
∑n
i=1 Yi. Calculate its vari-

ance (it is finite since Yi’s are bounded!!!), apply Chebyshev in-
equality and the Borel-Cantelli lemma to obtain almost sure con-
vergence of the truncated sum;

∗ Next,

∞∑
n=1

P (Xn 6= Yn) =

∞∑
n=1

P (X1 > n) ≤ E[X1] <∞ .

Use the Borel-Cantelli lemma to conclude that (S∗n−Sn)/n con-
verge to zero almost surely.

– Proof of Theorems 22.4. Important tool: Define the sets Ak =
{|Sk| > ε, |Sj | < ε, j = 1, . . . , k − 1}. The sets are disjoint and

{ max
1≤k≤n

|Sk| > ε} =

n⋃
k=1

Ak .

Also, split Sn = Sk + (Sn − Sk), k < n, to use independence.

Additional material:

• Rick Durrett, Probability. Theory and Examples. Fourth Edition. (Avail-
able in the library). Theorems 2.2.1, 2.2.3, 2.2.6, 2.2.7, 2.3.5, 2.5.2, 2.5.3;
Lemmas 2.2.2, 2.4.3. All those theorems and lemmas are either repeti-
tions of results I proved in class or extensions of laws of large numbers
and maximal inequalities.
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3 Convergence in Distribution (Chapter 25)

What we covered?

• Definitions, Examples 25.1, 25.2;

• Convergence in Distributions, Example 25.5 (convergence of maxima for
exponential random variables), also convergence of maxima for Pareto
random variables;

• Convergence in Probability, eelation between different types of conver-
gence: Theorem 25.2. February 10

• Properties of Convergence in Distribution: Theorem 25.4. February 10

• Skorokhod’s theorem: Theorem 25.6 - how we cam make weak convergence
and almost sure convergence equivalent? February 10 - presentation; see
relevant preliminary result in Lemma 1 below.

• Mapping theorems: Theorems 25.7, 25.8. February 10

• Integration to the limit. February 10

Additional material

• Rick Durrett, Probability. Theory and Examples. Fourth Edition. (Avail-
able in the library). Section 3.2.2 - Theorem 3.2.2, 3.2.3, 3.2.4, 3.2.5. All
those theorems and lemmas are either repetitions of results I proved in
class or extensions

Lemma 1 Let X and Y be random variables with continuous and strictly in-
creasing distributions functions F and G. We say that X is stochastically
smaller than Y if F (x) ≥ G(x) for all x (the inequality is correct, there is
no mistake). Then there exists a probability space and random variables X̃, Ỹ ,
such that X̃ has the same distribution as X, Ỹ has the same distribution as Y
and X̃ ≤ Ỹ almost surely.

Proof: Ω = [0, 1]; F - Borel sigma field; P = λ, the Lebesgue measure. Let
U : Ω→ [0, 1] be defined as U(ω) = ω. Then for x ∈ [0, 1],

P (U ≤ x) = P ({ω : U(ω) ≤ x}) = λ({ω : ω ≤ x}) = x .

Define X̃(ω) = F←(ω), Ỹ (ω) = G←(ω). Clearly, P (X̃(ω) ≤ x) = F (x).
Now, since F (x) ≥ G(x), we also have {x : G(x) > ω} ⊆ {x : F (x) > ω}

and thus
inf
x
{x : G(x) > ω} ⊆ inf

x
{x : F (x) > ω} .

This means that G←(ω) ≥ F←(ω) and Ỹ ≥ X̃ almost surely.
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4 Characteristic functions

Material related to Section 26 in the textbook. Outline:

• Definition;

• Moments and Derivatives, Theorem 26.1

• Independence

• Uniqueness, proof of Theorem 26.2 - presentation

• Continuity, proof of Theorem 26.3.

