
Contributions to Probabilistic and
Statistical Foundations of Differential

Privacy

by

Devyani Biswal

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements
For the Ph.D. degree in

Mathematics and Statistics1

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

© Devyani Biswal, Ottawa, Canada, 2024

1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics.

Abstract

It is undeniable that the rapid advancement of data analytics and artificial intelligence
over the past decade has transformed many industries. However, these advancements
have also highlighted the need for robust privacy-preserving techniques to protect per-
sonal data from misuse. Furthermore, increasing regulatory scrutiny and public aware-
ness highlight the importance of protecting individual privacy as data-driven technologies
evolve. This thesis addresses these concerns by exploring and advancing the field of dif-
ferential privacy. The primary goal of this thesis is to provide a mathematical and statis-
tical framework for differential privacy to better balance and answer questions related to
data utility and privacy. Indeed, the majority of research up to date focuses on privacy
aspects, with little emphasis on data utility. As such, the thesis investigates privacy
guarantees across different settings and statistical problems. We propose many novel
mechanisms that integrate concepts from statistical disclosure control, statistics, time
series, and machine learning along with classical differential privacy. For this we explore
various extensions of ε- and (ε, δ)-differential privacy mechanisms. We prove the validity
(from both the privacy and data utility perspective) of these proposed mechanisms using
a rigorous mathematical framework. The theoretical results are complemented by a vari-
ety of numerical experiments to validate the underlying intuitions. The findings indicate
that our contributions significantly improve data utility while offering strong privacy
guarantees. As such, they can be practically implemented in the real-world settings.

ii

Acknowledgements

I wish I could adequately express my gratitude to my supervisor, Dr. Rafal Kulik. Thank
you for allowing me to pursue my goals not only in academia but also in sport and life.
Very few people are fortunate enough to have a supervisor who supports all these en-
deavours at once, and for that, I am deeply thankful.

I must also express my immense appreciation to Luk Arbuckle for supporting me as
an industry supervisor and introducing me to the world of data privacy. Your guidance
has been invaluable, and without your support, I would not be where I am today.

My sincerest thank you to my defence committee for generously sharing your knowl-
edge and expertise.

My work would not be possible without the funding and support of the MITACS
Accelerate Fellowship, which supported me for 3 years of my research, and Privacy An-
alytics for providing me a place to pursue my research and give it a real-world purpose.

To my parents, thank you for being exemplars of life in academia. Growing up in
universities opened my eyes to academia and significantly influenced my pursuit of this
path. I am so thankful to have parents that helped me edit, think critically, and never
to give up.

To my super smart, supermodel, twin sister - Divya. Thank you for being the Mary-
Kate to my Ashley.

And finally, to my partner in life, Rostam, thank you for always being there for me.
Without your encouragement and belief in me I am certain I wouldn’t be writing this
page today.

iii

The best way to guard privacy? Pretend you don’t exist!

iv

vi

Contents

Abstract ii

Acknowledgements iii

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Preface . 1
1.2 Introduction . 2
1.3 Structure of the thesis . 5
1.4 Thesis Contributions . 7

2 Mathematical foundations 11
2.1 Notation and basic terminology . 11
2.2 Probability distributions . 17
2.3 Distance between probability distributions 18

3 Techniques for disclosure control 21
3.1 k-anonymity . 21
3.2 PRAM . 23
3.3 k-PRAM . 24
3.4 Noise addition . 25
3.5 k-noise . 25
3.6 Experimental Results . 28
3.7 Conclusion . 29
3.8 Figures . 30

4 Differential privacy 35
4.1 Introduction . 35
4.2 Basic definition . 36
4.3 Laplace noise and differential privacy . 38

vii

4.4 (ε, δ)-Differential Privacy . 39

4.5 Properties . 41

4.5.1 Preservation of differential privacy under different queries 41

4.5.2 Post-processing . 43

4.5.3 Group privacy . 48

4.5.4 Compositions . 49

5 Differential Privacy from a data utility perspective 51

5.1 Introduction . 51

5.2 Dealing with sensitivity . 54

5.2.1 Smooth sensitivity . 55

5.2.2 Towards general sensitivity . 63

5.3 Mixed Noise Mechanism (MNM) . 73

5.4 Blocking . 92

5.4.1 Algorithm Block-DP I . 92

5.4.2 Algorithm Block-DP II . 96

5.5 Bounded Laplace Mechanism . 98

5.6 Pre-processing vs Post-processing . 100

5.7 Confidence Intervals . 108

5.8 Changing the distance between probability distributions 111

5.9 Conclusion . 115

6 Time series 117

6.1 Introduction . 117

6.2 Differentially private queries in times series 118

6.2.1 Data release and attack scenarios 119

6.3 Privacy leakage for time series . 120

6.3.1 Total dependence and independence 120

6.3.2 Privacy leakage for the mean . 121

6.4 Conclusion . 138

7 Towards Machine Learning and Differential Privacy 141

7.1 Introduction . 141

7.2 Preliminaries . 142

7.3 Gradient Descent . 144

7.4 Stochastic optimization problem . 145

7.5 Stochastic Gradient Descent (SGD) . 147

7.6 Differentially Private Stochastic Gradient Descent 148

7.7 Convergence of the algorithm . 151

7.8 Comments . 153

7.9 Appendix: Computations for conditional expectations 154

viii

8 Conclusion and future direction of research 159
8.1 Conclusion . 159
8.2 Future work . 160

9 Bibliography 163

Index 167

Appendices 169

A R codes 171

ix

x

List of Tables

3.1 k-anonymity example . 22
3.2 3-anonymity for 1 variable . 23
3.3 3-anonymity for 2 variables . 23
3.4 Utility results for k-PRAM & k-noise . 29

5.1 MNM confidence intervals for various distributions 90
5.2 Block DP-I vs Block DP-II . 98

xi

xii

List of Figures

2.1 Drawing: sanitized response mechanism 15
2.2 Drawing: output perturbation mechanism 16

3.1 k-noise group . 26
3.2 k-PRAM . 30
3.3 k-noise . 31
3.4 k-PRAM vs k-noise . 32
3.5 Expected group size . 33

4.1 Histogram of Laplace-Normal density . 47

5.1 Weighted sensitivity - uniform . 70
5.2 Weighted sensitivity - truncated exponential 71
5.3 δ-privacy . 72
5.4 δ values for ADP . 75
5.5 Drawing: MNM . 77
5.6 MNM results - normal distribution . 82
5.7 MNM - Box plot for the normal . 83
5.8 MNM results - student-t distribution . 84
5.9 MNM - Box plot for the student-t . 85
5.10 MNM results - exponential distribution 86
5.11 MNM - Box plot for the exponential . 87
5.12 MNM results - Pareto distribution . 88
5.13 MNM - Box plot for the Pareto . 89
5.14 MNM results for the median . 91
5.15 Post-processing vs Pre-processing for the median 107

6.1 DP in time series: A1+N3 scenario . 127
6.2 DP in time series: A2+N1 scenario; first example 132
6.3 DP in time series: A2+N1 scenario; second example 133
6.4 DP in time series: A2+N1 scenario; third example 134
6.5 DP in time series: A2+N1 scenario; fourth example 135

xiii

Chapter 1

Introduction

1.1 Preface

In the recent years, the rapid advancements in data and artificial intelligence (AI) have
significantly transformed a number of industries, including finance and healthcare. These
technological advancements have enhanced the ability to derive insights from vast quanti-
ties of data, driving innovation and improving decision-making processes. However, this
exponential growth does not come without concerns, namely the individual’s right to
privacy. As organizations increasingly rely on personal data to do statistical analysis, to
train machine learning models or combine data in ways that have not been done before,
the risk of compromising individual privacy becomes a key consideration. The occurrence
of high-profile data breaches and the misuse of personal data has led to heightened public
awareness and regulatory scrutiny. Consequently, the necessity for robust yet practical
privacy-preserving techniques has become apparent. Legislation such as the General
Data Protection Regulation (GDPR) in Europe and Bill C-27 in Canada reflects these
heightened privacy concerns and the necessity for robust data protection frameworks.

This context provides the motivation to study privacy-preserving techniques that have
emerged as key techniques for mitigating these concerns while still producing useful data.
The most popular and promising technique from a data utility perspective is differential
privacy, which originates from computer science. A principal challenge is to formulate
what data privacy means from a mathematical and statistical perspective, and then to
determine how differential privacy affects data privacy and data utility. Furthermore,
it is essential to comprehend how technical privacy models can facilitate the process of
rendering data non-identifiable, and, more crucially, enabling its use for numerous ini-
tiatives that contribute to enhanced societal outcomes.

The primary objective of this thesis is to establish a foundational framework within
which mathematical and statistical theory can be studied. This framework aims to
unify the language and frameworks of statistical theory with those of computer science.

1

Once this foundation was established, we are to clarify the existing results and make
their presentation suitable for mathematical and statistical audience. Furthermore, we
propose novel mechanisms and techniques for the practical implementation of differential
privacy. Moreover, we investigate more intricate issues, such as the impact of temporal
dependence in data and the potential implications for privacy. This seems elementary,
but in fact is not trivial.

1.2 Introduction

In the modern era, data is everywhere. It has permeated every aspect of our world. This
is not just a byproduct of technological advancement. It is a fundamental shift in how we
interact with the world. The process of data collection has become more sophisticated
than ever before. It enables not only the aggregation of vast amounts of information
but also its transformation into actionable insights. These capabilities are essential for
tackling complex societal challenges, whether it’s optimizing resource allocation or im-
proving public health outcomes. It is clear that the intentional and ethical use of data
can significantly elevate the efficacy of decision-making processes, thereby fostering so-
cietal advancement and ensuring more equitable outcomes across diverse communities.

Moreover, data is now a significant economic commodity, influencing markets and
policy decisions on a global scale. Its value extends beyond numerical input; it captures
potential insights into economic trends, predictive analytics, thus driving innovation and
strategic planning. The commodification of data makes it clear that it has two roles:
that of a resource and that of a product. This means that we must think carefully about
how it is collected, used and shared. The transition of data into an economic asset de-
mands robust data governance frameworks that not only protect individual privacy but
also ensure the fair and responsible use of data.

As data assumes a central role in societal functions, the issue of privacy emerges as a
paramount concern. The right to privacy of data is a fundamental human right, recog-
nized and upheld by various legal frameworks around the world, such as the General Data
Protection Regulation (GDPR) in the European Union. Country regulations emphasize
the necessity of consent, transparency and the right to erasure, ensuring individuals have
control over their personal information. However, the challenges of maintaining data
privacy are compounded by the rapid evolution of technology and the sophistication of
data collection techniques. These developments necessitate continuous updates to legal
protections to safeguard personal data against unauthorized access and misuse, reinforc-
ing the need for practical approaches to privacy.

Privacy laws and regulations are primarily concerned with identifiable information.
Although the language varies by law or regulation, the likelihood of identifying a data

2

subject is commonly understood as the legal test of whether privacy laws or regulations
apply. The General Data Protection Regulation (GDPR) of the European Union states
[21] that ”to determine whether a natural person is identifiable, account should be taken
of all the means reasonably likely to be used, such as singling out, either by the con-
troller or by another person, to identify the natural person directly or indirectly.” From a
technical perspective, interpreting ”reasonably likely” is challenging. The term ”likely”
is difficult to translate into a probability, as demonstrated in [37]. However, it is crucial
to understand expectations in privacy laws and regulations to determine when data can
be considered non-identifiable and therefore non-personal.

The need to address legal and regulatory expectations through technical methods
to satisfy those expectations is not new. Nor it is new to have to ensure that techni-
cal models produce useful data in a range of different contexts. This is why there are
industry efforts to standardize that guidance through risk-management frameworks for
anonymization and in emerging standards, e.g. [30], [31], [25]. Standards ensure current
best practices are agreed upon by a wide range of stakeholders, are well documented,
and can be used to evaluate implementations to ensure adherence. Regular updates keep
standards current while ensuring well-established methods are incorporated. Therefore,
the reasonableness with which identifiability will be judged may evolve over time and
needs to be monitored for changes. A spectrum of identifiability has even been recog-
nized by industry, incorporating risk-based framing so that a scalable and proportionate
approach to compliance is provided. Technical models are incorporated into metrics that
attempt to quantify measures of what may constitute a disclosure. These metrics can
capture a range of views that may or may not incorporate identifiability.

Opinions may vary regarding what should be considered ”anonymized”, often focus-
ing on the output of anonymization alone. In the field of statistical disclosure control,
however, threat modelling to establish attack scenarios is a well-established practice that
is now increasingly common in guidance, [20]. Objective factors are therefore incorpo-
rated to determine effective bounds on data recipients or intruders, to determine what
may be deemed reasonable. Anonymization is ultimately a form of data protection, and
thus can be considered a privacy-enhancing measure. To be effective, privacy models
must be used in practice, which means they must also be practical and, when used in
the context of anonymization, produce useful data [2].

From a statistical perspective, data privacy is about implementing methodologies that
minimize the risk of identifying individual subjects within datasets (micro or macro)
while still allowing for the extraction of meaningful insights. It is vital to achieve
this balance between privacy and data utility in fields such as medical research
and finance, where data can often contain sensitive information. Statistical disclosure
techniques and anonymization are used to obscure the identity of participants. These
statistical approaches are designed to prevent the disclosure of personal attributes while

3

maintaining the utility of the dataset, thereby safeguarding individual privacy without
sacrificing data quality. See [19].

Further complicating the statistical landscape is the issue of data re-identification.
This is a process by which anonymized data can be cross-referenced with other public
datasets to identify individuals. This highlights a significant vulnerability in traditional
statistical disclosure techniques. They are inadequate in the face of sophisticated data
mining technologies and the immense amount of data available. See [38].

Statistical disclosure control (SDC) techniques are essential for protecting individual
privacy when releasing data for public or research purposes. These techniques employ a
range of methods to minimize the risk of identifying individuals in aggregated datasets
([46]). The most widely used SDC methods collectively aim to preserve the statistical
properties of the data, such as the mean, variance, and correlations. This ensures that
the data remains useful despite any modifications for privacy.

Furthermore, the application of these SDC techniques must be carefully calibrated
to balance data utility with privacy protection. Over-application renders the data use-
less and removes its intended utility. Conversely, under-application leaves individuals
exposed to re-identification risks. Therefore, the choice of techniques depends on the
specific context of the data and the sensitivity of the information it contains. Ultimately,
the implementation of SDC techniques is a decision-making process that requires a deep
understanding of both statistical theory and the ethical implications of data release. A
lot of SDC methods are relatively standard and are based on simple statistical and prob-
abilistic concepts ([28], [29]).

Differential privacy, [16], emerged as a framework in the beginning of the 21st cen-
tury, primarily developed by computer scientists to address the growing concerns around
data privacy that accompanied the increasing ease of access to detailed data. The con-
cept was formalized by Cynthia Dwork who introduced a cryptographic model designed
to ensure that analyses of data (queries) do not compromise the privacy of individual
data subjects. The principle behind differential privacy is to add a controlled amount
of random noise to either the data itself or the outputs (queries) derived from the data,
thus obscuring the contributions of individual data points. By doing so, it guarantees
that the output of any analysis is less sensitive to any single individuals’ data, effectively
masking personal information within large datasets. This approach has been particularly
influential in fields dealing with sensitive information.

However, the application of differential privacy is not without its challenges and trade-
offs. One of the primary advantages of differential privacy is its strong, mathematically
proven privacy guarantees, which protect against a wide range of privacy attacks. A
challenge is knowing how much noise to add, what kind of noise to add, and how to

4

measure the effectiveness across different datasets and applications [8]. This challenge
only gets exasperated when moving to more complex modelling problems in time series
and machine learning applications [9], with a particular focus on differentially private
empirical risk minimization, Stochastic Gradient Descent or Coordinate Descent algo-
rithms ([15], [1], [43], [4], [47], [36]).

Balancing privacy protection with data utility is a key challenge in the
implementation of differential privacy. The complexity of choosing parameters for
the privacy budget has been a barrier to practical implementation. Another challenge
is a lack of a rigorous mathematical and statistical framework. Indeed, a bulk of major
developments in the field differential privacy stems from the computer science perspec-
tive, and often lacks mathematical and statistical rigour. The first serious attempt to
formalize differential privacy using the proper statistical language should be attributed
to [45]. It allows for proper statistical inference, see [3], and to develop rates of conver-
gence using advanced tools from mathematical statistics ([12]).

In the thesis, we will develop and use the proper mathematical framework that allows
for the study of statistical inference and differential privacy in a practical setting. We
address both data privacy and data utility issues.

1.3 Structure of the thesis

In Chapter 2 we collect basic terminology. To be more specific:

� Section 2.1 covers the notation and basic terminology used in the context of prob-
ability spaces and metric spaces, providing definitions and examples.

� Section 2.2 introduces probability distributions, focusing on the Gaussian and
Laplace distributions, which are important for understanding privacy-preserving
mechanisms, and are used through the thesis.

� Section 2.3 discusses various distance measures between probability distributions,
which are used for quantifying the differences and similarities in privacy contexts.

In Chapter 3 we discuss some classical approaches to privacy and anonymization (or their
versions). Specifically:

� Section 3.1 and Section 3.2 introduce k-anonymity and Post Randomization (PRAM)
providing mathematical formalizations and examples.

� Section 3.3 presents k-PRAM, a combination of the two methods discussed in
Section 3.1 and Section 3.2, detailing its approach to improving data utility.

5

� Section 3.4 and Section 3.5 introduce noise addition and formally defines k-noise,
a method of noise injection used to control group sizes and improving data utility
with no bias.

� Section 3.6 provides experimental results, comparing the effectiveness of the dis-
cussed methods using a real-world dataset.

In Chapter 4 we introduce the fundamental concept of Differential Privacy, its definition,
and its properties. To be more specific:

� Section 4.2 introduces the basic definition of differential privacy, explaining its
fundamental principles and the role of the privacy budget (ε).

� Section 4.3 discusses the use of Laplace noise in differential privacy and proves that
the Laplace mechanism satisfies the differential privacy definition.

� Section 4.4 extends the concept to approximate differential privacy, which allows
for the use of normal distribution as noise.

� Section 4.5 highlights various properties of differential privacy, such as closure under
post-processing and group privacy, and presents proofs and examples to illustrate
these properties.

In Chapter 5 we examine differential privacy from the standpoint of data utility, exploring
a range of mechanisms and applications. To be more specific:

� Section 5.2 discusses various sensitivity measures, including the global, local, and
smooth sensitivity, and introduces the concept of general sensitivity. We show that
the latter concept leads to improvement in data utility.

� Section 5.3 introduces the Mixed Noise Mechanism (MNM), detailing its formula-
tion, theoretical proofs, and practical implementation.

� Section 5.4 presents two blocking algorithms designed to reduce the addition of
noise while maintaining considerations of privacy and maximizing data utility.

� Section 5.5 introduces the bounded Laplace mechanism, ensuring realistic data
entries in privacy-preserving queries.

� Section 5.6 compares pre-processing and post-processing approaches, analyzing
their impacts on privacy and data utility for statistical estimators.

� Section 5.7 examines the challenges and solutions for maintaining accurate confi-
dence intervals with privatized data.

� Section 5.8 discusses an alternative distance measure between probability distribu-
tions, called zero-concentrated differential privacy. Furthermore, it examines the
implications of this measure for privacy and utility guarantees.

6

In Chapter 6 we explore how differentially privacy behaves in a time series setting. To
be more specific:

� In Section 6.2, we formulate the privacy leakage problem in the time series set-
ting. We distinguish between user-level and event-level privacy goals and consider
different attack and data release scenarios. Additionally, we introduce the Vector
Autoregressive (VAR) time series model.

� In Section 6.3, we present our theoretical results on privacy leakage in the time series
context. The main results are Theorems 6.3.4 to 6.3.8, which provide formulas for
privacy leakage under various attack and data release scenarios. These formulas
depend on the sensitivity of the query and the model parameters. Despite their
complexity, they can be easily calculated once the model parameters are estimated.

In Chapter 7 we explore differential privacy in the context of machine learning. Specifi-
cally, we determine the learning rate sequence that guarantees differential privacy in the
Stochastic Gradient Descent algorithm. We provide the proofs for privacy bounds and
for the rates of convergence. The main results are Theorem 7.6.1 (privacy bounds) and
Theorem 7.7.1 (convergence of the algorithm).

We finish with some potential topics for future research in Chapter 8.

R codes can be found in Chapter A.

1.4 Thesis Contributions

This thesis presents several contributions to the field of differential privacy from both
probabilistic and statistical theory perspective. The main contributions are as follows:

Mathematical framework

One of the most significant contributions of this thesis is the alignment of the language
and methods used in computer science with those in probability and statistics. This
process highlighted the notable challenge of bridging the terminology and methodology
gaps between these two disciplines.

In our research, we identified numerous issues in the proofs found in the computer
science literature. These included incorrect statements and incomplete arguments. To
address these issues, we undertook a comprehensive effort to translate into a proper
mathematical language and when necessary rewrite these proofs. We re-wrote many of
the proofs that appeared in the computer science literature, making sure that they are
correct from the mathematical point of view.

7

New techniques and results

Chapter 3. In Chapter 3 we introduce two novel contributions to the field of statistical
disclosure control:

� k-PRAM: A method that combines the strengths of k-anonymity and absolute
privacy measures, and Post Randomization (PRAM) to enhance data utility while
ensuring privacy.

� k-noise: The k-noise method creates a novel bridge between statistical disclosure
methods and noise injection techniques. This allows for comparative analysis of two
distinct approaches to data anonymization and privacy preservation. Theorem 3.5.1
establishes a lower bound on k-noise and demonstrates equivalency to k-anonymity
while significantly enhancing data utility. This theorem is an important result as
it ensures that the k-noise method guarantees privacy comparable to k-anonymity,
but with better data utility.

The k-noise method effectively improves the utility of anonymized data. By adding
controlled noise to grouped data, k-noise maintains group sizes in the transformed
data set, thereby preserving data utility and ensuring lower bias in comparison
to traditional methods, as well as k-PRAM. Through extensive experiments and
simulations, the chapter demonstrates the practical effectiveness of k-noise. The
results indicated that k-noise not only meets theoretical privacy guarantees but
also performs better in real-world data scenarios.

The results on k-PRAM and k-noise are published in [7].

Chapter 4. This chapter provides foundations on Differential Privacy and is based
primarily on the existing literature. Some proofs were corrected and written in the
proper mathematical language.

Chapter 5. This chapter includes many novel and original contributions to the field
of differential privacy, from the data utility point of view. This line of research did not
seem to be present in the literature (which focuses primarily on privacy guarantees).

� Section 5.2.2 contains a novel, practical approach to calculate sensitivity. It is
based on the author’s original work. Theorem 5.2.17 and its consequences is the
most important result there.

� Section 5.2.1 is based on existing literature. However, some results were incorrect
and they were stated and proven in the correct form.

� Section 5.3 introduces Mixed Noise Mechanism. It improves data utility. The most
important result is Theorem 5.3.2. This section is based on the author’s original
work, [8].

8

� Section 5.4 includes a novel blocking algorithm, that improves data utility. See
Theorem 5.4.3. It is based on the author’s original work.

� In Section 5.6 we compare theoretically and numerically pre-processing and post-
processing from the data utility point of view. It is based on the author’s original
work.

� Section 5.7 deals with differentially private confidence intervals with Theorem 5.7.2
as the most important result. The entire section is the author’s original contribu-
tion.

Chapter 6. This chapter deals with the privacy in time series. The entire chapter is
based on the author’s original work with several new theorems.

Chapter 7. This chapter deals with the privacy in Stochastic Gradient Descent. The
entire chapter is based on the author’s original work with new theorems on privacy and
convergence. These results are extendable to other optimization algorithms such as Co-
ordinate Descent (used in LASSO procedure) or EM algorithm.

Some of the results of the thesis have been published already, e.g. [7] and [6]. Many
of the results in this thesis are being submitted: Mixed Noise Mechanism of Section 5.3
([8]); blocking algorithm of Section 5.4; confidence intervals of Section 5.7. The big and
original contributions of Chapter 6 and Chapter 7 are also being submitted

Practical contributions

Some of the research in this thesis led to a US patent and to practical studies for the
Office of the Privacy Commissioner of Canada. Many of the algorithms have been already
implemented in the industry.

9

10

Chapter 2

Mathematical foundations

In this chapter, we introduce the basic terminology and mathematical framework that will
be used throughout this thesis. These foundations are important to better understand
more advanced concepts and methodologies discussed in the subsequent chapters.

2.1 Notation and basic terminology

Let (Ω,F ,P) be a probability space, and let (U ,B, ρ) be a metric space. The simplest
possible case that we can consider is U = R, or U = R

d, d > 1 or U = [0, 1]. Let
X = (X1, . . . , Xn) ∈ Un, be a random sample of size n from a distribution P. That
is, a database is a random element with values in D = Un. In mathematical terms,
X : Ω → D. We will denote realizations of X = (X1, . . . , Xn) by x = (x1, . . . , xn), and
we will call X (or its realizations) a database.

The Hamming distance d : Un × Un → {0, . . . , n} between two databases is the
number of records on which they differ. We say that two databases x and y are neigh-
bours if d(x,y) = 1, and we will denote neighbours as x ∼ y. We denote a database
where the ith records is removed by X(−i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn). Note that
X(−i) is a random element with values in Un−1, but we can consider it as a random
element of Un by adding an empty record.

A query is a function f from D into Rd. Some examples of queries include:

� Assume that D = Rn. The identity query Id : Rn → Rn is Id(x) = x, for x ∈ Rn.

� Assume that D = Rn. The mean query Rn → R is f(x) = 1
n

∑n
i=1 xi, for x ∈ Rn.

� Assume that D = Rn. The median query Rn → R is f(x) = median(x), for x ∈ Rn.

An important element of differential privacy is the sensitivity of a function, and in some
cases, the sensitivity of the database. In order to introduce the formal definitions for the
sensitivity, we need to define the L1 and L2 norms.

11

For u = (u1, . . . , ud), and v = (v1, . . . , vd) ∈ Rd we denote

∥u− v∥1 =
d∑
i=1

|ui − vi|

and

∥u− v∥2 =

√√√√ d∑
i=1

(ui − vi)2 .

Definition 2.1.1 (Local sensitivity). Let j = 1, 2. The (local) sensitivity of a
function f : Rn → Rd is

∆
(local)
j f(x) = max

y,x∼y
||f(x) − f(y)||j.

Definition 2.1.2 (Global sensitivity). Let j = 1, 2. The (global) sensitivity of a
function f : Rn → Rd is

∆jf = sup
x,y∈D,x∼y

∥f(x) − f(y)∥j . (2.1)

The local and global sensitivities are related by

∆jf = max
x∈U

∆
(local)
J f(x). (2.2)

Intuitively, the local sensitivity measures the variability of a specific database x, while
the global sensitivity measures the variability of x in relation to all possible databases.
In other words, to calculate the local sensitivity we consider neighbours of our database
x, while the global sensitivity considers the entire population of all databases.

If d = 1, then ∥u − v∥1 = ∥u − v∥2. In this case, ∆1(f) = ∆2(f), so we will simply
write ∆f .

Example 2.1.3. Assume that the data, x = (x1, . . . , xn) ∈ Rn, come from a population
with the range R = [−Λ1,Λ2], where 0 ≤ Λ1,Λ2 < ∞. For the sample mean query,
f(x) = 1

n

∑n
i=1 xi, the local and global sensitivities are

∆(local)f(x) = max
j=1,...,n

∣∣∣∣∣
∑n

i=1 xi
n

−
∑n

i=1,i̸=j xi

n

∣∣∣∣∣ =
1

n
max
j=1,...,n

|xj| ,

∆f =
max{Λ1,Λ2}

n
.

12

(Note that formally we should divide
∑n

i=1,i̸=j xi by n−1, but this is a minor modification,
especially if n is large). For the function f(x) = median(x1, . . . , xn), assuming n is odd
and m = n+1

2
, the local and global sensitivities are:

∆(local)f(x) = max(xm+1 − xm, xm − xm−1) ,

∆f = Λ2 + Λ1 .

Indeed, we can have a database of size, say, 11, with the first five entries equal to −Λ2,
and the remaining entries equal to Λ1.

Finally, for identity function Id(x) = x, we use the Euclidean norm. Here, an issue
arises since the original database is of dimension n, while the neighbour is of dimension
n− 1, and we cannot calculate x− y. To mitigate this issue, we assume that one record
is removed from x, replacing it (at random) with either −Λ1 or Λ2. Then,

∆(local)f(x) = max
j=1,...,n

max{|xj − Λ2|, |xj + Λ1|} ,

∆f = Λ1 + Λ2 .

Example 2.1.4. Assume that the data, x = (x1, . . . , xn) ∈ Rn, come from a population
with the range R = [0,Λ], and mean µ. Define:

x̄i,j =
1

n

j∑
k=i+1

xk , x̄ := x̄1,n , x̄−j =
1

n

n∑
k=1
k ̸=j

xk .

For the sample variance query, f(x) =

∑n
i=1(xi − x̄)

n− 1
, the local sensitivity is

∆(local)f(x) = max
j=2,...,n

{∑n
i=1(xi − x̄)

n− 1
−
∑n

i=1,i ̸=j(xi − x̄−j)
2

n− 1

}

= max
j=1,...,n

{
x2j(1 − 1/n)

n− 1
− 2xjx̄−j

n− 1

}
n large
≈ max

j=1,...,n

{
x2j
n

− 2xjµ

n

}
.

The last approximation stems from the law of large numbers. Furthermore, the global
sensitivity is proportional to Λ2/n.

Let E be another metric space. A response mechanism is a function Q : D × E →
Rd. Typically, the response mechanism is associated with a query f , and hence will be
denoted by Qf . Intuitively, Q perturbs the database x ∈ D or a query with a ”noise”
z ∈ E . In principle, Q can be an arbitrary function, but we introduce two types of
functions that play an important role.

13

1. Let E = D and assume that D is equipped with addition. Let f : D → Rd be a
query. A sanitized response (SR) mechanism Sf : D ×D → Rd is defined
as

Sf (x, z) = f(x + z) , x, z ∈ D . (2.3)

2. Let E = Rd and let f : D → Rd be a query. An output perturbation (OP)
mechanism Of : D × Rd → Rd is defined as

Of (x, z) = f(x) + z , x ∈ D, z ∈ Rd . (2.4)

We note that for the identity query, both mechanisms agree. We include two drawings
that illustrate the differences between the two mechanisms, and how they operate in
Figure 2.1 and Figure 2.2.

Remark 2.1.5. We note that the Output Perturbation Mechanism is also referred to
as Post-Processing, while the Sanitized Response Mechanism is also referred to as Pre-
Processing.

Remark 2.1.6. In the case of the sanitized response, the ”noise” z is of the same dimen-
sion as the database and will be denoted by z. In the case of the output perturbation
mechanism, the ”noise” will typically (but not necessary) be one-dimensional and hence
denoted by z. When speaking of noise addition in general terms, we will use the z nota-
tion. Furthermore, we will use a generic notation Qf when speaking about sanitization
or output perturbation in general terms.

Let Z be a random element with values in E , that is, Z : Ω → E . The type of
noise Z (i.e., its distribution) will influence privacy. Set first E = D, and recall the
convention from Remark 2.1.6. We will consider a (randomized) sanitized response
mechanism, that is, a random element Sf (x,Z). Formally speaking, Z : Ω → D and
hence Sf (x,Z) is a map from D × Ω to Rd. As such, in the case of general statements
for arbitrary noise, we will write ”a mechanism Sf”, while when one needs to specify a
specific noise, we will write: ”a randomized mechanism Sf (·,Z)”. Likewise, Of (·, Z) is a
(randomized) output perturbation mechanism.

In other words, sanitization is nothing more than adding noise to each element of
the database. A sanitized response mechanism corresponds to running a query on a
database perturbed by noise. Such mechanisms correspond to Privacy-Preserving
Data Publishing (PPDP) or Pre-Processing. On the other hand, the output per-
turbation mechanism corresponds to Privacy-Preserving Data Mining (PPDM) or
Post-Processing.

14

Figure 2.1: Drawing: sanitized response mechanism
In this drawing, illustrated by the author, the sanitized response mechanism is outlined. In
this setting, noise is added to the individuals’ data points before being shared to a untrusted
aggregator. In this way, noise is added to the data pre-processing.

