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Introduction Motivation

General motivation

Let Xj be a sequence of random vectors with values in Rd . Let
H : (Rd)Z → R be a cluster functional. Let rn →∞ be a sequence of
integers (block size) and let un →∞ (threshold).

We are interested in the
limiting behaviour of

E
[
H

(
X1, . . . ,Xrn

un

)]
= E

[
H

(
X1, . . . ,Xrn

un

)
1
{
X ∗1,rn > un

}]
,

where x i ,j = (xi , . . . , xj), x∗i ,j = maxk=i ,...,j |xk |, with | · | being a norm on

Rd . Why unbounded functionals?

Inhomogeneous random graphs;

Blocks estimators for cluster indices stationary regularly varying time
series;

Statistical inference for stationary, continuous-time, regularly varying
processes.
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Introduction Background

Cluster indices - extremal index

Let X = {Xj , j ∈ Z} be a nonnegative, stationary regularly varying
sequence. Then

lim
n→∞

P (max{X1, . . . ,Xn} ≤ anx) = exp(−θx−α) ,

where θ ∈ (0, 1] is called the extremal index (whenever exists).

The
(candidate) extremal index can be represented as

θ = lim
n→∞

P(max{X1, . . . ,Xrn} > un)

rnP(X0 > un)
= lim

n→∞

P(X ∗1,rn > un)

rnwn
,

where

rn →∞ , rn/n→ 0 , un →∞ , rnwn → 0 , nwn →∞ .

We will refer to rnwn → 0 as ”Peak-over-Threshold (PoT) condition”.
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Introduction Background

Cluster indices

Note that we can-rewrite

θ = lim
n→∞

E[H(X 1,rn/un)]

rnwn

with the cluster functional H : RZ
+ → R:

H(x) = 1

{
max
j∈Z

xj > 1

}
= 1{x∗ > 1} .

the cluster size distribution obtained with

H(x) = 1

∑
j∈Z

1{xj > 1} = m

 , m ∈ N ;

(***) the large deviation index of a univariate time series obtained with 1

H(x) = 1{K (x) > 1} , K (x) =
∑
j∈Z

xj ;

1Mikosch and Wintenberger (2013, 2014)
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Introduction Background

Cluster indices - existence and representation

When does the cluster index exist? We need assumptions on rn, un; time
series; and functionals H.

Let rnwn = rnP(X0 > un)→ 0;

Anticlustering condition (extremes cannot persists for infinite horizon
time): We say that Condition AC(rn, cn) holds if for every
x , y ∈ (0,∞), 2

lim
`→∞

lim sup
n→∞

P
(

max
`≤|j |≤rn

Xj > unx | X0 > uny

)
= 0 .

The condition is valid for e.g. geometrically ergodic Markov chains. 3

2Davis and Hsing (1995)
3Kulik, Soulier, Wintenberger (2019)
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Introduction Background

Define:

ν∗n(H) =
E[H(X 1,rn/un)]

rnP(X0 > un)
=

E[H(X 1,rn/un)]

rnwn
.

Let Y be the tail process:

X
x
| X0 > x

w
=⇒ Y as x →∞ .

Note that Y0 > 1.

Theorem 1

Assume that AC(rn, cn) holds. Then ν∗n(H)→ ν∗(H) for all bounded,
continuous (w.r.t Y ), shift invariant functions H with support separated
from 0.

4

4Basrak and Segers (2009), Basrak, Planinić and Soulier (2018); Chapter VI of Kulik
and Soulier (2020)
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Introduction Background

Cluster indices - ”proof”

First jump decomposition (we can include 1
{
X ∗1,rn > un

}
for free)

E[H(X 1,rn/un)] =
rn∑
j=1

E[H(X j ,rn/un)1
{
X ∗1,j−1 ≤ un

}
1{Xj > un}] .

Stationarity and conditioning:

wn

rn∑
j=1

E[H(X−j ,rn−j/un)1
{
X ∗1−j ,−1 ≤ un

}
| X0 > un]

Divide by wn and rn to get ∫ 1

0
gn(s)ds

with
gn(s) = E

[
H(X−[rns],rn−[rns]/un)1

{
X ∗1−[rns],−1 ≤ un

}
| X0 > un

]
.

