#### Limit theorems for unbounded cluster functionals

#### Rafał Kulik

Department of Mathematics and Statistics (University of Ottawa)

New Perspectives in the Theory of Extreme Values, Dubrovnik, Croatia

Joint work with Zaoli Chen

24 October 2023

# Plan

#### Introduction

- Motivation
- Background
- Why unbounded and/or no shift-invariant cluster functionals?

Results for unbounded functionals I

- 8 Results for unbounded functionals II
- 4 Summary



#### General motivation

Let  $X_j$  be a sequence of random vectors with values in  $\mathbb{R}^d$ . Let  $H : (\mathbb{R}^d)^{\mathbb{Z}} \to \mathbb{R}$  be a *cluster functional*. Let  $r_n \to \infty$  be a sequence of integers (*block size*) and let  $u_n \to \infty$  (*threshold*).

< 回 ト < 三 ト < 三 ト

#### General motivation

Let  $X_j$  be a sequence of random vectors with values in  $\mathbb{R}^d$ . Let  $H : (\mathbb{R}^d)^{\mathbb{Z}} \to \mathbb{R}$  be a *cluster functional*. Let  $r_n \to \infty$  be a sequence of integers (*block size*) and let  $u_n \to \infty$  (*threshold*). We are interested in the limiting behaviour of

$$\mathbb{E}\left[H\left(\frac{X_{1},\ldots,X_{r_{n}}}{u_{n}}\right)\right] = \mathbb{E}\left[H\left(\frac{X_{1},\ldots,X_{r_{n}}}{u_{n}}\right)\mathbb{1}\left\{\boldsymbol{X}_{1,r_{n}}^{*} > u_{n}\right\}\right],$$
  
where  $\boldsymbol{x}_{i,j} = (x_{i},\ldots,x_{j}), \ \boldsymbol{x}_{i,j}^{*} = \max_{k=i,\ldots,j}|x_{k}|, \text{ with } |\cdot| \text{ being a norm or } \mathbb{R}^{d}.$ 

### General motivation

Let  $X_j$  be a sequence of random vectors with values in  $\mathbb{R}^d$ . Let  $H : (\mathbb{R}^d)^{\mathbb{Z}} \to \mathbb{R}$  be a *cluster functional*. Let  $r_n \to \infty$  be a sequence of integers (*block size*) and let  $u_n \to \infty$  (*threshold*). We are interested in the limiting behaviour of

$$\mathbb{E}\left[H\left(\frac{X_1,\ldots,X_{r_n}}{u_n}\right)\right] = \mathbb{E}\left[H\left(\frac{X_1,\ldots,X_{r_n}}{u_n}\right)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^* > u_n\right\}\right],$$

where  $\mathbf{x}_{i,j} = (x_i, \dots, x_j)$ ,  $\mathbf{x}_{i,j}^* = \max_{k=i,\dots,j} |x_k|$ , with  $|\cdot|$  being a norm on  $\mathbb{R}^d$ . Why unbounded functionals?

- Inhomogeneous random graphs;
- Blocks estimators for *cluster indices* stationary regularly varying time series;
- Statistical inference for stationary, continuous-time, regularly varying processes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

# Cluster indices - extremal index

Let  $\mathbf{X} = \{X_j, j \in \mathbb{Z}\}$  be a nonnegative, stationary regularly varying sequence. Then

$$\lim_{n\to\infty}\mathbb{P}\left(\max\{X_1,\ldots,X_n\}\leq a_nx\right)=\exp(-\theta x^{-\alpha}),$$

where  $\theta \in (0, 1]$  is called the *extremal index* (whenever exists).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

# Cluster indices - extremal index

Let  $\mathbf{X} = \{X_j, j \in \mathbb{Z}\}$  be a nonnegative, stationary regularly varying sequence. Then

$$\lim_{n\to\infty}\mathbb{P}\left(\max\{X_1,\ldots,X_n\}\leq a_nx\right)=\exp(-\theta x^{-\alpha}),$$

where  $\theta \in (0,1]$  is called the *extremal index* (whenever exists). The (candidate) extremal index can be represented as

$$\theta = \lim_{n \to \infty} \frac{\mathbb{P}(\max\{X_1, \ldots, X_{r_n}\} > u_n)}{r_n \mathbb{P}(X_0 > u_n)} = \lim_{n \to \infty} \frac{\mathbb{P}(\boldsymbol{X}_{1, r_n}^* > u_n)}{r_n w_n} ,$$

where

$$r_n 
ightarrow \infty \;, \;\; r_n/n 
ightarrow 0 \;, \;\; u_n 
ightarrow \infty \;, \;\; r_n w_n 
ightarrow 0 \;, \;\; n w_n 
ightarrow \infty \;.$$