• Additional material:

– Rick Durrett, Probability. Theory and Examples. Fourth Edition.
(Available in the library). Section 3.3. Look especially at Theorem
3.3.4 - this is the inversion theorem in case when µ has possibly some
mass. Theorem 3.3.6, 3.3.8

5 Central Limit Theorem

Material related to Section 27 in the textbook. Outline:

• Theorems 27.1, 72.2, 27.3

• Some inequalities to remember:

|
d∏
i=1

zi −
d∏
i=1

wi| ≤
d∑
i=1

|zi − wi|

|ez − 1− z| ≤ |z|2e|z|

|eitx − (1 + itx− 1

2
t2x2)| ≤ |tx|2 ∧ |tx|3

• Additional material:

– Theorem 27.5, CLT for dependent variables;

– Rick Durrett, Probability. Theory and Examples. Fourth Edition.
(Available in the library). Section 3.4.
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6 Conditional Expectation

Material related to Sections 32-34 in the textbook.

6.1 Some Measure Theory

In what follows, (S,G, µ) is a measurable space and g : S → R+ is a nonnegative
function. We recall several properties and definitions.

• A measure µ is finite of µ(S) < ∞. A measure µ is σ-finite if we can
write S =

⋃∞
i=1Ai such that µ(Ai) < ∞ for each i ≥ 1. For example,

the Lebesgue measure on [0, 1] is finite. The Lebesgue measure on R is
σ-finite, but not finite.

• Notation: µ(g) =
∫
g dµ. For example, if A ∈ G and g = 1A, then

µ(g) =

∫
g dµ =

∫
A

dµ = µ(A).

µ(g) is a real number!!!

• Let µ be a measure on (S,G). For a function f : S → R+ we define a new
measure ν = fµ by

ν(A) = (fµ)(A) =

∫
A

f dµ , A ∈ G .

Note that we can write (fµ)(A) = µ(f1A). fµ is a measure!!!

• Assume additionally that f is bounded. Then

ν(A) ≤ µ(A) sup
x∈S

f(x) .

Hence, if µ(A) = 0 then also ν(A) = 0.

• Let (S,G) = ([0, 1],B), where B is the Borel σ-field. Let λ be a Lebesque
measure. Let F be a distribution function and we assume that f = F ′

exists and is bounded. Set

ν((a, b]) = F (b)− F (a) , a < b .

Then

ν((a, b]) =

∫ b

a

f(x) dx ≤ |b− a| sup
x∈[0,1]

f(x) .

Hence, if A ∈ B is such that λ(A) = 0 then also ν(A) = 0.

Here: ν = fλ, where f is the density and λ is the Lebesque measure.
Since F is differentiable, F is absolutely continuous. This explains the
name absolute continuity.
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The last two examples lead to absolute continuity of measures.

Definition 1 Assume that (S,G) is a measurable space. Let µ, ν be two mea-
sures. We say that ν is absolutely continuous with respect to µ if µ(A) = 0
implies ν(A) = 0 for any A ∈ G. We write ν � µ.

One of the most important statements in the probability theory is Radon-
Nikodym theorem.

Theorem 1 (Radon-Nikodym) Assume that (S,G) is a measurable space.
Let µ, ν be two σ-finite measures such that ν � µ.

There exists a function f : S → R+ such that

ν(A) =

∫
A

f dµ , for all A ∈ G .

The meaning is: If the measures are absolutely continuous, then ν = fµ.

• Notation:

f =
dν

dµ
.

• In the example above, ν = F , µ = λ and f is just standard derivative.

• If h : S → R+, then we have the following formula∫
A

h dν =

∫
A

hf dµ .

The above formula is just change of variables

Goal: Prove Theorem 1.

• Theorem 1 is valid for σ-finite measures, but I will prove it for finite
measures only.

In order to do this, we introduce a concept of singular measures and prove
Lebesgue decomposition theorem.

Definition 2 (Singular measures) Assume that (S,G) is a measurable space.
Let µ, ν be two measures.

The measures are mutually singular (written as µ ⊥ ν) if there exists A ∈ G
such that µ(A) = 0 = ν(Ac).

• Note: the above property does not need to hold for all sets A ∈ G. One
set is enough.