15

Figure 2.2: Drawing: output perturbation mechanism
In this drawing, illustrated by the author, the output perturbation mechanism is outlined. In
this setting, a trusted curator receives a query from the untrusted aggregator. They collect the
raw data, calculate the statistic, and then add noise to the query before returning the answer.
In this way, noise is added post-processing of the data.

16

2.2 Probability distributions

Let Z be a random variable. By gZ(x), we will denote its density (when it exists) at
point x. Alternatively, when convenient, we will use the notation g(x;Z) to avoid a
cumbersome subscript . If (Z1,Z2) is a random vector, we will denote its density by
g(Z1,Z2)(x1,x2). If there is no risk for confusion, we will drop the subscript. The density
notation will be specified precisely in each chapter.

Two probability distributions will play a major role in our work. First, we will need
a normal random variable denoted by N (µ, σ2). Second, we will need the Laplace
(or double exponential) distribution, which is not widely used in statistics but will be
crucial in this thesis.

Definition 2.2.1 (Normal Distribution). The Gaussian distribution is a continuous
probability distribution for a real-valued random variable. The probability density function
takes the form

g(x) =
1

σ
√

2π
exp

{
− 1

2

(
x− µ

σ

)2}
,

where µ is the mean and σ is the standard deviation.

The central moments, for any non-negative integer p, are

E[(X − µ)p] =

{
0 if p is odd ,

σp(p− 1)!! if p is even .

Definition 2.2.2 (Laplace Distribution on R). The Laplace (double exponential) dis-
tribution is a continuous probability distribution for a real-valued random variable. The
probability density function takes the form

g(x) =
1

2b
exp

(
− |x− µ|

b

)
,

where µ is the mean and b > 0 is the scale parameter. We will write Laplace(µ, b)
to denote a random variable with such distribution. If the mean is zero, we will write
Laplace(b).

The variance is given by σ2 = 2b2. The moments about the mean, µn, are given by

µn =

{
n!bn for n even ,

0 for n odd .

The characteristic function can also be used to compute the moments:

ϕ(t) =
1

2b

∫ ∞

−∞
eitxe−|x−µ|bdx =

eiµt

1 + b2t2
.

Finally, we also have the following scaling property.

17

Lemma 2.2.3. If Z ′ ∼ Laplace(1), then bZ ′ ∼ Laplace(|b|).

We will refer to Z ′ as a standard Laplace random variable.

Definition 2.2.4 (Laplace Distribution on Rp). The multivariate Laplace distribution
is a continuous probability distribution on Rp. The probability density function takes the
form

g(x) =
1

(2b)p
exp

(
− ∥x− µ∥1

b

)
,

where µ ∈ Rp is the mean vector, b > 0 is the scale parameter, and ∥ · ∥1 is the L1-norm
on Rp.

If Z is a random vector with a Laplace distribution, we call it standard if µ = 0 and
b = 1. We note that

E[∥Z∥21] = p2 + p , E[∥Z∥22] = 2p =: cZ . (2.5)

2.3 Distance between probability distributions

Let P and Q be two probability measures on (Ω,F). We present different ways to
measure the distance between them.

Definition 2.3.1. The total variation distance is defined as

dTV(P,Q) := sup
A∈F

|P (A) −Q(A)| .

Definition 2.3.2. The relative entropy (Kullback-Leibler) distance is defined as

DKL(P∥Q) := EP
[
log

dP

dQ

]
.

Definition 2.3.3. The max-divergence distance is defined as

D∞(P∥Q) := sup
A∈F

log
P (A)

Q(A)
.

Definition 2.3.4. Let δ > 0. The approximate max-divergence distance is defined as

Dδ
∞(P∥Q) := sup

A∈F :P (A)>δ

log
P (A) − δ

Q(A)
.

Definition 2.3.5. Let α > 0. The α-Rényi divergence is defined as

Dα(P∥Q) =
1

α− 1
logEP

[(
dP

dQ

)α−1
]
.

18

Definition 2.3.6. Let γ > 1. The Eγ-divergence distance is defined as

Eγ(P∥Q) := sup
A∈F

{P (A) − γQ(A)} .

There are some classical inequalities between these distances:

dTV(P,Q) ≤
√
DKL(P∥Q)/2 , (2.6a)

DKL(P∥Q) ≤ Dα(P∥Q) ≤ D∞(P∥Q) , (2.6b)

1 − γ(1 − dTV(P,Q)) ≤ Eγ(P∥Q) . (2.6c)

Example 2.3.7. Assume that P and Q are the normal laws with means µP , µQ, re-
spectively, and a common variance σ2 = σ2

P = σ2
Q. The distances are calculated as

follows:

� For the total variation distance, we have

dTV(P,Q) = 4Φ

(
µP − µQ

2σ2

)
− 2 ,

where Φ is the standard normal cumulative distribution function.

� For the KL-distance, we have

DKL(P∥Q) =
(µP − µQ)2

2σ2
.

� For the Dα distance, we have

Dα(P∥Q) = α
(µP − µQ)2

2σ2
.

Note that limα→1Dα = DKL, and additionally, limα→∞Dα = D∞. Hence,

D∞(P∥Q) = ∞ .

19

20

Chapter 3

Techniques for disclosure control

In this chapter, we review some of the existing techniques used in disclosure control. All
these techniques involve perturbation of the original database X = (X1, . . . , Xn). The
transformation can be achieved through various methods, such as:

� Grouping/generalization (k-anonymity, see Section 3.1);

� Post Randomization (PRAM, see Section 3.2);

� Combination of grouping and Post Randomization (k-PRAM, see Section 3.3);

� Noise addition (see Section 3.4; Differential Privacy is discussed in Chapter 4);

� Combination of grouping and noise addition (k-noise, see Section 3.5).

Each technique will be introduced with a brief explanation, followed by detailed de-
scriptions and some examples to illustrate their application. We cite the proper references
in each section separately. The contents of Sections 3.3 and 3.5 comes from [7] and it is
the original work of the authors of the thesis.

3.1 k-anonymity

The method of k-anonymity was formally introduced by Latanya Sweeney in [44], al-
though the concept was first mentioned in 1986 by Tore Delanius. A release of a database
is considered to be k-anonymous if the information for each person contained in the
database cannot be distinguished from at least k − 1 other individuals, whose informa-
tion is also contained in the released database.

We formalize the concept mathematically and provide an example.

21

Definition 3.1.1. Consider the database X = (X1, . . . , Xn). Fix an integer k. The
dataset is divided into m subgroups. These subgroups are called equivalence classes. Each
individual belongs to one and only one equivalence class. An anonymized dataset Y
provides k-anonymity if, for each individual Yj in the given equivalence class, there exists
at least k − 1 other individuals in the same class with identical values.

In other words, the probability that a particular individual is identified is at most
1/k. This probability does not depend on the original database, thus k-anonymity is
viewed as an absolute measure of privacy.

The larger the value of k, the higher the level of privacy achieved. However, to
achieve a large k, one needs either a large population or a high level of generalization
and suppression. These data transformations can negatively impact data utility.

Example 3.1.2. We illustrate two examples of k-anonymity using the same database.
The database used for this example is fictitious.

Customer Age Transaction Amount($)
32 75.50
45 120.00
27 16.75
19 85.00
31 50.00
25 40.50

Table 3.1: k-anonymity example
Company A customer transactions.

Based on this database, if we know that John Smith is 31 years old, we immediately
know his Transaction Amount.

To illustrate k-anonymity with respect to one variable, the Company A can group
the Customer Age into the intervals [18− 30] and [31− 45]. They would then release the
following database to ensure k-anonymity, with k = 3, for the variable Customer Age.

Here, even if we know that John Smith is 31 years old, our chance to guess his Trans-
action Amount is 1/3.

To illustrate k-anonymity with respect to both variables, Company A can group the
Transaction Amount into the intervals [0− 50], and [51− 100]. They would then release
the following database to ensure k-anonymity, with k = 3, for both variables in the
dataset.

22

Customer Age Transaction Amount($)
(31-45) 75.50
(31-45) 120.00
(18-30) 16.75
(18-30) 85.00
(31-45) 50.00
(18-30) 40.50

Table 3.2: 3-anonymity for 1 variable
3-anonymization with respect to the variable Age.

Customer Age Transaction Amount($)
(31-45) (51-100)
(31-45) (51-100)
(18-30) (0-50)
(18-30) (51-100)
(31-45) (0-50)
(18-30) (0-50)

Table 3.3: 3-anonymity for 2 variables
3-anonymization for the variables Age and Amount.

3.2 PRAM

Post Randomization (PRAM) was formally introduced in [24]. The method applies to
categorical data, that is, when the possible realizations of the random variables Xj lie in
the set {ai, i = 1, . . . ,M}, where ai are real values. The basic idea is as follows: each of
Xj’s is transformed into Yj according to the given transition probabilities:

pkl = P(Yj = al | Xj = ak) .

The disclosure risk in PRAM is measured through posterior odds, that is, the relative
probability that a rare score in the perturbed dataset Y corresponds with a rare score in
the original dataset X. These posterior odds should be small. Data utility is measured
by the increase in the variance of the estimates due to the measurement error introduced
by PRAM. Theoretical formulas for the variances are provided.

Example 3.2.1. We can illustrate this concept with a simple example. Suppose that the
variable Xj represents gender of jth person with the possible values of 0 if you are male
and 1 if you are female. PRAM can be applied to the gender variable so that pkk = 0.8.
Assume the database contains 1000 people, consisting of 500 men and 500 women. The
expected perturbed database will also contain 500 men and women, but 100 men and
100 women would have had their gender swapped.

23

3.3 k-PRAM

This method can be viewed as a combination of k-anonymity and PRAM. It was intro-
duced in [7], with the goal of maximizing data utility in statistical disclosure methods.

Similar to k-anonymity, we want to divide the dataset X into m subgroups in such a
way that each subgroup (equivalence class) has at least k entries. If the original dataset
is inhomogeneous, with large variability and outliers, this may not be possible to achieve.
However, if the original data follow a specific probability distribution, the subgroups can
be selected so that the expected number of entries in each of them is at least k. To
be more specific, assume that Xj’s are real-valued. Let X(1) ≤ . . . ≤ X(n) be the order
statistics of X and define Range(X) = X(n) − X(1). Let G1, . . . , Gm be m consecutive
intervals (subgroups) of equal length

|G| := |Gi| =
Range(X)

m
, i = 1, . . . ,m .

That is, G1 = [X(1), X(1) + |G|), G2 = [X(1) + |G|, X(1) + 2|G|), and so on. We require
that the expected size of each subgroup is at least k:

E

[
n∑
j=1

1{Xj ∈ Gi}

]
≥ k .

After the data are grouped into the intervals G1, . . . , Gm, we apply randomization
using PRAM to each of the individual subgroups Gi separately in such a way that the
size of each subgroup remains constant, and hence the disclosure risk is at most 1/k, as
with k-anonymity.

Randomization can be applied in this way as a means of misleading would-be attack-
ers or simply to maintain data formats. As we will see in Section 3.5, this is not desirable
from the data utility point of view.

Example 3.3.1. Continuing with Example 3.2.1, we can extend it to k-PRAM. Suppose
our database also contains Age, where the range of ages is [20, 80]. We want to split Age
into subgroups so that at least k people exist in each subgroup. We then apply PRAM
to each subgroup such that for any individual in a subgroup, their probability transition
matrix is with respect to the subgroup and not the full range of Ages. So if the groups
are split into G1 = [20, 40), G2 = [40, 60), G3 = [60, 80], each Gi has its own pkl(Gi). In
this way, the data is perturbed but we can control the group size through k-anonymity.

24

3.4 Noise addition

PRAM and k-anonymity were conceived to limit disclosure risk from microdata. Noise
addition can be viewed as a method to protect privacy, especially for continuous data.
In particular, in the context of Differential Privacy (to be discussed thoroughly in Chap-
ter 4), the goal is to limit disclosure risk from statistical queries.

The basic set-up is as follows. Let X be the database. Then a randomized dataset is
defined by

Y = X + Z ,

where Z is a vector of independent random variables that follow a particular distribution.
In the language of Section 2.1, we consider the randomized sanitized response mechanism
with the identity query f .

As indicated above, noise addition became a methodology in the context of Dif-
ferential Privacy. In principle, there is no link between noise addition and classical
k-anonymity. One of the links is provided by the k-noise methodology, to be introduced
in the following section.

3.5 k-noise

This method can be viewed as a combination of k-anonymity and noise addition. The
method was introduced in [7], as an extension of the concept formalized in Section 3.3.
If the data are grouped, as with k-anonymity, and arbitrary noise is added to individ-
ual data points, there is no guarantee that the group sizes in the transformed dataset
are preserved. However, with carefully prescribed noise addition, the group sizes in the
transformed dataset can be controlled. As such, the disclosure risk can be similarly con-
trolled as is the case with k-anonymity.

Once the privacy level is fixed, we can focus efforts on improving data utility. As op-
posed to the randomization within fixed intervals or groups, as described in Section 3.3,
this novel approach does not introduce bias and hence has better data utility.

We divide the dataset into m groups Gi of the same length |G| = |Gi| = 2δ with
some δ > 0. This implies that in a 2δ-neighbourhood of any record x ∈ X, we have at
least k individuals:

#{j : |Xj − x| < 2δ} ≥ k .

We note, however, that we cannot control the number of individuals in a δ-neighbourhood,
#{j : |Xj − x| < δ}, as shown in Figure 3.1 below.

25

Figure 3.1: k-noise group
Graphical representation of the δ neighbourhood of a record x in the dataset.

Let Y = (Y1, . . . , Yn) be a randomized dataset defined by

Y = X + Z ,

where Z = (Z1, . . . , Zn) is a vector of independent identically distributed random vari-
ables.

Uniformly distributed noise

We will assume in this section that Zj, j = 1, . . . , n, have a uniform distribution with a
parameter a > 0. If for a particular group Gi, the data Xj are concentrated around its
centre, then the choice a = δ guarantees, with a high probability, that

#{j : |Yj − x| < 2δ} ≥ k .

However, if this is not the case, the bound cannot be guaranteed. Thus, the theoreti-
cal bound must consider the worst-case scenario and be more conservative. The most
conservative bound guarantees that by applying a uniform noise with parameter δ there
exists at least 1

2
k other individuals within a 2δ neighbourhood. Furthermore, we show

that the underlying distribution of the dataset is not needed in order to guarantee this
bound.

Theorem 3.5.1. Let X = (X1, . . . , Xn) and Y = X + Z, where Z = (Z1, . . . , Zn) is
a vector of independent uniform random variables on [−a, a] for a > 0. Let δ > 0 and
assume that for each x ∈ [X(1), X(n)] we have

#{j : |Xj − x| < 2δ} ≥ k .

Take a = δ. Then

E [#{j : |Yj − x| ≤ 2δ} | X] >
1

2
#{j : |Xj − x| < 2δ} =

1

2
k .

26

Remark 3.5.2. We note that the expectation is calculated conditionally on the database
X, hence the database entries are treated as deterministic and the randomness is due to
the noise Z. Using the tower property of the conditional distribution we also obtain

E [#{j : |Yj − x| ≤ 2δ}] >
1

2
#{j : |Xj − x| < 2δ} =

1

2
k .

Proof of Theorem 3.5.1. Let Aj = −2δ − Xj + x,Bj = 2δ − Xj + x. Then, using the
properties of the uniform distribution,

E

[
n∑
j=1

1{−2δ < Yj < 2δ} | X

]

=
n∑
j=1

E [1{−2δ −Xj + x < Zj < 2δ −Xj + x} | X]

=
2δ

a

n∑
j=1

1{−a < Aj, Bj < a} +
n∑
j=1

1{Aj < −a, a < Bj}

+
1

2a

n∑
j=1

(a− Aj)1{−a < Aj, a < Bj} +
1

2a

n∑
j=1

(Bj + a)1{Aj < −a,Bj < a}.

For a = δ the expressions above become

n∑
j=1

1{x− δ < Xj < x+ δ}

+
n∑
j=1

(3δ − x+Xj)

2δ
1{x− 3δ < Xj < x− δ}

+
n∑
j=1

(3δ + x−Xj)

2δ
1{x+ δ < Xj < x+ 3δ}.

We split the last two terms as J1 + J2 + J3 + J4 with

27

J1 :=
n∑
j=1

(3δ − x+Xj)

2δ
1{x− 2δ < Xj < x− δ},

J2 :=
n∑
j=1

(3δ − x+Xj)

2δ
1{x− 3δ < Xj < x− 2δ},

J3 :=
n∑
j=1

(3δ + x−Xj)

2δ
1{x+ δ < Xj < x+ 2δ},

J4 :=
n∑
j=1

(3δ + x−Xj)

2δ
1{x+ 2δ < Xj < x+ 3δ} =: I1 + I2 + I3.

Note that

J1 + J3 ≥
1

2

n∑
j=1

1{x− 2δ < Xj < x− δ} +
1

2

n∑
j=1

1{x+ δ < Xj < x+ 2δ} .

Ignoring J2 and J4, the expectation is bounded below by

1

2
I1 + J1 + J3 ≥

1

2
#{j : |Xj − x| < 2δ} ≥ 1

2
k .

3.6 Experimental Results

In the first experiment, we illustrate that the although the bound obtained in Theo-
rem 3.5.1 can be conservative, in reality it is close to the target value of k, and in many
cases can exceed k. This is shown in Section 3.8 and Figure 3.3. We show experimental
results using a public dataset consisting of 659 records with several categorical and nu-
merical variables. We focus on one numerical variable of interest, Age, and aim to study
the effects of data utility when comparing two methods of anonymization. In Section 3.8,
the histogram of the original ages (since PRAM preserves the counts of the histogram)
and Figure 3.3 shows the histogram for the noisy data where Zj has the uniform distri-
bution, Unif[−δ, δ].

Using the same binning between histograms, we can see that the empirical distribu-
tions for both the original and the noisy datasets are nearly identical, and hence the
data utility (measured by an arbitrary metric) is comparable. The difference between
the k-PRAM and k-noise methods are illustrated on Figure 3.4.

28

With k-noise, the resulting distribution of ages is smoother, which suggests better
utility and has the added benefit of further misleading would-be attackers. The light
blue clusters show the inherent bias in the dataset when implementing k-PRAM, versus
the smooth dark blue trend formed when implementing k-noise. Furthermore, we divide
the Age variable into 12 groups, each spanning an interval of 5 years on the interval
[24, 79], and we can see from Table 3.4 that k-noise reduces the bias and error compared
to k-PRAM.

Method Bias MSE RMSE
k-PRAM 0.06881953 4.398563 2.097275
k-noise 0.03408935 2.060666 1.435502

Table 3.4: Utility results for k-PRAM & k-noise
Different utility measures to compare k-PRAM and k-noise methods.

To test this further, we employ the use of Monte Carlo simulations to get the expected
number of ages, representing individuals, in a neighbourhood of an anonymized entry
when applying k-noise. k-noise can be thought of as a ”local” measure of k-anonymity,
since the group is being compared to the neighbourhood of adjacent points. If this number
of ages exceeds or equals the group size of the original entry, then we can determine they
are adequately protected within a group. We are treating the underlying dataset as the
baseline for comparison to k-noise. Our results far exceed our theoretical bound of 1

2
k

and demonstrates the effectiveness of this approach in practice.

3.7 Conclusion

By adjusting the noise level to achieve an expected minimum threshold k, we can improve
the distribution of an anonymized variable over the more common approach of randomiz-
ing within fixed intervals to satisfy k-anonymity. This noise addition approach allows us
to leverage the well-established concept of k-anonymity, which is easily understood and
has well-established precedents for the threshold k. We believe this will enable us to fine-
tune noise levels based on other statistical properties and make inroads towards bridging
k-anonymity with differential privacy which will be introduced and studied extensively
in the remainder of this thesis.

29

3.8 Figures

Figure 3.2: k-PRAM
Empirical distribution of randomized dataset via k-PRAM

30

Figure 3.3: k-noise
Empirical distribution of randomized dataset via k-noise

31

Figure 3.4: k-PRAM vs k-noise
Scatterplot of anonymized ages implementing k-PRAM and k-noise on the same database.

32

Figure 3.5: Expected group size
Expected number of records within a δ neighbourhood of [-2.5,2.5] years for each randomized
record in X.

33

34

Chapter 4

Differential privacy

Differential Privacy is a probabilistic guarantee that the inclusion of an individual in the
database does not alter the outcome of a query on the database by more than a specific
bound.

We start with the basic definition in Section 4.2. Next, it is shown (see Theorem 4.3.1)
that a particular output perturbation mechanism with Laplace noise fulfills differential
privacy. It turns out that other classical distributions, such as the normal distribution,
violate the classical definition. As such, in recent years, differential privacy has became
almost synonymous with adding noise following a Laplace distribution.

In Section 4.4 the concept of approximate differential privacy is introduced. This
approximation allows for the inclusion of the normal distribution as noise. Section 4.5
highlights different closure properties of differential privacy.

The bulk of this chapter is based on the foundation work by [17], with several examples
and proofs added by the author of the thesis.

4.1 Introduction

Differential privacy is a probabilistic guarantee that the inclusion of an individual in a
database does not alter the outcome of a query on the database by more than a user
chosen specified bound. It represents a robust framework for quantifying and managing
the privacy of individuals in databases that undergo analysis. Formally introduced by
Cynthia Dwork in 2005, it has since become a popular implementation choice in the field
of data privacy. It provides mathematical guarantees against identity inference and data
re-identification attacks.

The foundation of differential privacy is built upon several key concepts, which we
introduce at a high level in this introduction. The privacy budget, known as epsilon

35

(ε), is an important parameter in a differentially private mechanism. It quantifies the
allowable loss of privacy (or increase in privacy risk) when a query is answered using
a database containing private or sensitive information. A smaller value of epsilon
offers stronger privacy guarantees, limiting the information that can be inferred
about any individual. However, with stronger privacy guarantees comes reduced
accuracy in the query results, namely a decrease in data utility. The data
utility issues will be discussed in great detail in Chapter 5. The sensitivity function
refers to the maximum change a single individual’s data can affect the output of a sta-
tistical query. In the context of differential privacy, it is an important parameter in the
noise mechanism, measuring how much the result of a query function can vary when a
single record in the database is altered. Since it is a parameter in the noise mechanism,
it is essential for calibrating the noise added to the query response, contributing to the
balance of data privacy vs. data utility.

Finally, there are two implementations of differential privacy: local differential pri-
vacy and global differential privacy. The former ensures privacy guarantees at the
individual data point level. Each individual’s data is randomized before it is collected
by the aggregator. This corresponds to the sanitized response (SR) mechanism defined
in (2.3). This approach is considered highly robust to privacy risks since the raw data
is never used for statistical analysis; however, the high level of noise required often leads
to significant reductions in data utility. Global differential privacy ensures privacy at
the query level by first aggregating the data and then applying noise to the aggregated
output before any output is shared. This corresponds to the output perturbation (OP)
mechanism introduced in (2.4). This approach requires a trusted curator to hold the raw
data, but generally provides better data utility.

We note in passing that global and local differential privacy should not be conflated
with global and local sensitivity (See Definition 2.1.2). The global and local differential
privacy is the implementation of the randomized mechanism, while global and local
sensitivity refers to the way in which we measure the contribution of the individual
in the database. For example, we can use the global differential privacy with global
sensitivity (in this case, differential privacy guarantees will hold), or we can use global
differential privacy with local sensitivity (here, differential privacy guarantees may be
violated). We will discuss such issues in the next chapter.

4.2 Basic definition

We will refer to the notation introduced in Section 2.1. Recall that f : D → Rd. Let
B(Rd) be the class of Borel sets on Rd. Recall that we use the notation Q = Qf to denote
either the sanitized response mechanism Sf or output perturbation mechanism Of .

The general idea of differential privacy can be summarized as follows. Assume that

36

we have realizations of two neighbouring databases x and y and consider a randomized
response mechanism Qf (·, Z) acting on either x or y. The mechanism is differentially
private if the distance between the appropriate probability distributions of Qf (·, Z) is
bounded.

Definition 4.2.1 (Differential Privacy, DP). Let X be a database, a random element
of D. Let Z be a random element with values in a metric space E. Let ε > 0. A
randomized mechanism Q : D × E → Rd is ε-differentially private if, ∀ x,y ∈ D,
satisfying d(x,y) = 1, we have

sup
B∈B(Rd)

P(Q(X, Z) ∈ B | X = x)

P(Q(X, Z) ∈ B | X = y)
≤ eε.

Denote by PQ|X=x the conditional distribution of Q(X, Z) given X = x. We note that
ε-differential privacy can be written as

D∞(PQ|X=x∥PQ|X=y) ≤ ε . (4.1)

In other words, differential privacy bounds the max-divergence distance between the con-
ditional distributions. See Section 2.3 for comments on the distance between probability
laws.

If the noise Z is independent of X, then the above definition reduces to

sup
B∈Rd

P(Q(x, Z) ∈ B)

P(Q(y, Z) ∈ B)
≤ eε.

Intuitively, failure of differential privacy means that there exists two neighbouring
databases x ∼ y and an output q such that the ratio of the corresponding probabilities
is large. One issue with this definition is that such q may be very unlikely, yet still the
definition of differential privacy will be violated. This leads to less restrictive notion of
differential privacy, as we will see below in Section 4.4.

Definition 4.2.2 (Privacy budget). The parameter ε > 0 is considered the privacy
budget of a differentially private mechanism. It represents a limit to the amount of
information about an individual in the data that can be leaked.

The smaller ε, the more noise is added. This means that the output is more private.
On the other hand, more noise also means less data utility.

37

Definition 4.2.3 (Privacy loss). Let Q(·, Z) be a randomized mechanism. For the given
output q and given neighbouring databases x ∼ y, the privacy loss is defined as

Lx∥y(q) =

∣∣∣∣ln P(Q(x, Z) = q)

P(Q(y, Z) = q)

∣∣∣∣ . (4.2)

The above definition makes sense when for each x, Q(x, Z) is a discrete random
variable. Otherwise, instead of P in (4.2), one needs to use the density of Q(x, Z) (if
it exists). This is one of the common problems faced when citing computer science
literature.

4.3 Laplace noise and differential privacy

Once the definition of differential privacy is introduced, we ask the question: What
random mechanism satisfies it? The main result of this section is the following theorem,
taken from [17]. We present the proof for the sake of completeness.

Theorem 4.3.1. Let ε > 0. For any f : D → R, the randomized output perturbation
mechanism

Of (x, Z) = f(x) + Z

with the Laplace(0, ∆f
ε

)-distributed noise Z is ε-differentially private.

Proof. Assume ε = 1. Recall that gA(q) is the density of a random variable A at the
point q. Here, our random variable of interest is Of (u, Z), where u is either x or y.

Recall that the density of Z is gZ(q) = 1
2∆f

exp
{
− |q|

∆f

}
. The privacy loss is

ln
gOf (x,Z)(q)

gOf (y,Z)(q)
= ln

gZ(q − f(x))

gZ(q − f(y))

= ln
exp

{
− |q−f(x)|

∆f

}
exp

{
− |q−f(y)|

∆f

} =
−|q − f(x)| + |q − f(y)|

∆f
,

and its absolute value is bounded by

|f(x) − f(y)|
∆f

≤ ∆f

∆f
= 1 = ε .

Note that the bound is uniform in x,y. Thus, the randomized output perturbation mech-
anism Of (x, Z) = f(x) + Z, where Z is a random variable with a Laplace distribution,
satisfies differential privacy.

38

4.4 (ε, δ)-Differential Privacy

A natural question is: Is Laplace noise the only noise mechanism that satisfies differential
privacy? From a statistical inference point of view, we want to prove the validity of
differential privacy for normal noise. However, in the next example, we will show that
when the noise Z is normally distributed, the similar procedure as in the example above
does not lead to the uniform bound on the privacy loss.

Example 4.4.1. Consider the randomized output perturbation mechanism Of (x, Z) =
f(x) + Z, where Z ∼ N (0, σ2). The privacy loss is then,

ln
gOf (x,Z)(q)

gOf (y,Z)(q)
= ln

exp
{
−1

2
(q−f(x))2

σ2

}
exp

{
−1

2
(q−f(y))2

σ2

}
= −1

2

(
(q − f(x))2 − (q − f(y))2

σ2

)
= −1

2

(
f(x)2 − f(y)2

σ2

)
+

q

σ2
(f(x) − f(y))

= −1

2

(
(f(x) − f(y))(f(x) + f(y))

σ2

)
+

q

σ2
(f(x) − f(y))

≤ −1

2

(
(f(x) − f(y))(f(x) + f(y))

σ2

)
+

q

σ2
∆f.

Note that if q ∈ R, then the term q∆f is unbounded.

The above example indicates that a normal distribution may not satisfy the definition
of differential privacy. This leads to a weaker version of Differential Privacy.

Definition 4.4.2 ((ε, δ)-Differential Privacy; Approximate Differential Privacy). Let
X be a database, a random element of D. Let Z be a random element with values in a
metric space E. Let ε > 0 and δ ∈ (0, 1). A randomized mechanism Q : D × E → Rd

is (ε, δ)-differentially private if ∀ x,y ∈ D, satisfying d(x,y) = 1 and all B ∈ B(Rd),
we have

P(Q(X, Z) ∈ B | X = x) ≤ eεP(Q(X, Z) ∈ B | X = y) + δ .

In the spirit of (4.1), we note that the (ε, δ)-differential privacy can be written as

Dδ
∞(PQ|X=x∥PQ|X=y) ≤ ε (4.3)

39

or

Eexp(ε)(PQ|X=x∥PQ|X=y) ≤ δ . (4.4)

For the notation, see Section 2.3.

The next result shows that the Gaussian mechanism is (ε, δ)-differentially private.
The result is taken from [17]. We present the proof for completeness.

Theorem 4.4.3. Let ε ∈ (0, 1) be arbitrary and c2 > 2 ln(1.25/δ). For any f : D →
R, the randomized output perturbation mechanism

Of (x, Z) = f(x) + Z

with the centered Gaussian noise with the parameter σ ≥ c∆f/ε is (ε, δ)-differentially
private.

Proof. The proof follows [17], with appropriate notational modifications.

Let x and y be neighbouring datasets, and let the query f be a real-valued function,
so that ∆f = ∆f1 = ∆f2. Assume f(x) = 0, which implies ∆f = f(y). We examine the
privacy loss ratio (4.2):

ln

(
P(Q(X, Z) ∈ B | X = x)

P(Q(Y, Z) ∈ B | X = y)

)
=

∣∣∣∣ ln e(−
1

2σ2)q
2

e(−
1

2σ2)(q+∆f)2

∣∣∣∣ . (4.5)

We have ∣∣∣∣ ln e(−
1

2σ2)q
2

e(−
1

2σ2)(q+∆f)2

∣∣∣∣ = | ln e(−
1

2σ2)[q
2−(q+∆f)2]| =

∣∣∣∣q∆fσ2
+

∆2f

2σ2

∣∣∣∣
When q <

σ2ε

∆f
− ∆f

2
, the privacy loss is bounded by ε. To ensure that the privacy loss

is bounded by ε with probability at least 1 − δ, it is necessary to demonstrate that the
probability of

P
(
|Zσ| ≥

σ2ε

∆f
− ∆f

2

)
< δ ,

where Zσ is a centered Gaussian random variable with variance σ2. The objective is

to find the value of σ that satisfies the condition P
(
q ≥ σ2ε

∆f
− ∆f

2

)
< δ/2. Assume

ε ≤ 1 ≤ ∆f . We recall the standard tail bound, given by the probability density

40

function of a standard normal random variable, Z, is: P(Z > t) ≤ σ√
2π
e−t

2/2σ2
. We

obtain the inequality

σ√
2πt

e−t
2/2σ2

< δ/2 ⇐⇒ ln(t/σ) +
t2

2σ2
> ln

(2√
2πδ

)
with t =

σ2ε

∆f
− ∆f

2
. We conclude that c2 > ln(2/π) + 2 ln(1/δ) + ln(e8/9), which is

satisfied when c2 > 2 ln(1.25/δ).

Let R = R1 ∪ R2, where R1 = {q ∈ R : |q| ≤ c∆f/ε} and R2 = {q ∈ R : |q| > c∆f/ε}.
Fix B ⊆ R and define B1 = {f(X) + q|q ∈ R1} and B2 = {f(X) + q|q ∈ R2}.