イロト 不得 トイヨト イヨト 二日

# Cluster indices - extremal index

Let  $\mathbf{X} = \{X_j, j \in \mathbb{Z}\}$  be a nonnegative, stationary regularly varying sequence. Then

$$\lim_{n\to\infty}\mathbb{P}\left(\max\{X_1,\ldots,X_n\}\leq a_nx\right)=\exp(-\theta x^{-\alpha}),$$

where  $\theta \in (0, 1]$  is called the *extremal index* (whenever exists). The (candidate) extremal index can be represented as

$$\theta = \lim_{n \to \infty} \frac{\mathbb{P}(\max\{X_1, \dots, X_{r_n}\} > u_n)}{r_n \mathbb{P}(X_0 > u_n)} = \lim_{n \to \infty} \frac{\mathbb{P}(\boldsymbol{X}_{1, r_n}^* > u_n)}{r_n w_n} ,$$

where

$$r_n \to \infty \;, \ r_n/n \to 0 \;, \ u_n \to \infty \;, \ r_n w_n \to 0 \;, \ n w_n \to \infty \;.$$

We will refer to  $r_n w_n \rightarrow 0$  as "Peak-over-Threshold (PoT) condition".

글 > - + 글 >

- 31

# Cluster indices

Note that we can-rewrite

$$\theta = \lim_{n \to \infty} \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n w_n}$$

with the cluster functional  $H : \mathbb{R}^{\mathbb{Z}}_+ \to \mathbb{R}$ :

$$\mathcal{H}(oldsymbol{x}) = \mathbbm{1}igg\{\max_{j\in\mathbb{Z}}x_j>1igg\} = \mathbbm{1}ig\{oldsymbol{x}^*>1ig\} \;.$$

• the cluster size distribution obtained with

$$\mathcal{H}(oldsymbol{x}) = \mathbbmspace{1}{1} \left\{ \sum_{j \in \mathbb{Z}} \mathbbmsssssssssssssssssssssssssssssssm \} + oldsymbol{m} \in \mathbb{N} \ ;$$

• (\*\*\*) the large deviation index of a univariate time series obtained with  $^1$ 

$$H(\mathbf{x}) = \mathbb{1}\{K(\mathbf{x}) > 1\}, \ K(\mathbf{x}) = \sum_{j \in \mathbb{Z}} x_j;$$

<sup>1</sup>Mikosch and Wintenberger (2013, 2014)

- 31

(日) (周) (日) (日)

When does the cluster index exist? We need assumptions on  $r_n$ ,  $u_n$ ; time series; and functionals H.

<sup>2</sup>Davis and Hsing (1995) <sup>3</sup>Kulik, Soulier, Wintenberger (2019)

Rafał Kulik

Unbounded cluster functionals

24 October 2023 6 / 22

When does the cluster index exist? We need assumptions on  $r_n$ ,  $u_n$ ; time series; and functionals H.

• Let 
$$r_n w_n = r_n \mathbb{P}(X_0 > u_n) \rightarrow 0;$$

<sup>2</sup>Davis and Hsing (1995) <sup>3</sup>Kulik, Soulier, Wintenberger (2019)

Rafał Kulik

Unbounded cluster functionals

24 October 2023 6 / 22

When does the cluster index exist? We need assumptions on  $r_n$ ,  $u_n$ ; time series; and functionals H.

• Let 
$$r_n w_n = r_n \mathbb{P}(X_0 > u_n) \rightarrow 0$$
;

Anticlustering condition (extremes cannot persists for infinite horizon time): We say that Condition AC(r<sub>n</sub>, c<sub>n</sub>) holds if for every x, y ∈ (0,∞), <sup>2</sup>

$$\lim_{\ell \to \infty} \limsup_{n \to \infty} \mathbb{P}\left( \max_{\ell \le |j| \le r_n} X_j > u_n x \mid X_0 > u_n y \right) = 0 \; .$$

<sup>2</sup>Davis and Hsing (1995) <sup>3</sup>Kulik. Soulier. Wintenberger (2019)

Rafał Kulik

Unbounded cluster functionals

24 October 2023 6 / 22

When does the cluster index exist? We need assumptions on  $r_n$ ,  $u_n$ ; time series; and functionals H.

• Let 
$$r_n w_n = r_n \mathbb{P}(X_0 > u_n) \rightarrow 0;$$

Anticlustering condition (extremes cannot persists for infinite horizon time): We say that Condition AC(r<sub>n</sub>, c<sub>n</sub>) holds if for every x, y ∈ (0,∞), <sup>2</sup>

$$\lim_{\ell \to \infty} \limsup_{n \to \infty} \mathbb{P}\left( \max_{\ell \le |j| \le r_n} X_j > u_n x \mid X_0 > u_n y \right) = 0 \; .$$

The condition is valid for e.g. geometrically ergodic Markov chains. <sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Davis and Hsing (1995)

<sup>&</sup>lt;sup>3</sup>Kulik, Soulier, Wintenberger (2019)

Define:

$$\boldsymbol{\nu}_n^*(H) = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n \mathbb{P}(X_0 > u_n)} = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n w_n}$$

<sup>4</sup>Basrak and Segers (2009), Basrak, Planinić and Soulier (2018); Chapter VI of Kulik and Soulier (2020)

Rafał Kulik

Unbounded cluster functionals

24 October 2023 7 / 22

٠

Define:

$$\boldsymbol{\nu}_n^*(H) = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n \mathbb{P}(X_0 > u_n)} = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n w_n}$$

Let **Y** be the tail process:

$$\frac{\boldsymbol{X}}{x} \mid X_0 > x \stackrel{w}{\Longrightarrow} \boldsymbol{Y} \text{ as } x \to \infty .$$

Note that  $Y_0 > 1$ .