Theorem 2 (Lebesgue decomposition) Assume that (S,G) is a measurable
space. Let µ, ν be two σ-finite measures such that ν � µ. Then ν = νa + νs,
where νs ⊥ µ and νa = fµ for some function f : S → R+.

6



• We will not prove this theorem, but to get some intuition, assume that S
is countable so that G = 2S . Define

Sµ = {s ∈ S : µ({s}) = 0} .

Then clearly µ(Sµ) = 0 (it would not be true if the space is uncountable.
Take for example real line and the Lebesque measure. Then µ({s}) = 0 for
all s ∈ R, but µ(R) =∞. The countability of the space is very important
here). We can take

νs(A) = ν(A ∩ Sµ) , νa(A) = ν(A ∩ Scµ) , A ∈ G .

Choose A = Scµ, then νs(A) = ν(Scµ ∩ Sµ) = 0. Hence, νs ⊥ µ. Further-
more, the function f can be chosen as

f(s) =
ν({s})
µ({s})

for all s such that µ({s}) > 0. To see this you need to check that νa = fµ.
For this start evaluating∫

A

fdµ =
∑
s∈A

ν({s})
µ({s})

µ({s}) =
∑
s∈A

ν({s}) = ν(A) = ν(A ∩ Scµ) = νa(A)

The integral becomes the sum because we have countable space. Also,
since µ(Sµ) = 0 and ν � µ, ν(Sµ) = 0, hence ν(A) = ν(A ∩ Scµ)

• Note that the meaning of Theorem 2 is that f is the Radon-Nikodym
derivative dνa

dµ .

Proof of Theorem 1:

1. Assume for simplicity that the space S is countable.

2. From Theorem 2 we know that ν = νa+νs and νa = fµ for some function
f .

3. The proof will be finished if we are able to show that νs ≡ 0, so that there
is no singular part, so that ν = fµ.

4. From Theorem 2 we also know that there exists a set A ∈ G such that
νs(A

c) = µ(A) = 0. Indeed, we can choose A = Sµ, then νs(A
c) =

νs(S
c
µ ∩ Sµ) = 0 and from the explanation to Theorem 2, µ(Sµ) = 0.

5. We also assumed that ν � µ. Hence, from the previous step, for the
selected set A, we have ν(A) = 0. This also means that νs(A) = 0.

6. We combine the last two steps. We have νs(A
c) = 0 and νs(A) = 0, which

implies ν(A ∪Ac) = νs(S) = 0.

�
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6.2 Conditional expectation

Let (Ω,F , P ) be a probability space and let X be a random variable defined on
it. We say that X ∈ L1(Ω,F , P ) if E[|X|] =

∫
|X|dP <∞.

Theorem 3 Let (Ω,F , P ) be a probability space and let X ∈ L1(Ω,F , P ).
Given H ⊆ F there exists a random variable Y such that for all H ∈ H we
have

E[X1H ] = E[Y 1H ] , E[X1H ] = E[E[X | H]1H ] . (1)

The random variable Y is called the conditional expectation of X given H and
is denoted by Y = E[X|H]. Note that Y is H-measurable.

• Note that if
E[X1F ] = E[Y 1F ]

for all F ∈ F , then X = Y almost surely.

• If X and Z are random variables defined on (Ω,F , P ), then the notation
E[X | Z] stands for E[X | σ(Z)], where σ(Z) is the sigma-field generated
by Z. If Z = X, then E[X | σ(X)] = X.

• This is very important to understand that the conditional expectation
is a random variable. Intuitively, in the context above, the value of the
conditional expectation depends on the outcome of the random variable
Z. The outcome of the latter changes, then the conditional expectation
changes.

• If X and Z are independent, then E[X | Z] = E[X].

Proof of Theorem 3: Assume first that X is nonnegative. Let µ denote the
probability measure obtained by restriction of P to (Ω,H), that is µ(H) = P (H)
for all H ∈ H and µ(Ω) = 1.

Recall thatXP denotes the measure on (Ω,F) such that (XP )(A) =
∫
A
X dP

for all A ∈ F (recall the notation fµ from the previous section - here f = X,
P = µ). Let ν be the restriction of XP to (Ω,H). Note that ν is a finite
measure since ν(Ω) = E[X] <∞.

