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Introduction Cluster indices

Motivation - estimation of extremal index

Let fX y
j ; j 2 Zg be a regularly varying sequence of i.i.d. nonnegative

random variables with the tail distribution function F .

In particular:

limx!1 F (tx)=F (x) = t�� for some � > 0 (e.g. Pareto, Student).

There exists a sequence an !1 such that

lim
n!1

P

�
maxfX y

1 ; : : : ;X
y
ng � anx

�
= exp(�x��) :

Let now fXj ; j 2 Zg be a stationary regularly varying sequence with the
same marginal tail df F . Then

lim
n!1

P (maxfX1; : : : ;Xng � anx) = exp(��x��) ;

where � 2 (0; 1] is called the extremal index (whenever exists).
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Introduction Cluster indices

The extremal index can be represented as

� = lim
n!1

P(maxfX1; : : : ;Xrng > un)

rnP(X0 > un)
= lim

n!1

P(X �
1;rn > un)

rnwn
;

where

rn !1 ; rn=n! 0 ; un !1 ; rnwn ! 0 ; nwn !1 :

Notation: x i ;j = (xi ; : : : ; xj), x�i ;j = maxfx1; : : : ; xjg.
We will refer to rnwn ! 0 as "PoT condition".
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Introduction Cluster indices

Motivation - estimation of cluster indices

Note that we can-rewrite

� = lim
n!1

E[H(X 1;rn=un)]

rnwn

with a cluster functional H : RZ+ ! R:

H(x) = 1

�
max
j2Z

xj > 1

�
= 1fx� > 1g :

the cluster size distribution obtained with

H(x) = 1

8<
:
X
j2Z

1fxj > 1g = m

9=
; ; m 2 N ;

a large deviation index of a univariate time series obtained with 1

H(x) = 1fK (x) > 1g ; K (x) =
X
j2Z

xj ;

1Mikosch and Wintenberger (2013, 2014)
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Introduction Cluster indices

Cluster indices - existence and representation

When does the cluster index exist? We need assumptions on rn; un; time
series; and functionals H.

Let rnwn = rnP(X0 > un) ! 0;

Anticlustering condition (extremes cannot persists for in�nite horizon
time): We say that Condition AC(rn; cn) holds if for every
x ; y 2 (0;1), 2

lim
`!1

lim sup
n!1

P

�
max

`�jj j�rn
Xj > unx j X0 > uny

�
= 0 :

The condition is valid for e.g. geometrically ergodic Markov chains. 3

2Davis and Hsing (1995)
3Kulik, Soulier, Wintenberger (2019)

Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 6 / 25



Introduction Cluster indices

Cluster indices - existence and representation

When does the cluster index exist? We need assumptions on rn; un; time
series; and functionals H.

Let rnwn = rnP(X0 > un) ! 0;

Anticlustering condition (extremes cannot persists for in�nite horizon
time): We say that Condition AC(rn; cn) holds if for every
x ; y 2 (0;1), 2

lim
`!1

lim sup
n!1

P

�
max

`�jj j�rn
Xj > unx j X0 > uny

�
= 0 :

The condition is valid for e.g. geometrically ergodic Markov chains. 3

2Davis and Hsing (1995)
3Kulik, Soulier, Wintenberger (2019)

Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 6 / 25



Introduction Cluster indices

Cluster indices - existence and representation

When does the cluster index exist? We need assumptions on rn; un; time
series; and functionals H.

Let rnwn = rnP(X0 > un) ! 0;

Anticlustering condition (extremes cannot persists for in�nite horizon
time): We say that Condition AC(rn; cn) holds if for every
x ; y 2 (0;1), 2

lim
`!1

lim sup
n!1

P

�
max

`�jj j�rn
Xj > unx j X0 > uny

�
= 0 :

The condition is valid for e.g. geometrically ergodic Markov chains. 3

2Davis and Hsing (1995)
3Kulik, Soulier, Wintenberger (2019)

Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 6 / 25



Introduction Cluster indices

Cluster indices - existence and representation

When does the cluster index exist? We need assumptions on rn; un; time
series; and functionals H.

Let rnwn = rnP(X0 > un) ! 0;

Anticlustering condition (extremes cannot persists for in�nite horizon
time): We say that Condition AC(rn; cn) holds if for every
x ; y 2 (0;1), 2

lim
`!1

lim sup
n!1

P

�
max

`�jj j�rn
Xj > unx j X0 > uny

�
= 0 :

The condition is valid for e.g. geometrically ergodic Markov chains. 3

2Davis and Hsing (1995)
3Kulik, Soulier, Wintenberger (2019)

Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 6 / 25



Introduction Cluster indices

Cluster indices - existence and representation

De�ne:

�
�
n(H) =

E[H(X 1;rn=un)]

rnP(X0 > un)
=
E[H(X 1;rn=un)]

rnwn
:

Theorem 1

Assume that AC(rn; cn) holds. Then �
�
n(H) ! �

�(H) for all bounded

continuous shift invariant functions H with support separated from 0.