<sup>4</sup>Basrak and Segers (2009), Basrak, Planinić and Soulier (2018); Chapter VI of Kulik and Soulier (2020) Image: A match a ma

Rafał Kulik

٠

Define:

$$\boldsymbol{\nu}_n^*(H) = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n \mathbb{P}(X_0 > u_n)} = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n w_n}$$

Let **Y** be the tail process:

$$\frac{\boldsymbol{X}}{x} \mid X_0 > x \stackrel{w}{\Longrightarrow} \boldsymbol{Y} \text{ as } x \to \infty .$$

Note that  $Y_0 > 1$ .

#### Theorem 1

Assume that  $\mathcal{AC}(r_n, c_n)$  holds. Then  $\nu_n^*(H) \rightarrow \nu^*(H)$  for all bounded, continuous (w.r.t Y), shift invariant functions H with support separated from 0.

4

<sup>4</sup>Basrak and Segers (2009), Basrak, Planinić and Soulier (2018); Chapter VI of Kulik and Soulier (2020)

Rafał Kulik

Unbounded cluster functionals

24 October 2023 7 / 22

# Cluster indices - "proof"

• First jump decomposition (we can include  $\mathbb{1}\{X_{1,r_n}^* > u_n\}$  for free)

$$\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)] = \sum_{j=1}^{r_n} \mathbb{E}[H(\boldsymbol{X}_{j,r_n}/u_n)\mathbb{1}\{\boldsymbol{X}_{1,j-1}^* \leq u_n\}\mathbb{1}\{X_j > u_n\}].$$

Stationarity and conditioning:

$$w_n \sum_{j=1}^{r_n} \mathbb{E}[H(\boldsymbol{X}_{-j,r_n-j}/u_n) \mathbb{1}\{\boldsymbol{X}_{1-j,-1}^* \leq u_n\} \mid X_0 > u_n]$$

• Divide by  $w_n$  and  $r_n$  to get

$$\int_0^1 g_n(s) \mathrm{d}s$$

with 
$$g_n(s) = \mathbb{E}\left[H(\boldsymbol{X}_{-[r_n s], r_n - [r_n s]}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1-[r_n s], -1}^* \leq u_n\right\} \mid X_0 > u_n\right].$$

### Cluster indices - proof and representation

• Use the weak convergence to the tail process along with the anticlustering condition to get (uniformly in  $s \in [0, 1]$ )

$$g_n(s) o \mathbb{E}[H(\mathbf{Y})\mathbb{1}\{\mathbf{Y}^*_{-\infty,-1} \leq 1\}]$$
.

<sup>5</sup>Planinić (2022), Last (2023)

Rafał Kulik

# Cluster indices - proof and representation

• Use the weak convergence to the tail process along with the anticlustering condition to get (uniformly in  $s \in [0, 1]$ )

$$g_n(s) o \mathbb{E}[H(oldsymbol{Y})\mathbb{1}\left\{oldsymbol{Y}^*_{-\infty,-1} \leq 1
ight\}]$$
 .

We have

$$oldsymbol{
u}^*(oldsymbol{H}) = \mathbb{E}\left[oldsymbol{H}(oldsymbol{Y})\mathbbm{1}ig\{oldsymbol{Y}^*_{-\infty,-1} \leq 1ig\}
ight] = heta\mathbb{E}\left[oldsymbol{H}(oldsymbol{Z})
ight] \;,$$

where Z is a Palm version of Y. <sup>5</sup>

<sup>5</sup>Planinić (2022), Last (2023)

## Cluster indices - proof and representation

• Use the weak convergence to the tail process along with the anticlustering condition to get (uniformly in  $s \in [0, 1]$ )

$$g_n(s) o \mathbb{E}[H(\boldsymbol{Y})\mathbb{1}\left\{ \boldsymbol{Y}^*_{-\infty,-1} \leq 1 
ight\}]$$
 .