If H ∈ H is such that µ(H) = P (H) = 0 then ν(H) = 0. Therefore, ν � µ.
By Theorem 1 there exists a function Y : Ω → R+ such that ν = Y µ. This
implies that for all H ∈ H we have

E[X1H ] =

∫
H

X dP = (XP )(H) = ν(H) = (Y µ)(H) =

∫
H

Y dµ =

∫
H

Y dP = E[Y 1H ] .

This finishes the proof. The proof for an arbitrary random variable follows by
splitting X into the positive and the negative part.
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Example 1 Assume that X(ω) =
∑m
i=1 xi1ω∈Ai , Z(ω) =

∑n
j=1 zj1ω∈Bj , where

A1, . . . , Am and B1, . . . , Bn are two disjoint partitions of Ω. From classical
probability,

E[X|Z = zj ] =

m∑
i=1

xiP (X = xi | Z = zj) .

Then Y (ω) = E[X|Z = zj ] whenever Z(ω) = zj is our conditional expectation.
Indeed, let H = σ(Z). If H ∈ H then H =

⋃
j∈I Bj for I ⊆ {1, . . . , n}. Then

E[Y 1H ] =
∑
j∈I

E[Y 1Bj
] =

∑
j∈I

E[E[X|Z = zj ]1Bj
]

=
∑
j∈I

E[X|Z = zj ]× E[1Bj ] =
∑
j∈I

E[X|Z = zj ]× P (Bj) = E[X1H ] .

Example 2 Assume that H is generated by a finite collection H1, . . . ,Hn. We
claim that

Y (ω) = E[X | H](ω) =
1

P (Hi)

∫
Hi

X dP , ω ∈ Hi .

Note that the right hand side is

E[X1Hi
]

P (Hi)

if ω ∈ Hi. The above expression is a random variable (since it depends on ω,
but once ω is fixed this is just a number).

Indeed, we will verify (1). Any set in H ∈ H is a finite union of sets
H1, . . . ,Hn. Thus, (1) will hold for any H if we will verify it for any of the sets
Hj , j = 1, . . . , n. We have

E[Y 1Hj
] = E

[
1

P (Hj)
E[X1Hj

]1Hj

]
= E[X1Hj

]E

[
1

P (Hj)
1Hj

]
= E[X1Hj

] .

Example 3 In what follows,

• V,W are integrable random variable;

• H ⊆ F ,

• X0 is independent of H and integrable;

• X1 is H-measurable and integrable;

• Z is a random variable. If H = σ(Z) then X1 is H-measurable if and only
if X1 = f(Z) for a measurable function f . Moreover, X0 is independent
of H if and only if X0 is independent of Z.
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(a) For constants a, b we have

E[aV + bW | H] = aE[V | H]︸ ︷︷ ︸
=V0

+bE[W | H]︸ ︷︷ ︸
=W0

.

Note that (1) means for example that

E[V 1H ] = E[V01H ] = E[E[V | H]1H ] .

For any H ∈ H:

E[(aV + bW )1H ] = E[aV 1H ] + E[bW1H ] = aE[V 1H ] + bE[W1H ]

= aE[V01H ] + bE[W01H ]

= E[(aV0 + bW0)1H ] .

This means that aV0 + bW0 is the conditional expectation of (aV + bW )
given H.

(b) It holds:
E[ψ(X0) | H] = E[ψ(X0)] =: µ .

In order to prove it, you have to verify the identity (1), following the same
steps as in Exercise 3 in the last Assignment. We need to show that for
each H ∈ H

E[ψ(X0)1H ] = E[µ1H ] .

Since X0 is independent ofH, E[ψ(X0)1H ] = E[ψ(X0)]E[1H ] = µ×P (H).
End of the proof.

(c) It holds:

E[φ(X1) | H] = φ(X1) . (2)

In order to prove it, you have to verify the identity (1), following the same
steps as in Exercise 3 in the last Assignment. We need to show

E[φ(X1)1H ] = E[φ(X1)1H ] .