P(f(X) + q ∈ B | X = x) = P(f(X) + q ∈ B1 | X = x) + P(f(X) + q ∈ B2 | X = x)

≤ P(f(X) + q ∈ B1 | X = x) + δ

≤ eεP(f(X) + q ∈ B1 | X = y) + δ .

It can thus be concluded that the Gaussian mechanism is (ε, δ)-differentially private.

4.5 Properties

In what follows, we state and prove a number of properties associated with differentially
private mechanisms. Some of these properties are valid for both sanitized response (SR)
and output perturbation (OP) mechanisms, while others are specific to one or the other.
We present proofs for selected statements only. The majority of the results presented are
taken from existing literature, with the proofs adapted to align with the mathematical
framework in this thesis.

The following properties are presented for the reader’s consideration:

� Preservation under different queries - valid for SR mechanisms only; see Lemma 4.5.1.

� Closure under deterministic post-processing - valid for both SR and OP mecha-
nisms; see Lemma 4.5.4.

� Closure under independent random post-processing - valid for both SR and OP
mechanisms; see Lemma 4.5.5.

4.5.1 Preservation of differential privacy under different queries

The first result indicates that if a sanitized response mechanism is ε-differentially private
for a given query, then it is also ε-differentially private for any query. This is a straight-
forward consequence of the fact that in a Sf mechanism, noise is added to the database.
The identity query, denoted by Id, is a special case.

41

Lemma 4.5.1 (Theorem 3.4 in [26]). Let D = Rd. Let Z be a random vector with
values in Rd. Assume that SId(·,Z) is (ε, δ)-differentially private. Then Sf (·,Z) is (ε, δ)-
differentially private for any query f .

Proof. It is sufficient to consider the case whereδ = 0. Let B be an arbitrary Borel set
in Rd. If SId(·,Z) is ε-differentially private, then we can write

P(SId(x,Z) ∈ B) ≤ eεP(SId(y,Z) ∈ B) ,

P(G(x + Z) ∈ B) ≤ eεP(G(y + Z) ∈ B)

with G = Id. Let now f be an arbitrary query and x ∼ y. Then we can write Sf◦g = Sf
and

P(Sf (x,Z) ∈ B) = P(Sf◦G(x,Z) ∈ B)

= P(f ◦G(x,Z) ∈ B) = P(G(x,Z) ∈ f−1(B))

≤ eεP(G(y,Z) ∈ f−1(B)) = eεP(f ◦G(y,Z) ∈ B)

= eεP(Sf (y,Z) ∈ B) ,

So we conclude that if SId(·,Z) is ε-differentially private, then Sf (·, Z) is ε-differentially
private for any query f .

Example 4.5.2 (Example 3.5 in [26]). For the sake of argument, consider the scenario
where the same real-valued query f is asked multiple (m) times on a database D = Un.
This can be represented as a query, f (m) : D → Rm. Indeed, for x ∈ D, f (m)(x) =
(f(x), . . . , f(x)). The result in Lemma 4.5.1 implies that the repeated query is also
ε-differentially private. Intuitively this is clear, due to the fact that the addition of
noise to the database and repeated application of the same query do not yield any new
information.

Lemma 4.5.1 does not extend to an output perturbation mechanism. In other
words, if we have (ε, δ)-differential privacy for one query, we cannot conclude
it directly for another query. This is illustrated in the next example.

Example 4.5.3. Consider a simple binary-query, f : D → {0, 1}. Then, B = {0, 1}.
The output perturbation is specified by the distributions :

P(Zi = i) = 1 − p

and

P(Zi ̸= i) = p ,

for i = 0, 1. It is straightforward to demonstrate that the output perturbation mechanism
Of (x, Z) is (ε, δ)-differentially private if and only if p ≥ 1−δ

1+eε
. To illustrate this example,

42

we assume that there exists two databases x,y ∈ D for which f(x) = 0 and f(y) = 1.
Consider the set B = {0}, then we can explicitly calculate the probabilities

P(Of (X, Z) ∈ B | X = x) = 1 − p

and
P(Of (X, Z) ∈ B | X = y) = p .

Let ε = ln(3), δ = 0.1, and p = 1
4
. We first query one time to show that differential

privacy holds:

P(Of (X, Z) ∈ B | X = x) ≤ eε · P(Of (X, Z) ∈ B | X = y) + δ

1 − p ≤ eε · p+ δ

3

4
≤ 3

4
+ 0.1.

Thus, (ε, δ)-differential privacy holds when the database is queried on a single occasion.
A second query of the database is then conducted to ascertain whether differential privacy
still holds. We want to verify the inequality:

P((Of (X, Z), Of (X, Z)) ∈ B ×B | X = x)

≤ eε · P((Of (X, Z), Of (X, Z)) ∈ B ×B | X = y) + δ .

The left-hand side is given by the expression (1− p)2, while the right-hand side becomes

≤ eε · p2 + δ. That is,
9

16
≰

3

16
+ 0.1.

It can thus be concluded that if the output perturbation mechanism is applied twice
in this scenario, it will fail to preserve differential privacy.

4.5.2 Post-processing

In the next result, a randomized mechanism Q is either SR (Sanitized Response) or OP
(Output Perturbation).

Lemma 4.5.4 (Post-processing). Assume that Q(·, Z) is a ε-differentially private re-
sponse mechanism with values in Rd. Let g : Rd → Rd′ be a deterministic function.
Then g ◦Q(·, Z) is ε-differentially private.

Let f be a Rd-valued function. If Of is the output perturbation mechanism and
g(z, z′) = z + z′, where z, z′ ∈ Rd, then g ◦Of becomes

g ◦Of (x, z, z′) = f(x) + z + z′ ,

and it maps Rd × Rd × Rd into Rd. According to Lemma 4.5.4, g ◦ Of (·, Z, z′) is ε-
differentially private for any z′, whenever Of (·, Z) is ε-differentially private. Recall that

43

x plays a role of the database and the dimension of the noise z is related to the dimension
of the query, not the database (hence the notation z for the noise).

The same reasoning is applied to the sanitized response mechanism Sf and

g ◦ Sf (x, z, z′) = f(x + z) + z′ .

Here the noise z has the same dimension as the database, while z′ has the dimension of
the query f .

The next lemma demonstrated that differential privacy is preserved when g is con-
sidered as a random map.

Lemma 4.5.5. Let Z and Z′ be two independent random vectors with values in Rd. As-
sume that Qf (·, Z) is ε-differentially private. Then g ◦Qf (·, Z, Z ′) is also ε-differentially
private.

Proof. Denote H = g ◦Of . Then H(x, Z, Z ′) = f(x) + Z + Z ′. Let FZ′ be the distribu-
tion function of Z ′. Then by the principle of independence and the differential privacy
property of Of (·, Z), we have

P(H(x, Z, Z ′) ∈ B) =

∫
P(H(x, Z, z′) ∈ B)FZ′(dz′)

=

∫
P(f(x) + Z ∈ B − z′)FZ′(dz′) ≤ eε

∫
P(f(y) + Z ∈ B − z′)FZ′(dz′)

=

∫
P(H(y, Z, z′) ∈ B)FZ′(dz′) = eεP(H(y, Z, Z ′) ∈ B).

The proof for g ◦ Sf is analogous.

In the aforementioned proof, the crucial aspect is the independence between Z and
Z ′. In the following example, we demonstrate that if the independence assumption is
relaxed, the conclusion of Lemma 4.5.5 is no longer valid. One might observe an appar-
ent contradiction with the statement made after Proposition 2.1 in [17]. Nevertheless, it
seems reasonable to posit that the authors work under the assumption of independence.
In short, differential privacy is not preserved under dependent post-processing.

Example 4.5.6. Let f be a real-valued function and define g◦Of (x, z, z′) = f(x)+z+z′,
z, z′ ∈ R. Assume that Z is a Laplace random variable. Then set Z ′ = −Z + N ,
where N is a Normal random variable. Then, it can be shown that Of (x, Z) is ε-
differentially private. However, since g ◦Of (x, Z, Z ′) = f(x) +N , then g ◦Of (·, Z, Z ′) is
not differentially private.

44

We make another important observation in relation to Lemma 4.5.5: the addition of
further noise, Z, does not result in an increase in the level of privacy, ε. This is not
a particularly intuitive result and, in fact, represents a significant fallacy of differential
privacy.

Example 4.5.7 (Sum of two independent Laplace noises). Assume that the following
random variables Z and Z ′ are independent with a density Laplace(0, 1). Then, ξ =
Z + Z ′ has a density given by

fξ(q) =
1

4
(1 + |q|)e−|q| , q ∈ R .

Let Of (x, ξ) = f(x) + ξ. The ratio of the densities of f(x) + ξ and f(y) + ξ is

(1 + |q − f(x)|)e−|q−f(x)|

(1 + |q − f(y)|)e−|q−f(y)| .

Assume that f(x) ̸= f(y). We see that when q → f(y), the expression above is un-
bounded. Indeed the ratio behaves like

lim
x→∞

ex

1 + x
= ∞ .

Hence, we conclude that the ratio of densities is unbounded when q → f(y). This
serves to illustrate that when the output perturbation mechanism is considered with the
noise being the sum of two differentially private Laplace random variables, the result is
not differentially private.

The next examples illustrate the lack of impact of adding additional noise.

Example 4.5.8. Assume that Z, Z ′ are independent random variables with the densi-
ties Laplace(∆f

ε
), Laplace(∆f

ε′
) respectively. Then the randomized output perturbation

mechanism f(x) + Z + Z ′ is (ε ∧ ε′)-differentially private. Indeed, this is the optimal
achievable result. The primary reason for this is that the combination of the two noise
variables Z + Z ′ does not produce a differentially private noise. See Example 4.5.7. In-
deed, similar to Lemma 4.5.5, denote H = g ◦ Of . Then H(x, Z, Z ′) = f(x) + Z + Z ′.
Let FZ ,FZ′ be the distribution functions of Z and Z ′ respectively. We condition first on
Z ′ and obtain

P (f(x) + Z + Z ′ ∈ B) =

∫
P(f(x) + Z + z′ ∈ B)FZ′(dz′)

=

∫
P(f(x) + Z ∈ B − z′)FZ′(dz′)

≤ eε
∫

P(f(y) + Z ∈ B − z′)FZ′(dz′)

= eεP (f(y) + Z + Z ′) ∈ B) .

45

Similarly, if we condition on Z we obtain

P (f(x) + Z + Z ′ ∈ B) =

∫
P(f(x) + z + Z ′ ∈ B)FZ(dz)

=

∫
P(f(x) + Z ′ ∈ B − z)FZ(dz)

≤ eε
′
∫

P(f(y) + Z ′ ∈ B − z)FZ(dz)

= eε
′P (f(y) + Z + Z ′ ∈ B) .

So we conclude that the output perturbation mechanism, Of (x, Z, Z ′) = f(x) + Z + Z ′

is (ε ∧ ε′)- differentially private.

Example 4.5.9 (Sum of independent Laplace and normal noises). Let W = X + Y
where X ∼ N (µ, σ2), with density fX(x;µ, σ) = ϕ((x − µ)/σ)/σ (ϕ is the standard
normal density)) and Y ∼ Exponential(1) with density fY (y) = e−yI(y > 0).
We can write the convolution as

fW (w;µ, σ) =

∫ ∞

∞
fY (y)fX(w − y;µ, σ)dy =

∫ ∞

0

e−yfX(w − y;µ, σ)dy .

Substituting σz = w − y − µ, we get

fW (w;µ, σ) = eµ−w+σ
2/2

∫ (w−µ)/σ

−∞
ϕ(z − σ)dz = eµ−w+σ

2/2Φ

(
w − µ

σ
− σ

)
,

where Φ is the standard normal CDF. A symmetric Laplace random variable U can be
expressed as a sum of a ”positive” scaled exponential random variable and a ”negative”
scaled exponential random variable:

U = U− + U+,

where U+ = βY and U− = −βY , with positive scale β. Adding X, the two components
can be written as

W+ = U+ +X = β

(
Y +

(
σ

β
Z +

µ

β

))
(4.6)

and

W− = U− +X = −β
(
Y +

(
−σ
β
Z +

µ

β

))
, (4.7)

where Z is standard normal. Noting that Z and −Z have the same distribution, we can
rewrite (4.6) and (4.7) as

fW+(w;µ, σ, β) =
1

β
fW

(
w

β
;
µ

β
,
σ

β

)
,

46

fW−(w;µ, σ, β) =
1

β
fW

(
−w
β

;−µ
β
,
σ

β

)
,

and thus

fW (w;µ, σ, λ, β, p) =
1

2
fW+(w;µ, σ, λ, β) +

1

2
fW−(w;µ, σ, λ, β) . (4.8)

A plot is presented that compares a histogram of one million independent and identically
distributed draws from a symmetric Normal-Laplace distribution with parameters µ = 0,
σ = 1, and β = 2 to a calculation based directly on the formulas (4.6), (4.7), and (4.8).

Figure 4.1: Histogram of Laplace-Normal density
Histogram of i.i.d. samples from a symmetrical Normal-Laplace distribution with Normal and
Laplace densities with a variance of 9.

The above discussion leads to the conclusion that,

DP Fallacy 4.5.10. Adding additional noise does not improve differential privacy.

47

4.5.3 Group privacy

Recall that the definition of differential privacy assumed that x ∼ y. That is the Ham-
ming distance is one: d(x,y) = 1. In other words, two databases differ by one record.
The definition can be extended to a situation when two databases differ by more than
one record.

Lemma 4.5.11 (Group privacy). Let f be a real-valued function and Z be a random
variable. Assume that a randomized mechanism Q(·, Z) is ε-differentially private. Let k
be a positive integer. Then

sup
x,y:d(x,y)=k

sup
B∈B

P(Q(X, Z) ∈ B | X = x)

P(Q(X, Z) ∈ B | X = y)
≤ ekε.

Proof. We use the mechanism Of (x, Z) = f(x) + Z, where Z ∼ Laplace(∆f/ε). We
compare the ratio of densities at an arbitrary point z and examine what differential
privacy bound we can achieve. We note that we want to compare x = (x1, · · · , xn) and
y = (y1, · · · , yn). We denote x(−i) = (xi+1, · · · , xn) and y(i) = (y1, · · · , yi, x(−i)). It is
obvious that d(x,y) = n and applying repeatedly the definition of ε-differential privacy,

P(f(x) + Z ∈ B) ≤ eεP(f(y(1)) + Z ∈ B)

≤ eεeεP(f(y(2)) + Z ∈ B)

≤ enεP(f(y) + Z ∈ B)

as required.

Lemma 4.5.12 (Group privacy for (ε, δ)-differential privacy). Assume that a randomized
mechanism Q(·, Z) is (ε, δ)-differentially private. Let k be a positive integer. Then

sup
x,y:d(x,y)=k

sup
B∈B

P(Q(x, Z) ∈ B) ≤ ekεP(Q(y, Z) ∈ B) + δ(k),

with δ(k) = δ
∑k−1

j=0 ejε.

Proof. We use the same notation as in Lemma 4.5.11. Then

P(f(x) + Z ∈ B) ≤ eεP(f(y(1)) + Z ∈ B) + δ

≤ eε
(
eεP(f(y(2)) + Z ∈ B) + δ

)
+ δ

≤ ekεP(f(y) + Z ∈ B) +
k−1∑
j=0

ejεδ =: ekεP(f(y) + Z ∈ B) + δ(k).

48

4.5.4 Compositions

Let Q(i) : D ×N → Rd(i) , i = 1, . . . ,m, be response mechanisms. Define Q : D ×Nm →
R

∑m
i=1 d

(i)
by

Q(x, (z(1), . . . , z(m))) = (Q(1)(x, z(1)), . . . , Q(m)(x, z(m))) .

Therefore, we apply multiple queries to the same database. As such, the privacy
deteriorates.

Lemma 4.5.13. Let Z(i), i = 1, . . . ,m, be independent random elements. If Q(i)(·, Z(i)),
i = 1, . . . ,m, are ε(i)-differentially private, then Q(·, (Z(1), . . . , Z(m))) is

∑m
i=1 ε

(i)-differentially
private.

Proof. Let x,y ∈ D be such that d(x,y) = 1, and consider any outcome B×· · ·×B ∈ B.
Then

P(Q(x, (Z(1), · · · , Z(m))) ∈ B × · · · ×B)

P(Q(y, (Z(1), · · · , Z(m))) ∈ B × · · · ×B)
=

m∏
i=1

P(Q(x, Z(i) ∈ B)

P(Q(y, Z(i) ∈ B)

≤ eε
(1) · · · eε(m)

= e
∑m

i=1 ε
(i)

Assume now that the database x is decomposed into disjoint databases x1, . . . ,xm.
Let Q(i) : D ×N → Rd(i) , i = 1, . . . ,m, be response mechanisms. Define Q : D ×Nm →
R

∑m
i=1 d

(i)
by

Q(x, (z(1), . . . , z(m))) = (Q(1)(x1, z
(1)), . . . , Q(m)(xm, z

(m))) . (4.9)

Therefore, we apply multiple queries to disjoint databases. As such, the privacy
does not deteriorate.

Lemma 4.5.14. Let Z(i), i = 1, . . . ,m, be independent random elements. If Q(i)(·, Z(i)),
i = 1, . . . ,m, are ε(i)-differentially private, then the query (4.9) is maxi=1,...,m ε

(i)-differentially
private.

Proof. Let x,y ∈ D be such that d(x,y) = 1. If x and y are decomposed into x1, . . . ,xm
and y1, . . . ,ym, respectively, then only one of the m pairs (xi,yi), i = 1, . . . ,m, can differ
by one record, say i = 1. Consider any outcome B × · · · ×B ∈ B. Then

P(Q(x, (Z(1), · · · , Z(m))) ∈ B × · · · ×B)

P(Q(y, (Z(1), · · · , Z(m))) ∈ B × · · · ×B)
=

(m)∏
i=1

P(Q(xi, Z
(i) ∈ B)

P(Q(yi, Z
(i) ∈ B)

=
P(Q(x1, Z

(1) ∈ B)

P(Q(y1, Z
(1) ∈ B)

≤ eε
(1)

.

49

50

Chapter 5

Differential Privacy from a data
utility perspective

5.1 Introduction

As stated in Chapter 4, ”Differential Privacy is a probabilistic guarantee that the in-
clusion of an individual in the database does not alter the outcome of a query on the
database by more than a specific bound.” This is achieved by adding a noise to a query.
The amount of noise is determined by the global sensitivity of the query (see Definition
2.1.2). However, this can be highly detrimental from the standpoint of data utility.

To be more precise, consider a database x = (x1, . . . , xn) derived from a population
P . We can consider two distinct scenarios for a database. It may be treated as fixed, in
which case we will denote it by x. Alternatively, it may be treated as random, in which
case it will be written as X. If the objective is to estimate a population parameter θ,
we can use a point estimator f(x) for a suitable function f . For example, if θ represents
the population mean, then f(x) is the sample mean, x̄. In the context of privacy, we
consider the randomized output perturbation mechanism, defined as follows:

Of (x, Z) = f(x) + Z ,

where Z is a random variable (or a random vector if f has values in Rd). In other words,
the estimator of θ is perturbed by a random noise. The additional noise Z contributes
to a decline in the utility of the data. For example, if Z ∼ Lap(∆f/ε), we can compare
the mean square error (MSE) of both the original and privatized estimators. The MSE
of the estimator θ is given by:

MSE(f(X)) = E[(f(X) − θ)2] ,

MSE(Of (X, Z)) = MSE(f(X)) + Var(Z) = E[(f(X) − θ)2] + 2(∆f/ε)2 .

51

The term 2(∆f/ε)2 describes the additional contribution from the privatization, regard-
less of whether the database is treated as random or not.

Above, ∆f is the global sensitivity of the query f . If f(x) is the sample mean
and the population has a range of [0,Λ], then the sensitivity is given by ∆f = Λ

n
(cf.

Example 2.1.3). Consequently, the variance of the noise is given by:

Var(Z) = 2

(
Λ2

n2ε2

)
. (5.1)

As a result, for large values of Λ, a considerable amount of noise is introduced. Addi-
tionally, the range may be either unknown or infinite. The situation becomes even more
challenging when a normal noise is introduced, as will be discussed below. Consequently,
one of the most important practical issues is to reduce the amount of noise added
while maintaining the same level of privacy.

An alternative approach to global sensitivity is to use the local sensitivity (see
Definition 2.1.1), which is based on the database itself. However,

DP Fallacy 5.1.1. The local sensitivity may lead to a violation of Differential Privacy.

An alternative approach is to use an ”intermediate” version between the local and
global sensitivity. This is referred to as smooth sensitivity, originally introduced in
[39]. However, it should be noted that some results in the latter reference are stated
incorrectly.

These challenges, including an example of the violation of differential privacy in this
context, are discussed in Section 5.2. In Section 5.2.2, we present a general approach to
controlling ”sensitivity”, which is based on the ideas of smooth sensitivity. This approach
has many advantages from the perspective of data utility. The contents of Section 5.2.2
is an original work of the author of the thesis. The approach presented in that section is
being used later in Section 5.4.

The classical definition of differential privacy allows for the use of only a Laplace noise.
From a statistical inference perspective, it may be more appropriate to use a normal
noise. It should be noted that while a Gaussian distribution violates differential privacy,
it aligns with the framework for approximate differential privacy. The Gaussian output
perturbation mechanism satisfies the (ε, δ)-differentially private whenever the variance
σ2 > 2∆f ln(1.25/δ)/ε (cf. Theorem 4.4.3). The parameter δ must be relatively small,
which implies that the variance must be large. Consequently, a considerable amount of
noise must be added to achieve the desired level of privacy. This has an unsurprisingly
negative effect on data utility. In short,

DP Fallacy 5.1.2. Differential Privacy is not well suited to a normal distribution.

52

This issue is addressed in detail in Section 5.3. We propose the Mixed Noise
Mechanism (MNM) that fulfills the requirements for approximate differential privacy
and allows for the addition of Gaussian noise with a well controlled variance when the
sensitivity is low. This is a common occurrence in many real-world applications. The
MNM mechanism is superior to the classical Laplace mechanism in terms of data utility.
The content of that section is based on the author’s original work, [8].

Still in the race to decrease the amount of noise added, we recall the well-known fact
that averaging serve to decreases variability. Let us consider the following simple exam-
ple: Assume that we have a database with real-valued entries. For the sake of illustration,
consider two scenarios. In the first scenario, the population is uniformly distributed over
the interval [0,Λ] with 0 < Λ < ∞. In the second scenario, the population exhibits a
skewed distribution on the interval [0,Λ], with a small probability of values exceeding
Λ/2. Consider the output perturbation mechanism with the mean query. In both sce-
narios, the global sensitivity is proportional to Λ. A random sample from the second
population will likely exhibit a reduced prevalence of ”outliers” (values approaching the
upper limit of the interval) in comparison to a sample drawn from the first population.
It is therefore necessary to protect these few outliers in the same way as all the other
”average” observations. This gives rise to the following issue:

DP Fallacy 5.1.3. All entries in the database are treated in the same manner.

Another fallacy that is worthy of mention is as follows. If we multiply each entry in
the dataset by a > 1, and then we apply a query f to the dataset, we must add additional
noise to achieve the same level of privacy.

DP Fallacy 5.1.4. Scaling each entry in the database by a > 1 leads to more noise being
added.

These issues result in the addition of excessive noise to the query, which ultimately
diminishes the utility of the data. In Section 5.4 we propose two blocking algorithms that
reduce the amount of noise added by exploiting the averaging principle. Furthermore,
the first presented algorithm adapts to data variability, which leads to an improvement
in data utility. The content of Section 5.4 is the author’s original work.

We continue with issues related to differential privacy. Consider a sanitized response
mechanism, (2.3), in conjunction with the identity query. That is, we add a noise to a
database. In practice, a common problem encountered is:

DP Fallacy 5.1.5. Adding noise with an unbounded support may lead to unrealistic data
entries.

For example, if the variable of interest is the ”age” of an individual, the addition
of Laplace or Normal noise may necessitate the introduction of negative values. Simi-
larly, consider the output perturbation mechanism with the sample variance as a query.

53

The introduction of noise may result in the generation of a negative noisy variance. At
present, there is no satisfactory approach to this issue. In Section 5.5, we present a so-
lution based on a bounded Laplace mechanism. This approach is based on the paper [27].

Moreover, differential privacy has recently become synonymous with noise addition.
From the standpoint of data utility, there is a significant distinction between the pre-
and post-processing scenarios, namely the use of a sanitized response mechanism versus
an output perturbation mechanism. It can be reasonably assumed that pre-processing
provides a greater degree of privacy protection against all potential queries and unknown
uses of the data, whereas post-processing offers a more targeted level of protection against
a specific query. Therefore, if the level of privacy is fixed, it can be argued that post-
processing provides greater data utility. This is discussed in detail in Section 5.6. The
contents of this section is based on the author’s original work.

Privacy algorithms entail the perturbation of data, for example by adding noise ac-
cording to some distribution. This has implications for the utility of the data and, con-
sequently, for statistical inference. To illustrate, if a researcher has access to a database,
one can estimate the population mean by the sample mean. Furthermore, it is possible
to provide confidence intervals for the population mean by applying the central limit
theorem and estimating the variance (using the sample variance).

In the event that the researcher is only able to access the results of a randomized
query, two issues emerge. Firstly, the researcher will estimate the population mean by
a noisy sample mean, that is to say, a sample mean with noise added. The researcher
may also lack access to the sample variance, unless an additional query is permitted.
This presents a challenge when calculating confidence intervals or performing hypothesis
testing. This is discussed in greater detail in Section 5.7 (based on the original work of
the author).

Finally, an alternative approach to adapting differential privacy to a normal noise
is to change the distance between distributions. Indeed, as indicated in (4.3)-(4.4),
(approximate) differential privacy measures a particular distance between the conditional
distributions. It is argued in [11] that changing the distance may lead to an improvement
when applied to a normal distribution. We argue in Section 5.8 that modifying the
definition of privacy alone is an ineffective approach to enhancing the efficacy of data
protection.

5.2 Dealing with sensitivity

As previously stated at the outset of this chapter, utilizing the global sensitivity may not
be a practical option. Conversely, the local sensitivity may be employed, which is readily

54

computable for each query and each data set (see R Code A.0.1). Nevertheless, the
utilization of the local sensitivity may violate differential privacy. The following example
is provided for illustrative purposes.

Example 5.2.1 (The local sensitivity is not differentially private). Assume that the
database is real-valued and the entries xi come from a distribution with the support [0,Λ],
0 < Λ <∞. Assume that n is odd. Let f(x) = median(x1, . . . , xn). Let m = n+1

2
be the

rank of the median element. The global sensitivity of the median is then given by ∆f = Λ;
see Example 2.1.3. Indeed, f(x1, . . . , xn) = 0 while f(x1, . . . , xm−1,Λ, xm+1, . . . , xn) = Λ.
The addition of noise in accordance with this sensitivity will result in the destruction of
data utility.

By contrast, the local sensitivity is given by ∆(local)f(x) = max(xm−xm−1, xm+1−xm).
This approach yields less noise, but may result in a violation of (ε, δ)−differentially
privacy. Indeed, consider two data sets.

� Dataset 1: x1 = · · · = xm = 0 and xm+1 = · · · = xn = Λ ;

� Dataset 2: x1 = · · · = xm+1 = 0 and xm+2 = · · · = xn = Λ .

It can be noted that, in both datasets, the median is equal to zero. In the first data set,
the local sensitivity is also equal to Λ, whereas in the second dataset, the local sensitivity
is zero. Additionally, the Hamming distance between these two datasets is 1. Thus, if
the mechanism f(x) +Z = 0 +Z, with Z representing a Laplace noise with a parameter
proportional to the local sensitivity, then in the second scenario, no noise will be added.
Therefore, the probability of receiving a non-zero response to the randomized query is
zero for the second data set and non-zero for the first data set. As a result, the protocol
does not satisfy the requirements to be considered (ε, δ)− differentially private.

There are no satisfactory solutions to this problem. One potential solution is obtained
via the smooth sensitivity.

5.2.1 Smooth sensitivity

One potential solution to the aforementioned issue is the approach based on the smooth
sensitivity, proposed in [39]. The concept of smooth sensitivity lies between the local
and the global sensitivity. As in the case of local sensitivity, it can be computed for
the given database and the query. As in the case of the global sensitivity, it yields an
appropriate version of differential privacy. The findings related to the smooth sensitivity
are summarized at the end of this section.

Recall that a database x has values in D. Recall the notation ∆(local)f(x) for the
local sensitivity of a query f ; see Definition 2.1.1. Recall also that the global sensitivity
is ∆f = maxx∈D ∆(local)f(x); see (2.2). We always have ∆(local)f(x) ≤ ∆f .

55

Definition 5.2.2 (A Smooth Bound on Local Sensitivity). Let β > 0. A function
S : D → R+ is a β-smooth upper bound on the local sensitivity of f if it satisfies the
following requirements:

∀x ∈ D : S(x) ≥ ∆(local)f(x);

∀x,y ∈ D, d(x,y) = 1 : S(x) ≤ eβS(y).

The last property yields the following result for any two neighbouring databases:

e−β ≤ S(x)

S(y)
≤ eβ .

The constant function S(x) = ∆f (the global sensitivity), represents the 0-smooth upper
bound. On the other hand, when β > 0, the function S serves as a highly conservative
upper bound on the local sensitivity of f .

Definition 5.2.3 (Smooth Sensitivity). For β > 0, the β-smooth sensitivity of f is

S∗
f,β(x) = max

y∈D

(
∆(local)f(y) · e−βd(x,y)

)
. (5.2)

The following lemma demonstrates that the function S∗
f,β fulfills the conditions in

Definition 5.2.2. It can be shown that this function represents the optimal β-smooth
upper bound.

Lemma 5.2.4. S∗
f,β is a β-smooth upper bound on the local sensitivity. Additionally,

S∗
f,β(x) ≤ S(x) for all x ∈ D for every β-smooth upper bound S on the local sensitivity

∆(local)f(x).

Proof. To show that S∗
f,β is an upper bound on the local sensitivity, we can first see that

S∗
f,β(x) = max

(
∆(local)f(x), max

y ̸=x,y∈D

(
∆(local)f(y) · e−βd(x,y)

))
≥ LSf (x) .

Next we show that S∗
f,β(x) is β-smooth, i.e,

S∗
f,β(y) ≥ e−βS∗

f,β(x)

56

for all neighbouring databases x,y (hence, d(x,y) = 1). Let x̃ ∈ D such that S∗
f,β(x) =

∆(local)f(x̃)·e−βd(x,x̃). Such x̃ exists: x̃ ̸= x whenever β > 0. Using the triangle inequality,
we know that d(y, x̃) ≤ d(x, x̃) + 1, therefore,

S∗
f,β(y) ≥ S∗

f,β(x̃) · e−βd(y,x̃)

≥ S∗
f,β(x̃) · e−β(d(x,x̃)−1)

= eβ · S∗
f,β(x) .

Let S be a function that satisfies Definition 5.2.2. To conclude the proof, it is nec-
essary to demonstrate that S(x) ≥ S∗

f,β(x) for all x ∈ D. We do this by showing that

S(x) ≥ ∆(local)f(y) · e−βd(x,y) for all x,y ∈ D, where d(x,y) is the distance between x,y.
This is done by induction on the value of d(x,y).

The base case, S(x) ≥ ∆(local)f(x) is the first requirement in Definition 5.2.2. For the in-
duction step, suppose that S(x̃) ≥ ∆(local)f(y) · e−βd(x̃,y) for all d(x̃,y) = k. Consider x,y
at distance k+1. There exists x̃ : d(x, x̃) = 1, d(x̃,y) = k. Using the second requirement
in Definition 5.2.2, we have that S(x) ≥ S(x̃)·e−β. By applying the induction hypothesis,
we obtain the following inequality: S(x̃) ≥ ∆(local)f(y) · e−βd(x̃,y). This establishes that
the desired result is indeed true, namely that

S(x) ≥ ∆(local)f(y) · e−β(d(x̃,y)+1)) = ∆(local)f(y) · e−βd(x,y) .

In what follows, we will demonstrate how the smooth sensitivity concept can be
used to achieve approximate differential privacy. To achieve this, it is first necessary to
introduce several key notions.