We have

$$oldsymbol{
u}^*(oldsymbol{H}) = \mathbb{E}\left[oldsymbol{H}(oldsymbol{Y})\mathbbm{1}ig\{oldsymbol{Y}^*_{-\infty,-1} \leq 1ig\}
ight] = heta\mathbb{E}\left[oldsymbol{H}(oldsymbol{Z})
ight] \;,$$

where Z is a Palm version of Y.<sup>5</sup>

Example 2

• With 
$$H(\mathbf{x}) = \mathbb{1}\{\mathbf{x}^* > 1\}$$
 we get

$$heta = oldsymbol{
u}^*(oldsymbol{H}) = \mathbb{E}\left[\mathbbm{1}\{oldsymbol{Y}^* > 1\}\mathbbm{1}ig\{oldsymbol{Y}^*_{-\infty,-1} \leq 1ig\}
ight] = \mathbb{P}(oldsymbol{Y}^*_{-\infty,-1} \leq 1),$$

<sup>5</sup>Planinić (2022), Last (2023)

Rafał Kulik

Unbounded cluster functionals - continuous-time processes

For  $\boldsymbol{x} \in \mathbb{R}_+^{\mathbb{Z}}$ , let  $\mathcal{E}(\boldsymbol{x}) = \sum_{j \in \mathbb{Z}} \mathbb{1}\{x_j > 1\}.$ 

<sup>6</sup>Soulier (2021) Rafat Kulik

< 67 ▶

Unbounded cluster functionals - continuous-time processes

For 
$$\mathbf{x} \in \mathbb{R}_+^{\mathbb{Z}}$$
, let  $\mathcal{E}(\mathbf{x}) = \sum_{j \in \mathbb{Z}} \mathbb{1}\{x_j > 1\}$ . We can write  
 $\theta = \mathbb{E}\left[\frac{1}{\mathcal{E}(\mathbf{Y})}\right] = \mathbb{E}\left[\frac{1}{\sum_{j \in \mathbb{Z}} \mathbb{1}\{Y_j > 1\}}\right] \in (0, 1]$ .

<sup>6</sup>Soulier (2021) Rafat Kulik Unbounded cluster functionals - continuous-time processes

For 
$$\pmb{x} \in \mathbb{R}_+^{\mathbb{Z}}$$
, let  $\mathcal{E}(\pmb{x}) = \sum_{j \in \mathbb{Z}} \mathbb{1}\{x_j > 1\}$ . We can write

$$heta = \mathbb{E}\left[rac{1}{\mathcal{E}(oldsymbol{Y})}
ight] = \mathbb{E}\left[rac{1}{\sum_{j\in\mathbb{Z}}\mathbbm{1}\{Y_j>1\}}
ight] \in (0,1] \ .$$

Let now  $\widetilde{\mathbf{X}} = \{\widetilde{X}(t), t \in \mathbb{R}\}$  be a continuous time, stationary regularly varying process and let  $\widetilde{\mathbf{Y}}$  be the corresponding tail process. For  $\mathbf{x} = \{x(t), t \in \mathbb{R}\}$ , let  $\mathcal{E}_c(\mathbf{x}) = \int_{\mathbb{R}} \mathbb{1}\{x(t) > 1\} dt$ . Then <sup>6</sup>

$$heta_c = \mathbb{E}\left[rac{1}{\mathcal{E}_c(\widetilde{oldsymbol{Y}})}
ight] \in (0,\infty] \ .$$

<sup>6</sup>Soulier (2021)

Rafał Kulik

24 October 2023

10 / 22

10 / 22

Unbounded cluster functionals - continuous-time processes

For 
$$\pmb{x} \in \mathbb{R}_+^{\mathbb{Z}}$$
, let  $\mathcal{E}(\pmb{x}) = \sum_{j \in \mathbb{Z}} \mathbb{1}\{x_j > 1\}$ . We can write

$$heta = \mathbb{E}\left[rac{1}{\mathcal{E}(oldsymbol{Y})}
ight] = \mathbb{E}\left[rac{1}{\sum_{j\in\mathbb{Z}}\mathbbm{1}\{Y_j>1\}}
ight] \in (0,1] \ .$$

Let now  $\widetilde{\mathbf{X}} = \{\widetilde{X}(t), t \in \mathbb{R}\}$  be a continuous time, stationary regularly varying process and let  $\widetilde{\mathbf{Y}}$  be the corresponding tail process. For  $\mathbf{x} = \{x(t), t \in \mathbb{R}\}$ , let  $\mathcal{E}_c(\mathbf{x}) = \int_{\mathbb{R}} \mathbb{1}\{x(t) > 1\} dt$ . Then <sup>6</sup>

$$heta_c = \mathbb{E}\left[rac{1}{\mathcal{E}_c(\widetilde{oldsymbol{arphi}})}
ight] \in (0,\infty] \ .$$

Implication: let  $X_j := \widetilde{X}(t_j)$  be a sample from  $\widetilde{X}$ . Estimation of the extremal index  $\theta_c$  involves the unbounded functional.