There is nothing to prove here.

Assume additionally that the random variable X0 has mean zero. Can we
take

E[φ(X1) | H] = φ(X1) +X0?

We evaluate

E[(φ(X1) +X0)1H ] = E[φ(X1)1H ] + E[X01H ] = E[φ(X1)1H ] + E[X0]P (H) = E[φ(X1)1H ] .

In the first equation we used part (a), the next one is part (b). Thus,
φ(X1) +X0 fulfills (1). But, φ(X1) +X0 is not H-measurable!
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(d) We have

E[X1V | H] = X1E[V | H] .

Note that our candidate for the conditional expectation (the random vari-
able on the right hand side) is H-measurable.

We start with the left hand side. We need to evaluate E[X1V 1H ] for
H ∈ H. Take first X1 = 1H0 , H0 ∈ H. Then

E[X1V 1H ] = E[V 1H∩H0 ] .

Let us denote V0 = E[V | H]. By (1),

E[V 1H∩H0
] = E[V01H∩H0

] = E[1H0
V01H ] = E[X1V01H ] .

Thus, we have
E[X1V 1H ] = E[X1V01H ] .

But this means that

E[X1V | H] = X1V0 = X1E[V | H] .

(e) Assume that (X,W ) is a bivariate normal vector, such that both compo-
nents are standard normal. the correlation is assumed to be ρ. What is
E[W | X]? Here we will not prove equality (1), rather we will use the
properties (a), (b), (c) proven above.

Recall that W can be written as W = ρX+
√

1− ρ2Z, where Z is standard
normal, independent of everything else. Then

E[W | X] = E[ρX +
√

1− ρ2Z | X] = E[ρX | X] + E[
√

1− ρ2Z | X]

= ρX +
√

1− ρ2E[Z] = ρX .

If X = W , then E[W | X] = E[W |W ] = W
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Example 4 (a) If Y = E[X | H] then

E[Y ] = E[X] (3)

Indeed, (1) can be written as∫
H

XdP =

∫
H

Y dP

for all H ∈ H. Take H = Ω to get∫
Ω

XdP =

∫
Ω

Y dP

which can be recognized as (3). We can re-write (3) as

E[E[X | H]] = E[X] . (4)

(b) We know that
E[|X|] ≥ |E[X]| .

We have

E[|X| | H] ≥ |E[X | H]| . (5)

Additional material:

• Properties of conditional expectations: Theorem 34.2, 34.3, 34.4.
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7 Martingales

A martingale is a model for a fair game. Suppose we have a probability spaces
(Ω,F , P ) and a sequence of σ-algebras

F1 ⊆ F2 ⊆ · · · .

Such an increasing sequence {Fn, n ≥ 1} of σ-fields is called filtration. Intu-
itively, Fn represents the information up to time n (including time n).

Definition 3 Let M1,M2, . . . , be a sequence of random variables defined on a
probability space (Ω,F , P ). The sequence {(Mn,Fn), n ≥ 1} is a martingale if

(i) {Fn} is a filtration;

(ii) Mn is Fn-measurable;

(iii) E[|Mn|] <∞;

(iv)

E[Mn+1 | Fn] = Mn . (6)

Alternatively, we say that the sequence {Mn} is a martingale w.r.t the filtration
{Fn}

Natural filtration. Let Gn = σ(M1, . . . ,Mn). Then {Gn, n ≥ 1} is a natural
filtration of the sequence {Mn}. Then (6) is equivalently written as

Mn = E[Mn+1 | Gn] = E[Mn+1 | σ(M1, . . . ,Mn)] = E[Mn+1 |M1, . . . ,Mn] .

Martingale difference. Since Mn is Fn-measurable, E[Mn | Fn] = Mn and
hence the martingale property (6) can be written equivalently as

E[Mn+1 | Fn] = E[Mn | Fn] ,

E[Mn+1 −Mn | Fn] = 0 . (7)

The last expression leads to the definition of the martingale difference sequence:
{(Xn,Fn)} is a martingale difference if

E[Xn+1 | Fn] = 0 .