Definition 5.2.5. Let ε, δ′ > 0. A probability distribution on Rd with a density h is
(α, β)-admissible with respect to a norm ∥ · ∥ if for α = α(ε, δ), β = β(ε, δ′), the following
two conditions hold for all q ∈ Rd and λ ∈ R satisfying ||q|| ≤ α and |λ| ≤ β, and for all
measurable subsets B ⊆ Rd:

P(Z ∈ B) ≤ eε/2 · P (Z ∈ B + q) +
δ′

2
, (5.3)

P (Z ∈ B) ≤ eε/2 · P
(
Z ∈ eλB

)
+
δ′

2
, (5.4)

where Z is a random variable with the density h.

We will refer to equations (5.3) and (5.4) as, respectively, the sliding and the dilation
property of the density function h.

The definition is well-suited for the proof of approximate differential privacy to work.
As expected, the Laplace distribution is the most important example.

57

Example 5.2.6. For ε, δ′ ∈ (0, 1), the 1-dimensional Laplace distribution with the den-
sity h(z) = 1

2
e−|z| is a (α, β)-admissible with

α =
ε

2
and β =

ε

2 ln(2/δ′)
.

Furthermore, δ′ = 0 in (5.3). Thus, in particular, for the standard Laplace we obtain

P(Z ∈ B) ≤ eε · P (Z ∈ B + q) , (5.5)

whenever |q| ≤ ε.

The next results demonstrate that the smooth sensitivity may be employed in lieu of
the global sensitivity, thereby preserving differential privacy to some extent. It should
be noted that there is a cost to this approach. Even when Laplace noise is employed,
only approximate differential privacy is achieved, rather than the more stringent pure
ε-differential privacy. Furthermore, the parameter space is constrained. For further
details, see Remark 5.2.8. This result should be compared to Theorem 4.3.1, which is
the Laplace mechanism.

Proposition 5.2.7. Let ε > 0 and δ′ ∈ (0, 1). Let f : D → R+ and let S : D → R+

be a β-smooth upper bound on the local sensitivity of f . If β ≤ ε
2 ln(2/δ′)

and δ′ ∈ (0, 1),
the randomized output perturbation mechanism

Of (x, Z) = f(x) + Z

with the Laplace(0, 2S(x)
ε

)-distributed noise Z. Then, for x ∼ y and all Borel sets B,

P(Of (x, Z) ∈ B) ≤ eεP(Of (y, Z) ∈ B) +
δ′

2
(eε/2 + 1) .

Proof. Let the database x be fixed. Assume that Z has the density h. To shorten the
notation, let

A(x) := f(x) + Z = f(x) +
2S(x)

ε
· Z ′ ,

where Z ′ ∼ Laplace(1). We need to show that for all y ∼ x ∈ D, and all Borel sets B in
R,

P(A(x) ∈ B) ≤ eεP(A(y) ∈ B) +
δ′

2
(eε/2 + 1) .

58

For a Borel set B ⊂ R and real numbers a, b, we define aB + b = {ax + b : x ∈ B}. Let

us denote N(x) = 2S(x)
ε

, and observe that A(x) ∈ B ⇐⇒ Z ′ ∈ B1, where B1 = B−f(x)
N(x)

.

Let B2 = B1 + f(x)−f(y)
N(x)

= B−f(y)
N(x)

, and let B3 = B2 · N(x)
N(y)

= B−f(y)
N(y)

. Then we can write

P(A(x) ∈ B) = P(Z ′ ∈ B1)

≤ P
(
Z ′ ∈ B1 +

f(x) − f(y)

N(x)

)
· eε/2 +

δ′

2

= P(Z ′ ∈ B2) · eε/2 +
δ′

2

≤ P(Z ′ ∈ B3) · eε +
δ′

2
· eε/2 +

δ′

2
.

The first inequality holds since h satisfies the sliding property (5.3) and since

∥f(y) − f(x)∥
N(x)

=
ε

2
· ∥f(y) − f(x)∥

S(x)
≤ ε

2
· ∥f(y) − f(x)∥

LSf (x)
≤ ε

2
. (5.6)

Thus, the sliding property is used with α = ε/2. The second inequality holds since h

satisfies the dilation property (5.4). Also, S is β−smooth, which implies that
∣∣∣ln N(x)

N(y)

∣∣∣ =∣∣∣ln S(x)
S(y)

∣∣∣ ≤ ∣∣ln e±β∣∣ ≤ β .

Remark 5.2.8. It should be noted that in the original paper [39], the authors obtained
the bound P(A(y) ∈ B)·eε+δ, and concluded that approximate differential privacy could
be achieved. However, this statement is clearly incorrect, and the corrected statement
appears below.

Corollary 5.2.9. Let δ ∈ [0, 1]. Under the conditions of Proposition 5.2.7 the algo-
rithm is (ε, δ)-differentially private whenever

δ′

2
(eε/2 + 1) ≤ δ < 1 .

Remark 5.2.10. It can be demonstrated that, in fact, δ < 1, which in turn yields
constraints on ε. To illustrate this, consider the case where δ = 0.01. In this instance, it
follows that ε < 2 ln(200). This further illustrated in the following section.

Remark 5.2.11. In real-world applications, the value δ must be sufficiently small. This
implies that β must also be small. This leads to the conclusion that the induced smooth
sensitivity will be close to the smooth sensitivity. From this perspective, the use of the
global sensitivity can be considered a minimal improvement. What is important here is
that the smooth sensitivity is computable for the given database and the given query.

59

Proposition 5.2.7 and Corollary 5.2.9 indicate that the addition of Laplace noise with
smooth sensitivity yields approximate differential privacy instead of ε-differential privacy.
Two questions arise here.

� Do distributions exist that achieve ε-differential privacy with the smooth sensitivity?

� Can Normal noise with the smooth sensitivity be used?

Both questions can be answered affirmatively. The following observations are presented
without a formal proof. Let S be a β-smooth sensitivity.

� Let ε > 0. Let β ≤ ε
2(γ+1)

and γ > 1. Assume that Z is sampled from the

density h(z) ∝ 1
1+|z|γ . Let cε(x) = 2(γ+1)S(x)

ε
. The randomized output perturbation

mechanism
Of (x, Z) = f(x) + cε(x)Z

is ε- differentially private.

� Let ε > 0 and δ ∈ (0, 1). Take β = ε
2 ln(2/δ)

. Let dε(x) = 5
√

2 ln(2/δ)S(x)
ε

. Assume
that Z is standard normal. The randomized output perturbation mechanism

Of (x, Z) = f(x) + dε(x)Z

is (ε, δ)-differentially private, provided the restrictions from Remark 5.2.10 are
fulfilled.

The last item should be compared to Theorem 4.4.3, where we add the noise of the form
cεZ, where cε >

√
2 ln(1.25/δ)∆f/ε. Since the smooth sensitivity will be close to the

global sensitivity, ∆f , we observe that for small δ, it is necessary to add more noise when
using the smooth sensitivity than when using the global sensitivity.

Computation of smooth sensitivity. As defined in Definition 5.2.3, the smooth
sensitivity is not computable, since it uses all of the possible databases y. For some
specific queries f , the smooth sensitivity can be computed approximately.

Definition 5.2.12. Let x be a database. The local sensitivity of f at distance k is

A
(k)
f (x) = max

y∈D:d(x,y)≤k
∆(local)f(y) .

We would like to point out that in order to compute A
(k)
f (x) we still need to know all

the possible databases y. Note that

A
(0)
f (x) = ∆(local)f(x) .

60

Now the smooth sensitivity can be approximated in terms of A
(k)
f :

S̃∗
f,β(x) = max

k=0,1,...,n
e−kβ

(
max

y:d(x,y)=k
∆(local)f(y)

)
= max

k=0,1,...,n
e−kβA

(k)
f (x) = max

(
∆(local)f(x), max

k=1,...,n
e−kβA

(k)
f (x)

)
.

We note that the latter equation gives S̃∗
f,β(x) ≥ ∆(local)f(x). Hence, looking at the proof

of Proposition 5.2.7 we notice that S̃∗
f,β(x) yields approximate differential privacy as well.

Example 5.2.13. Let f(x) = 1
n

∑n
i=1 xi. Recall from Example 2.1.3 that the local

sensitivity is 1
n

max |xi|. When d(x,y) = 1, we have

A(1)(x) = max

∣∣∣∣∣ 1n
n∑
i=1

xi −
1

n

n∑
i=1,i ̸=j

xi −
1

n
yj

∣∣∣∣∣ =
1

n
max |xj − yj| ,

where the maximum is understood to be taking the maximum over all rows j in the
database and all possible entries yj coming from the original population. Thus, if the
original population is constrained to [0,Λ], then A(1)(x) = maxj max{xj, |xj − Λ|}/n.
When d(x,y) = k, we have

A(k)(x) = max

∣∣∣∣∣ 1n
n∑
i=1

xi −
1

n

n∑
i=1,i ̸=Jk

xi −
1

n

∑
i∈Jk

yi

∣∣∣∣∣ ,
where the max is taken again over all k-tuples Jk = {(j1, . . . , jk) ∈ {1, . . . , n}k} and all
the entries yj. In particular, the smooth sensitivity can be calculated when sampling
from a bounded population. However, it is not possible to compute the smooth sensitivity
in an unbounded case. Therefore, the smooth sensitivity is not a particularly useful
measure in the context of the mean query.

The next example illustrates the utility of the smooth sensitivity in addressing median
queries.

Example 5.2.14. In Example 2.1.3, we demonstrated that for the function f(x) =
median(x1, . . . , xn) (assuming that n is odd and m = n+1

2
), the local and global sensitivity

are, respectively:
∆(local)f(x) = max(xm+1 − xm, xm − xm−1) ,

∆f = Λ2 + Λ1 .

Then

S̃∗
f,β(x) = max

k=0,...,n

(
e−kβ · max

t=0,...,k+1
(xm+t − xm+t−k−1)

)
. (5.7)

It is worth noting that the smooth sensitivity of the median can be computed based on
the data in time O(n2).

61

Example 5.2.15. Consider again the following example:

� Dataset 1: x1 = · · · = xm = 0 and xm+1 = · · · = xn = Λ;

� Dataset 2: x1 = · · · = xm+1 = 0 and xm+2 = · · · = xn = Λ.

In light of Example 5.2.1, we will check if the smooth sensitivity is zero for one dataset
and non-zero for another data.

Let at,k = xm+t − xm+t−k−1. We calculate at,k for values of t and k for Dataset 1 and
Dataset 2.
When t = 0:

a0,k = xm+1 − xm−k−1 = 0 ∀k for both datasets.

When t = 1 :

a1,k = xm+1 − xm−k

We calculate this expression for different values of k.
For k = 0,

a1,0 = Λ − 0 = Λ for Dataset 1,

= 0 for Dataset 2.

For k = 1:

a1,1 = Λ for Dataset 1,

= 0 for Dataset 2.

For the case where a2,k = xm+2 − xm−k−1, we observe that for Dataset 1, a2,0 = 0 and
a2,1 = Λ, while for Dataset 2, a2,0 = Λ and a2,1 = 0.

Therefore, the values within the brackets of equation (5.7) alternate between 0 and
Λ, and thus the issue previously encountered in Example 5.2.1 is no longer present.

Summary for smooth sensitivity. In conclusion, the smooth sensitivity is a concept
in differential privacy that provides a more nuanced approach to measuring the sensi-
tivity of a function to changes in its input data. This approach is particularly useful
in situations where the global sensitivity might be overly conservative (or not possible
to calculate). In meaningful applications, a smooth sensitivity is nearly equivalent to
the global sensitivity. Conversely, a smooth sensitivity can be calculated based on the
database, whereas the global sensitivity cannot be. Nevertheless, there is a trade-off as-
sociated with the use of the smooth sensitivity. Instead of achieving ε-differential privacy,
only approximate differential privacy can be achieved.

62

5.2.2 Towards general sensitivity

Recall that the global and local sensitivities are related by

∆f = max(∆(local)f(x),max
y ̸=x

∆(local)f(y)) .

We consider the mean query. The global sensitivity may be infinite if the database comes
from an unbounded population. Even if the population is bounded (say, between 0 and
Λ), the global sensitivity is Λ, and the resulting variance of the Laplace mechanism is
proportional to Λ2, which can be huge. This has a negative effect on data utility. On
the other hand, a much smaller local sensitivity violates differential privacy because it
can leak information about the database.

The idea is to find a (possibly random) ”sensitivity” that lies between the local and
the global sensitivities, preserves some properties of the database, and most importantly,
is computable. This concept will be informally referred to as the general sensitivity. One
such example is the smooth sensitivity discussed in the previous section. As indicated
there, the approach based on smooth sensitivity still does not solve the problem in case
of the mean query.

We are going to focus on queries of the form

Of (x, Z) = f(x) +Nξ(x)Z ′ ,

where Z ′ ∼ Laplace(1) andNξ(x) is a ”general sensitivity function” that possibly depends
on the database x and an auxiliary random variable ξ, independent from the database.
It will also depend on the privacy budget ε.

Definition 5.2.16. Let ξ be a nonnegative random variable, independent of the
database. Let f : D → R+ be a query. Set ε, β > 0. Consider a (random) func-
tion Nξ : D → R+ such that

1. Nξ(x) >
∆(local)f(x)

ε/2
,

2. for all y ∼ z,

∣∣∣∣ln Nξ(y)

Nξ(z)

∣∣∣∣ ≤ β <∞.

We call Nξ a general (ε, β, f)-sensitivity.

Let gA(q) be the density of a random variable A at point q. We want to show that

P(f(x) +Nξ(x)Z ′ ∈ B) ≤ eεP(f(y) +Nξ(y)Z ′ ∈ B) .

63

Step 1. Note that the noise, Nξ(x)Z ′ may not Laplace distributed because of the
mixture factor Nξ(x). However, the noise component has the Laplace distribution, con-
ditionally on ξ. Thus, denote by Eξ[·] the conditional expectation given ξ. The left hand
side of the expression above is

Eξ[Pf(x) +Nξ(x)Z ′ ∈ B)] = Eξ
[
P
(
Z ′ ∈ B − f(x)

Nξ(x)

)]
= Eξ

[
1

2

∫
B

e
− |q−f(x)|

Nξ(x) dq

]
.

We would like to obtain a similar expression that involves both f(y) and Nξ(y). This
will be done in two phases.

Step 2. Mimic the proof of differential privacy(see the proof of Theorem 4.3.1.)
First we will replace f(x) with f(y). We have

Eξ[P(f(x) +Nξ(x)Z ′ ∈ B)] = Eξ
[

1

2

∫
B

e
− |q−f(x)|

Nξ(x) dq

]
= Eξ

[
1

2

∫
B

e
−|q−f(x)|+|q−f(y)|

Nξ(x)︸ ︷︷ ︸
=:I

e
− |q−f(y)|

Nξ(x) dq

]
.

As in the proof of differential privacy, the absolute value of the first part is bounded by

| ln I| ≤
∣∣∣∣ |q − f(x)| − |q − f(y)|

Nξ(x)

∣∣∣∣ ≤ |f(x) − f(y)|
Nξ(x)

≤ ∆(local)f(x)

Nξ(x)
.

Formally, the term in question depends on the database x and neighbouring databases.
The goal is to establish a bound on |I| by a constant that is independent of the databases
and depends on the value of ε. Recall now that x is fixed. At the same time, the
numerator of the last expression is bounded by

sup
y:y∼x

|f(x) − f(y)| = ∆(local)f(x) .

Thus, whenever

Nξ(x) >
∆(local)f(x)

ε/2
, (5.8)

we get:

Eξ[P(f(x) +Nξ(x)Z ′ ∈ B)] ≤ eε/2
1

2
Eξ
[∫

B

e
− |q−f(y)|

Nξ(x) dq

]
.

64

Step 3. The problem is that the right-hand side of the equation is dependent on x
through Nξ(x). In order to resolve this, we need to replace it with Nξ(y). The term can
be rewritten as follows:

1

2
Eξ
[∫

B

e
− |q−f(y)|

Nξ(x) dq

]
=

1

2
Eξ
[∫

B

e
− |q−f(y)|

Nξ(y)
·
Nξ(y)

Nξ(x)dq

]
= Eξ

[
P
(
Z ′ ∈ B − f(y)

Nξ(x)

Nξ(y)

Nξ(x)

)]
.

Now, assume there exists β <∞ such that for all databases y ∼ z (related to x or not)∣∣∣∣ln Nξ(y)

Nξ(z)

∣∣∣∣ ≤ β . (5.9)

It can be reasonably assumed that a small value of β will result in a reduced level of
privacy leakage. A large value of β results in a significant degree of privacy leakage. The
above bound prevents Nξ from being too small. Formally setting β = ∞ (Nξ(y) = 0)
results in a breakdown of differential privacy, analogous to the scenario depicted in the
example of the median query with local sensitivity, where it is possible to obtain zero.

When (5.9) holds, due to the dilation property (5.4) of the Laplace distribution,

1

2
Eξ
[∫

B

e
− |q−f(y)|

Nξ(x) dq

]
= Eξ

[
P
(
Z ′ ∈ B − f(y)

Nξ(x)

Nξ(y)

Nξ(x)

)]
≤ eϵ/2Eξ

[
P
(
Z ′ ∈ B − f(y)

Nξ(x)

)]
+ δ′/2 .

Summarizing, we obtain the following result.

Theorem 5.2.17. Let ε, β > 0. Let f : D → R+. Let Nξ be a general (ε, β, f)-
sensitivity. Consider the randomized output perturbation mechanism

Of (x, Z) = f(x) +Nξ(x)Z ′

with the Laplace(1)-distributed noise Z ′. Then there exists δ′ > 0 such that for x ∼ y
and all Borel sets B,

P(Of (x, Z) ∈ B) ≤ eεP(Of (y, Z) ∈ B) + eε/2δ′/2 .

Example 5.2.18. Consider for example:

� Nξ(x) = 2∆f/ε. Then we reduce the problem to the one of classical differential
privacy.

65

� Nξ(x) = 2S(x)/ε, where S(x) is the smooth sensitivity.

We note that the local sensitivity cannot be taken as Nξ(x), as the condition in (5.9) is
violated. See Example 5.2.1.

Two questions arise from the above calculations:

1. Set δ = eε/2δ′/2. What is the precise definition of the privacy leakage denoted by
δ?

2. What do we gain from a data utility point of view?

In response to the first question, we may utilize Example 5.2.6 to conclude that the
following relationship holds

δ = δ(ε, β) = eε/2e−ε/(2β) . (5.10)

We note that a very interesting feature is present here. If β > 1, then δ is an increasing
function of ε. This is an entirely intuitive conclusion, given that an increase in the value
of ε corresponds to a reduction in the level of privacy. Conversely, if β < 1, then δ is
a decreasing function of ε. Hence, in this region where β < 1, an increase in ε results
in a decrease in the privacy ”in the ε part,” yet an improvement in the δ part. This
phenomenon is counterintuitive, yet it is precisely what is observed in the examples that
follows.

In order to respond to the second question, we will now consider the candidates for Nξ(x).
To do this, we must check wether we can find an upper bound for the expression:

Iξ(z,y) := ln
Nξ(y)

Nξ(z)
. (5.11)

Candidate 1. Assume that ∆f <∞ is known. We choose the following candidate:

Nξ(x) = N(x) =
2

ε

(
a∆(local)f(x) + b∆f

)
,

where a+ b = 1, a ∈ [0, 1), and b ∈ (0, 1]. Thus, we use a weighted sensitivity. Then for
I = Iξ,

exp(I(x,y)) =
a∆(local)f(x) + b∆f

aLSf (y) + b∆f
1{∆(local)f(x) < ∆f}

>
a∆(local)f(x) + b∆f

a∆f + b∆f

>
b∆f

(a+ b)∆f
= b .

66

Thus, |I(x,y)| ≤ | ln b|. Hence, β = | ln b|. As the weight assigned to the global
sensitivity,b ∈ (0, 1] increases and approaches 1, the resulting value of β decreases, lead-
ing to a reduction in privacy leakage. This is a logical consequence of the relationship
between the two variables. Formally, if b = 1, then β = 0, while limβ→0 δ(ε, β) = 0 in
agreement with the principles of classical differential privacy.

Candidate 2. In the event that the global sensitivity is unknown, the following ex-
pression may be employed:

Nξ(x) =
2

ε

(
aξ + b∆(local)f(x)

)
,

where ξ is a nonnegative random variable, and the parameters a + b = 1, a ∈ [0, 1),
and b ∈ (0, 1]. It can be argued that the random variable ξ serves to ”blur” the local
sensitivity, given that the latter violates differential privacy. Assume that the global
sensitivity, ∆f < ∞, is finite. It should be noted that the local sensitivity is bounded
by the global sensitivity. Moreover, the local sensitivity is non-negative. In such a case,

exp(Iξ(x,y)) =
aξ + b∆(local)f(x)

aξ + b∆(local)f(y)
{ξ < ∆(local)f(x)} +

aξ + b∆(local)f(x)

aξ + b∆(local)f(y)
{ξ > ∆(local)f(x)}

>
(a+ b)ξ

aξ + b∆(local)f(y)
{ξ < ∆(local)f(y)} +

aξ + b∆(local)f(x)

aξ + b∆(local)f(y)
{ξ > ∆(local)f(x)}

>
ξ

aξ + b∆f
{ξ < ∆(local)f(x)} +

aξ

aξ + b∆f
{ξ > ∆(local)f(x)}

≥ aξ

aξ + b∆f
. (5.12)

If the support of the random variable ξ is separated from zero, then the latter bound
is also separated from zero. The greater the separation from zero, the bigger the lower
bound, and thus the smaller the privacy leakage.

Data utility. We can measure data utility of a (ε, δ)-differentially private random
mechanism through the mean squared error. For example if Of (x, Z) = f(x) + Z with
Z ∼ Laplace(∆f/ε), then the mean squared error is equal to the variance, which in turn
is given by

2(∆f)2

ε2
.

Data utility for Candidate 1. Now, for the random mechanism

Of (x, Z) = f(x) +Nξ(x)Z ′

67

with Nξ(x) = N(x) =
2

ε
(a∆(local)f(x) + b∆f) the variance equals

Var(N(x)Z ′) =
4

ε2
(a∆(local)f(x) + b∆f)2

=
4

ε2
b2(∆f)2 +

4

ε2
a2(∆(local)f(x))2 +

8ab

ε2
∆(local)f(x)∆f . (5.13)

� When b = 1, the result is equivalent to the doubled variance for classical differential
privacy with the global sensitivity, as previously discussed.

� When a = 1, it reduces to the doubled variance for classical differential privacy
with the local sensitivity (as discussed in the previous section, differential privacy
may fail here).

If ∆(local)f(x) is much smaller then ∆f , then by choosing a close to 1, we can greatly
improve data utility as compared to classical differential privacy. Of course, as mentioned
above, the bigger the value of a, the smaller the value of b, and consequently, the bigger
the privacy leakage δ.

Example 5.2.19. In this example we illustrate our weighted sensitivity approach.
We generate a database x of n = 100 values from a distribution with a bounded

support. The first choice is the uniform on [0,Λ], while the second choice is a version
of a truncated exponential distribution. The procedure begins with generating a sample
from an unbounded exponential. Subsequently, all values exceeding the threshold value
of Λ are reduced to Λ.

We use the median query, thereby establishing that the global sensitivity, as defined
in Example 2.1.3, is equal to Λ.

For the generated dataset we also calculate the local sensitivity; see Example 2.1.3.
The procedure was repeated 5 times, with each iteration resulting gin a distinct local
sensitivity. For each case, the data utility was calculated using the formula (5.13) and
plotted against values of b. The results are presented in Figure 5.1 and Figure 5.2, which
display the weighted sensitivity in the uniform and exponential cases, respectively.

The benchmark is the data utility obtained with classical differential privacy. It
is displayed as the dashed horizontal line. The coloured solid curves indicate different
repetitions of our experiment. When the curve is below the benchmark, we have an
improvement in data utility. The admissible range of b is defined as (0, b

(data utility)
0 (x)]. It

should be noted that b0 depends on the generated dataset. For example, for the uniform
case we can read from Figure 5.1 that in one of the experiments (depicted by the pink
curve), the admissible range of b was (0, 0.7].

68

Next, we analyze the effect on δ-privacy. We use the formula (5.10) with β = | ln b|,
leading to

δ = δ(ε, b) = eε/2e−ε/(2| ln b|) .

First, we want δ to be below the prescribed threshold, say 0.1. Next, note that δ is
a decreasing function of ε whenever b > exp(−1) (as indicated above, this is somehow
counterintuitive). The results are displayed on Figure 5.3. We plotted there δ curves for
ε ∈ {0.5, 1, 2, 10, 15}. The resulting δ is admissible whenever it falls below the prescribed

threshold. This yields the admissible range of b, denoted by [b
(privacy)
0 (x), 1).

The admissible range of b from the point of view of both data utility and data privacy
is the intersection

(0, b
(data ,utility)
0 (x)] ∩ [b

(privacy)
0 (x), 1) .

If this intersection is not empty, we can use our weighted sensitivity algorithm. It then
keeps the required level of privacy, while improved data utility.

For example, for ε = 15, the admissible range stemming from δ-curves is approxi-
mately [0.45, 1] which yields a nonempty intersection with several generated databases
x.

69

Figure 5.1: Weighted sensitivity - uniform
Uniform case: The illustration demonstrates the utility of data in a weighted sensitivity ap-
proach, with each curve corresponding to a distinct simulation of the database, thus yielding
disparate weighted sensitivities.

70

Figure 5.2: Weighted sensitivity - truncated exponential
Exponential case: The illustration demonstrates the utility of data in a weighted sensitivity
approach, with each curve corresponding to a distinct simulation of the database, thus yielding
disparate weighted sensitivities.

71

Figure 5.3: δ-privacy
In the weighted sensitivity approach, the concept of δ-privacy is demonstrated through the use
of different curves, each corresponding to a specific value of ε. The pink curve corresponds to
the value of ε = 15.

Data utility for Candidate 2. For the random mechanism

Of (x, Z) = f(x) +Nξ(x)Z ′

with

Nξ(x) = Nξ =
2

ε
(aξ + b∆(local)f(x))

we have

Var(NξZ
′) = Var

(
2

ε
(aξ + b∆(local)f(x))Z ′

)
=

4

ε2
Var

(
(aξ + b∆(local)f(x))Z ′) .

For any two random variables we have

Var(XY) = Var(X)Var(Y) + Var(X)(E[Y])2 + Var(Y)(E[X])2 .

72

Here: If X = aξ + b∆(local)f(x), Y = Z ′, Var(X) = a2Var(ξ), Var(Z ′) = 2, then

(E[aξ + b∆(local)f(x)])2 = (aE[ξ] + b∆(local)f(x))2 ,

E[Z ′] = 0 .

Hence, we conclude that

Var(Nξ(x)Z ′) =
4a2

ε2
{

Var(ξ) + 2(aE[ξ] + b∆(local)f(x))2
}
. (5.14)

5.3 Mixed Noise Mechanism (MNM)

The classical definition of differential privacy allows for the use of only a Laplace noise.
From the statistical inference point of view, it may be desirable to use a normal noise.
Gaussian or normal noise is the most well-established in statistical inference, as evidenced
by the extensive literature on the topic (see, for example [14]). Deviations from this dis-
tributional assumption can require significant adjustments to statistical modelling, for
example in the context of maximum likelihood estimation, calculating confidence inter-
vals, hypothesis testing, and so on.

A Gaussian distribution violates differential privacy, yet it aligns with the framework
of approximate differential privacy. It is important to recall the results presented in The-
orem 4.4.3. The Gaussian output perturbation mechanism fulfills the (ε, δ)-differential
privacy whenever the variance σ2 > 2∆f ln(1.25/δ)/ε. Now, the parameter δ has to be
small. This implies that the variance must be substantial, which, in turn, necessitates
the addition of a considerable amount of noise.

Meanwhile, for example in biomedical studies, while maintaining participants’ pri-
vacy, the need to maximize the clinical utility of data is well-established to lessen the
burden on trial participants and patients from which data is derived; see [34].

Thus, in this section we propose an approximate differentially private Gaussian mech-
anism for low sensitivity queries. The contents of this section is based on the author’s
paper, [8], adapted to the format of the thesis.

We propose a noise mechanism that improves data utility and yields (ε, δ)-differential
privacy with the user-controlled small δ. In its simplest possible version, the mechanism
adds a specifically chosen normal noise when sensitivity of the query function f is ”small”
while adding Laplace noise otherwise. As such, we call it a Mixed Noise Mechanism
(MNM). It should be emphasized that small values of sensitivity are not uncommon;
thus, the need for improved data utility exists. In particular, if f is an estimator of a

73

population parameter related to the database (for example, the sample mean; the esti-
mator of the population mean), then f is of order 1/n, where n is the size of the database.

The general idea of the proposed mechanism is to add normal noise when the data is
”conformant” and add Laplace noise when the data is ”non-conformant,” that is, when
significant outliers are present. The choice between ”conformant” and ” non-conformant”
data is driven by a specific threshold (to be discussed below). In essence, we allow for the
use of a Gaussian mechanism with a smaller variance for low-sensitive queries. The new
mechanism has very positive impacts on data utility and statistical inference, maintaining
the truthfulness of the statistical outputs. We show some useful outcomes of the Mixed
Noise Mechanism when studying confidence intervals around low-sensitive queries.

In short, the following statements are provided for the sake of clarity.

� MNM, Laplace, and Gaussian mechanisms achieve a similar level of privacy.

� MNM and Laplace mechanisms perform similarly from the point of view of data
utility. At the same time, both the MNM and Laplace mechanism outperform the
Gaussian mechanism in our experiments.

� The MNM mechanism has wider applicability from the statistical inference point
of view. We illustrate it using confidence intervals.

We note further that this mixed mechanism idea can be used in conjunction with other
modifications of a differentially private algorithm.

Data utility perspective. We recall that

Z ∼ N (µ, σ2) : E[(Z − µ)p] =

{
0 if p is odd ,

σp(p− 1)!! if p is even .

Z ∼ Lap(b) : E[Zp] =

{
0 if p is odd ,

bpp! if p is even .

Let Z1 ∼ N (0, σ2) and Z2 ∼ Lap(0, b). Then we know that Var(Z1) = σ2 and Var(Z2) =
2b2. We choose σ2 = 2b2, so that the Gaussian and Laplace variables have the same
variance. Now, E[Z4

1] = 3σ4 = 12b4, E[Z4
2] = 24b4. Hence, the kurtosis of Laplace is

higher than in the case of Normal, implying more variability of Laplace and hence less
data utility.

If we decide to use a normal noise, we know that ε-differential privacy is violated, yet
(ε, δ)-differential privacy holds. The parameter δ can be interpreted as the probability of
information leakage. Consequently, δ should be as small as possible, certainly between 0
and 1. However, if δ is small, then according to Theorem 4.4.3, the variance of the Gaus-
sian noise, called σ2

ADP here, has to be very large (see Figure 5.4). This negatively affects

74

data utility due to the necessary increase in variability required to ensure differential
privacy. In other words, the resulting anonymized query has a large variability.

Figure 5.4: δ values for ADP
The green area represents the possible values of σ2 in Theorem 4.4.3 when ∆f = 1, ε = 1.

Definition 5.3.1. Let f : D → R+. Let t0 > 0 and σMNM > 0. We call

Of (x, Z) = f(x) + N (0, σ2
MNM)1{∆f ≤ t0} + Lap(∆f/ε)1{∆f > t0} ,

the Mixed Noise Mechanism.

Mixed Noise Mechanism (MNM). In other words, when the sensitivity ∆f is large,
we choose to add a Laplace noise, while when ∆f is small, we choose to add a Gaussian
MNM noise with the same variance as in the original formulation of differential privacy.
We can ensure that the mechanism is (ε, δ)-differential privacy so that the approach is
well justified theoretically. We include a drawing by the author that depicts the idea
through Minions (yes, Minions!) in Figure 5.5.

75

Unlike the approximate differential privacy mechanism, the variance of the Gaussian
MNM noise does not depend on δ. We can choose

σ2
MNM = 2(∆f/ε)2,

so we have the same resulting variance regardless of the noise that is ultimately added.
This is helpful when comparing different methods and removing any confusion over what
noise is really being added to the dataset. By fixing variance to be equivalent in either
method, we can get a true sense of the improvement when implementing our mixed noise
approach.

