MAT 5171

Final exam
Rafal Kulik

April 2020

Student Number: \qquad
Family Name: \qquad
First Name: \qquad

- Do all questions.
- Write one solution only.
- Quote carefully any theorems or results you are using.
- The passing grade for the comprehensive examination is 60%.
- Note that the course grade for Probability II is treated separately from the PASS or FAIL decision in the comprehensive.
- Please write in such the way that I can read your solutions.
- Do the following questions: Q1, Q2, Q3, Q4, Q5 or Q6, Q7, Q8, Q9 or Q10. (total: 8 questions).
- Bring this exam to your oral exam.

Good luck !!!!

QUESTIONS

Question 1 (10 points) (a) Show that if $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ are both uniformly integrable sequences, then $\left(X_{n}+Y_{n}\right)$ is also uniformly integrable. (5 points)
(b) Show that if $X_{n} \rightarrow_{P} X$ and $\left(X_{n}\right)$ is uniformly integrable, then

$$
\int_{\Omega}\left|X_{n}-X\right| d P \rightarrow 0
$$

as $n \rightarrow \infty$, i.e. $\left(X_{n}\right)$ converges to X in mean or in L_{1}. (5 points)
Question 2 (5 points) Assume that X_{1}, X_{2}, \ldots is an infinite sequence of independent Poisson random variables with means $\lambda_{1}, \lambda_{2}, \ldots$, respectively. For $n \geq 1$, let $S_{n}=\sum_{i=1}^{n} X_{i}$. Prove that $\left(S_{n}\right)$ converges in distribution if and only if $\sum_{i=1}^{\infty} \lambda_{i}<\infty$. Identify the limiting distribution.

If $n \rightarrow \infty$, then $S_{n} \rightarrow S_{\infty}=\sum_{i=1}^{\infty} X_{i}$
Question 3 (5 points) A sequence $\left\{\mu_{n}\right\}$ of measures on \mathbb{R} is tight if there exists a compact set $K \subseteq \mathbb{R}$ such that $\overline{\mu_{n}(K)>} 1-\epsilon_{0}$ for all n. Show that if $\left(\mu_{n}\right)$ is a tight sequence of probability measures on $(R, \mathcal{B}(R))$, then the corresponding characteristic functions φ_{n} are uniformly equicontinuous (i.e., for each $\epsilon>0$ there is a δ such that $|s-t|<\delta$ implies that $\left|\varphi_{n}(t)-\varphi_{n}(s)\right|<\epsilon$ for all $\left.n\right)$.

Question 4 (5 points) Let $B_{k}, k \geq 1$, be independent Bernoulli random variables such that $P\left(B_{k}=1\right)=1 / k=$ $\left.\overline{1-P\left(B_{k}\right.}=0\right)$. Define $R_{n}=B_{1}+\cdots+B_{n}$.

1. Let $\sigma_{n}^{2}=\operatorname{var}\left(R_{n}\right)$. Show that $\sigma_{n}^{2} / \log (n) \rightarrow 1$ as $n \rightarrow \infty ;$
2. Show that Lindeberg's CLT applies to $X_{n, k}=(\log (n))^{-1 / 2}\left(B_{k}-k^{-1}\right)$;
3. Conclude that $(\log (n))^{-1 / 2}\left(R_{n}-\log (n)\right)$ converges in distribution to a standard normal random variable.

Question 5 (10 points) (a) The δ-method: Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed with mean μ and variance σ^{2} and let \bar{X}_{n} be the sample mean. Let $f(x)$ be a function with non-zero derivative at μ. Prove that as $n \rightarrow \infty$

$$
\sqrt{n} \frac{f\left(\bar{X}_{n}\right)-f(\mu)}{\sigma\left|f^{\prime}(\mu)\right|} \stackrel{\mathrm{d}}{\rightarrow} N(0,1)
$$

where $N(0,1)$ has the standard normal distribution. (5 points)
(b) Assume that X_{1}, \ldots, X_{n} are independent and identically distributed with an exponential density $f(x)=$ $\beta \exp (-\beta x), x \geq 0$. Find an estimator of β (method of moments, maximum likelihood method, whichever you prefer). Apply the delta method above to obtain a central limit theorem for your estimator. (5 points)

Question 6 (10 points) Assume that $X_{i}, i \geq 1$, are independent identically distributed random variables with mean 0 and variance σ^{2}. Assume further that $\mathrm{E}\left[X_{1}^{3}\right]=0$ and $\mathrm{E}\left[X_{1}^{4}\right]<\infty$. Define $\bar{X}=\left(X_{1}+\cdot+X_{n}\right) / n$ and $S^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-(\bar{X})^{2}$.