Above, Xn+1 = Mn+1 −Mn. Hence:

• If {Mn} is a martingale, then the sequence {Xn} defined by Xn+1 =
Mn+1 −Mn is a martingale difference;

• If {Xn} is a martingale difference, then the sequence {Mn} defined by
Mn = X1 + · · ·+Xn is a martingale.

Of course, each time we need to remember about the filtration. We note that

σ(X1, . . . , Xn) = σ(M1, . . . ,Mn) .
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7.1 Properties

• Why a martingale is a fair game? Let’s take (6) and re-write it using the
definition of the conditional expectation∫

A

Mn+1dP =

∫
A

MndP

for all A ∈ Fn. Take A = Ω. Then the above property reads

E[Mn+1] = E[Mn] .

• Let now {Xn} be a martingale difference. Then E[Xn] = 0. Furthermore,
by (4)

E[XnXn+1] = E[E[XnXn+1 | Fn]] = E[XnE[Xn+1 | Fn]] = 0 .

Thus, the martingale difference has covariance zero, but {Xn} are not
independent. Note also that we do not need a finite variance for the
covariance to exists.

• A function of a martingale is not necessary a martingale. Indeed, let Mn

be a martingale and consider M̃n = |Mn|. Then

E[M̃n+1 | Fn] = E[|Mn+1| | Fn] ≥ |E[Mn+1 | Fn]| = |Mn| = M̃n .

In fact, |Mn| is a submartingale.

7.2 Examples

(1) Assume that {Xn} are i.i.d with mean zero. Let {Gn} be a natural filtra-
tion, that is Gn = σ(X1, . . . , Xn). Then {Xn} is a martingale difference
and Mn = X1 + · · ·+Xn is a martingale. Indeed,

E[Mn+1 |M1, . . . ,Mn] = E[Mn +Xn+1 |M1, . . . ,Mn]

= E[Mn |M1, . . . ,Mn] + E[Xn+1 |M1, . . . ,Mn]

= Mn + E[Xn+1 | X1, . . . , Xn] = Mn + E[Xn+1]

= Mn + 0 .

Note further that if E[Xn] 6= 0, then {Mn} is not a martingale.

(2) Assume that {Xn} are i.i.d with mean zero and variance σ2. Let {Gn} be
a natural filtration. Let Sn = X1 + · · ·+Xn. Then

Mn = S2
n − nσ2

is a martingale.
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(3) Let Z be an integrable random variable and let {Fn} be a filtration. Define

Mn = E[Z | Fn] .

Then {Mn} is a martingale. Indeed, Mn is Fn-measurable and by (4)

E[|Mn|] = E[|E[Z | Fn]|] ≤ E[E[|Z| | Fn]] = E[|Z|]

(4) Assume that {Xn} are i.i.d with mean zero. Let {Gn} be a natural filtra-
tion. For each n, let Bn be a bounded random variable which is measurable
with respect to Gn−1. We think of Bn as being the ”bet” on the game
Xn; we can see the results of X1, . . . , Xn−1 before choosing a bet but one
cannot see Xn. The total fortune by time n is given by M0 = 0 and

Mn = B1X1 + · · ·+BnXn .

Then {Mn} is a martingale w.r.t {Gn}.

(5) Let {Zn} be a sequence of i.i.d. random variables with mean zero. Define

Xn = σnZn

and let Gn be the natural filtration of {Xn}. Here: {Zn} be a sequence of
i.i.d. random variables with mean zero and variance 1 such that Zn+1 is
independent of Gn and σn is assumed to be Gn−1-measurable. Then

E[Xn+1 | Gn] = E[σn+1Zn+1 | Gn] = σn+1E[Zn+1 | Gn]

= σn+1E[Zn+1] = 0 .

Hence, {Xn} is a martingale difference. On the other hand

E[X2
n+1 | Gn] = σ2

n+1 .