<sup>6</sup>Soulier (2021) Rafał Kulik Unbounded cluster functionals 24 October 2023

Let  $m_n = [n/r_n]$  and consider the disjoint and sliding estimators of  $\nu^*(H)$ :

$$\widetilde{\mathrm{DB}}_n(H) = \frac{1}{n\mathbb{P}(X_0 > u_n)} \sum_{i=1}^{m_n} H(\boldsymbol{X}_{(i-1)r_n+1, ir_n}/u_n) ,$$

$$\widetilde{SB}_n(H) = \frac{1}{nr_n \mathbb{P}(X_0 > u_n)} \sum_{i=1}^{n-r_n} H(\boldsymbol{X}_{i,r_n+i-1}/u_n) .$$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let  $m_n = [n/r_n]$  and consider the disjoint and sliding estimators of  $\nu^*(H)$ :

$$\widetilde{\mathrm{DB}}_n(H) = \frac{1}{n\mathbb{P}(X_0 > u_n)} \sum_{i=1}^{m_n} H(\boldsymbol{X}_{(i-1)r_n+1, ir_n}/u_n) ,$$

$$\widetilde{\mathrm{SB}}_n(H) = \frac{1}{nr_n \mathbb{P}(X_0 > u_n)} \sum_{i=1}^{n-r_n} H(\boldsymbol{X}_{i,r_n+i-1}/u_n) \ .$$

Note that

$$\nu^*(H) = \lim_{n \to \infty} \mathbb{E}[\widetilde{\mathrm{DB}}_n(H)] = \lim_{n \to \infty} \mathbb{E}[\widetilde{\mathrm{SB}}_n(H)] .$$

イロト 人間ト イヨト イヨト

#### Theorem 3

Let  $\{X_j, j \in \mathbb{Z}\}$  be a stationary, regularly varying univariate time series. Under the "appropriate" conditions

$$\sqrt{nw_n}\left\{\widetilde{\mathrm{DB}}_n(H)-\nu^*(H)\right\}\overset{\mathrm{d}}{\longrightarrow}\mathbb{G}(H)\ ,$$

where  $\mathbb{G}$  is a centered Gaussian process with the variance  $\nu^*(H^2)$ .

The same asymptotics holds also for sliding blocks.  $^7$  This is in contrast to Block Maxima method.  $^8$ 

<sup>7</sup>Drees and Rootzen (2010); Chapter X of Kulik and Soulier (2020); Cissokho and Kulik (2021,2022); Drees and Neblung (2021) <sup>8</sup>Bücher and Segers (2018a, 2018b)

Rafał Kulik

24 October 2023 12 / 22

Goal: expand

 $\widetilde{\mathrm{DB}}_n(H)-\widetilde{\mathrm{SB}}_n(H)\;.$ 

3

- 4 回 ト - 4 回 ト

Goal: expand

$$\widetilde{\mathrm{DB}}_n(H) - \widetilde{\mathrm{SB}}_n(H)$$
.

The expansion has the form

$$\widetilde{\mathrm{DB}}_n(H) - \widetilde{\mathrm{SB}}_n(H) \approx \frac{1}{nr_n w_n} \mathcal{IC}(H) + \mathrm{the\ remainder}\ ,$$

where  $\mathcal{IC}$  is given by (approximately)

Goal: expand

$$\widetilde{\mathrm{DB}}_n(H) - \widetilde{\mathrm{SB}}_n(H)$$
.

The expansion has the form

$$\widetilde{\mathrm{DB}}_n(H) - \widetilde{\mathrm{SB}}_n(H) \approx \frac{1}{nr_n w_n} \mathcal{IC}(H) + \mathrm{the\ remainder}\ ,$$

where  $\mathcal{IC}$  is given by (approximately)

$$\mathcal{IC}(H) = \sum_{j=1}^{m_n} \mathcal{IC}_j(H) \; ,$$

with

• 
$$\mathcal{IC}_{j}(H) = \widetilde{H}_{\mathcal{IC}}(u_{n}^{-1}\boldsymbol{X}_{(j-1)r_{n}+1,jr_{n}})\mathbb{1}\{\boldsymbol{X}_{1,r_{n}}^{*} > u_{n}\};$$

3

(日) (同) (三) (三)

• 
$$\mathcal{IC}_{j}(H) = \widetilde{H}_{\mathcal{IC}}(u_{n}^{-1}\boldsymbol{X}_{(j-1)r_{n}+1,jr_{n}})\mathbb{1}\{\boldsymbol{X}_{1,r_{n}}^{*} > u_{n}\};$$
  
•  $\widetilde{H}_{\mathcal{IC}}(\boldsymbol{x}) := \sum_{i=1}^{\mathcal{E}(\boldsymbol{x})-1} \Delta T_{i}(\boldsymbol{x})\{H(\boldsymbol{x}_{-\infty,T_{i}(\boldsymbol{x})}) + H(\boldsymbol{x}_{T_{i+1}(\boldsymbol{x}),\infty}) - H(\boldsymbol{x})\};$ 

3

(日) (同) (三) (三)

• 
$$\mathcal{IC}_j(H) = \widetilde{H}_{\mathcal{IC}}(u_n^{-1}\boldsymbol{X}_{(j-1)r_n+1,jr_n})\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\};$$

• 
$$\widetilde{H}_{\mathcal{IC}}(\mathbf{x}) := \sum_{i=1}^{\mathcal{E}(\mathbf{x})-1} \Delta T_i(\mathbf{x}) \{ H(\mathbf{x}_{-\infty,T_i(\mathbf{x})}) + H(\mathbf{x}_{T_{i+1}(\mathbf{x}),\infty}) - H(\mathbf{x}) \};$$