We need to provide a threshold that triggers the mechanism to add either a Laplace
or Gaussian noise. The choice of such threshold t0 is motivated by an inspection of the
proof of Theorem A.1 in [17]. We can observe that a Gaussian noise violates ε-differential
privacy because of the inability to bound the term

σ2ε

∆f
− ∆f

2
,

where σ2 is the variance of the Gaussian noise added in the (ε, δ)-differential privacy
framework. If ∆f is large, then P(|N (0, σ2)| > t0) is still large, yielding unacceptable
values of δ in the definition of (ε, δ)-differential privacy. On the other hand, if ∆f is
small, then the probability is small, yielding the required user-chosen values of δ.

Small values of ∆f are relatively common, and thus, this violation does not occur
often in practice. This can represent a significant improvement in data utility by de-
creasing the amount of noise needed to achieve (ε, δ)-differential privacy, and using a
Gaussian distribution so that methods of statistical inference are preserved and can be
utilized in application. We refer to Example 2.1.3 for different formulas for sensitivity.

76

Figure 5.5: Drawing: MNM
This drawing, done by the author, illustrates the concept of MNM through Minions passing
through a sensor. If the minion is deemed ”normal” or below the threshold, only a minimal
amount of gaussian noise is added to their information. If the minion sets off the sensor (above
the threshold) then more carefully added Laplace noise must be added to them.

Main result. The main result is the following theorem.

Theorem 5.3.2. Let ε > 0, δ ∈ (0, 1). The Mixed Noise Mechanism

Of (x) = f(x) + N (0, σ2
MNM)1{∆f ≤ t0} + Lap(∆f/ε)1{∆f > t0} ,

with the threshold t0 =
√
πδϵ/2 is (ε, δ)-differentially private.

Proof of Theorem 5.3.2. Let x and y be neighbouring datasets. Without loss of general-
ity assume that f(x) = 0 which implies f(y) = ∆f . Note that for two discrete random

77

variables U and V , and a deterministic set A we can write

P(U1A + V 1Ac = z) = P(U1A = z) + P(V 1Ac = z)

= 1AP(U = z) + 1AcP(V = z).

The same applies when densities are used. In what follows, we will write g(z;Z) to denote
a density of a random variable Z at point z. We will write for short N = N (0, σ2) and

Lap = Lap(b) with b = ∆f/ε. Also, for a, b, c, d > 0 we have,
a+ b

c+ d
<
a

c
+
b

d
. Using

these two facts we can write,

g(z;N1{∆f < t0} + Lap1{∆f ≥ t0})

g(z; f(D′) + N1{∆f < t0} + Lap1{∆f ≥ t0})

=
g(z;N1{∆f < t0}) + g(z; Lap1{∆f ≥ t0})

g(z − ∆f ;N1{∆f < t0}) + g(z − ∆f ; Lap1{∆f ≥ t0})

≤ g(z;N1{∆f < t0})

g(z − ∆f ;N1{∆f < t0})
+

g(z; Lap1{∆f ≥ t0})

g(z − ∆f ; Lap1{∆f ≥ t0})

= 1{∆f < t0}
g(z;N)

g(z − ∆f ;N)
+ 1{∆f ≥ t0}

g(z; Lap)

g(z − ∆f ; Lap)

The last part is bounded by exp(ε). The bound for the first part follows from Lemma
5.3.3 below.

Lemma 5.3.3. Let δ ∈ (0, 1), ε > 0, σ > 0 be fixed. If

0 < ∆f <

√
2
√

2σ3

√
πδ

+ 2σ2ϵ−

√
2
√

2σ3

√
πδ

(5.15)

then

g(z;N) ≤ eεg(z − ∆f ;N) + δ .

Proof. We will write for short N = N (0, σ2). Then,

g(z;N)

g(z − ∆f ;N)
= e1/2σ

2|2z∆f+∆2(f)| .

This expression does not exceed eε whenever z ≤ σ2ε
∆f

− ∆f
2

.
Let

t = t(∆f) =
σ2ε

∆f
− ∆f

2
. (5.16)

78

Since we are interested in small values of ∆f , we can assume that t is nonnegative. We
use the following classical bound on the tail of the normal distribution.

P(N > t) ≤ σ√
2π
e−t

2/(2σ2) .

Let u > 0. Then the Taylor expansion of the exponential function gives

e−u =
1

eu
=

1

1 + u+ u2

2!
+ u3

3!
+ · · ·

≤ 1

u
. (5.17)

Choosing u = t2/(2σ2) we obtain

P(N > t) ≤ σ√
2π

1

et2/2σ2 ≤ σ3
√

2√
π
t−2 .

In order to obtain (ε, δ)-differential privacy, we need P(N > t) ≤ δ/2. This amounts to
solving the following inequality

2
√

2√
π

σ3

δ
<

(
σ2ε

∆f
− ∆f

2

)2

. (5.18)

This gives a quadratic inequality with ∆f as a variable, yielding (5.15).Recalling that
the expression in the bracket on the right hand side is positive, we can rewrite this

(∆f)2

2
+ ∆f

√
2
√

2σ3

√
πδ

− σ2ε < 0 . (5.19)

When solving the quadratic equation and keeping in mind that ∆f is positive, we get

0 < ∆f <

√
2
√

2σ3

√
πδ

+ 2σ2ϵ−

√
2
√

2σ3

√
πδ

. (5.20)

Remark 5.3.4. Since ∆f is small, we can omit the term
∆f

2
in the inequality (5.18).

This leads to

∆f ≤ εδ1/2σ1/2π1/4

23/4
.

If σ2 = 2(∆f/ε)2, then the bound becomes

∆f ≤ π1/2δε

2
.

This yields the threshold in (5.20).

Remark 5.3.5. The threshold can be further refined by keeping the term uq in (5.17)
for some positive integer q.

79

Application of MNM. We present the algorithm for the implementation of MNM
[5.3.6] with f(x) =

∑n
i=1 xi/n =: x̄ and ∆f = Λ/n. The implementation does not change

when choosing a different f and subsequently use a different ∆f when applicable.

Algorithm 5.3.6. [Mixed Noise Mechanism]
Input: (x1, ..., xn), n ≥ 0
Output: Of (x) = f(x) + Z
Fix ε > 0 and δ ∈ (0, 1)
Choose f(x) = x̄
Calculate ∆f
Fix σ2

MNM = 2(∆f/ε)2

Set threshold t0 =
π1/2δε

2
If ∆f > t0 Of (x) = f(x) + Lap(∆f/ε)
If ∆f ≤ t0 Of (x) = f(x) + N(0, σ2

MNM)

Experimental Analysis. With the theoretical justification provided in the sections
above, we further tested MNM in a query-based setting to evaluate how well it works
in practice. In this way, we can know the impact it has on real datasets to improve
data utility while meeting the definition of differential privacy. The experiments in this
section were conducted using a public dataset to improve data protection and privacy.

The summary of our analysis follows:

� The MNM and Laplace mechanisms perform similarly from the point of view of
data utility.

� Both the MNM and Laplace mechanisms outperform the Gaussian mechanism.

Measures of data utility

The term ”data utility” is inherently subjective, and for the purposes of this section, we
will assess data utility in a few ways. As always, we refer to data utility as how similar or
close the transformed statistic is to the true statistic. This is accomplished by analyzing
the amount of noise added over several runs of an experiment and taking a ratio to look
at the behaviour of MNM versus differential privacy and approximate differential privacy.
Finally, an analysis was conducted around the 99% confidence interval for the true mean,
with 1000 iterations over different distributional parameters and varying values of δ. We
consider the data utility to be high if the percentage of estimators lying within the
confidence interval is high. The results of these are summarized in Table 5.1.

80

Sample Mean

To show the effects of MNM versus other methods, we tested the mechanism on the
sample mean estimator when data x come from four different underlying distributions:
Normal, Exponential, Pareto and Student-t. Normal and exponential distributions are
widely used in practice, while Pareto and Student-t are often used to model data with fat
tails. We note that these distribution have infinite support. Hence, the global sensitivity
is ∞. As such, in our experiments we are going to use the local sensitivity. We recall
that this may violate differential privacy in all mechanisms studied.

However, our goal is to compare data utility stemming from different randomiza-
tion mechanisms. We aim to compare the effects of a differentially private mechanism
(Laplace noise added), an Approximate differentially private mechanism (Gaussian noise
is added), and MNM. We test each mechanism on each underlying distribution with
varying parameters. We fix ε = 1 and keep each underlying dataset of size n = 500.
We also vary the values of δ = 1

n
, 1
2n
, 1
n3/2 , and 1

n2 . We ran 1000 simulations for each
experiment, where the true mean of the underlying dataset was calculated. From there,
we calculated a noisy mean for each of the three noise mechanisms and stored these values.

In order to determine the effects of these different mechanisms, we present two types
of graphs. First, we sum the squared differences of each noisy mean and the true mean.
We then examine the ratios of the Laplace sum and Gaussian sum compared to the ratio
of the Laplace sum and MNM sum. If the ratio is less than 1 this indicates that the
Laplace mechanism performs better in terms of adding less noise and therefore having
higher data utility. If the ratio is greater than 1, this indicates that either the Gaussian
or MNM performs better. See e.g. Figure 5.6.

Next, in order to illustrate variability of the noisy mean, we show box-plots for each
mechanism. See e.g. Figure 5.7.

Normal. When the underlying data distribution is normal, we can see that the Laplace
mechanism tends to perform better than the Gaussian and MNM. There are cases when
the MNM ratio is greater than 1, but we can see that it oscillates around 1, indicating
that either mechanism can perform well. In terms of variability of the noisy mean, we
can see that the approximate differential privacy method produces more outliers. See
Figure 5.6 and 5.7.

81

Figure 5.6: MNM results - normal distribution
Values bigger than one indicate that the MNM performs better than Laplace from a data utility
point of view. Note further that the Gaussian mechanism has a poor performance from the
perspective of data utility. The underlying data distribution is Normal.

82

Figure 5.7: MNM - Box plot for the normal
Box Plot of the noisy sample mean when the underlying distribution is N (0, 10).

Student-t. We see very similar results when the underlying distribution is a Student-t.
On average the Laplace mechanism performs well, but there are instances that indicate
greater data utility could be achieved when using the MNM mechanism. This is promising
in terms of the ease of transparency when adding noise to statistics or datasets. The
box plot showed similar results in terms of preserving distributional properties with the
MNM mechanism. See Figure 5.8 and 5.9.

83

Figure 5.8: MNM results - student-t distribution
Values bigger than one indicate that the MNM performs better than Laplace from a data utility
point of view. Note further that the Gaussian mechanism has a poor performance from the
perspective of data utility. The underlying data distribution is Student-t.

84

Figure 5.9: MNM - Box plot for the student-t
Box Plot of the noisy sample mean when the underlying distribution is t(10).

Exponential. When the underlying distribution is no longer symmetrical, like the
exponential distribution, we start to see some interesting results. MNM, on average,
outperformed the Laplace and Gaussian mechanisms. When δ = 1

n
the results were quite

significant in favour of MNM. This suggests that perhaps MNM performs well in the case
of datasets that are one-sided or non-symmetrical. See Figure 5.10 and 5.11.

85

Figure 5.10: MNM results - exponential distribution
Values bigger than one indicate that the MNM performs better than Laplace from a data
utility point of view. Note further that MNM performs substantially better compared with the
Gaussian mechanism. The underlying data distribution is Exponential.

86

Figure 5.11: MNM - Box plot for the exponential
Box Plot of the noisy sample mean when the underlying distribution is Exp(5).

Pareto. The Pareto distribution is often used in describing scientific, social and natural
phenomena. It is skewed with heavy tails, and therefore often used to describe the
distribution of income, population and as previously mention stock prices. With many
real world applications, it is of interest to see if MNM on Pareto/heavy tailed data can
provide an improvement on data utility. See Figure 5.12 and 5.13.

87

Figure 5.12: MNM results - Pareto distribution
Values bigger than one indicate that the MNM performs better than Laplace from a data utility
point of view. Note that the Gaussian mechanism has a poor performance from the perspective
of data utility. the underlying data distribution is Pareto.

88

Figure 5.13: MNM - Box plot for the Pareto
Box Plot of the noisy sample mean when the underlying distribution is Pareto(5).

Confidence Interval for the Mean. The purpose of this experiment is to analyze
how often the noisy means falls within a 99% confidence interval of the true mean. We
simulated datasets varying different parameters for each distribution. For each iteration,
the 99% was calculated for the true mean. We created 3 new estimators, differentially
private (with Laplace noise added), approximately differentially private (with a Gaussian
noise) and MNM. From there we checked for each estimator if it lied within the confidence
interval for the mean. If it did, we assigned the value 1 and 0 otherwise. We repeated
this experiment 1000 times and calculated the percentage for which the noisy estimators
lied within the confidence interval for the mean. The results of this experiment are in
Table 5.1.

Median. We also examine another low sensitivity query. We illustrated the smallest
version of previous δ values used, δ = 1

n2 for the experimental results. We see much larger
ratio values as in comparison to the ratio values of the mean estimator. This is simply
due to the fact that the sensitivity of the median is much lower than the sensitivity of
the mean. The results for each distribution tested: Exponential, Pareto, Normal, and
Student-t are in Figure 5.14. We can see that the ratio values are much higher when

89

Laplace DP Approx DP MNM

δ = 1
n

δ = 1
n1.5 δ = 1

n2 δ = 1
n

δ = 1
n1.5 δ = 1

n2 δ = 1
n

δ = 1
n1.5 δ = 1

n2

Pareto
α = 2 96.8% 95.2% 96.2% 66.5% 56.3% 50.5% 100% 95.5% 96.0%
α = 5 98.9% 99.5% 99.0% 82.9% 77.9% 70.9% 99.2% 99.2% 98.5%
α = 10 99.7% 99.5% 99.7% 89.9% 85.8% 78.5% 99.8% 99.6% 99.7%

Exponential
λ = 1 99.8% 100% 99.9% 95.4% 92.6% 86.6% 100% 99.9% 100%
λ = 5 100% 99.9% 100% 96.6% 91.5% 87.1% 99.9% 99.9% 99.9%
λ = 10 99.9% 99.9% 99.8% 95.5% 90.1% 94.2% 99.8% 100% 99.8%

Normal
N(0, 1) 100% 100% 100% 99.7% 99.7% 99.3% 100% 100% 100%
N(0, 5) 100% 100% 100% 100% 99.7% 98.5% 100% 100% 100%
N(0, 10) 100% 100% 100% 100% 99.8% 99.3% 100% 100% 100%

Student-T
t(1) 91.1% 90.7% 90.0% 51.9% 48.1% 39.1% 91.5% 93.8% 93.7%
t(5) 99.9% 100% 100% 96.8% 92.7% 89.2% 99.9% 99.9% 99.8%
t(10) 100% 100% 100% 99.7% 97.8% 96.4% 100% 100% 100%

Table 5.1: MNM confidence intervals for various distributions
This table demonstrates the percentage that each sample mean estimator lied within a 99% C.I
for the true mean. The experiment was repeated 1000 times for differing values of δ.

they are above 1 and happen more frequently.

90

Figure 5.14: MNM results for the median
Values bigger than one indicate that the MNM performs better than the Laplace mechanism
(from a data utility point of view) for the median estimator.

We can conclude that in the case of the median, which is indeed a low sensitivity esti-
mator, we see a great improvement in data utility in comparison to existing differentially
private mechanisms whilst also maintaining approximate differential privacy.

Conclusion. We studied the differences in ε-differential privacy and (ε, δ)-differential
privacy to closely evaluate the implementation and use of a Gaussian noise mechanism
for data perturbation. The use of Gaussian noise as the primary method of data per-
turbation facilitates a stronger connection to foundational theory in statistical inference,

91

thereby enhancing the utility of perturbed data. Furthermore, while the balance of dis-
closure risk and data or statistical utility is well understood, this work demonstrates that
it is possible to enhance the utility of data without increasing the risk of disclosure.

In particular the discovery of the sensitivity function and the development of a thresh-
old on the noise mechanism facilitated the formulation of a novel approach to introducing
Gaussian noise when the data appears ”normal” and Laplace noise when violations in the
data occur. It was discovered that the Laplace noise can be added when the sensitivity is
large, thereby yielding ε-differential privacy. In the case of a low sensitivity value, a nor-
mal noise is added, thereby yielding (ε, δ)-differential privacy. The combination of these
two techniques results in a mixed noise mechanism (MNM) that markedly enhances data
utility while maintaining the same level of privacy as the classical Laplace and Gaussian
mechanisms. MNM implements different differentially private noises based on a fixed
threshold for the chosen statistical estimator. Given the threshold, it can be determined
whether Laplace noise is even needed in order to preserve differential privacy. Finally,
the use of MNM allows for the recovery of noisy confidence intervals, the estimation of
sensitivity without the use of the privacy budget, and the learning of popular statistical
inferences from queries would otherwise be difficult to calculate.

5.4 Blocking

It is a well-established principle that averaging has the effect of reducing the variability
in a database. This concept is the foundation for different blocking methods. We start
with a novel blocking algorithm (based on the original author’s work) and proceed to
present its theoretical properties. We present the algorithm introduced by [42]. It is
important to note that there are several key distinctions between the two approaches,
which will be discussed in greater detail below. Other blocking algorithms are described
in the literature; for example, see [33].

5.4.1 Algorithm Block-DP I

Algorithm 5.4.1. 1. Assume that the original population P has the range [0,Λ].

2. Divide [0,Λ] into subintervals

Bi =

[
(i− 1)

Λ

m
, i

Λ

m

]
, i = 1, . . . ,m .

3. Let x = (x1, . . . , xn) be a sample from P .

4. Let Ii = {j : xj ∈ Bi}, i = 1, . . . ,m and Ni =
∑n

j=1 1{xj ∈ Bi} be the number of
points in Bi.

92

5. Set xIj = (xj, j ∈ Ii).

6. Evaluate ∆fi, the global sensitivity of the query f for the population P restricted
to block Bi. It is possible that ∆fi depends on the database x, hence we write
∆fi(x). Assume that there exists β > 0 and database independent ∆f̃i such that
for each i = 1, . . . ,m, ∣∣∣∣ln(∆fi(x)

∆f̃i

)∣∣∣∣ < β . (5.21)

7. If ∆fi(x) = ∆fi does not depend on x, release:

M(X, (Z1, . . . , Zm)) = h(Of (xI1 , Z1), . . . , Of (xIm , Zm)) .

where Of (xIi , Zi) = f(xIi)+Zi, Zi ∼ Lap(∆fi/ε) and h is the appropriate function
h : Rm → R.

8. If ∆fi(x) does depend on x, release:

M(X, (Z1, . . . , Zm)) = h(Of (xI1 , Z1), . . . , Of (xIm , Zm)) .

where Of (xIi , Zi) = f(xIi)+Zi, Zi ∼ Lap(2∆f̃i/ε) and h is the appropriate function
h : Rm → R.

The main principle underlying the block method is as follows. While the original sen-
sitivity may be considerable (owing to the range [0,Λ]) the block sensitivities will be
significantly smaller (proportional to Λ/m).

Theorem 5.4.2. Assume that ∆fi(x) does not depend on the database x. Then the
Algorithm Block-DP I is ε-differentially private.

Proof. Assume first that ∆fi is independent from the data. For ∆fi = ∆f̃i, the release
Of (xIi , Zi) is ε-differentially private by Theorem 4.3.1. Since xI1 , . . . ,xIm are disjoint,
the release

(Of (xI1 , Z1), . . . , Of (xIm , Zm))

is also ε-differentially private by Lemma 4.5.14.
Recall by Lemma 4.5.4, that the release

M(x, (Z1, . . . , Zm))

is ε-differentially private.

93

As previously stated in DP Fallacy 5.1.1, data-dependent local sensitivity may lead to a
violation of differential privacy. However, in our algorithm, the block sensitivity ∆fi(x)
is data dependent. Nevertheless, we have managed to achieve approximate differential
privacy.

Theorem 5.4.3. The Algorithm Block-DP I is (ε, δ)-DP with

δ = δ(ε, β) = eε/2e−ε/(2β) ,

where β is defined in (5.21).

Proof. It is sufficient to demonstrate that the release Of (xIi , Zi) is (ε, δ)-differentially
private. The proof follows the general approach presented in Section 5.2.2. For the
sake of simplicity in notation, we write xi = xIi . Let y be the neighbour of x and set
yi = (yj, j ∈ Ii). It should be noted that only one of the yi, i = 1, . . . ,m, differs
from xi, with all other yi = xi (there is only one entry in the entire database y that is

different). Recalling the result of Lemma 2.2.3, we can write Zi = (2/ε)(∆f̃i)Z
′, where

Z ′ is Laplace(1).
Then

P(f(xi) + (2/ε)(∆f̃i)Z
′ ∈ B) =

1

2

∫
B

e
− |q−f(xi)|

∆f̃i dq

=
1

2

∫
B

e
−|q−f(xi)|+|q−f(yi)|

∆f̃i
(ε/2)︸ ︷︷ ︸

=:I

e
− |q−f(yi)|

∆f̃i
(ε/2)

dq.

As in the proof of differential privacy, the absolute value of the first part is bounded by

| ln I| ≤ (ε/2)

∣∣∣∣ |q − f(xi)| − |q − f(yi)|
∆f̃i

∣∣∣∣ ≤ (ε/2)
|f(xi) − f(yi)|

∆f̃i

≤ (ε/2)
|f(xi) − f(yi)|

∆fi(x)︸ ︷︷ ︸
≤1

∆fi(x)

∆f̃i
.

Thus

P(f(xi) + (ε/2)(∆f̃i)Z
′ ∈ B) ≤ eε/2

1

2

∫
B

e
−(ε/2)

|q−f(yi)|
∆f̃i

∆fi(x)

∆f̃i dq .

Finally, as in the proof of Theorem 5.2.17, the assumption (5.21) yields the bound

P(f(xi) + (ε/2)(∆f̃i)Z
′ ∈ B) ≤ eεP(f(yi) + (ε/2)(∆f̃i)Z

′ ∈ B) + δ

94

with

δ = δ(ε, β) = eε/2e−ε/(2β) ;

cf. (5.10).

The following examples demonstrate the potential for the blocking algorithm to im-
prove data utility.

Example 5.4.4. Assume that the range of the univariate population is [0,Λ]. Let f(x)
be the mean query. Then

f(xIi) =
1

Ni

∑
j∈Ii

xj, ∆fi(x) =
Λ

mNi

.

Here, Λ/m is the range on block Bi, while Ni is the number of observations in the block.
The issue arises due to Ni being dependent on the sample. According to the Law of
Large Numbers,

Ni ∼
n

m
as n → ∞ ,

thus ∆f̃i = Λ/n, which is the same as ∆f .

Take h(y1, . . . , ym) = 1
m

∑m
j=1 yj, then the release is

1

m

(
1

N1

∑
j∈I1

xj + · · · +
1

Nm

∑
j∈Im

xj

)
+

1

m

m∑
i=1

Zi =: x∗ +
1

m

m∑
i=1

Zi, Zi ∼ Lap(2/nε) .

Data utility. It can be shown that Var
(

1
m

∑m
i=1 Zi

)
= 8

m
· Λ2

n2ε2
is typically smaller than

(5.1). Furthermore, it can be demonstrated that x∗ yields a finite sample bias as opposed
to the sample mean x obtained without blocking.

Privacy. For a sufficiently large value of n, the Law Large Numbers allows for the
choice of β to be made close to 0. For a fixed dataset, we can only apply the blocking
algorithm if all cells Ij have a sufficient number of observations.

Summary. The blocking method for the mean query may not be of a great advantage
over non-blocking.

Example 5.4.5. Assume that the range of the univariate population is [0,Λ]. Let f(x)
be the median query. In this example, the global sensitivity is ∆f = Λ. We have

f(xIi) = median(xj, j ∈ Ii) .

95

Here ∆fi = Λ/m, which does not depend on the sample. Take h(y1, . . . , ym) = 1
m

∑m
i=1 yi,

the release is then:

1

m
(median(xI1) + · · · + median(xIm)︸ ︷︷ ︸

T

+
1

m

m∑
i=1

Zi =: x∗ +
1

m

m∑
i=1

Zi, Zi ∼ Lap(2Λ/mε) .

Then Var

(
1

m

∑
Zi

)
=

8

m
·
(

Λ

mε

)2

, which is usually smaller than 2 (Λ/ε)2, which is the

variance if no blocking is applied. The price to pay is again x∗ ̸= median(x), hence there
is a bias.

As will be demonstrated below, there is an improvement in terms of data utility for
the median query. It seems reasonable to expect a similar improvement for a number of
non-linear queries.

5.4.2 Algorithm Block-DP II

The following algorithm was proposed in [42].

Algorithm 5.4.6. 1. Assume that the original population P is parametrized by θ ∈
Θ ⊆ R. Assume that diam(Θ) = Λ0

2. Let x = (x1, . . . , xn) be a sample from P .

3. Let Ii, i = 1, . . . ,m be disjoint subsets of {1, . . . , n} such that |I1| = . . . = |Im| and
I1 ∪ · · · ∪ Im = {1, . . . , n}.

4. Set xIj = (xj, j ∈ Ii).

5. Let f be an estimator of θ. Release

Of (x, Z) =
1

m

m∑
i=1

f(xIi) + Z , (5.22)

where Z is Laplace(Λ0/(mε)).

It is first necessary to describe the difference between the two algorithms, Algorithm 5.4.1
and Algorithm 5.4.6:

� Algorithm 5.4.1 is general and can be applied to any query f . On the other hand, in
Algorithm 5.4.6 the query f is linked to the original estimation problem (estimation
of θ).

� In Algorithm 5.4.1 the blocking restricts the range of the data and hence decreases
sensitivity of a query f . In Algorithm 5.4.6 there is no such effect.

96

� In Algorithm 5.4.1 sensitivity is linked to the range of the population Λ. In Algo-
rithm 5.4.6 sensitivity stems from the range Λ0 of the parameter θ.

In conclusion, the two blocking methods can be applied in either the same situation or
in a completely different setup.

Theorem 5.4.7. The Algorithm Block-DP II (5.22) is ε-DP.

Proof. We only need to calculate the sensitivity of

g(x) =
1

m

m∑
i=1

f(xIi) .

Since f is the estimator of θ, and θ has the range Λ0, it follows that the sensitivity of
f is Λ0. Now, if we have two neighbouring databases x and y, since xIi (resp. yIi)
are disjoint, then there is one and only one index i0 such that xIi0 differs from yIi0 .

Otherwise, xIi = yIi for i ̸= i0. Hence the sensitivity of g is Λ0/m.

Numerical experiment. Despite the differences in their configuration, Algorithm 5.4.1
and Algorithm 5.4.6 can be compared from the perspective of data utility in certain sce-
narios.

Example 5.4.8. � We generate a database x of n = 1000 values from a distribution
with a bounded support. We use the uniform distribution on [0,Λ]. A’priori we
have no further information on the range of the median, hence we assume that
Λ = Λ0.

� Then we apply the blocking method I for m = 5, m = 10, m = 15, m = 20 and
evaluate the medians. We add Laplace noise to each median with ε = 1, and the
resulting values are averaged over m.

� Then we apply the blocking method II with m = 5, m = 10, m = 15, m = 20
and evaluate the medians. We average over m, and then add a Laplace noise with
Laplace(Λ/(mε)).

� We repeat this procedure N = 1000 times and calculate the MSE.
The results are displayed in the table below. First, we notice that the MSE values

are considerable. Indeed, we keep in mind that ε = 1. It is important to note that in
method II, Laplace noise with variance 2(Λ/m)2 is added. This is large in our case.

97

Method I Method II
m = 5 645.21 765.16
m = 10 81.69 201.08
m = 15 23.83 91.97
m = 20 10.45 46.37

Table 5.2: Block DP-I vs Block DP-II
Evaluation of the MSE for Block-DP I and Block-DP II

We note that our blocking method yields much better results. This stems from the
fact that we averaged Laplace noises, while method II adds one noise only. However,
this comparison is not completely equivalent. Indeed, in Method II we used the worst
possible constraint on the median. In a ”practical” scenario, it is possible to calculate
the confidence interval for the median and utilize it as a constraint. However, since
the confidence interval relies on the original dataset, it may potentially lead to issues
pertaining to data privacy.

5.5 Bounded Laplace Mechanism

We start with the following example from [27].

Example 5.5.1. Consider a hypothetical scenario in which a census dataset is being
queried with the objective of determining the number of individuals born on Mars. The
addition of noise from a Laplace mechanism with variance 2/ε2 will satisfy differential
privacy. Although the actual number of people born on Mars is zero (at least for the
time being), it is necessary to add noise to ensure the privacy of future human martians.
Successive outputs from the Laplace mechanism could be: −1.71, 2.31,−1.20, 0.652. How-
ever bizarre the query, negative outputs are patently illogical and inconsistent. By the
symmetry of the Laplace distribution, on average 50% of the outputs will be negative.

Example 5.5.2. For the sake of argument, let us suppose that our interest lies in the
noisy standard deviation. Two methods exist for achieving this result, and a bizarre
occurrence will be presented as an example. The noisy sample variance (nSV) and the
noisy standard deviation (nSD) can be expressed as follows:

nSV = S2 + Lap(Λ2/nε) ,

nSD =
√
S2 + Lap(Λ2/nε) .

If we are interested in the nSD, it is possible that the nSV may assume a negative value.
In such an instance, it is not feasible to calculate the nSD. If we consider the standard
deviation as the direct mechanism, we can achieve the noisy SD through the following
mechanism,

nSD = S + Lap(Λ/nε) .

98

It is obvious that in many situations, the two formulations for the nSD are not the same.

In this section we are interested in queries Q : D × E → Dom on datasets x ∈ D
mapping to a finite domain Dom = [l, u] ⊂ R (l < u, both finite). We are concerned only
with output perturbation mechanisms, see (2.4):

Of (x, z) = f(x) + z , x ∈ D, z ∈ R .

Recall that when the noise is independent from the database, (ε, δ)-differential privacy
states

P(Q(x, Z) ∈ B) ≤ eεP(Q(y, Z) ∈ B) + δ .

When the noise is Laplace(0,∆f/ε), pure differential privacy holds. In this case, Q(x, Z) =
f(x) + Z, where Z has a Laplace(0,∆f/ε) law. Set Qf(x) := Q(x, Z), then the random
variable Qf(x) has the density

gQf(x)
(v) =

1

2b
exp

(
−|v − f(x)|

b

)
, b =

∆f

ε
, v ∈ R.

The idea of the bounded Laplace mechanism is to restrict the domain of the density
above to v ∈ Dom. This will correspond to the randomized query Q(x, Z) = f(x) + Z
being restricted to the domain Dom. This is important to note that the restriction will
be on f(x) + Z, not on Z. As such, the restriction will depend on the database x. This
creates some complications.

Definition 5.5.3 (Bounded Laplace Mechanism). Given b > 0 and Dom ⊂ R, the
bounded Laplace mechanism Qf(x) is given by its probability density function:

gQf (x)(v) =

{
0, if v /∈ D

1
Cf(x)

1
2b
e−

|v−f(x)|
b , if v ∈ D,

where Cf(x) =
∫
D

1
2b
e−

|v−f(x)|
b dv is a normalization constant.

Example 5.5.4. Assume that x describes age. It is reasonable to assume that age is
between 0 and 110. Let f(x) = minj xj. Assume, the query returns a response of 10.
Adding an unbounded Laplace noise (with the real domain) may lead to an unrealistic
negative age. Instead, the bounded Laplace mechanism will add Laplace noise with the
domain [−10, 100]. The resulting output will belong to the prescribed range [0, 110].

In classical differential privacy, we always add Laplace(0,∆f/ε) noise, regardless
of the output of the query, f(x). Here, the added Laplace noise will depend on the
query and hence on the database. As such, the bounded Laplace mechanism does not
consistently satisfy differential privacy when utilizing parameters derived from the pure

99

Laplace mechanism. This is due to the fact that the output is contingent upon the
original database (in comparison to the scenario of the Laplace mechanism with local
sensitivity). Nevertheless, we can provide an answer when we preserve approximate
differential privacy. To this end, it is necessary to note that the data-dependent constant
Cf(x) has the form:

Cq := 1 − 1

2
(exp(−(q − l)/b) + exp(−(u− q))/b)) ,

where q = f(x). Define

∆C =
Cl+∆f

Cl
.

Unlike the constant Cf(x), the new constant ∆C does not depend on the database (but
it depends on b).

Theorem 5.5.5. The bounded Laplace mechanism is (ε, δ)- differentially private when-
ever

b ≥ ∆f

ε− log ∆C − log(1 − δ)
.