Representation:

�
�(H) = E

�
H(Y )1

�
Y
�
�1;�1 � 1

	�
= �E [H(Z )] ;

where Y is the tail process and Z is a Palm version of Y . 4

4Planinic and Soulier (2018); Chapter VI of Kulik and Soulier (2020); Planinic (2022)
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Introduction Estimation of cluster indices

Blocks estimators

De�ne mn = [n=rn] and consider the statistic

gDBn(H) =
1

nP(X0 > un)

mnX
i=1

H(X (i�1)rn+1;irn=un) ;

fSBn(H) =
1

rnnP(X0 > un)

n�rnX
i=1

H(X (i�1)rn+1;irn=un) :

Note that

�
�(H) = lim

n!1
E[gDBn(H)] = lim

n!1
E[fSBn(H)] :
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Introduction Estimation of cluster indices

Central Limit Theorem(s) for blocks estimators

Theorem 2

Let fXj ; j 2 Zg be a stationary, regularly varying univariate time series.

Under the "appropriate" conditions

p
nwn

ngDBn(H)� �
�(H)

o
d�! G(H) ;

where G is a centered Gaussian process with the variance ��(H2).

The same asymptotics holds for both disjoint blocks. 5 This is in

contrast to Block Maxima method 6

5Drees and Rootzen (2010); Chapter X of Kulik and Soulier (2020); Cissokho and
Kulik (2021,2022); Drees and Neblung (2021)

6B�ucher and Segers (2018a, 2018b)
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Expansion for blocks estimators

Expansion for blocks estimators

Goal: expand

gDBn(H)� fSBn(H) :

The expansion will have the form

gDBn(H)� fSBn(H) � 1

nrnwn
IC(H) +

1

nrnwn
BC(H) + smaller terms ;

where IC and BC are internal and boundary clusters statistics. Once we
obtain the (precise) rates for IC and BC, we will get the precise rates for
the expansion.
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Expansion for blocks estimators Internal clusters

Internal clusters - set-up

A large value in block j :

Ac
j = fX �

(j�1)rn+1;jrn
> ung :

For x 2 RZ+, let Ti (x) be locations of consecutive exceedences over 1
and �Ti (x) = Ti+1(x)� Ti (x).

Cluster length functional

L(x) = Tmax(x)� Tmin(x) + 1 :

The number of exceedences over 1: E(x) =
P

j2Z 1fxj > 1g.
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Expansion for blocks estimators Internal clusters

Internal clusters - de�nition

De�ne

eHIC(x) :=

E(x)�1X
i=1

�Ti (x)fH(x�1;Ti (x)) + H(xTi+1(x);1)� H(x)g :

Example 3

Take H(x) = 1fx� > 1g. Then eHIC(x) = L(x)� 1. Important:

Starting with bounded H, we get unbounded eHIC.
We have

IC(H) =

mnX
j=1

ICj(H) ;

ICj(H) = eHIC(u�1n X (j�1)rn+1;jrn)1
�
Aj�1 \ Ac

j \ Aj+1

	
:

We can view IC as disjoint blocks statistics acting on eHIC .
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Expansion for blocks estimators Internal clusters

Why internal clusters?

Lemma 4

Assume that AC(rn; cn) hold. Let T�rst and Tlast be the location of the

�rst and the last block of size rn. Let a random variable U be

Uniform(0; 1). Then, conditionally on Ac
1,�

T�rst

rn
;
Tlast

rn
;1fA0g;1fA2g

�
=) (U1;U1; 1; 1) :

Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 13 / 25



Expansion for blocks estimators Internal clusters

Extension of vague convergence

Recall:

Theorem 5

Let

�
�
n(H) =

E[H(X 1;rn=un)1fAc
1g]

rnP(X0 > un)
=
E[H(X 1;rn=un)1fAc

1g]

rnwn
:

Assume that AC(rn; cn) holds. Then �
�
n(H) ! �

�(H) for all bounded

continuous shift invariant functions H with support separated from 0.

We need to extend it to unbounded functionals eH.
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Expansion for blocks estimators Internal clusters

Extension of vague convergence

De�nition 6

Condition S(rn; un) holds if for all s; t > 0

lim
`!1

lim sup
n!1

1

P(X0 > un)

rnX
i=`

iP(X0 > uns;Xi > unt) = 0 : (S(rn; un))

The stronger anticustering condition can be viewed as uniform
integrability condition.