•  $T_i(\mathbf{x})$  are the locations of consecutive exceedences over 1 and  $\Delta T_i(\mathbf{x}) = T_{i+1}(\mathbf{x}) - T_i(\mathbf{x})$ ;

• 
$$\mathcal{IC}_j(H) = \widetilde{H}_{\mathcal{IC}}(u_n^{-1}\boldsymbol{X}_{(j-1)r_n+1,jr_n})\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\};$$

• 
$$\widetilde{H}_{\mathcal{IC}}(\mathbf{x}) := \sum_{i=1}^{\mathcal{E}(\mathbf{x})-1} \Delta T_i(\mathbf{x}) \{ H(\mathbf{x}_{-\infty,T_i(\mathbf{x})}) + H(\mathbf{x}_{T_{i+1}(\mathbf{x}),\infty}) - H(\mathbf{x}) \};$$

- $T_i(\mathbf{x})$  are the locations of consecutive exceedences over 1 and  $\Delta T_i(\mathbf{x}) = T_{i+1}(\mathbf{x}) T_i(\mathbf{x})$ ;
- Cluster length functional

$$\mathcal{L}(\mathbf{x}) = \mathcal{T}_{\max}(\mathbf{x}) - \mathcal{T}_{\min}(\mathbf{x}) + 1 \; .$$

< 回 ト < 三 ト < 三 ト

• 
$$\mathcal{IC}_j(H) = \widetilde{H}_{\mathcal{IC}}(u_n^{-1}\boldsymbol{X}_{(j-1)r_n+1,jr_n})\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\};$$

• 
$$\widetilde{H}_{\mathcal{IC}}(\mathbf{x}) := \sum_{i=1}^{\mathcal{E}(\mathbf{x})-1} \Delta T_i(\mathbf{x}) \{ H(\mathbf{x}_{-\infty,T_i(\mathbf{x})}) + H(\mathbf{x}_{T_{i+1}(\mathbf{x}),\infty}) - H(\mathbf{x}) \};$$

- $T_i(\mathbf{x})$  are the locations of consecutive exceedences over 1 and  $\Delta T_i(\mathbf{x}) = T_{i+1}(\mathbf{x}) T_i(\mathbf{x});$
- Cluster length functional

$$\mathcal{L}(\mathbf{x}) = \mathcal{T}_{\max}(\mathbf{x}) - \mathcal{T}_{\min}(\mathbf{x}) + 1 \; .$$

Example 4

$$\mathsf{Take} \ \mathcal{H}(\boldsymbol{x}) = \mathbb{1}\{\boldsymbol{x}^* > 1\}. \ \mathsf{Then} \ \widetilde{\mathcal{H}}_{\mathcal{IC}}(\boldsymbol{x}) = \mathcal{L}(\boldsymbol{x}) - 1.$$

• 
$$\mathcal{IC}_j(H) = \widetilde{H}_{\mathcal{IC}}(u_n^{-1}\boldsymbol{X}_{(j-1)r_n+1,jr_n})\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\};$$

• 
$$\widetilde{H}_{\mathcal{IC}}(\mathbf{x}) := \sum_{i=1}^{\mathcal{E}(\mathbf{x})-1} \Delta T_i(\mathbf{x}) \{ H(\mathbf{x}_{-\infty,T_i(\mathbf{x})}) + H(\mathbf{x}_{T_{i+1}(\mathbf{x}),\infty}) - H(\mathbf{x}) \};$$

- $T_i(\mathbf{x})$  are the locations of consecutive exceedences over 1 and  $\Delta T_i(\mathbf{x}) = T_{i+1}(\mathbf{x}) T_i(\mathbf{x});$
- Cluster length functional

$$\mathcal{L}(oldsymbol{x}) = \mathcal{T}_{ ext{max}}(oldsymbol{x}) - \mathcal{T}_{ ext{min}}(oldsymbol{x}) + 1 \; .$$

#### Example 4

Take  $H(\mathbf{x}) = \mathbb{1}\{\mathbf{x}^* > 1\}$ . Then  $\widetilde{H}_{\mathcal{IC}}(\mathbf{x}) = \mathcal{L}(\mathbf{x}) - 1$ . Important: Starting with bounded H, we get unbounded  $\widetilde{H}_{\mathcal{IC}}$ .

Note:  $T_i$  are neither bounded nor shift-invariant.

æ

(日) (周) (三) (三)

Note:  $T_i$  are neither bounded nor shift-invariant.

Theorem 5

Assume that  $\mathcal{AC}(r_n, c_n)$  hold. Let a random variable U be Uniform(0, 1). Then, conditionally on  $X_{1,r_n}^* > u_n$ ,

$$r_n^{-1}(T_{\min}(\boldsymbol{X}_{1,r_n}/u_n),T_{\max}(\boldsymbol{X}_{1,r_n}/u_n)) \stackrel{w}{\Longrightarrow} (U,U) \;.$$

- 4 同 6 4 日 6 4 日 6

Note:  $T_i$  are neither bounded nor shift-invariant.