5.6 Pre-processing vs Post-processing

This chapter presents a comparative analysis of output perturbation mechanisms, Of ,
and sanitized response mechanisms, Sf , from the perspective of data utility. It should be
recalled that the output perturbation mechanism corresponds to post-processing (adding
noise to the query), while the sanitized response mechanism corresponds to pre-processing
(adding noise first, then applying query).

We analyze several estimators. It is not feasible to develop a general theory that
covers a large class of estimators. The main findings are as follows:

� In general, the same level of data utility can be achieved with less privacy through
pre-processing. Conversely, the same level of privacy can be achieved with better
data utility through post-processing.

� For the sample mean query pre- and post-processing yield an unbiased estimator of
the population mean. However, the pre-processing method results in a reduction
in data utility, as measured by the MSE.

� For the sample variance, query pre-processing leads to bias. Furthermore, it leads
to a lower data utility, as measured by the MSE.

Sample Mean. Let x = (x1, · · · , xn) be a database. We treat this database as fixed.
Assume that the data come from a population with range [0,Λ]. We are interested in
estimating the population mean using the sample mean.

100

Post-processing

We consider the output perturbation mechanism a

Of (x, Z) = f(x) + Z,

where f(x) =
∑n

i=1 xi/n and Z ∼ Lap(∆f/ε). This algorithm is ε-differentially private.
Recall now that ∆f = Λ/n. Then

E[Of (x, Z)] = E[f(x) + Z] = f(x) ,

Var(Of (x, Z)) = Var(Z) =
2Λ2

ε2n2
.

So in the case of post-processing, the randomized query f(x) = x̄ leads to an unbiased
estimator.

Pre-processing

In the case of pre-processing, we define Y = (x1 + Z1, · · · , xn + Zn), where Zi are
independent with the distribution Laplace(Λ/ε). Let Z = (Z1, . . . , Zn). We define the
sanitized response mechanism as

Sf (x,Z) = f(x + Z) = f(x) + f(Z).

This algorithm is ε-differentially private. We wish to calculate the expected value and
variance of Sf and then compare these results to that of the post-processing results.

E[Sf (x,Z)] = f(x)

Var(Sf (x,Z)) =
1

n
Var(Z1) =

2Λ2

ε2n
.

We can conclude that due to the linearity of the sample mean, the expected value of
each mechanism Of , Sf is the same, but there is some difference between the variances.
In order to understand the relationship of ε between the post-processed statistic and
pre-processed database statistic we set the variances of Of and Sf equal and solve for
epsilon. For this, set

Var(Sf (x,Z)) =
2Λ2

ε20n
,

where ε0 is the ”epsilon” for the pre-processing case. Then we solve the following equation
for ε0 :

2Λ2

nε20
=

2Λ2

ε2n2

nε20 = n2ε2

ε0 =
√
nε .

101

Therefore, in order to achieve equivalent data utility for both methods (data utility is
measured by the MSE), it is necessary to utilize pre-processing with much larger ”epsilon”
than for post-processing. In other words, at a given level of data utility, pre-processing
affords less privacy, whereas at a given level of privacy, post-processing yields superior
data utility.

Sample Variance. Let x = (x1, · · · , xn) be a database. We treat this database as
fixed. Assume that the data come from a population with range [0,Λ]. We are interested
in estimating the population variance using the sample variance.

Post-processing

We consider the output perturbation mechanism

Of (x, Z) = f(x) + Z,

where f(x) = 1
n−1

∑n
i=1(xi−x̄)2 and Z ∼ Laplace(∆f/ε). Recall from Example 2.1.4 that

the global sensitivity of the variance query is ∆f = Λ2/n. Recall also from Example 5.5.2
that this may lead to unfeasible noisy estimators of the variance. Then

E[Of (x, Z)] = f(x) ,

Var(Of (x, Z)) = Var(Z) = 2

(
∆f

ε

)2

= 2
Λ4

ε2n2
.

Pre-processing

In the case of pre-processing, we define Y = (x1 + Z1, · · · , xn + Zn), where Zi are inde-
pendent with the distribution Laplace(Λ/ε). It is important to note that the parameter
of the Laplace distribution is different as compared to the post-processing. Indeed, in
the post-processing case the sensitivity Λ2/n is stems from the query (sample variance),
while in the pre-processing case the sensitivity Λ stems from the range of the database.
Let Z = (Z1, . . . , Zn). Then

Sf (x,Z) =
1

n− 1

n∑
i=1

(Yi − Ȳ)2 =
1

n− 1

n∑
i=1

(xi + Zi − x̄− Z̄)2 .

Since the random variables Zi are centered, we have

E[Sf (x,Z)] =
1

n− 1

n∑
i=1

(xi − x̄)2 + E

[
1

n− 1

n∑
i=1

(Zi − Z̄)2

]

=
1

n− 1

n∑
i=1

(xi − x̄)2 + Var(Z1) =
1

n− 1

n∑
i=1

(xi − x̄)2 + 2
Λ2

ε2
. (5.23)

102

Thus, even though the sample variable based on the original data is an unbiased esti-
mator of the population variance, the noise sample variance is biased.

Next, the formula for the variance is

Var(Sf (x,Z)) = E
[
S2
f (x,Z)

]
− (E[Sf (x,Z)])2 . (5.24)

We calculate the first term on the right hand side of (5.24):

E
[
S2
f (x,Z)

]
=

1

(n− 1)2
E

(
n∑
i=1

(xi + Zi − x̄− Z̄)2

)2

=
1

(n− 1)2
E

(
n∑
i=1

(xi − x̄)2 + (Zi − Z̄)2 + 2(xi − x̄)(Zi − Z̄)

)2

=
1

(n− 1)2
E

(
n∑
i=1

(xi − x̄)4 + (Zi − Z̄)4 + 4(xi − x̄)3(Zi − Z̄)

+ 4(xi − x̄)(Zi − Z̄)3 + 6(xi − x̄)2(Zi − Z̄)2

)

=
1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
1

(n− 1)2

n∑
i=1

E(Zi − Z̄)4 +
6

(n− 1)2

n∑
i=1

(xi − x̄)2E(Zi − Z̄)2 .

Indeed, because the random variables Zi are symmetric around zero we have

E[(Zi − Z̄)] = E[Zi] − E[Z̄] = 0

and

E[(Zi − Z̄)3] = E[Z3
i] − 3E[Z2

i Z̄] + 3E[Zi(Z̄)2] − 3E[(Z̄)3]

= 0 − 3

n

n∑
j=1

E[Z2
i Zj] +

1

n2

n∑
j,k=1

E[ZiZjZk] −
3

n3

n∑
i,j,k=1

E[ZiZjZk] = 0 .

Next, we evaluate

E[(Zi − Z̄)2] = Var(Zi − Z̄)

= Var(Zi) + Var(Z̄) − 2Cov(Zi, Z̄)

= Var(Zi) + Var(Z̄) − 2
1

n

n∑
j=1

Cov(Zi, Zj)

=
2Λ2

ε2
+

1

n

2Λ2

ε2
− 2

n

2Λ2

ε2
=

(n− 1)

n
· 2Λ2

ε2
.

103

We also need to calculate E[(Zi − Z̄)4], we focus on the even terms, as we know terms
with odd powers involving Zi or Z̄ will be 0 due to symmetry around zero (as we have
seen above). We also note that the fourth moment of Laplace(b) is 24b4. We have

E[(Zi − Z̄)4] = E(Z4
i) − 4E(Z3

i Z̄) + 6E(Z2
i Z̄

2
) − 4E(ZiZ̄

3
) + E(Z̄

4
)

= E(Z4
i) − 4

1

n

n∑
j=1

E(Z3
i Zj) + 6

1

n2

n∑
j,k=1

E(Z2
i ZjZk)

− 4
1

n3

n∑
j,k,l=1

E(ZiZjZkZl) +
1

n4

n∑
j,k,l,q=1

E(ZjZkZlZq)

= E(Z4
i) − 4

n
E(Z4

i) + 6
1

n2

{
E[Z4

i] + (n− 1)E[Z2
i]E[Z2

j]
}

− 4
1

n3

{
E[Z4

i] + 3(n− 1)E[Z2
i]E[Z2

k]
}

+
1

n4

{
nE[Z4

1] + 6n(n− 1)E[Z2
j]E[Z2

l]
}

= 24b4
(

1 − 4

n
+

6

n2
− 3

n3

)
+ 24b4

n− 1

n2

(
1 − 1

n

)
= 24b4

(
1 − 4

n
+

6

n2
− 3

n3
+
n− 1

n2

(
1 − 1

n

))
=: 24b4an

where b =
Λ

ε
. Note that an > 0 whenever n > 1. Thus

E
[
S2
f (x,Z)

]
=

1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
1

(n− 1)2

n∑
i=1

E(Zi − Z̄)4 +
6

(n− 1)2

n∑
i=1

(xi − x̄)2E(Zi − Z̄)2

=
1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
n

(n− 1)2
24b4an +

6

(n− 1)2
2b2(n− 1)

n

n∑
i=1

(xi − x̄)2

=
1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
n

(n− 1)2
24b4an +

6

n− 1

2b2

n

n∑
i=1

(xi − x̄)2 .

Therefore

MSE(Sf (x,Z)) = Var(Sf (x,Z)) + (E[Sf (x,Z)])2 = E
[
S2
f (x,Z)

]
=

1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
n

(n− 1)2
24b4an +

6

n− 1

2b2

n

n∑
i=1

(xi − x̄)2 .

(5.25)

We now want to compare the variance of the post-processing and pre-processing mecha-
nisms, and analyze the relationship between the privacy budgets. Let ε0 be the privacy

104

budget for the output perturbation mechanism and ε be the privacy budget for the san-
itized response mechanism. It should be recalled that the variance (and hence the MSE)
for the output perturbation mechanism is

2
Λ4

ε20n
2
.

We equate it to (5.25) and solve
ε = h(ε0)

where h is some function. Of course, the function h depends on n, Λ and the data. We
have

2
Λ4

ε20n
2

=
1

(n− 1)2

n∑
i=1

(xi − x̄)4 +
n

(n− 1)2
24

Λ4

ε4
an +

6

n− 1

2

n

Λ2

ε2

n∑
i=1

(xi − x̄)2 .

For simplicity, let ε0 = 1, and n > 1,Λ > 0. Denote each term that does not involve
ε as

A =
2Λ4

n2
, B =

1

(n− 1)2

n∑
i=1

(xi − x̄)4, C =
n24Λ4an
(n− 1)2

, D =
12

n− 1

Λ2

nε2

n∑
i=1

(xi − x̄)2 .

So we need to solve the following equation for ε:

A = B +
C

ε4
+
D

ε2

(A−B)ε4 −Dε2 − C = 0

Since ε has to be positive, we obtain

ε =

√
D +

√
D2 + 4(A−B)C

2(A−B)
. (5.26)

This equation provides the formal relationship between privacy for the pre- and post-
processing. We notice that it is heavily dependent on the data.

To get some intuition, note that MSE(Sf (x,Z)) is of the order

1

n

(
1 +

1

ε2
+

1

ε

)
,

while MSE(Of (x, Z)) is of the order 1/(n2ε20). Thus, to match the MSEs, we need to
choose (set ε0 = 1)) ε at the rate n. Hence, to keep the same data utility between pre-
and post-processing, the post-processing has very little privacy (since ε has to be large).

Sample Median. As above, let x = (x1, · · · , xn) be a database. We treat this database
as fixed. Assume that the data come from a population with range [0,Λ]. We are
interested in estimating the population median using the sample median.

105

Post-processing

Let f(x) = median(x1, . . . , xn). The output perturbation mechanism is

Of (x, Z) = f(x) + Z ,

where Z is Laplace with variance

Var(Z) = 2

(
∆f

ε

)2

.

Recall from Example 2.1.3 that ∆f = Λ.

Pre-processing

As above, in the case of pre-processing, we define Y = (x1 +Z1, · · · , xn +Zn), where Zi
are independent with the distribution Laplace(Λ/ε). Then,

Sf (x,Z)

is the sample median based on the observations xi + Zi, i = 1, . . . , n.
In general the formulas for E[Sf (x,Z)] and Var(Sf (x,Z)) are not feasible. Further-

more, the relationship between median(x), median(Z) and median(Y) is not analytically
tractable, except for a few cases when the data x are treated as random and come from
a symmetric distribution.

To understand the noisy median estimator, we conduct some numerical experiments.
We use a public dataset that contains values for age (amongst other variables, but we
focus on age). We first randomize the variable age to date of birth (DOB), by adding a
random value between 1 and 365 and dividing it by 365. We then aim to compare the
median estimator for DOB for post-processing and pre-processing.

The privacy budget, ε, was set to 1. for both pre-processing and post-processing.
In case of pre-processing, we add the Laplace noise to the database and calculate the
median based on the noisy data. It is repeated n = 1000 times, producing 1000 medians.
For post-processing, we calculate the median and then we add the Laplace noise. This
procedure is repeated 1000 times.

For every query, the outputs for post-processing are centered around the true query
value, which can be seen in Figure 5.15, denoted by the red line. However, as expected,
the outputs for pre-processing are widely spread out, indicating much lower data utility
when compared to the post-processing outputs. Similar to the mean, the median queries
acting upon the privatized database are centered around the true parameter, indicating
that the median private estimator is unbiased.

106

Figure 5.15: Post-processing vs Pre-processing for the median
The median estimator for pre-processing vs post-processing vs the true median for the variable
date of birth.

Conclusion. It can therefore be concluded that the utility of post-processing vs. pre-
processing is greater when both privacy budgets are fixed. This can be seen through
the theoretical results and numerical experiments outlined in this section for the mean,
median, and variance queries. Additionally, we observed through the theoretical calcu-
lations of the variance query that pre-processing induces a bias, which naturally lends
to choosing post-processing when trying to maximize data utility. In conclusion, it is
evident that when the scope of statistical analysis is constrained to a predefined set of
statistical estimators, it is more advantageous from a practical standpoint to compute
private statistics. Elastic sensitivity has been applied by Uber to differentially private
queries, allowing the maximum data utility possible when computing data analytics over
a set number of statistics, see [32]. Applying pre-processing to a database is only bene-
ficial when one doesn’t know who will query the database and what type of queries they

107

wish to compute.

5.7 Confidence Intervals

A natural progression from the previous Section 5.6 is to consider confidence intervals.
In particular, we aim to develop private confidence intervals for various statistics, with
a focus on the population mean µ. Despite the simplicity of the example, it already
illustrates the challenges that arise in this context.

Assume that we have data x = (x1, . . . , xn) coming from a population with mean
µ and finite variance σ2. In this context, x is considered as a random sample. It is
assumed that the sample size n is sufficiently large. If the variance σ2 is known, then
the (1 − α)-confidence interval for the mean is give by

(
X̄− zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
.

We define the lower and upper bounds of the confidence interval as: X̄− zα/2
σ√
n

=: CIL

and X̄ + zα/2
σ√
n

=: CLR. In terms of probability, we have:

P(CIL ≤ µ ≤ CIU) = 1 − α ,

P
(
−zα/2 ≤

X̄− µ

σ/
√
n

≤ zα/2

)
= 1 − α .

In the event that the value of σ is unknown, it can be replaced with the standard
deviation.

Confidence Interval for noisy mean. In the context of data privacy, we consider the
sample mean query f(x) = x̄. We observe X̄ + Z, where Z is a random variable. In the
event that the random variable Z is distributed according to the Laplace distribution, it
is not feasible to obtain the distribution of the random variable X̄ + Z. Indeed, let us
assume that X̄ is normal with mean zero and variance σ2/n. Then the convolution has
a complicated density; see Example 4.5.9.

Therefore, in the present context, it is natural to consider a Gaussian Mechanism
(see Theorem 4.4.3), whereby Z is assumed to have a centered normal distribution with
variance σ2

Z . In this case, X̄ + Z ∼ N (0, σ
2

n
+ σ2

Z). We rewrite the expression for the

108

confidence interval with our noisy estimator:

P

−zα/2 ≤
X̄ + Z − µ√

σ2

n
+ σ2

Z

≤ zα/2

 = 1 − α ,

P

(
−zα/2

√
σ2

n
+ σ2

Z ≤ X̄ + Z − µ ≤ zα/2

√
σ2

n
+ σ2

Z

)
= 1 − α ,

P

(
X̄ + Z − zα/2

√
σ2

n
+ σ2

Z ≤ µ ≤ X̄ + Z + zα/2

√
σ2

n
+ σ2

Z

)
= 1 − α .

The following observations can be made:

� The statistic X̄+Z is observable, thereby enabling the computation of a confidence
interval.

� According to Theorem 4.4.3, σ2
Z ≥ (c∆f/ε)2 with c2 > 2 ln(1.25/δ). Thus, the

information about σ2
Z is typically available to the user.

Using Theorem 4.4.3 we obtain immediately the following corollary.

Corollary 5.7.1. Consider the output perturbation mechanism X̄ + Z, where Z ∼
N (0, σ2

Z) with σZ ≥ c∆f/ε, c2 > 2 ln(1.25/δ). Assume that σ2, the variance of the
original population, is known. Then the (1 − α)-confidence interval(

X̄ + Z − zα/2

√
σ2

n
+ σ2

Z , X̄ + Z + zα/2

√
σ2

n
+ σ2

Z

)

is (ε, δ)-differentially private.

In practice, the value of σ2 is unknown and cannot be inferred from the database, as
the latter is not available. Instead, it may be the case that the user is in possession of
the noisy sample variance. In other words, the user has access to

σ̂2
noisy := S2 + Z1 :=

1

n− 1

n∑
i=1

(Xi − X̄)2 + Z1 = σ̂2 + Z1 ,

where Z1 is a random variable. The statistics σ̂2 and σ̂2
noisy are, respectively, non-noisy

and noisy estimators of the population variance σ2. Here, we may use a Laplace random
variable, Z1, with a parameter value of ∆f1/ε1, where

f1(x) =
1

n− 1

n∑
i=1

(xi − x̄)2

109

is defined as the sample variance query. As previously stated in Example 5.5.2, it is
possible that the resulting noisy sample variance may be negative. This issue will not be
addressed further here. It is assumed that the database owner ensures that the estimator
is strictly positive (for example, by sampling another copy of Z1).

Given that two queries (sample mean, sample variance) are applied to the same
database, we are in a position to utilize Lemma 4.5.13 to derive the following corollary.

Theorem 5.7.2. Consider the output perturbation mechanism(
X̄ + Z,

1

n− 1

n∑
i=1

(Xi − X̄)2 + Z1

)
=: (X̄ + Z, σ̂2 + Z1) =: (X̄ + Z, σ̂2

noisy) ,

where

� Z ∼ N (0, σ2
Z) with σZ ≥ c∆f/ε, c2 > 2 ln(1.25/δ).

� Z1 is Laplace with the parameter ∆f1/ε1.

Then the confidence intervalX̄ + Z − zα/2

√
σ̂2
noisy

n
+ σ2

Z , X̄ + Z + zα/2

√
σ̂2
noisy

n
+ σ2

Z

is (ε+ ε1, δ)-differentially private.

It should be noted that the confidence level was not indicated in the latter corollary.
One might contend, however, that the confidence interval is asymptotically at the appro-
priate level, 1−α. Indeed, to illustrate this, we refer to Example 2.1.3 and Example 2.1.4.
We have a population with the range [0,Λ]. Then ∆f = Λ/n, while ∆f1 = Λ2/n. Hence,
we can write the confidence interval asX̄ + Z − zα/2

√
σ̂2
noisy

n
+
c2Λ

εn
, X̄ + Z + zα/2

√
σ̂2
noisy

n
+
c2Λ

εn

 .

Now, σ̂2
noisy = σ̂2 + Z1. By the law of large numbers, σ̂2 converges, as n → ∞, to the

population variance σ2. On the other hand, since E[Z1] = 0 and Var(Z1) is proportional
to (1/n2),

Z1
p→ 0 ,

110

i.e., Z1 converges to zero in probability. Hence, σ̂2
noisy converges in probability to the true

variance, σ2. Therefore, we conclude that the confidence interval is at the appropriate
level.

To the contrary, if the sample variance is released based on pre-processing, then (5.23)
indicates that the noisy sample variance does not converge to the population variance.
Hence, the corresponding confidence interval is not at the level 1 − α.

5.8 Changing the distance between probability dis-

tributions

Another relaxation of differential privacy, referred to as ”concentrated differential pri-
vacy” (see [18]), was introduced in order to permit sharper analyses of several privacy-
preserving computations. In [11] the authors proposed a version of this, based on the
Rényi distance (cf. Definition 2.3.5). It is proposed as an intermediate notion between
pure differential privacy and approximate differential privacy, with particular applicabil-
ity to a normal noise. We will demonstrate that the latter does not seem to be the case.

We re-write the definition of zero concentrated privacy in the same language as Defini-
tion 4.2.1, where the bound in (5.27) corresponds to the bound (4.1). Recall that PQ|X=x

is the conditional distribution of the randomized mechanism Q(X, Z), given X = x.

Definition 5.8.1 (Zero-Concentrated Differential Privacy (zCDP).). Let X be a
database, a random element of D. Let Z be a random element with values in a metric
space E. Let ξ, ρ > 0. A randomized mechanism Q : D×E → Rd is zero-concentrated
differentially private if ∀ x,y ∈ D, satisfying d(x,y) = 1, and α ∈ (1,∞) we have

Dα(PQ|X=x∥PQ|X=y) ≤ ξ + ρα , (5.27)

where Dα is the α-Rényi divergence between the conditional distributions of Q given
x and given y.

Remark 5.8.2. We will write (ξ, ρ)-zCDP. In the case of (0, ρ)-zCDP, we will simply
write ρ-zCDP.

Relation between zCDP, DP and Approximate DP. We present several results,
both with and without accompanying proofs. These results demonstrate a relationship
between the new version of differential privacy and the more classical ones.

Lemma 5.8.3 (ε-DP vs. zCDP). A mechanism Q : D × E → Rd satisfies ε-differential
privacy if and only if it satisfies (ε, 0)-zCDP

111

Proof. Let x,x’ ∈ D be neighbouring datasets. Assume that Q satisfies ε-differential
privacy. By monotonicity, and using (4.1), we can write:

Dα(PQ|X=x∥PQ|X=x’) ≤ D∞(PQ|X=x∥PQ|X=x’) ≤ ε = ε+ 0 · α ,

for all α. Therefore, Q satisfies (ε, 0)-zCDP. Conversely, suppose Q satisfies (ε, 0)-zCDP.
Then we can write,

D∞(PQ|X=x∥PQ|X=x’) = lim
α→∞

Dα(PQ|X=x∥PQ|X=x’) ≤ lim
α→∞

ε+ 0 · α = ε .

Thus, Q satisfies ε-differential privacy.

We state the next result without a proof.

Lemma 5.8.4. If Q satisfies ε-differential privacy, then Q satisfies (0, 1
2
ε2)-zCDP.

The subsequent result serves to establish the link between approximate differential
privacy and zero-concentrated differential privacy.

Lemma 5.8.5 (Approximate DP vs. zCDP). Assume that Q : D × E → Rd satisfies
(ξ, ρ)-zCDP. Then Q satisfies (ε, δ)-differential privacy for all δ > 0 and

ε = ξ + ρ+
√

4ρ log(1/δ) .

Thus to achieve a given (ε, δ)-differentially private guarantee it suffices to satisfy (ξ, ρ)-
zCDP with

ρ =
(√

ε− ξ + log(1/δ) −
√

log(1/δ)
)2

≈ (ε− ξ)2

4 log(1/δ)
.

Proof. In what follows we will write g(y | x) to denote the conditional density at point
y ∈ Rd of Q(X, Z) given that X = x.

Let x,x’ ∈ D be neighbouring databases. Define the function h as:

h(y) = log

(
g(y | x)

g(y | x’)

)
.

Let Y = Y (x) be a random variable with the distribution that is equal to the conditional
distribution of Q(X, Z) given X = x and let U = h(Y). Fix α ∈ (1,∞). Then,

E
[
e(α−1)U

]
= e(α−1)Dα(PQ|X=x∥PQ|X=x’)

≤ e(α−1)(ξ+ρα) .

By using Markov’s inequality, we can express the probability as:

P(U > ε) = P
(
e(α−1)U > e(α−1)ε

)
≤ E[e(α−1)U]

e(α−1)ε

≤ e(α−1)(ξ+ρα−ε) .

112

Choose α =
ε− ξ + ρ

2ρ
> 1, than the expression above becomes

P(U > ε) ≤ e−(ε−ξ−ρ)2/4ρ ≤ δ .

Then, for any measurable set B ∈ B(Rd), we have

P(Q(X, Z) ∈ B | X = x) = P(Y ∈ B)

≤ P({Y ∈ B} ∩ {U ≤ ε}) + P(U > ε)

≤
∫
Rd

g(y | x) · 1{y ∈ B} · 1{h(y) ≤ ε}dy + δ

≤
∫
Rd

eεg(y | x’)1{y ∈ B}dy + δ

= eεP(Q(X, Z) ∈ B | X = x’) + δ .

Thus, we can conclude that (ε, δ)-differential privacy can be achieved via (ξ, ρ)-zCDP

with ρ ≈ (ε−ξ)2
4 log(1/δ)

.

Zero Concentrated DP for a Gaussian noise. The primary goal of introducing
the revised definition of differential privacy was to facilitate the use of a gaussian noise
mechanism. The following theorem corresponds to Theorem 4.4.3.

Theorem 5.8.6. For any f : D → R, the randomized output perturbation mechanism

Of (x, Z) = f(x) + Z

with the centered Gaussian noise with the variance σ2 is (0, (∆f)2/2σ2)-zCDP.

Proof of Theorem 5.8.6. First, we evaluate the formula for the Rényi distance between
normal laws with the same variance. We show that

Dα

(
N (µ, σ2)∥N (ν, σ2)

)
=
α(µ− ν)2

2σ2
.

113

We have

exp
(
(α− 1)Dα

(
N (µ, σ2)∥N (ν, σ2)

))
=

1√
2πσ2

∫
R

exp

(
−α(x− µ)2

2σ2
− (1 − α)

(x− ν)2

2σ2

)
dx

=
1√

2πσ2

∫
R

exp

(
−(x− (αµ+ (1 − α)ν))2 − (αµ+ (1 − α)ν)2 + αµ2 + (1 − α)ν2

2σ2

)
dx

=

[
exp

(
(αµ− (1 − α)ν)2 + αµ2 − (1 − α)ν2

2σ2

)]
1√

2πσ2

∫
R

exp

(
−(x− (αµ+ (1 − α)ν))2

2σ2

)
dx︸ ︷︷ ︸

= exp

(
α(α− 1)(µ− ν)2

2σ2

)
.

The under braced expression is equal to 1.

Now, for neighbouring databases, the releases are normal, with means f(x) and f(y),
which differ by at most ∆f . The proof is now complete.

The question thus arises How useful is this proposed version of differential privacy?
The authors in [11] assert that this new approach improves the precision of the bounds,
in particularly in the context of the normal algorithm. This claim will be disproved.

Remark 5.8.7. We consider the randomized algorithm with a normal noise with variance
σ2. Then, the result of Theorem 5.8.6 yields zCDP with the parameters ξ = 0 and
ρ = (∆f)2/(2σ2). Then, the result in Lemma 5.8.5 gives (ε0, δ)-differential privacy with

ε0 =
(∆f)2

2σ2
+
√

2
(∆f)

σ

√
log(1/δ) .

We want to compare this obtained (ε0, δ)-differential privacy to classical (ε, δ)-differential
privacy. In other words, the aim is to ascertain which σ implies ε0 = ε. This is a quadratic
equation with a positive solution

σ2 =
(∆f)2

ε2

(√
2
√

log(1/δ) +
√

2 log(1/δ) + ε
)2

.

On the other hand, Theorem 4.4.3 yields (ε, δ)-differential privacy whenever

σ2 > σ2
0 = 2 ln(1.25/δ)(∆f/ε)2 .

Thus, it is readily seen that application of the theory of zero-concentrated differential
privacy results in a larger variance then the direct application of the classical theory in
Theorem 4.4.3. As such, the claimed superiority of zCDP is doubtful.

114

5.9 Conclusion

In this chapter, we have explored the important balance between maintaining differential
privacy guarantees and maximizing data utility. This line of research did not seem to be
present in the literature (which focuses primarily on privacy aspects). While differential
privacy provides a robust framework for privacy protection, it can be challenging to opti-
mize data utility when injecting noise into a dataset or a query (statistic). Theoretically,
this is an acceptable approach; however from a practical standpoint, data utility should
be considered a primary objective. Our investigation focused on a number of mechanisms
that satisfy differential privacy guarantees, including the traditional Laplace mechanism,
Gaussian mechanism, and the novel Mixed Noise Mechanism (MNM), general sensitivity
or blocking method.

We demonstrated through theoretical analysis and numerical experiments that the
choice of noise mechanism may have a significant impact on the utility of the data, which
in turn can affect the outcomes of real-world findings. The MNM, which dynamically
selects between Laplace and Gaussian noise based on the sensitivity of the query, con-
sistently showed superior performance in maintaining data utility compared to other
mechanisms. This adaptive approach ensure that the noise added is minimized, while
adhering to privacy constraints.

Our findings highlight the necessity of considering the specific statistical properties
and sensitivity of the data when selecting differentially private mechanisms. By adapting
the noise addition process to align with the intrinsic characteristics of the data, it is
possible to achieve a more favourable dynamic between the protection of privacy and
the utility of the data. This can be of particular importance in applications where
the precision of the data is of high importance (for example, disease surveillance and
fraud detection). Future work may involve further refinement of these mechanisms and
exploring their applicability to a broader range of queries and data types.

115

116

Chapter 6

Time series

In this chapter we are interested in the privacy leakage associated with differentially
private queries resulting from time series data. We focus on Vector AutoRegressive
models. In terms of studying the effects of differential privacy in a time series setting,
there is no an unified theory that we are aware of.

6.1 Introduction

In practical applications of differential privacy, it is essential to consider the temporal
dependence of the underlying data (see e.g. [22] for differentially private traffic monitor-
ing). However, to the best of our knowledge, major tech companies reset their privacy
budgets when dealing with longitudinal observations, without accounting for temporal
dependence. This deficiency in the current theoretical and practical framework may be
attributed to the limited theoretical results available to measure the impact of depen-
dence on the privacy budget in a differential privacy setting. For instance, [41] employs
a Fourier Transform method, and [13] provides some theoretical bounds on privacy leak-
age. However, their methodology is not tied to specific time series models and also deal
with discrete data, making its practical application unclear.

We focus on the privacy leakage associated with differentially private queries arising
from time series data. The use of Vector Autoregressive (VAR) time series models allows
for the demonstration of methods for adjusting the privacy budget in order to account for
temporal dependence. The privacy budget will depend on the specific model parameters,
which can be estimated using classical time series methodologies (see for example, [10])
with various existing software tools. In practice, once the data has been obtained, it is
possible to fit a VAR model, estimate its parameters, and calculate the privacy budget
using the formulas provided in this chapter.

Theoretically, the Gaussian mechanism is suitable in the time series context due to the
linear structure of VAR models and the sum-closure property of normal distributions.

117

However, it would be challenging or even impossible to prove relevant results for the
Laplace mechanism using our methodology. Indeed, while a sum of a finite number of
dependent normal random variables remains normal, this sum-closure property does not
hold for the Laplace distribution. In particular, the sum of two Laplace random variables
is not longer Laplace. even worse, it violates differential privacy; see Example 4.5.7.

6.2 Differentially private queries in times series

Let T be a positive integer. Let

X(t) = (X
(t)
1 , · · · , X(t)

n)′ ∈ Rn , t ∈ {1, 2, . . . , T},

be an n-dimensional time series. Denote

X = (X(1), · · · ,X(T)) ∈ Rn×T .

Then, X is interpreted as a database of a group of n users. Each X(t) is information
about all the users at that particular time t ∈ {1, . . . , T}, while (X

(1)
i , . . . , X

(T)
i) ∈ RT

is information about the user i ∈ {1, . . . , n} for the entire period of time. For future
reference, we also denote

X
(t)
(−1) = (X

(t)
2 , · · · , X(t)

n)′ ∈ Rn−1 .