The condition is roughly equivalent to the small blocks assumption:
r+1
n wn ! 0.

It can be veri�ed for many time series models.
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Expansion for blocks estimators Internal clusters

Under the small blocks condition, the business is as usual:

Lemma 7

Assume that S(rn; un) holds (hence r+1
n wn ! 0). Then for any eH � L

lim
n!1

1

rnwn
E

h eH(X 1;rn=un)1fAc
1g
i

= �
�( eH) :

In particular, the cluster length (unlike the jump locations) is tight under
the limiting conditional law. Moreover, E[L(X 1;rn=un) j Ac

1] converges to
a �nite constant. 7

7See Drees and Rootzen (2010) along with the correction note
Rafa l Kulik Blocks estimators in PoT framework 30 June 2023 16 / 25
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Expansion for blocks estimators Internal clusters

If large blocks are considered, the situation changes:

Lemma 8

Assume that AC(rn; cn) holds and r+1
n wn !1. Assume that X is

mixing. Then

lim
n!1

1

r+2
n w2

n

E [L(X 1;rn=un)1fAc
1g] =

1

( + 1)( + 2)
#2 :

Hence, E[L(X 1;rn=un) j Ac
1] !1.

From statistical perspective, the disjoint blocks estimators will not

be consistent in the large blocks scenario.
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Expansion for blocks estimators Internal clusters

Convergence of internal clusters

Recall:

IC(H) =

mnX
j=1

ICj(H) ;

ICj(H) = eHIC(u�1n X (j�1)rn+1;jrn)1
�
Aj�1 \ Ac

j \ Aj+1

	
:

Proposition 9

Assume that S2+3(rn; un) holds. Assume that X is mixing. Let H � L .

Then

IC(H)

nwn

P�! �
�( eHIC) ;

CLT uniform in H is also established.

Corresponding result (with di�erent rates) for large blocks scenario.
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Expansion for blocks estimators Internal clusters

Boundary clusters - de�nition

We consider

BC(H) =

mnX
j=1

BCj(H)

with

BCj(H) = rn
�
H(X (j�1)rn+1;jrn) + H(X jrn+1;(j+1)rn)� H(X (j�1)rn+1;(j+1)rn)

	
� 1

�
Aj�1 \ Ac

j \ Ac
j+1 \ Aj+2

	
:

Example 10

If H(x) = 1fx� > 1g, then BCj(H) = rn1
n
Aj�1 \ Ac

j \ Ac
j+1 \ Aj+2

o
.
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Expansion for blocks estimators Internal clusters

Why boundary clusters?

In the small blocks scenario, large values occur at the end of one block
and beginning of the next block.

Lemma 11

Assume that S1(rn; un) (hence r2nwn ! 0) holds. Then

lim
n!1

P(Ac
1 \ Ac

2)

wn
= #E [(L(Z )� 1)] :

If the blocks are large, then the blocks behave like independent.

Lemma 12

Assume that r2nwn !1. Then

lim
n!1

P(Ac
1 \ Ac

2)

r2nw
2
n

= #2 :
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Expansion for blocks estimators Internal clusters

Extension of vague convergence

From Lemmas 11 and 12 one builds convergence of functional, in parallel
to internal clusters:

Corollary 13

Assume that S+1(rn; un) holds. Then for any eH � L ,

lim
n!1

E

h eH(u�1n X 1;2rn)1fAc
1 \ Ac

2g
i

wn
= #E

h
(L(Z )� 1) eH(Z )

i
:
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Expansion for blocks estimators Internal clusters

Convergence of boundary clusters

Let

eHBC(x) :=

L(x)�1X
i=1

fH(x)� H(x�1;i�1)� H(x i ;1)g :

Proposition 14

Assume that S2+3(rn; un) holds. Assume that X is mixing. Let H � L .

Then

BC(H)

nwn

P�! �
�( eHBC) ;

CLT uniform in H is also established.

Corresponding result (with di�erent rates) for large blocks scenario.
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Expansion for blocks estimators Expansion result

Expansion result

Theorem 15

Under the small blocks scenario

gDBn(H)� fSBn(H) = OP

�
1

rn

�
:

Under the large blocks scenario

gDBn(H)� fSBn(H) = OP (rnwn) :
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Summary

Summary

We explained what happens in PoT framework.

We extended vague convergence of clusters to unbounded functionals:
dichotomy between small and large blocks. "Statistical" implication:
inconsistency of the block estimators in the large blocks scenario.

Conditioning on the event "at least two large values" changes the
asymptotic behaviour of clusters.

General problem: convergence of E[H(X 1;rn=un) j Cn], where
P(Cn) ! 0.
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Summary

Thank you!!!!
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