(6) Assume that on the probability space (Ω,F , P ) we have a probability
measure Q. Consider a sequence of random variables {Yn} and let Gn be
its natural filtration. Assume that (Y1, . . . , Yn) has a density pn under
measure P and density qn under measure Q. Define

Mn =
qn(Y1, . . . , Yn)

pn(Y1, . . . , Yn)
.

Note that an element of Gn is {(Y1, . . . , Yn) ∈ H}, where H is a ”nice” set
in Rn. Thus

E[Mn1{(Y1, . . . , Yn) ∈ H}] =

∫
(Y1,...,Yn)∈H

MndP

=

∫
(Y1,...,Yn)∈H

qn(Y1, . . . , Yn)

pn(Y1, . . . , Yn)
dP∫

H

qn(y1, . . . , yn)

pn(y1, . . . , yn)
pn(y1, . . . , yn)dy1 · · · dyn∫

H

qn(y1, . . . , yn)dy1 · · · dyn = Q(H) .

Furthermore, {Mn} is a martingale.
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7.3 Stopping times

Assume that {Fn, n ≥ 0} is a filtration. An integer-valued random variable τ is
called a stopping time (relative to the filtration) if for all n ≥ 1,

{τ = n} ∈ Fn .

Equivalently,
{τ ≤ n} ∈ Fn .

Indeed,

{τ ≤ n} =

n⋃
i=0

{τ = i} ∈ Fn

Furthermore,

{τ ≥ n+ 1} ∈ Fn (8)

since {τ ≥ n+ 1} and {τ ≤ n} are complementary events.
Examples:

• Assume that {Xi} is a sequence of i.i.d. random variables. Let {Gn} be
its natural filtration. Let Sn = X1 + · · ·+Xn and A ⊂ R. Then

τ = min{j : Sj ∈ A}

is a stopping time.

• More generally, if {Mn} is a martingale, then

τ = min{j : Mj ∈ A}

is a stopping time.

• However, τ = max{j : Mj ∈ A} is not a stopping time.

• If τ is a stopping time, then τ ∧ n is also a stopping time.

Theorem 4 Assume that {(Mn,Fn), n ≥ 0} is a martingale. Then

M̃n = Mτ∧n =

{
Mτ if τ < n
Mn if τ ≥ n

is also a martingale and

E[M̃n] = E[Mn] = E[M0] .
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Re-phrasing: ”A stopped martingale is again a martingale”. See Theorem 35.2
for a generalization.

Proof: Note that

M̃n = Mτ∧n = Mn1{τ ≥ n}+

n−1∑
j=0

Mj1{τ = j}

M̃n+1 = Mτ∧(n+1) = Mn+11{τ ≥ (n+ 1)}+

n∑
j=0

Mj1{τ = j} .

Clearly, M̃n is Fn-measurable and integrable. Now, we calculate

E
[
M̃n+1 | Fn

]
= E [Mn+11{τ ≥ (n+ 1)} | Fn] +

n∑
j=0

E [Mj1{τ = j} | Fn]

= 1{τ ≥ (n+ 1)}E [Mn+1 | Fn] +

n∑
j=0

Mj1{τ = j}

= 1{τ ≥ (n+ 1)}Mn +

n∑
j=0

Mj1{τ = j}

= {1{τ ≥ n} − 1{τ = n}}Mn +

n∑
j=0

Mj1{τ = j} = M̃n .

Examples:

• Assume that {Xn} is a sequence of i.i.d. random variables such that
P (Xi = 1) = P (Xi = −1) = 1/2. Let Mn = a + X1 + · · · + Xn. Define
τ = inf{j : Mj = 0}. Then

E[Mτ∧n] = E[M0] = a .

We note at the same time that E[Mτ ] = 0.

• Now, consider τ = inf{j : Mj = 0 or Mn = N} for some integer N . Then
again

E[Mτ∧n] = E[M0] = a .

At the same time
E[Mτ∧n] = NP (Mτ = N) ,

hence
P (Mτ = N) = a/N .

7.4 Martingale convergence theorem

Theorem 5 Assume that {Mn} is a martingale such that K := supn≥1 E[|Mn|] <
∞. Then Mn →M with probability 1 and E[|M |] ≤ K.
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