In what follows, we will refer to X as either a time series or a database. There are two
main situations to be considered:

� Event-level privacy goal. This is the situation in which the adversary is in-
terested in the information about all individuals at a particular time point t ∈
{1, . . . , T}. In discussing event-level privacy, it is assumed that the neighbouring
databases are considered to be (without loss of generality)

X(t) = (X
(t)
1 , X

(t)
2 , · · · , X(t)

n)′ ∈ Rn

and
Y(t) = (Y

(t)
1 , X

(t)
2 , · · · , X(t)

n)′ = (Y
(t)
1 ,X

(t)
(−1))

′ ∈ Rn ,

for a fixed t ∈ {1, 2, . . . , T}.

� User-level privacy goal. This is the situation in which the adversary is interested
in the data of a single individual at all time points t ∈ {1, . . . , T}. When discussing
user-level privacy, the neighbouring databases are considered to be

{X(1)
1 , . . . , X

(T)
1 }

and
{Y (1)

1 , . . . , Y
(T)
1 } .

118

In what follows, we focus primarily on event-level privacy. It should be noted that
if T = 1, the event-level privacy problem reduces to the classical one, where there is no
time effect. The goal of this chapter is to study the effect of dependence on the privacy
leakage.

6.2.1 Data release and attack scenarios

We fix ℓ ∈ {1, . . . , T}. We release a query at (some of) time points 1, . . . , ℓ, and return
a randomized response

(Q1, . . . , Qℓ) := (Q1(X
(1), Z(1)), . . . , Ql(X

(l), Z(l))) = (f1(X
(1))+Z(1), . . . , fℓ(X

(ℓ))+Z(ℓ)),

where ft : Rn → R and Z(t), t = 1, . . . , T , are independent random variables, indepen-
dent from the time series X. The random variables Z(t) will yield a level of privacy at
the level εt when considered separately. We note in passing that in principle we should
use the notation Qft to indicate the dependence on the query ft, but we write simply Qt

instead.

We note the following:

1. Q1, . . . , Qℓ are dependent, since they are functions of the time series X;

2. Q1, . . . , Qℓ are conditionally independent, given the entire time series X;

3. Q1, . . . , Qℓ are not conditionally independent, given a particular time stamp X(j),
for some j ≤ ℓ.

For the time series, we will assume the following Vector AutoRegressive relationship
of order 1 (abbreviated as VAR(1)):

X(t) = AX(t−1) + B(t), t = 1, . . . , T , (6.1)

where X(t) are (n× 1) random vectors, B(t) are random vectors of dimension (n× 1) and
A = [aij]

n
i,j=1 is a deterministic matrix of dimension (n × n). The VAR(1) model can

be extended, in expense of more cumbersome notation and more involved calculations,
to a general VAR(p) model. However, the linear structure of the VAR model is crucial.
We note that we are not concerned with a stationarity of the model, hence there are no
restrictions on the matrix A.

Attack Scenarios

For the sake of simplicity, we will assume that ℓ = 2. The methodology can be readily
extended to include more time points, although this would involve complex notation and
a more cumbersome computation. We consider several different attack scenarios:

119

A1. Adversary wants to learn about x
(1)
i , i.e. the value of the user i at time 1.

A2. Adversary wants to learn about x
(2)
i , i.e. the value of the user i at time 2.

A3. Adversary wants to learn about x(t), i.e. the value of all records at time t, for t = 1
or t = 2.

We note that A1, A2, A3 fall into the category of event-level privacy.

Knowledge Scenarios

We also consider different adversary knowledge scenarios:

N1. The adversary knows Q1 only (that is, the randomized query at time 1).

N2. The adversary knows Q2 only (that is, the randomized query at time 2).

N3. The adversary knows both Q1, Q2.

We note that the combinations A1+N1 or A2+N2 result in classical differential privacy,
and hence there will be omitted from further analysis.

6.3 Privacy leakage for time series

If Z(t), t = 1, . . . , ℓ, yield εt-privacy, the question is: what is the privacy of releasing
(Q1, . . . , Qℓ)? Intuitively, the worst case scenario (when observations at distinct time
points are totally dependent) is ε1 + · · · + εℓ, and the best case scenario(when observa-
tions at distinct time points are independent) is max{ε1, . . . , εℓ}. This is shown in the
next two lemmas. For simplicity, we consider the case of ℓ = 2 only.

Notation. For notational convenience, in what follows, PY (z) stands for the density of a
continuous random variable Y evaluated at a point z. Likewise, P(Y1,Y2)(z1, z2) represents
the joint density of (Y1, Y2) at (z1, z2). Moreover, PY2|Y1(y2 | y1) is the conditional density
of Y2 at y2 given Y1 = y1. This notation is slightly different as compared to the previous
chapters. Sometimes, for notational convenience, we will write (d/dz)P(Y ≤ z) for PY (z).

6.3.1 Total dependence and independence

Lemma 6.3.1 (Total Dependence). Let a > 0. Assume that the query f is linear. If
X(2) = aX(1) then releasing the randomized response (Q1, Q2) is (ε1 + ε2/a)-differentially
private.

120

Remark 6.3.2. The above lemma illustrates a potential drawback of differential privacy.
If we multiply each entry in the dataset by a > 1, and then apply a query f to that
dataset, we may need to add more noise in order to achieve the same level of privacy.
This concept was previously discussed in DP Fallacy 5.1.4.

Proof of Lemma 6.3.1. If we have total dependence, we can write (Q1, Q2) as

(Q1, Q2) = (Q1(X
(1), Z(1)), Ql(X

(2), Z(2))) = (f(X(1)) + Z(1), f(aX(1)) + Z(2)).

Then, due to the independence between random variables Z(1) and Z(2), we can calculate
the conditional probabilities given X(1) = x(1) and X(2) = ax(1):

P(Q1(x(1),Z1),Q2(ax(1),Z2))(z1, z2)

P(Q1(y(1),Z1),Q2(ay(1),Z2))(z1, z2)
=

P(f(x(1))+Z(1))(z1)

P(f(y(1))+Z(1))(z1)
·
P(f(ax(1))+Z(2))(z2)

P(f(ay(1))+Z(2))(z2)
.

Using the definition of differential privacy, the first ratio is bounded by eε1 . Next, since
f is linear, the function ga(x) = f(ax) has the sensitivity a∆f . Thus, we can bound the
second ratio by eε2/a.

Lemma 6.3.3 (Independence). If X(1) and X(2) are independent with the same dis-
tribution, then releasing the randomized response (Q1, Q2) is max{ε1, ε2}-differentially
private.

Proof. We first assume that a record has been removed from X(1), while X(2) is un-
changed. Then, in the computation below, y(2) = x(2). We can then write the ratio of
probabilities as:

P(Q1(x(1),Z1),Q2(x(2),Z2))(z1, z2)

P(Q1(y(1),Z1),Q2(y(2),Z2))(z1, z2)
=

P(f(x(1))+Z(1))(z1)

P(f(y(1))+Z(1))(z1)
·
P(f(x(2))+Z(2))(z2)

P(f(x(2))+Z(2))(z2)
≤ eε1 .

A similar computation holds for the case when a record is removed from X(2).

6.3.2 Privacy leakage for the mean

This section examines the privacy leakage associated with differentially private queries.
To gain insight into the effects, we have selected the mean query for our analysis. That
is, for all t ∈ {1, . . . , T} and x = (x1, . . . , xn)′,

f(x) ≡ ft(x) =
1

n

n∑
i=1

xi =: x .

We are going to assume that t1 = 1, . . . , tℓ = ℓ, ℓ ≤ T . Then, at any time t = 1, . . . , ℓ,
we release the query

Qt =
X

(t)
1 + · · · +X

(t)
n

n
+ Z(t) = X

(t)

n + Z(t).

121

Recall the matrix A = [aij] in the definition of the VAR(1) process. We introduce the
notation

si =
n∑
j=1

aji, i = 1, . . . , n. (6.2)

Furthermore, we need to specify the parameters of the time series. Assume that

B(2) := (B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B),

where Σ
(2)
B = (σ

(2)
ij)ni,j=1 is the variance-covariance matrix. Then

B
(2)

n :=
B

(2)
1 + · · · +B

(2)
n

n
∼ N

(
0,

n∑
i,j=1

σ
(2)
ij /n

)
=: N (0, var

(2)
B /n). (6.3)

The noise added at times t = 1, 2 is assumed to be normally distributed, that is

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
, (6.4)

where ∆f is a global sensitivity of the function f . We recall that this specification leads
to (εt, δt)-differential privacy, whenever a single query is returned. Indeed, by Theo-

rem 4.4.3, the variance should strictly bigger than 2
(

∆f
εt

)2
ln
(

1.25
δt

)
. Hence, 1.26 above

is not a typo!

Next, for x ∈ R and b1, . . . , bn, we introduce the function:

gb1,...,bn(x) = (b1 + · · · + bn)x/n. (6.5)

In what follows, we will consider different attack (”A”) and knowledge (”N”) scenarios
introduced in Section 6.2. For each of the scenarios, we need to compare the appropriate
conditional probabilities (see e.g. (6.10)-(6.11) below). The adversary knowledge leads
to the consideration of specific outcomes (for example, we consider the outcomes Q1 =
z1, Q2 = z2). In contrast, the learning goals A1-A3 lead to the consideration of particular
forms of conditioning.

Scenario A1+N3

In this scenario, we know both Q1, Q2, the randomized query at times 1 and 2, respec-
tively. We are interested in learning about x

(1)
1 , which is the entry for user 1 at time 1.

The main result of this section is Theorem 6.3.4.

122

Theorem 6.3.4. Consider the time series model (6.1) with

B = (B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B).

Let f(x) = 1
n

∑n
t=1 xt and assume that

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
.

For learning x
(1)
1 , the release

(X
(1)

n + Z(1),X
(2)

n + Z(2))

is (ε1 + ε′2, δ
′
2)-DP with

ε′2 = ε′2(a11, . . . , an1) =
∆g√(

∆f
ε2

)2
+

var
(2)
B

2n ln(1.26/δ2)

(6.6)

and δ′2 = eε1δ2 + eε2δ1 + δ1δ2, where ∆g is the sensitivity of

ga11,...,an1(x) =
(a11 + · · · + an1)

n
x.

Proof. We start with x(1) = (x
(1)
1 , . . . , x

(1)
n)′ and we want to learn about x

(1)
1 . At t = 2

our information becomes

x(2) =

a11x(1)1 + · · · + a1nx
(1)
n +B

(2)
1

· · ·
an1x

(1)
1 + · · · + annx

(1)
n +B

(2)
n

 = Ax(1) + B(2). (6.7)

We consider the idea of updating x
(1)
1 , while keeping x

(1)
(−1) = (x

(1)
2 , . . . , x

(1)
n)′. Then, the

corresponding information at the next time stamp also has to be updated. This becomes
the user-level privacy problem. The neighbouring database becomes

y(1) = (y
(1)
1 , x

(1)
2 , . . . , x(1)n) = (y

(1)
1 ,x

(1)
(−1)). (6.8)

That is, the information about all but the first user at time t = 1 remains unchanged.

123

Then

y(2) =

a11y(1)1 + a12x
(1)
2 + · · · + a1nx

(1)
n +B

(2)
1

· · ·
an1y

(1)
1 + an2x

(1)
2 + · · · + annx

(1)
n +B

(2)
2

 . (6.9)

That is, at time t = 2, the information about all users change. The goal is to compare
the following probabilities:

P(Q1,Q2)|X(1)(z1, z2 | x(1)) = P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2), (6.10)

where x(2) and x(1) are related through (6.7), with

P(Q1,Q2)|X(1)(z1, z2 | y(1)) = P(f(y(1))+Z(1),f(y(2))+Z(2))(z1, z2), (6.11)

where y(1) and y(2) are given in (6.8) and (6.9), respectively.
Since the random variables Z(t) are independent between themselves and also inde-

pendent from the time series, as well as (B
(2)
1 , . . . , B

(2)
n) is independent of (X

(1)
1 , . . . , X

(1)
n),

we can then write

P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2) = Pf(x(1))+Z(1)(z1)Pf(x(2))+Z(2)(z2)

and the latter expression is bounded by

(eε1Pf(y(1))+Z(1)(z1) + δ1)Pf(x(2))+Z(2)(z2).

We need to bound the latter expression. Note that this cannot be bounded directly using
the definition of differential privacy. We have

Pf(x(2))+Z(2)(z2)

=
d

dz2
P

(
(
∑n

j=1 aj1)x
(1)
1 + (

∑n
j=1 aj2)x

(1)
2 + · · · + (

∑n
j=1 ajn)x

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)

=
d

dz2
P

(
s1x

(1)
1 + s2x

(1)
2 + · · · + snx

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)
with s1, . . . , sn given in (6.2). Set

z∗2 = z2 −
s2x

(1)
2 + · · · + snx

(1)
n

n
.

Then the last expression is

d

dz
P

(
(
∑n

j=1 aj1)x
(1)
1

n
+ B

(2)

n + Z(2) ≤ z∗2

)
.

124

Set

I = (eε1Pf(y(1))+Z(1)(z1) + δ1)
d

dz
P

(
(
∑n

j=1 aj1)x
(1)
1

n
+ B

(2)

n + Z(2) ≤ z∗2

)
.

Now, taking into account (6.3) and (6.4),

B
(2)

n + Z(2) ∼ N

(
0, 2

(
∆f

ε2

)2

ln

(
1.26

δ2

)
+ var

(2)
B /n

)
.

Next, recall the definition (6.5) and set g = ga11,...,an1 . Let ∆g := ∆ga11,...,an1 be the
sensitivity of ga11,...,an1 . Approximate differential privacy gives

Pg(x)+Z∗(z) ≤ eεPg(y)+Z∗(z) + δ,

whenever Z∗ ∼ N
(

0, 2
(
∆g
ε

)2
ln
(
1.26
δ

))
. We fix δ = δ2. Thus, the bound on I will follow

from solving

2

(
∆g

ε

)2

ln

(
1.26

δ2

)
= 2

(
∆f

ε2

)2

ln

(
1.26

δ2

)
+ var

(2)
B /n

with respect to ε. The solution, denoted by ε′2, is

ε′2 := ε′2(a11, . . . , an1) =
∆g√(

∆f
ε2

)2
+

var
(2)
B

2n ln(1.26/δ2)

.

With this, we obtain

d

dz
P

(
(
∑n

j=1 aj1)x
(1)
1

n
+ B

(2)

n + Z(2) ≤ z∗2

)

≤ eε
′
2
d

dz
P

(
(
∑n

j=1 aj1)y
(1)
1

n
+ B

(2)

n + Z(2) ≤ z∗2

)
+ δ2 = eε

′
2Pf(y(2))+Z(2)(z2) + δ2.

Hence,

P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2)

≤ (eε1Pf(y(1))+Z(1)(z1) + δ1)(e
ε′2Pf(y(2))+Z(2)(z2) + δ2)

= eε1+ε
′
2P(f(y(1))+Z(1),f(y(2))+Z(2))(z1, z2) + (eε1δ2 + eε2δ1 + δ1δ2) .

We make the following observations for consideration.

125

� The resulting privacy leakage, ε′2, is a function that depends on many model pa-
rameters.

� It can be demonstrated that if the parameters of Σ
(2)
B and a21, . . . , an1 are fixed,

then ε′2 is a linear, increasing function of a11. This is a very intuitive conclusion. As
the value of a11 increases, the degree of dependence in the time series model also in-
creases, resulting in a greater amount of information being leaked. In particular, it
can be observed that the parameter ε′2 may be higher than ε2 in certain instance3s.
That is, in the VAR(1) time series model, adding normal noises with parameters
ε1 and ε2 may lead to less privacy as compared to the situation of releasing the
information subsequently. This is in the spirit of Remark 6.3.2. The dependence
on the remaining model parameters is less obvious and will be studied below.

� If we assume that a11 + · · · + an1 ≤ 1, we can expect that the resulting ε′2 ≤ ε2.
This will be illustrated in the numerical analysis below.

Numerical analysis. The goal of this analysis is to study how the model parameters
a11, . . . , an1 and σi,j influence ε′2. We consider the case when n = 2 and fix the following
parameters.

� ε1 = ε2 = 1, δ1 = δ2 = 0.05;

� We will assume that ∆f = 1/2 and ∆g =
(a11 + a21)

2
. This corresponds to the

possible range of the data being 1. (We note that this is not fully correct, since
the data is generated using a normal law. However, it is sufficient for comparison
purposes).

� We will set σ1,1 = σ2,2 = 1 and consider different values of σ1,2 = ρ ∈ (−1, 1).

We conduct the following analysis:

� The parameters a11 and a21 are fixed at 1 and we consider ε′2 as a function of ρ.
See Figure 6.1. We observe that ε′2 < ε2 = 1 for any choice of ρ.

126

Figure 6.1: DP in time series: A1+N3 scenario
Relationship between ε′2 and ρ.

Scenario A1+N2

In this scenario, we know Q2, and we want to learn about x
(1)
1 .

Theorem 6.3.5. Consider the time series model (6.1) with with

(B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B).

Let f(x) = 1
n

∑n
t=1 xt and assume that

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
.

For learning x
(1)
1 , the release

X
(2)

n + Z(2)

is (ε′2, δ2)-DP with ε′2 given in (6.6).

127

Proof. Following the proof of Theorem 6.3.4, the goal is to compare the following prob-
abilities

PQ2|X(1)(z2 | x(1)) = P(f(x(2))+Z(2))(z2),

with

PQ2|X(1)(z2 | y(1)) = P(f(y(2))+Z(2))(z2),

where x(1), x(2), y(1), y(2) are the same as in the proof of Theorem 6.3.4. Hence, the
result can be concluded immediately.

Scenario A2+N1

In this scenario, we know Q1, while we want to learn about x
(2)
1 , the entry for the user

1 at time 2. In order to do this, we consider the idea of updating x
(2)
1 while keeping

x
(2)
(−1). Denote y(2) = (y

(2)
1 , x

(2)
(−1)). Assume that the matrix A is invertible. Since x(2) =

Ax(1) + B(2), we get x(1) = A−1
(
x(2) −B(2)

)
. Likewise, y(1) = A−1

(
y(2) −B(2)

)
.

Denote A−1 = [cij]
n
i,j=1.

Theorem 6.3.6. Consider the time series model (6.1) with

(B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B).

Let f(x) = 1
n

∑n
t=1 xt and assume that

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
.

For learning x
(2)
1 , the release

X
(1)

n + Z(1)

is (ε′1, δ1)-DP with

ε′1 =
∆g√(

∆f
ε1

)2
+

var
(2)
r’B

2n ln(1.26/δ1)

,

where r = (r1, . . . , rn)′ with ri =
∑n

j=1 cji, i = 1, . . . , n and ∆g is the sensitivity of

gc11,...,cn1(x) =
(c11 + · · · + cn1)

n
x.

128

Proof. The goal is to compare the following probabilities

PQ1|X(2)(z1 | x(2)) = P(f(x(1))+Z(1))(z1),

with

PQ1|X(2)(z1 | y(2)) = P(f(y(1))+Z(1))(z1),

with x(1) = A−1
(
x(2) −B(2)

)
and y(1) = A−1

(
y(2) −B(2)

)
. Then

x(2) =

a11x(1)1 + · · · + a1nx
(1)
n +B

(2)
1

· · ·
an1x

(1)
1 + · · · + annx

(1)
n +B

(2)
n

 = Ax(1) + B(2),

y(2) =

a11y(1)1 + · · · + a1nx
(1)
n +B

(2)
1

· · ·
an1y

(1)
1 + · · · + annx

(1)
n +B

(2)
n

 ,

x(1) = A−1
(
x(2) −B(2)

)
=

c11(x
(2)
1 −B

(2)
1) + · · · + c1n(x

(2)
n −B

(2)
n)

...

cn1(x
(2)
1 −B

(2)
1) + · · · + cnn(x

(2)
n −B

(2)
n)

and

y(1) = A−1
(
y(2) −B(2)

)
=

c11(y
(2)
1 −B

(2)
1) + · · · + c1n(x

(2)
n −B

(2)
n)

...

cn1(y
(2)
1 −B

(2)
1) + · · · + cnn(x

(2)
n −B

(2)
n)

 .

Let ri =
∑n

j=1 cji, i = 1, . . . , n, and r = (r1, . . . , rn). Given that the random variables

Z(t) are independent of one another and of the time series, and that (B
(2)
1 , . . . , B

(2)
n) is

independent of (X
(1)
1 , . . . , X

(1)
n), it follows that

P(f(x(1))+Z(1))(z1)

=
d

dz1
P

(
r1x

(2)
1 + · · · + rnx

(2)
n

n
− r1B

(2)
1 + · · · + rnB

(2)
n

n
+ Z(1) ≤ z1

)

=
d

dz
P

(
r1x

(2)
1

n
− r1B

(2)
1 + · · · + rnB

(2)
n

n
+ Z(1) ≤ z∗1

)
,

129

where z∗1 = z1 − r2x
(2)
2 +···+rnx(2)n

n
.

Since B = (B
(2)
1 , . . . , B

(2)
n)′ is multivariate normal with the mean vector zero and covari-

ance matrix Σ
(2)
B , we have

r′B =
n∑
i=1

riB
(2)
i ∼ N

(
0, rTΣ

(2)
B r
)

=: N (0, var
(2)
r’B).

Now,

1

n
r′B + Z(1) ∼ N

(
0, 2

(
∆f

ε1

)2

ln

(
1.26

δ1

)
+ var

(2)
r’B/n

)
.

Recall the definition (6.5) and set g = gc11,...,cn1 . We know that

P(g(x)+Z∗)(z) ≤ eεP(g(y)+Z∗)(z) + δ,

whenever Z∗ ∼ N
(

0, 2
(
∆g
ε

)2
ln
(
1.26
δ

))
. We fix δ = δ1. Thus, the bound will follow from

solving

2

(
∆g

ε

)2

ln

(
1.26

δ1

)
= 2

(
∆f

ε1

)2

ln

(
1.26

δ1

)
+ var

(2)
r’B/n

with respect to ε. The solution, denoted by ε′1, is

ε′1 =
∆g√(

∆f
ε1

)2
+

var
(2)
r’B

2n ln(1.26/δ1)

.

With this, we obtain

d

dz
P

(
(
∑n

j=1 cj1)x
(2)
1

n
− r’B

n
+ Z(1) = z∗1

)

≤ eε
′
1
d

dz
P

(
(
∑n

j=1 cj1)y
(2)
1

n
− r’B

n
+ Z(1) = z∗1

)
+ δ1

= eε
′
1P(f(y(2))+Z(1))(z1) + δ1.

Numerical analysis. The goal is to study how the model parameters cij, i, j = 1, . . . , n
and σi,j influence ε′1. For this, we consider the case of n = 2 and fix the following
parameters.

� ε1 = ε2 = 1, δ1 = 0.05;

130

� We will assume that ∆f = 1/2 and ∆g =
(c11 + c21)

2
. This corresponds to the

possible range of the data being 1.

� We will set σ1,1 = σ2,2 = 1 and consider different values of σ1,2 = ρ ∈ (−1, 1).

We conduct the following analysis:

� The parameters of matrix A are fixed in the following manner:

A =

(
0.5 0.1
0 0.5

)
,

and we consider ε′1 as a function of ρ. See Figure 6.2 . It is obvious that ε′1 < ε1 = 1,
and approaches 0.7 as a minimum value. This is in line with the expectation that
ε′1 < ε1 and the relationship between the two parameters is non-linear. When
ρ = −1, we observe that ε′1 and ε1 are virtually the same.

� The parameters of matrix A are fixed in the following manner,

A =

(
0.9 0.5
0 0.9

)
,

and we consider ε′1 as a function of ρ. See Figure 6.3. It is obvious that ε′1 < ε1 = 1,
and approaches 0.7 as a minimum value. This is in line with the expectation that
ε′1 < ε1 and the relationship between the two parameters is linear, unlike 6.2.

� We fix ρ = 0, or some other arbitrary value and play with the parameters of A
in order to study the effects of the time series dependence structure. Define the
matrix A as:

A =

(
a11 0.5
0 a22

)
,

and consider ε′1 as a function of these coefficients. See Figures 6.4, 6.5. The results
of varying the parameters a11 and a22 yield some unexpected and interesting out-
comes. Two scenarios are considered fr the parameters a11, a22 . The first scenario
is defined by the conditions a11 = a22 = {0.1, . . . , 0.9}. In other words, they are
identical, and the values under consideration are arranged in ascending order. The
outcomes were tested against three values of ρ, namely ρ = −1, 0, 1. As expected,
When ρ = −1, we observe that ε′1 < ε1. However, when ρ = 0, 1 we observe that

for some values of ∆g =
c11 + c21

2
, ε′1 > ε1. In fact, we observe local maxima, which

suggest that there are optimal values of a11, a22 that influence privacy leakage.

In the second scenario we consider the case where a11, a22 move in opposite di-
rections. Specifically, we assume that a11 is the same as in the previous scenario,

131

while a22 takes on a range of values between {0.9, . . . , 0.1}. This scenario further il-
lustrates the unexpected behaviour that can arise when considering the impact of A
on privacy leakage. As before, for some values of ∆g, we have ε′1 > ε1. Once again,
we must consider the impact of matrix A on this outcome. Unlike the previous
scenario, we do not observe local maxima, and thus must examine the behaviour
of ∆g in order to determine if a maximum exists.

Figure 6.2: DP in time series: A2+N1 scenario; first example
Relationship between ε′1 and ρ.

132

Figure 6.3: DP in time series: A2+N1 scenario; second example
Relationship between ε′1 and ρ.

133

Figure 6.4: DP in time series: A2+N1 scenario; third example
Relationship between ε′1 and ∆g, for different values of a11 = a22 = {0.1, . . . , 0.9} and for
ρ = −1, 0, 1.

134

Figure 6.5: DP in time series: A2+N1 scenario; fourth example
Relationship between ε′1 and ∆g, for different values of a11, a22 and, for ρ = −1, 0, 1.

Scenario A4+N3

In this scenario, the adversary wishes to learn about (x
(1)
1 , x

(2)
1), the values for the first

user at all time points, and has the knowledge (Q1, Q2).

Theorem 6.3.7. Consider the time series model (6.1) with with

(B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B).

Let f(x) = 1
n

∑n
t=1 xt and assume that

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
.

For learning x
(1)
1 , x

(2)
1 , the release

(X
(1)

n + Z(1),X
(2)

n + Z(2))

is (ε1 + ε2, δ
′)-DP with δ′ = eε1δ2 + eε2δ1 + δ1δ2.

135

Proof. The goal is to compare the following probabilities:

P(Q1,Q2)|(X(1),X(2))(z1, z2 | x
(1),x(2)) = P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2),

with

P(Q1,Q2)|(X(1),X(2))(z1, z2 | y
(1),y(2)) = P(f(y(1))+Z(1),f(y(2))+Z(2))(z1, z2),

Here, x(1) and x(2) are fixed, hence the time series structure is not relevant anymore.
Therefore,

P(Q1,Q2)|(X(1),X(2))(z1, z2 | x
(1),x(2))

= Pf(x(1))+Z(1)(z1)Pf(x(2))+Z(2)(z2)

≤ (eε1Pf(y(1))+Z(1)(z1) + δ1)(e
ε2Pf(y(2))+Z(2)(z2) + δ2)

= eε1+ε2Pf(y(1))+Z(1),f(y(2))+Z(2)(z1, z2) + (eε1δ2 + eε2δ1 + δ1δ2) .

Scenario A3+N3

In this scenario, we know both Q1, Q2, while we want to learn about x(t), i.e. the value
of all records at time t.

Theorem 6.3.8. Consider the time series model (6.1) with with

B = (B
(2)
1 , . . . , B(2)

n)′ ∼ N (0,Σ
(2)
B).

Let f(x) = 1
n

∑n
t=1 xt and assume that

Z(t) ∼ N

(
0, 2

(
∆f

εt

)2

ln

(
1.26

δt

))
.

For learning (x
(1)
1 , . . . , x

(1)
n), the release

(X
(1)

n + Z(1),X
(2)

n + Z(2))

is (ε1 + ε′2, δ
′
2)-DP with

ε′2 := ε′2(a11, . . . , an1) + · · · + ε′2(a1n, . . . , ann)

and δ2, where ε
′
2(a1i, . . . , ani), i = 1, . . . , n, are given in (6.6).

136

Proof. We start with x(1) = (x
(1)
1 , . . . , x

(1)
n)′ and we want to learn about x

(1)
1 , · · · , x(1)n .

At t = 2 our information becomes as in (6.7). Now we consider updating all the values

x
(1)
1 , · · · , x(1)n . Then, the corresponding information at the next time stamp also has to

be updated. The ”neighbouring” database becomes

y(1) = (y
(1)
1 , y

(1)
2 , . . . , y(1)n). (6.12)

We note that the neighbouring databases differ by n users. Then, the information at
time t = 2 in the neighbouring database becomes

y(2) =

a11y(1)1 + a12y
(1)
2 + · · · + a1ny

(1)
n +B

(2)
1

· · ·
an1y

(1)
1 + an2y

(1)
2 + · · · + anny

(1)
n +B

(2)
2

 = Ay(1) + B(2). (6.13)

The goal is to compare the following probabilities:

P(Q1,Q2)|X(1)(z1, z2 | x(1)) = P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2),

where x(2) and x(1) are related through (6.7), with

P(Q1,Q2)|X(1)(z1, z2 | y(1)) = P(f(y(1))+Z(1),f(y(2))+Z(2))(z1, z2),

where y(1) and y(2) are given in (6.12) and (6.13), respectively.

The noise added at times t = 1, 2 is as in (6.4). We recall that in the context of the
present theorem, this specification leads to (nεt, δt(n))-differential privacy with

δt(n) = δt

n−1∑
j=0

exp(jεt) ,

whenever a single query is used; see Lemma 4.5.12.

Since the random variables Z(t) are independent of one another and also independent
from the time series, and that (B

(2)
1 , . . . , B

(2)
n) is independent of (X

(1)
1 , . . . , X

(1)
n), we can

write

P(f(x(1))+Z(1),f(x(2))+Z(2))(z1, z2) = Pf(x(1))+Z(1)(z1)Pf(x(2))+Z(2)(z2)

≤ (enε1Pf(y(1))+Z(1)(z1) + δ1(n)Pf(x(2))+Z(2)(z2)

= (enε1Pf(y(1))+Z(1)(z1) + δ1(n))

× d

dz2
P

(
s1x

(1)
1 + s2x

(1)
2 + · · · + snx

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)

137

with s1, . . . , sn defined in (6.2).

The latter probability is compared to

d

dz2
P

(
s1y

(1)
1 + s2y

(1)
2 + · · · + sny

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)
.

In order to compare these probabilities we apply iteratively our results from Section 6.3.2.
We have

d

dz2
P

(
s1x

(1)
1 + s2x

(1)
2 + · · · + snx

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)

≤ eε
′
2(a11,...,an1)

d

dz2
P

(
s1y

(1)
1 + s2x

(1)
2 + · · · + snx

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)
+ δ2

≤ eε
′
2(a11,...,an1)+ε′2(a12,...,an2)

d

dz2
P

(
s1y

(1)
1 + s2y

(1)
2 + s3x

(1)
3 + · · · + snx

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)
+ δ2(e

ε′2(a11,...,an1) + 1)

≤ eε
′
2
d

dz2
P

(
s1y

(1)
1 + s2y

(1)
2 + s3y

(1)
3 · · · + sny

(1)
n

n
+ B

(2)

n + Z(2) ≤ z2

)
+ δ2(s1, . . . , sn)

with
ε′2 := ε′2(a11, . . . , an1) + · · · + ε′2(a1n, . . . , ann),

and

δ2(s1, · · · , sn) := δ2

(
1 + eε

′
2(a11,...,an1) + eε

′
2

∑2
j=1(a1j ,...,anj) + . . .+ eε

′
2

∑n−1
j=1 (a1j ,...,anj)

)
.

6.4 Conclusion

This chapter presents the development and exploration of theoretical frameworks and
methodologies for understanding privacy leakage in differentially private queries derived
from time series data. The necessity of adjusting the privacy budget to account for tem-
poral dependence was demonstrated through the use of Vector Autoregressive (VAR)
models, which also highlighted the impact of this dependence on the overall privacy
guarantees.

The analysis demonstrated that temporal dependence in time series data presents
considerable challenges to the maintenance of differential privacy. The Gaussian mecha-
nism was identified as a particularly suitable approach in this context, given the linear

138

structure of VAR models and the closure properties of normal distributions. However,
the difficulty of demonstrating the applicability of the Laplace mechanism in time series
settings was also highlighted.