Theorem 5

Assume that  $\mathcal{AC}(r_n, c_n)$  hold. Let a random variable U be Uniform(0, 1). Then, conditionally on  $\mathbf{X}^*_{1,r_n} > u_n$ ,

$$r_n^{-1}(T_{\min}(\boldsymbol{X}_{1,r_n}/u_n), T_{\max}(\boldsymbol{X}_{1,r_n}/u_n)) \stackrel{w}{\Longrightarrow} (U,U)$$
.

#### Corollary 6

Let  $\gamma > 0$ . Under the same conditions,

$$\lim_{n\to\infty}\frac{\mathbb{E}[\mathcal{T}_{\min}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n^{\gamma+1}w_n}=\lim_{n\to\infty}\frac{\mathbb{E}[\mathcal{T}_{\max}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n^{\gamma+1}w_n}=\frac{1}{\gamma+1}\theta.$$

(日) (同) (日) (日) (日)

1

Note:  $T_i$  are neither bounded nor shift-invariant.

Theorem 5

Assume that  $\mathcal{AC}(r_n, c_n)$  hold. Let a random variable U be Uniform(0, 1). Then, conditionally on  $\mathbf{X}^*_{1,r_n} > u_n$ ,

$$\mathcal{L}_n^{-1}\left(\mathcal{T}_{\min}(\boldsymbol{X}_{1,r_n}/u_n), \mathcal{T}_{\max}(\boldsymbol{X}_{1,r_n}/u_n)\right) \stackrel{w}{\Longrightarrow} (U,U) \;.$$

#### Corollary 6

Let  $\gamma > 0$ . Under the same conditions,

$$\lim_{n\to\infty}\frac{\mathbb{E}[\mathcal{T}_{\min}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n^{\gamma+1}w_n}=\lim_{n\to\infty}\frac{\mathbb{E}[\mathcal{T}_{\max}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)]}{r_n^{\gamma+1}w_n}=\frac{1}{\gamma+1}\theta.$$

Application: an alternative estimator of the extremal index (*with a smaller bias*).

Rafał Kulik

Note:  $\mathcal{L}$  is not bounded but shift-invariant. Recall:

Theorem 7

Let

$$\boldsymbol{\nu}_n^*(H) = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\}]}{r_n w_n}$$

Assume that  $\mathcal{AC}(r_n, c_n)$  holds. Then  $\nu_n^*(H) \rightarrow \nu^*(H)$  for all bounded continuous shift invariant functions H with support separated from **0**.

.

Note:  $\ensuremath{\mathcal{L}}$  is not bounded but shift-invariant. Recall:

Theorem 7

Let

$$\boldsymbol{\nu}_n^*(H) = \frac{\mathbb{E}[H(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\{\boldsymbol{X}_{1,r_n}^* > u_n\}]}{r_n w_n}$$

Assume that  $\mathcal{AC}(r_n, c_n)$  holds. Then  $\nu_n^*(H) \rightarrow \nu^*(H)$  for all bounded continuous shift invariant functions H with support separated from  $\mathbf{0}$ .

We need to extend it to unbounded functionals H.

.

#### Definition 8

Condition  $S_{\gamma}(r_n, u_n)$  holds if for all s, t > 0

$$\lim_{\ell\to\infty}\limsup_{n\to\infty}\frac{1}{\mathbb{P}(X_0>u_n)}\sum_{i=\ell}^{r_n}i^{\gamma}\mathbb{P}(X_0>u_ns,X_i>u_nt)=0. \quad (\mathcal{S}_{\gamma}(r_n,u_n))$$

3

(日) (同) (三) (三)

#### Definition 8

Condition  $S_{\gamma}(r_n, u_n)$  holds if for all s, t > 0

$$\lim_{\ell\to\infty}\limsup_{n\to\infty}\frac{1}{\mathbb{P}(X_0>u_n)}\sum_{i=\ell}^{r_n}i^{\gamma}\mathbb{P}(X_0>u_ns,X_i>u_nt)=0. \quad (\mathcal{S}_{\gamma}(r_n,u_n))$$

- The stronger anticustering condition can be viewed as uniform integrability condition.
- The condition is roughly equivalent to the small blocks assumption:  $r_n^{\gamma+1}w_n \rightarrow 0.$
- It can be verified for many time series models.

Under the small blocks condition, the business is as usual:

Theorem 9

Assume that  $S_{\gamma}(r_n, u_n)$  holds (hence  $r_n^{\gamma+1}w_n \to 0$ ). Then for any  $H \leq \mathcal{L}^{\gamma}$ 

$$\lim_{n\to\infty}\frac{1}{r_nw_n}\mathbb{E}\left[H(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\boldsymbol{\nu}^*(H)\ .$$

<sup>9</sup>See Drees and Rootzen (2010) along with the correction note  $\rightarrow$  ( $\equiv$ ) ( $\equiv$ )

| Rafał Ku |  |
|----------|--|
|          |  |
|          |  |
|          |  |

Under the small blocks condition, the business is as usual:

Theorem 9

Assume that  $S_{\gamma}(r_n, u_n)$  holds (hence  $r_n^{\gamma+1}w_n \to 0$ ). Then for any  $H \leq \mathcal{L}^{\gamma}$ 

$$\lim_{n\to\infty}\frac{1}{r_nw_n}\mathbb{E}\left[H(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\boldsymbol{\nu}^*(H)\ .$$

This is basically the uniform integrability.