Rafa l Kulik Unbounded cluster functionals 24 October 2023 8 / 22



Introduction Background

Cluster indices - proof and representation

Use the weak convergence to the tail process along with the
anticlustering condition to get (uniformly in s ∈ [0, 1])

gn(s)→ E[H(Y )1
{
Y ∗−∞,−1 ≤ 1

}
] .

We have

ν∗(H) = E
[
H(Y )1

{
Y ∗−∞,−1 ≤ 1

}]
= θE [H(Z )] ,

where Z is a Palm version of Y . 5

Example 2

With H(x) = 1{x∗ > 1} we get

θ = ν∗(H) = E
[
1{Y ∗ > 1}1

{
Y ∗−∞,−1 ≤ 1

}]
= P(Y ∗−∞,−1 ≤ 1) ,

5Planinić (2022), Last (2023)
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Introduction Why unbounded and/or no shift-invariant cluster functionals?

Unbounded cluster functionals - continuous-time processes

For x ∈ RZ
+, let E(x) =

∑
j∈Z 1{xj > 1}.

We can write

θ = E
[

1

E(Y )

]
= E

[
1∑

j∈Z 1{Yj > 1}

]
∈ (0, 1] .

Let now X̃ = {X̃ (t), t ∈ R} be a continuous time, stationary regularly
varying process and let Ỹ be the corresponding tail process. For
x = {x(t), t ∈ R}, let Ec(x) =

∫
R 1{x(t) > 1}dt. Then 6

θc = E

[
1

Ec(Ỹ )

]
∈ (0,∞] .

Implication: let Xj := X̃ (tj) be a sample from X̃ . Estimation of the
extremal index θc involves the unbounded functional.

6Soulier (2021)
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Introduction Why unbounded and/or no shift-invariant cluster functionals?

Unbounded cluster functional - blocks estimators

Let mn = [n/rn] and consider the disjoint and sliding estimators of ν∗(H):

D̃Bn(H) =
1

nP(X0 > un)

mn∑
i=1

H(X (i−1)rn+1,irn/un) ,

S̃Bn(H) =
1

nrnP(X0 > un)

n−rn∑
i=1

H(X i ,rn+i−1/un) .

Note that

ν∗(H) = lim
n→∞

E[D̃Bn(H)] = lim
n→∞

E[S̃Bn(H)] .
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Introduction Why unbounded and/or no shift-invariant cluster functionals?

Unbounded cluster functional - blocks estimators

Theorem 3

Let {Xj , j ∈ Z} be a stationary, regularly varying univariate time series.
Under the ”appropriate” conditions

√
nwn

{
D̃Bn(H)− ν∗(H)

}
d−→ G(H) ,

where G is a centered Gaussian process with the variance ν∗(H2).

The same asymptotics holds also for sliding blocks. 7 This is in
contrast to Block Maxima method. 8

7Drees and Rootzen (2010); Chapter X of Kulik and Soulier (2020); Cissokho and
Kulik (2021,2022); Drees and Neblung (2021)

8Bücher and Segers (2018a, 2018b)
Rafa l Kulik Unbounded cluster functionals 24 October 2023 12 / 22



Introduction Why unbounded and/or no shift-invariant cluster functionals?

Unbounded cluster functional - blocks estimators

Goal: expand

D̃Bn(H)− S̃Bn(H) .

The expansion has the form

D̃Bn(H)− S̃Bn(H) ≈ 1

nrnwn
IC(H) + the remainder ,

where IC is given by (approximately)

IC(H) =
mn∑
j=1

ICj(H) ,

with
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Introduction Why unbounded and/or no shift-invariant cluster functionals?