1. Show that \bar{X} and S^{2} are uncorrelated.
2. State central limit theorem for appropriately centered and normalized sample mean \bar{X} (trivial).
3. State and prove central limit for appropriately centered and normalized sample variance S^{2}.
4. Prove that

$$
\sqrt{n}\left(\bar{X}, S^{2}-\sigma^{2}\right)^{T} \xrightarrow{\mathrm{~d}} N(\mathbf{0}, \Sigma)
$$

where $\mathbf{0}=(0,0)^{T}$ and Σ has to be determined by you. Hint: Use Cramer-Wald device, see the textbook.

Question 7 (10 points) Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G} \subset \mathcal{F}$ a sub- σ-field, and X, Y some random variables on this space.
(a) (5 points) Prove that if X and Y are bounded, then

$$
E[X E(Y \mid \mathcal{G})]=E[Y E(X \mid \mathcal{G})] .
$$

(b) (5 points) Define the conditional variance of X given \mathcal{G} by:

$$
\operatorname{Var}(X \mid \mathcal{G})=E\left[(X-E(X \mid \mathcal{G}))^{2} \mid \mathcal{G}\right] .
$$

Prove that

$$
E[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}[E(X \mid \mathcal{G})]=\operatorname{Var}(X) .
$$

Question 8 (5 points) Wald's Lemma. Let Y_{1}, Y_{2}, \ldots be independent identically distributed integrable random variables with $\mu=E\left[Y_{i}\right] \forall i$; and let $X_{n}=\sum_{i=1}^{n} Y_{i}$. An integer valued random variable τ if τ is $\sigma\left(Y_{1}, \ldots, Y_{i}\right)$ measurable, that is, its values depend on Y_{1}, \ldots, Y_{i} only, but not on Y_{i+1}, Y_{i+2}, \ldots. Let τ be a finite (but not necessarily bounded) stopping time with respect to $\left(\mathcal{F}_{n}\right)$ where $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ and assume that $E[\tau]<\infty$. Prove that

$$
\begin{equation*}
E\left[X_{\tau}\right]=\mu E[\tau] . \tag{1}
\end{equation*}
$$

Intuition: Let us start first with τ being independent of $\left\{Y_{i}\right\}$. Then

$$
E\left[\sum_{i=1}^{\tau} Y_{i}\right]=\sum_{n=1}^{\infty} E\left[\sum_{i=1}^{\tau} Y_{i} \mid \tau=n\right] P(\tau=n)=\sum_{n=1}^{\infty} E\left[\sum_{i=1}^{n} Y_{i}\right] P(\tau=n) .
$$

Hint:

- First prove the result when $Y_{i} \geq 0$ with probability 1.
- Show that $\left(X_{n}-n \mu\right)$ is a $\left(\mathcal{F}_{n}\right)$-martingale.
- Define $\tau_{n}=\min (\tau, n)$. Show that $\left(X_{\tau_{n}}-\tau_{n} \mu, \mathcal{F}_{n}\right)$ is a martingale and that (1) is satisfied for τ_{n}.
- Next, let $n \rightarrow \infty$.

Question 9 (5 points) Let P and Q be two probability measures on the same space $(\Omega ; \mathcal{F}, P)$ and let $\left(\mathcal{F}_{n}\right)$ be a filtration. Assume that $Q \ll P$. Let X_{n} denote the Radon-Nikodym derivative of Q with respect to P on \mathcal{F}_{n} i.e., X_{n} is \mathcal{F}_{n}-measurable and for any $A \in \mathcal{F}_{n}, Q(A)=\int_{A} X_{n} d P$. Show that $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale with respect to P, that is $E_{P}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=X_{n-1}$, where for any random variable $X, E_{P}[X]=\int X d P$.

Question 10 (5 points) Let $\left(Y_{n}\right)_{n \geq 1}$ be independent positive random variables such that $E\left(Y_{n}\right)=1$ for all $n \geq 1$. Define

$$
X_{n}=Y_{1} \ldots Y_{n} \quad \text { for all } n \geq 1
$$

Show that $\left(X_{n}\right)_{n \geq 1}$ is a martingale and $\left(X_{n}\right)_{n \geq 1}$ converges almost surely to an integrable random variable X.