<sup>9</sup>See Drees and Rootzen (2010) along with the correction note  $\rightarrow$   $\langle \cdot \cdot \rangle \rightarrow$ 

| - |     |    | 1  |   |   |
|---|-----|----|----|---|---|
| к | afa | tΥ | ٢u | п | ı |
|   |     |    |    |   |   |

Under the small blocks condition, the business is as usual:

Theorem 9

Assume that  $S_{\gamma}(r_n, u_n)$  holds (hence  $r_n^{\gamma+1}w_n \to 0$ ). Then for any  $H \leq \mathcal{L}^{\gamma}$ 

$$\lim_{n\to\infty}\frac{1}{r_nw_n}\mathbb{E}\left[H(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\boldsymbol{\nu}^*(H)\ .$$

This is basically the uniform integrability. In particular, the cluster length (unlike the jump locations) is tight under the limiting conditional law. Moreover,  $\mathbb{E}[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n) \mid \boldsymbol{X}^*_{1,r_n} > u_n]$  converges to a finite constant.<sup>9</sup>

<sup>9</sup>See Drees and Rootzen (2010) along with the correction note  $\rightarrow$  ( $\equiv$ ) ( $\equiv$ )  $\equiv$  ( $\neg$ ) ( $\bigcirc$ )

If large blocks are considered, the situation changes:

Theorem 10

Assume that  $\mathcal{AC}(r_n, c_n)$  holds and  $r_n^{\gamma+1}w_n \to \infty$ . Assume that X is mixing. Then

$$\lim_{n\to\infty}\frac{1}{r_n^{\gamma+2}w_n^2}\mathbb{E}\left[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\frac{1}{(\gamma+1)(\gamma+2)}\theta^2$$

If large blocks are considered, the situation changes:

Theorem 10

Assume that  $\mathcal{AC}(r_n, c_n)$  holds and  $r_n^{\gamma+1}w_n \to \infty$ . Assume that X is mixing. Then

$$\lim_{n\to\infty}\frac{1}{r_n^{\gamma+2}w_n^2}\mathbb{E}\left[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\frac{1}{(\gamma+1)(\gamma+2)}\theta^2$$

Hence, in the large blocks scenario,  $\mathbb{E}[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n) \mid \boldsymbol{X}_{1,r_n}^* > u_n] \rightarrow \infty$ .

イロト 不得下 イヨト イヨト

If large blocks are considered, the situation changes:

Theorem 10

Assume that  $\mathcal{AC}(r_n, c_n)$  holds and  $r_n^{\gamma+1}w_n \to \infty$ . Assume that X is mixing. Then

$$\lim_{n\to\infty}\frac{1}{r_n^{\gamma+2}w_n^2}\mathbb{E}\left[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n)\mathbb{1}\left\{\boldsymbol{X}_{1,r_n}^*>u_n\right\}\right]=\frac{1}{(\gamma+1)(\gamma+2)}\theta^2$$

Hence, in the large blocks scenario,  $\mathbb{E}[\mathcal{L}^{\gamma}(\boldsymbol{X}_{1,r_n}/u_n) \mid \boldsymbol{X}_{1,r_n}^* > u_n] \to \infty$ . From the statistical perspective, the disjoint blocks estimators will not be consistent in the large blocks scenario.

イロト イポト イヨト イヨト 二日

• We extended vague convergence of clusters to unbounded functionals, non-shift invariant functionals (jump locations are uniform over each block);

・ 同 ト ・ ヨ ト ・ ヨ ト

- We extended vague convergence of clusters to unbounded functionals, non-shift invariant functionals (jump locations are uniform over each block);
- We extended vague convergence of clusters to unbounded functionals: dichotomy between small and large blocks;

- We extended vague convergence of clusters to unbounded functionals, non-shift invariant functionals (jump locations are uniform over each block);
- We extended vague convergence of clusters to unbounded functionals: dichotomy between small and large blocks; "Statistical" implication: inconsistency of the block estimators in the large blocks scenario.

- We extended vague convergence of clusters to unbounded functionals, non-shift invariant functionals (jump locations are uniform over each block);
- We extended vague convergence of clusters to unbounded functionals: dichotomy between small and large blocks; "Statistical" implication: inconsistency of the block estimators in the large blocks scenario.
- Extension (not discussed here): Conditioning on the event "at least one large value in two consecutive blocks" changes the asymptotic behaviour of clusters.

#### References

- Z. Chen, R. Kulik. Limit theorems for unbounded cluster functionals of regularly varying time series. *Submitted, arxiv.*
- Z. Chen, R. Kulik. Asymptotic expansions for blocks estimators: PoT framework. *Submitted, arxiv*.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Thank you!!!!

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・