Unbounded cluster functional - blocks estimators

ICj(H) = H̃IC(u−1
n X (j−1)rn+1,jrn)1

{
X ∗1,rn > un

}
;

H̃IC(x) :=
∑E(x)−1

i=1 ∆Ti (x){H(x−∞,Ti (x)) + H(xTi+1(x),∞)− H(x)};
Ti (x) are the locations of consecutive exceedences over 1 and
∆Ti (x) = Ti+1(x)− Ti (x);

Cluster length functional

L(x) = Tmax(x)− Tmin(x) + 1 .

Example 4

Take H(x) = 1{x∗ > 1}. Then H̃IC(x) = L(x)− 1. Important:
Starting with bounded H, we get unbounded H̃IC.
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Starting with bounded H, we get unbounded H̃IC.
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Results for unbounded functionals I

Jump locations

Note: Ti are neither bounded nor shift-invariant.

Theorem 5

Assume that AC(rn, cn) hold. Let a random variable U be Uniform(0, 1).
Then, conditionally on X ∗1,rn > un,

r−1
n (Tmin(X 1,rn/un),Tmax(X 1,rn/un))

w
=⇒ (U,U) .

Corollary 6

Let γ > 0. Under the same conditions,

lim
n→∞

E[T γ
min(X 1,rn/un)]

rγ+1
n wn

= lim
n→∞

E[T γ
max(X 1,rn/un)]

rγ+1
n wn

=
1

γ + 1
θ .

Application: an alternative estimator of the extremal index (with a smaller
bias).
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Results for unbounded functionals II

Unbounded, shift-invariant functionals

Note: L is not bounded but shift-invariant. Recall:

Theorem 7

Let

ν∗n(H) =
E[H(X 1,rn/un)1

{
X ∗1,rn > un

}
]

rnwn
.

Assume that AC(rn, cn) holds. Then ν∗n(H)→ ν∗(H) for all bounded
continuous shift invariant functions H with support separated from 0.

We need to extend it to unbounded functionals H.
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Results for unbounded functionals II

Unbounded, shift-invariant functionals

Definition 8

Condition Sγ(rn, un) holds if for all s, t > 0

lim
`→∞

lim sup
n→∞

1

P(X0 > un)

rn∑
i=`

iγP(X0 > uns,Xi > unt) = 0 . (Sγ(rn, un))

The stronger anticustering condition can be viewed as uniform
integrability condition.

The condition is roughly equivalent to the small blocks assumption:
rγ+1
n wn → 0.

It can be verified for many time series models.
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Results for unbounded functionals II

Unbounded, shift-invariant functionals

Under the small blocks condition, the business is as usual:

Theorem 9

Assume that Sγ(rn, un) holds (hence rγ+1
n wn → 0). Then for any H ≤ Lγ

lim
n→∞

1

rnwn
E
[
H(X 1,rn/un)1

{
X ∗1,rn > un

}]
= ν∗(H) .

This is basically the uniform integrability. In particular, the cluster length
(unlike the jump locations) is tight under the limiting conditional law.
Moreover, E[Lγ(X 1,rn/un) | X ∗1,rn > un] converges to a finite constant. 9

9See Drees and Rootzen (2010) along with the correction note
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Results for unbounded functionals II

Unbounded, shift-invariant functionals

If large blocks are considered, the situation changes:

Theorem 10

Assume that AC(rn, cn) holds and rγ+1
n wn →∞. Assume that X is

mixing. Then

lim
n→∞

1

rγ+2
n w2

n

E
[
Lγ(X 1,rn/un)1

{
X ∗1,rn > un

}]
=

1

(γ + 1)(γ + 2)
θ2 .

Hence, in the large blocks scenario, E[Lγ(X 1,rn/un) | X ∗1,rn > un]→∞.
From the statistical perspective, the disjoint blocks estimators will
not be consistent in the large blocks scenario.
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Summary

Summary

We extended vague convergence of clusters to unbounded functionals,
non-shift invariant functionals (jump locations are uniform over each
block);

We extended vague convergence of clusters to unbounded functionals:
dichotomy between small and large blocks; ”Statistical” implication:
inconsistency of the block estimators in the large blocks scenario.

Extension (not discussed here): Conditioning on the event ”at least
one large value in two consecutive blocks” changes the asymptotic
behaviour of clusters.
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