A comprehensive analysis was conducted to examine event-level and user-level privacy
objectives, demonstrating how the extent of privacy leakage varies in different adversarial
knowledge scenarios. The application of the proposed methodologies enables practition-
ers to estimate model parameters, fit appropriate time series models and calculate the
adjusted privacy budget, thereby ensuring a balance between data utility and privacy
protection.

The numerical analyses validated the theoretical results, demonstrating the influence
of model parameters on privacy leakage. These findings underscore the importance of
understanding the dependence structure in time series data when applying differential
privacy mechanisms. The results indicate that careful consideration and adjustment
of privacy budgets are crucial for effective privacy protection in practical applications
involving time series data.

139

140

Chapter 7

Towards Machine Learning and
Differential Privacy

7.1 Introduction

In the context of machine learning, differential privacy integration has become a popular
form of mitigation for various privacy attacks. Techniques such as Differentially Private
Stochastic Gradient Descent (DP-SGD) have been proposed to enhance the privacy of
training models in deep learning and machine learning. DP-SGD, introduced in [1], mod-
ifies the standard SGD algorithm by adding noise to the gradients. However, some work
on related problems for differential privacy in the context of empirical risk minimization
has been done in [15].

Further extensions of DP-SGD have been proposed in [43], [4], [47]. Related work on
Differentially Private Coordinate Descent algorithms (used in computing the LASSO or
RIDGE solution) can be found in [36].

A summary of some recent work is presented in [5]. Recent research has focused on
optimizing the privacy/utility trade-off using advanced techniques such as the smooth
sensitivity framework, and on improving differentially private mechanisms for specific
machine learning tasks. These areas have significant implications in fields such as health-
care, finance, and social networks; see e.g. [35].

When applying differential privacy in a machine learning setting, we face similar chal-
lenges to the results derived in Chapter 6 in the context of time series. In fact, Vector
Autoregressive models studied in Chapter 6 and the Stochastic Gradient Descent have
very similar Markov-type dynamics. Noise should be injected differently at each step,
adaptively to the current model parameters (the learning rate in the context of DP-SGD).
The aforementioned papers focus primarily on Gaussian noise and on constant level noise.

141

In addition, noise introduced for privacy reasons can degrade the accuracy of machine
learning models. The aforementioned papers focus on the privacy aspects of DP-SGD
algorithms, ignoring their utility. Fundamental questions such as the convergence of dif-
ferentially private algorithms are not addressed.

As such, in this chapter we analyze with DP-SGD algorithm with adaptive noise
added at each iteration. We provide privacy bounds (Theorem 7.6.1) and bounds on
convergence of the algorithm (Theorem 7.7.1). Then, we analyze different scenarios
when we can choose the privacy and the learning rate parameters in such the way that
both privacy and convergence of the algorithm is guaranteed. To the best of our knowl-
edge, it has not been studied in the literature yet.

As such, in this chapter we analyze with DP-SGD algorithm with adaptive noise
added at each iteration. We provide privacy bounds (Theorem 7.6.1) and bounds on
convergence of the algorithm (Theorem 7.7.1). Then, we analyze different scenarios
when we can choose the privacy and the learning rate parameters in such the way that
both privacy and convergence of the algorithm is guaranteed. To the best of our knowl-
edge, it has not been studied in the literature yet.

The chapter is structured as follows. We start with preliminaries on (strongly) con-
vex functions. In Section 7.3 we introduce the Gradient Descent algorithm, followed by
its stochastic version in Section 7.5. The main results are included in Section 7.6 and
Section 7.7. In the former, we provide privacy bounds on the Stochastic Gradient Algo-
rithm. In the latter we prove convergence of the algorithm, using the classical techniques
from [23]. In Section 7.8 we analyze our algorithm - we provide examples of adaptive
learning rates that yield both privacy guarantees and convergence of the algorithm.

7.2 Preliminaries

Gradient and Stochastic Gradient Descent (SGD) are methods to find the minimum of
a function of p variables. The set-up is as follows.

Let p be a positive integer. Let ⟨·, ·⟩ be the inner product on Rp and ∥·∥ be a norm on
Rp. We denote θ = (θ1, . . . , θp) ∈ Rp. If p = 1 we write θ instead of θ. Let ψ : Rp → R
be a measurable function.

By θ∗(ψ) we will denote the global (not necessarily unique) minimum of the function
ψ, that is

θ∗(ψ) = argminθ∈Rpψ(θ). (7.1)

If it is clear which function we consider, we will write θ∗ for θ∗(ψ). Furthermore,

ψ∗ := ψ(θ∗) (7.2)

142

is the minimal value of the function. Since the minimum may not be unique, we will
write argmin(ψ) to denote the set of all θ that solve (7.1).

If ψ : Rp → R is differentiable, then ∇ψ is the gradient of the function ψ:

∇ψ(θ) =

 ∂ψ
∂θ1

(θ)

· · ·
∂ψ
∂θp

(θ)

 .

If ψ : Rp → R is twice differentiable, then ∇2ψ is the Hessian of the function ψ:

∇2ψ(θ) =

[
∂2ψ

∂θi∂θj

]p
i,j=1

.

Convex functions. Convex and smooth functions play a special role in optimization.

Definition 7.2.1. A function ψ : Rp → R is convex on a set C if for all θ, θ̃ ∈ C and
s ∈ [0, 1] we have

ψ(sθ + (1 − s)θ̃) ≤ sψ(θ) + (1 − s)ψ(θ̃) .

Definition 7.2.2. A differentiable function ψ : Rp → R is convex on Rp if for all
θ, θ̃ ∈ Rp we have

θ̃
T
∇2ψ(θ)θ̃ ≥ 0 .

That is, the Hessian ∇2ψ is positive semi-definite and hence all eigenvalues λ of the
Hessian are nonnegative.

Properties of convex functions:

� If function ψ is differentiable and convex, then

ψ(θ) − ψ(θ̃) ≥ ⟨∇ψ(θ̃),θ − θ̃⟩ . (7.3)

� If function ψ is differentiable and convex, then

(θ − θ̃)T (∇ψ(θ) −∇ψ(θ̃)) ≥ 0 .

� If ψ is differentiable and convex, then θ∗ is the global optimum if and only if

⟨∇ψ(θ∗),θ − θ∗⟩ ≥ 0 . (7.4)

Indeed, assume that (7.4) holds. Then, using convexity, we have

ψ(θ) ≥ ψ(θ∗) + ⟨∇ψ(θ∗),θ − θ∗⟩ ≥ ψ(θ∗) .

� If the problem is unconstrained, e.g. C = Rp, then (7.4) reduces to ∇ψ(θ∗) = 0.

� Convexity implies that local minima are also global minima.

143

Smooth functions.

Definition 7.2.3 (L-Lipschitz function). Let ψ : Rp → R and L > 0. We say that ψ is

L-Lipschitz if or all θ, θ̃ ∈ Rp,

∥ψ(θ) − ψ(θ̃)∥ ≤ L∥θ − θ̃∥ .

Definition 7.2.4 (L-smooth function). Let ψ : Rp → R and L > 0. We say that ψ is

L-smooth if it is differentiable and for all θ, θ̃ ∈ Rp,

∥∇ψ(θ) −∇ψ(θ̃)∥ ≤ L∥θ − θ̃∥ .

Sums of functions. Let ψi : Rp → R and define

Ψ(θ) =
1

n

n∑
i=1

ψi(θ) .

Obviously, if all ψi’s are convex, then Ψ is convex as well. However, smoothness requires
a little bit more care.

Lemma 7.2.5. Assume that ψi, i = 1, . . . , n, are Li-smooth. Then Ψ is Lave-smooth
with Lave = 1

n

∑n
i=1 Li.

Convex, smooth functions.

Lemma 7.2.6. If ψ : Rp → R is convex and L-smooth, then for all θ, θ̃ ∈ Rp

1

L
∥∇ψ(θ) −∇ψ(θ̃)∥2 ≤ ⟨∇ψ(θ) −∇ψ(θ̃),θ − θ̃⟩

and

1

2L
∥∇ψ(θ) −∇ψ(θ̃)∥2 ≤ ψ(θ) − ψ(θ̃) − ⟨∇ψ(θ̃),θ − θ̃⟩ .

7.3 Gradient Descent

Gradient Descent (GD) is an iterative procedure which is described in the following
steps:

� Start with θ0.

� For t ≥ 0, θt+1 = θt − ηt∇ψ(θt), where ηt > 0 is the learning rate.

� Repeat N times until convergence is achieved.

144

The goal of GD is to descend towards the minimum,

ψ∗ ≤ ψ(θt+1) ≤ ψ(θt) , (7.5)

where ψ∗ is the minimal value of the function ψ; see (7.2).
For convergence to be achieved, we can look at this from the perspective of theory and
the perspective of the algorithm. Set δ > 0, from the theoretical point of view we want
to guarantee that

� ψ(θN) − ψ∗ ≤ δ, or

� ∥θN − θ∗∥ ≤ δ, or

� mint=0,...,N−1 ∥∇ψ(θt)∥2 < δ.

From the algorithm perspective, we stop the algorithm at step N whenever

� ∥θN − θN−1∥ < δ, or

� 0 < ψ(θN) − ψ(θN−1) < δ, or

� ∥∇ψ(θN)∥ < δ.

7.4 Stochastic optimization problem

Let ψ : Rp → R be a measurable function. Let xi, i = 1, . . . , n be a sample from X, where
X is a random vector in Rp with a distribution F = FX . Set x = (x1, . . . , xn) ∈ Rn×p

and X = (X1, . . . , Xn) ∈ Rn×p, where Xi have the same distribution as X. That is, in
the thesis terminology, x is a database. We will treat database as fixed.

Functions ψi, i = 1, . . . , n, will depend on data. Formally, we will et ψi(·) = ψ(·;xi).
For θ ∈ Rp we define

Ψ(θ;x) :=
1

n

n∑
i=1

ψi(θ) =
1

n

n∑
i=1

ψ(θ;xi) .

We will usually drop the dependence on the data writing

Ψ(θ) =
1

n

n∑
i=1

ψi(θ) .

Then, Ψ(θ) is an empirical estimator of

ϕ(θ) := E[Ψ(θ;X)] = E[ψ(θ;X)] . (7.6)

145

Above, E is the expectation with respect to the distribution of X (recall that Xi come
from the same distribution as X).

Define further

θ̂
∗
n := argminθ∈RpΨ(θ) (7.7)

and

Ψ̂∗ = Ψ(θ̂
∗
n) . (7.8)

Note that

� θ̂
∗
n depends on data x = (x1, . . . , xn).

� Ψ̂∗ depends on data x = (x1, . . . , xn).

In some elementary situations, the minimization problem can be solved explicitly by
taking the gradient and solving ∇Ψ(θ) = 0.

Example 7.4.1 (Sample mean). Assume that Xi are random variables and have the
same distribution as X. Here, the observations are xi ∈ R. Let θ = θ and

ϕ(θ) = E[(X − θ)2] .

Then
ψi(θ) = (xi − θ)2

and

Ψ(θ) =
1

n

n∑
i=1

(xi − θ)2 .

Solving ∇Ψ(θ) = 0 yields

θ̂
∗
n =

1

n

n∑
i=1

xi = x̄ .

Example 7.4.2 (Linear regression and RIDGE). Consider a linear regression problem
Ui = θ0 + θ1Vi + εi, where Xi := (Ui, Vi) have the same distribution as X = (U, V). Here,
the observations are xi = (ui, vi) ∈ R2. Let θ = (θ0, θ1) and

ϕ(θ) =
1

2
E[(U − θ0 − θ1V)2] +

1

2
λθ21 .

Then

ψi(θ) =
1

2
(ui − θ0 − θ1vi)

2 +
λ

2
θ21

146

and

Ψ(θ) =
1

2n

n∑
i=1

(ui − θ0 − θ1vi)
2 +

λ

2
θ21 .

Hence,

∇Ψ(θ) =

(
− 1

n

n∑
i=1

(ui − θ0 − θ1vi),−
1

n

n∑
i=1

vi(ui − θ0 − θ1vi) + λθ1

)T

.

Solving ∇Ψ(θ) = 0 yields θ̂
∗
n = (θ̂∗0,n, θ̂

∗
1,n) as the ridge estimator:

θ̂∗1,n =
1
n

∑n
i=1(vi − v̄)(ui − ū)

1
n

∑n
i=1(vi − v̄)2 + λ

, θ̂∗0,n = ū− θ̂∗1,nv̄ . (7.9)

7.5 Stochastic Gradient Descent (SGD)

We want to produce a sequence θt that converges (in some sense) to θ̂
∗
n. We could use

∇Ψ(θt) in each iteration, but it could be costly for large n and large p. Instead, at each

time point t, we are going to approximate each Ψ(θt) with Ψ̂t(θt) that will be defined
below.

For each t, let It be random index sampled uniformly from {1, . . . , n}, independently

of everything else. At time t we will approximate ∇Ψ(θ) by ∇Ψ̂t(θ) defined by

∇Ψ̂t(θ) := ∇ψIt(θ) ,

Stochastic Gradient Descent:

� Start with θ0.

� For t ≥ 0, θt+1 = θt − ηt∇Ψ̂t(θt), where ηt is the learning rate and

∇Ψ̂t(θt) := ∇ψIt(θt) ,

where It is a sequence of independent, identically distributed random variables
sampled uniformly from {1, . . . , n}.

� Repeat N times until convergence is achieved.

Note that the sequence θt+1 = θt+1(I0, . . . , It;x) depends on the random sequence
I0, . . . , It and the data x (that could be fixed or random). Let Ft = σ(I0, . . . , It), t ≥ 0
and X = σ(x). Then θt+1 is (X ∨ Ft)-measurable.

147

7.6 Differentially Private Stochastic Gradient De-

scent

We consider a version of the output perturbation mechanism. That is, we privatize the
approximation θt of θ∗. Instead of

θt+1 = θt − ηt∇ψIt(θt)

we consider

θt+1 = θt − ηt (∇ψIt(θt) + γtZt) , (7.10)

where Zt is a sequence of independent, identically distributed p-dimensional random
vectors with the standard Laplace distribution and γt is a nonnegative sequence to be
introduced below.

Let x and y be two neighbouring databases. The functions ψi(θ) and hence the
sequence θt depend on the underlying database. We will need to make this dependence
explicit. Furthermore, the sequence θt is random. Hence we will write

Θt+1(x) = Θt(x) − ηt (∇ψIt(Θt(x);x) + γtZt) ,

and

Θt+1(y) = Θt(y) − ηt {∇ψIt(Θt(y);y) + γtZt} .

In particular, ψIt(θ;x) = ψ(θ, xIt). This way we define the output-perturbation mecha-
nism sequences

At(x) = Θt(x) , t = 1, 2, 3, . . . ,

and
At(y) = Θt(y) , t = 1, 2, 3,

The following theorem is the main result on DP-property of the Stochastic Gradient
Descent.

Theorem 7.6.1. Consider the privatized Stochastic Gradient Descent algorithm
(7.10). Let ∆(∇ψ) be the global sensitivity of the gradient ∇ψ. Assume that

� Zt, t = 1, 2 . . ., is the sequence of independent, identically distributed random
vectors with the standard Laplace distribution;

� The constants γt are given by

γ1 = ∆(∇ψ)/ε , γt =
1

βt

{∑t−2
j=0 ηj

ηt−1

+ 1

}
∆(∇ψ)/ε , t = 2, 3, . . . ,

where βt is an arbitrary sequence of nonnegative numbers.

Then, the sequence At, t = 1, 2, . . . is εβt-DP.

148

Proof of Theorem 7.6.1. Let θ0 be fixed. We run the SGD algorithm for two neighbour-
ing databases x and y. We have Θ0(x) = Θ0(y) = θ0. We have to keep in mind that we
have two sources of randomness, the random index It and the private noise Zt. Thus,
we will consider conditioning EIt [·] = E[· | It] on It. For the subsequent steps we need
to condition not only on It, but also on the current value Θt. We then use the notation
Et[·] = E[· | It,Θt]. In what follows, B is a Borel set in Rp. Then, we write cB + a,
a ∈ Rp, c ∈ R, for cB + a = {cb+ a : b ∈ B}.

Step t = 1. At the first iteration t = 1 we have

P(A1(x) ∈ B) = P (θ0 − η1 (∇ψI1(θ0;x) + γ1Z1) ∈ B)

= EI1
[
P
(
γ1Z1 ∈

θ0 −B

η0
−∇ψI1(θ0;x)

)]
= EI1

[
P
(
Z1 ∈

θ0 −B

γ1η0
− 1

γ1
∇ψI1(θ0;x)

)]
.

Now, we are going to use the sliding property (5.5). Let

B1 =
θ0 −B

γ1η0
− 1

γ1
∇ψI1(θ0;x)

and set

q =
1

γ1
{∇ψI1(θ0;x) −∇ψI1(θ0;y)} .

Recall that ∆(∇ψ) is the global sensitivity of the gradient ∇ψ. We note that with the
choice γ1 = ∆(∇ψ)/ε we have

|q| =
1

γ1
{∇ψ(θ0, xI1) −∇ψ(θ0, yI1)} ≤ 1

γ1
∆(∇ψ) ≤ ε .

Thus, using the sliding property,

P(A1(x) ∈ B) = EI1 [P (Z1 ∈ B1)]

≤ eεEI1 [P (Z1 ∈ B1 + q)]

= eεEI1
[
P
(
Z1 ∈

θ0 −B

γ1η0
− 1

γ1
∇ψI1(θ0;x) +

1

γ1
{∇ψI1(θ0;x) −∇ψI1(θ0;y)}

)]
= eεEI1

[
P
(
Z1 ∈

θ0 −B

γ1η0
− 1

γ1
∇ψI1(θ0;y)

)]
= eεP(A1(y) ∈ B) .

In conclusion, the first iteration in the SGD algorithm is ε-DP.

149

Step t = 2. At the second iteration we have an additional term to control, since we do
not necessary have Θ1(x) ̸= Θ1(y). We have

P(A2(x) ∈ B) = P (Θ1(x) − η1 (∇ψI2(Θ1(x);x) + γ2Z2) ∈ B)

= E2

[
P
(
γ2Z2 ∈

Θ1(x) −B

η1
−∇ψI2(Θ1(x);x)

)]
= E2

[
P
(
Z2 ∈

Θ1(x) −B

γ2η1
− 1

γ2
∇ψI2(Θ1(x);x)

)]
.

Similarly to the first step, let

B1 =
Θ1(x) −B

γ2η1
− 1

γ2
∇ψI2(Θ1(x);x)

and

q2 :=
Θ1(y) −Θ1(x)

γ2η1
+

1

γ2
{∇ψI2(Θ1(x);x) −∇ψI2(Θ1(y);y)} .

We need to bound |q2|. The second part is bounded by ∆(∇ψ)/γ2. For the first part we
have

|Θ1(y) −Θ1(x)| = η0|∇ψI1(θ0,x) −∇ψI1(θ0,y)| ≤ η0∆(∇ψ) .

Putting together,

|q2| ≤
1

γ2

{
η0
η1

+ 1

}
∆(∇ψ) ≤ εβ2

with the choice

γ2 =
1

β2

{
η0
η1

+ 1

}
∆(∇ψ)/ε .

We conclude by using the sliding property (5.5) in the same way as for step t = 1.

Step t = n+ 1. Similarly to the proof of the step t = 2, we need to control

qn+1 :=
Θn(y) −Θn(x)

γn+1ηn
+

1

γn+1

{
∇ψIn+1(Θn(x);x) −∇ψIn+1(Θn(y);y)

}
.

As before, the second part is bounded by ∆(∇ψ)/γn+1. For the first part, we bound it
by induction. We claim that

|Θn(y) −Θn(x)| ≤

{
n−1∑
j=0

ηj

}
∆(∇ψ) . (7.11)

We have already proved this for n = 1. The induction step is

|Θn(y) −Θn(x)|
≤ | {Θn−1(y) −Θn−1(x)} | + ηn−1| {∇ψIn(Θn−1(x),x) −∇ψIn(Θn−1(y),y)} |

≤

{
n−2∑
j=0

ηj

}
∆(∇ψ) + ηn−1∆(∇ψ) .

150

Thus, (7.11) is proven. Therefore,

|qn+1| ≤

{∑n−1
j=0 ηj

}
γn+1ηn

∆(∇ψ) +
1

γn+1

∆(∇ψ) ≤ εβn+1

choosing

γn+1 =
1

βn+1

{∑n−1
j=0 ηj

ηn
+ 1

}
∆(∇ψ)/ε .

7.7 Convergence of the algorithm

We have proved that the Stochastic Gradient Descent algorithm can be made differ-
entially private. The next question is: can this DP-SGD algorithm converge? This is
addressed in the next theorem. In what follows, ∥ · ∥2 is the Euclidean norm on Rp. Fur-
thermore, we use several computations related to the conditional expectations. These
properties can be found below in Section 7.9.

Theorem 7.7.1. Assume that ψ : Rp → R is convex and L-smooth. Let Zt be inde-
pendent, identically distributed random vectors with the standard Laplace distribution
on Rp, independent of everything else. Let ηt ∈ (0, 1/(4L)). Then

Ex[Ψ(θ̄N) − Ψ∗] ≤ ∥θ0 − θ∗∥22∑N−1
j=0 ηj

+ 2σ2
Ψ∗

∑N−1
j=0 η

2
j∑N−1

j=0 ηj
+ cZ

∑N−1
j=0 η

2
jγ

2
j∑N−1

j=0 ηj

where

θ̄N =

∑N−1
j=0 ηjθj∑N−1
j=0 ηj

,

σ2
Ψ∗ is the gradient noise given in (7.17) and cZ is given in (2.5).

Proof. The proof follows classical approach, as summarized in [23]. Let θ∗ ∈ argmin(Ψ).
Then

∥θt+1 − θ∗∥22 = ∥θt − θ∗ − ηt

(
∇Ψ̂t(θt) + γtZt

)
∥22

= ∥θt − θ∗∥22 − 2ηt⟨θt − θ∗,∇Ψ̂t(θt) + γtZt⟩ + η2t ∥2∇Ψ̂t(θt) + γtZt∥22 .

We take Ex,t (the conditional expectation with respect to data x and the current value
of θt; see Section 7.9) and evaluate each term separately.

151

� Inner product term: We use (7.15) and (7.12) to get

Ex,t

[
⟨θt − θ∗,∇Ψ̂t(θt) + γtZt⟩

]
= Ex,t

[
⟨θt − θ∗,∇Ψ̂t(θt)⟩

]
+ Ex,t [⟨θt − θ∗, γtZt⟩]

= ⟨θ∗ − θt,∇Ψ(θt)⟩ + γt⟨θt − θ∗,Ex,t[Zt]⟩ = ⟨θ∗ − θt,∇Ψ(θt)⟩ .

� The norm term: Using (7.12), (2.5) and the fact that Zt is zero-mean and inde-
pendent of everything else,

Ex,t

[
∥∇Ψ̂t(θt) + γtZt∥22

]
= Ex,t

[
∥∇Ψ̂t(θt)∥2

]
+ 2γtEx,t

[
⟨∇Ψ̂t(θt),Zt⟩

]
+ γ2tEx,t

[
∥Zt∥22

]
= Ex,t

[
∥∇Ψ̂t(θt)∥2

]
+ γ2t cZ .

Next, we use the convexity (7.3):

Ex,t[∥θt+1 − θ∗∥2]

≤ ∥θt − θ∗∥2 + 2ηt(Ψ(θ∗) − Ψ(θt)) + η2tEx,t

[
∥∇Ψ̂t(θt)∥2

]
+ η2t γ

2
t cZ .

We bound the last term by using the variance transfer of Lemma 7.9.2 (note that since
we use Ex,t here, θt is fixed). Using the assumption on ηtLb we obtain

Ex,t[∥θt+1 − θ∗∥2]
≤ ∥θt − θ∗∥2 + 2ηt(2ηtL− 1)(Ψ(θt) − Ψ(θ∗)) + 2η2t σ

2
Ψ∗ + η2t γ

2
t cZ

≤ ∥θt − θ∗∥2 − ηt(Ψ(θt) − Ψ(θ∗)) + 2η2t σ
2
Ψ∗ + η2t γ

2
t cZ .

After re-arranging the terms, taking expectation with respect to θt and using the tele-
scopic sums we obtain

N−1∑
j=0

ηjEx [Ψ(θt) − Ψ(θ∗)]

≤ ∥θ0 − θ∗∥2 − Ex[∥θN − θ∗∥2] + 2σ2
Ψ∗,b

N−1∑
j=0

η2j + cZ

N−1∑
j=0

η2jγ
2
j .

Set AN =
∑N−1

j=0 ηj. Divide by AN and use convexity of Ψ to get

Ex[Ψ(θ̄N) − Ψ∗] ≤
N−1∑
j=0

ηj
AN

Ex [Ψ(θt) − Ψ(θ∗)] .

The result follows.

152

7.8 Comments

Let us recall Lemma 6.3.1. If we have a time series with total dependence, xt = x1 for
all t and if each query is ε-DP, at the t-th step we get εt-DP. The privacy deteriorates
at each step, due to the total dependence. The SGD has a similar structure, thanks to
the temporal dependence between θt and θt+1. In other words, if we add the same noise
at each iteration, we expect privacy to decrease.

Example 7.8.1. Assume that the learning rate is constant, ηt = η. Assume that βt = 1,
that is, we want to preserve the same ε-DP at each iteration. Then

γt =
1

βt

{∑t−2
j=0 ηj

ηt−1

+ 1

}
∆(∇ψ)/ε = t∆(∇ψ)/ε .

Thus, at each iteration t we increase the noise by a factor t.

How does this affect convergence? We analyse each term in Theorem 7.7.1 (removing
all the constants).

A1 :=
1∑N−1

j=0 ηj
= N−1 ,

A2 :=

∑N−1
j=0 η

2
j∑N−1

j=0 ηj
= η2/η ,

A3 :=

∑N−1
j=0 η

2
jγ

2
j∑N−1

j=0 ηj
≈
∑N−1

j=0 j
2

N
≈ N2 ,

where ≈ means that we removed all the constants that do not depend on N . It is readily
seen that A3 → ∞ as N → ∞. Thus, the DP-SGD with the constant learning rate and
the constant level of privacy diverges.

Example 7.8.2. In this example, we consider a decreasing learning rate, ηt = (1 + t)−ρ,
ρ ∈ (0, 1) (a typical choice in the SGD literature). Assume again that βt = 1, that is, we
want to preserve the same ε-DP at each iteration. Then

γt =
1

βt

{∑t−2
j=0 ηj

ηt−1

+ 1

}
∆(∇ψ)/ε ≈

{
(t− 1)−ρ+1

t−ρ
+ 1

}
∆(∇ψ)/ε ≈ t∆(∇ψ)/ε .

Thus, again, at each iteration t we increase the noise by a factor t.

153

Next,

A1 =
1∑N−1

j=0 ηj
=

1∑N−1
j=0 (j + 1)−ρ

≈ Nρ−1 → 0 as N → ∞ ,

A2 =

∑N−1
j=0 η

2
j∑N−1

j=0 ηj
=

∑N−1
j=0 (j + 1)−2ρ∑N−1
j=0 (j + 1)−ρ

≈ N−ρ → 0 as N → ∞ ,

A3 =

∑N−1
j=0 j

−2ρj2∑N−1
j=0 j

−ρ
≈ N3−2ρ

N1−ρ = N2−ρ → ∞ as N → ∞ .

Again, the DP-SGD with the decreasing learning rate and the constant level of privacy
diverges.

Example 7.8.3. In this example, we consider again the decreasing learning rate, ηt =
(1 + t)−ρ, ρ ∈ (0, 1). Now, we assume that βt = tκ, κ > 0, that is, the privacy decreases
at each iteration. We want to choose κ as small as possible. Then

γt =
1

βt

{∑t−2
j=0 ηj

ηt−1

+ 1

}
∆(∇ψ)/ε ≈ t−κ

{
(t− 1)−ρ+1

t−ρ
+ 1

}
∆(∇ψ)/ε ≈ t1−κ∆(∇ψ)/ε .

Next, A1 and A2 are the same as in the preceding example. On the other hand,

A3 :=

∑N−1
j=0 j

−2ρj2−2κ∑N−1
j=0 j

−ρ
≈ N3−2ρ−2κ

N1−ρ = N2−ρ−2κ .

The last term vanishes whenever 2κ+ ρ > 2.
In application, one often chooses ρ = 1/2. Then the optimal choice κ > 3/4.

If the learning rate is constant, the term A3 vanishes whenever κ > 3/2.

7.9 Appendix: Computations for conditional expec-

tations

We will consider different expectations E.

� We can consider Ex[·] := E[· | x] the conditional expectation given the data x.
Then, the randomness is through the sequence of indices Ωt, t ≥ 0 and the sequence
θt.

� We can consider Ex,t[·] := E[· | x,θt] the conditional expectation given the data
x and the current approximation θt to θ∗. Then, the randomness is through the
sequence of indices It, t ≥ 0.

154

� We can consider the unconditional expectation. Then, the randomness is through
both the sequence of indices It, t ≥ 0 and the data x.

We recall the tower property: for any random element A,

Ex[Ex,t[A]] = Ex[A] .

Thus

Ex,t[Zt] = E[Zt] = 0 , Ex,t[∥Zt∥22] = E[∥Zt∥22] . (7.12)

Formulas for expected values. We calculate

Ex

[
Ψ̂t(θ)

]
= Ex

[
ψI)t(θ)

]
= Ex

[
n∑
j=1

1{It = j}ψIt(θ)

]

=
n∑
j=1

ψj(θ)Ex [1{It = j}]

=
n∑
j=1

ψj(θ)P(It = j)

=
1

n

n∑
j=1

ψj(θ) = Ψ(θ) .

We used the property that ψj(θ) = ψ(θ;xj) is X -measurable. Also, the conditional
expectation Ex in the second line becomes unconditional, since the index set is sampled
independently of the data. Similarly,

Ex

[
∇Ψ̂t(θ)

]
= ∇Ψ(θ) , Ex

[
∥∇Ψ̂t(θ)∥

]
= ∥∇Ψ(θ)∥ . (7.13)

In other words, ∇Ψ̂t(θ) is an unbiased estimator of the gradient ∇Ψ(θ). Furthermore,

Ex[⟨Ψ̂t(θ),Ψt(θ)⟩] = ⟨Ψt(θ),Ψt(θ)⟩ = ∥Ψt(θ)∥2 ,
Ex[⟨∇Ψ̂t(θ),∇Ψt(θ)⟩] = ⟨∇Ψt(θ),∇Ψt(θ)⟩ = ∥∇Ψt(θ)∥2 . (7.14)

For the unconditional expectations we have (cf. (7.6))

E
[
Ψ̂t(θ)

]
= E

[
Ex

[
Ψ̂t(θ)

]]
=

1

n

n∑
j=1

E [ψ(θ;Zj)] = E[Ψ(θ;X)] = ϕ(θ)

155

The above calculations do not apply when one wants to calculate Ex[Ψ̂t(θt)] or E[Ψ̂t(θt)].
Indeed, we recall that θt, t ≥ 1, is a random sequence that depends on the selected indices

It. We can mimic computation for Ex

[
Ψ̂t(θ)

]
by conditioning additionally on θt:

Ex,t[Ψ̂t(θt)] = E[Ψ̂t(θt) | x;θt] = E

[
n∑
j=1

1{It = j}ψIt(θt) | x;θt

]

=
n∑
j=1

ψj(θt)E [1{It = j} | x;θt]

=
n∑
j=1

ψj(θt)P(It = j)

=
1

n

n∑
j=1

ψj(θt) = Ψ(θt)

and

Ex,t[∇Ψ̂t(θt)] = E[∇Ψ̂t(θt) | x;θt] = ∇Ψ(θt) . (7.15)

Formulas for variances. We have

Varx(∇Ψ̂t(θ)) = Ex

[
∥∇Ψ̂t(θ) −∇Ψ(θ)∥2

]
=

1

n

n∑
j=1

∥∇ψj(θ) −∇Ψ(θ)∥2 .

Denote

σ2
Ψ :=

1

n

n∑
j=1

∥∇ψj(θ) −∇Ψ(θ)∥2 .

Definition 7.9.1. We define the gradient noise as

σ2
Ψ∗ := inf

θ∗∈argminΨ
Varx(∇Ψ̂t(θ)) . (7.16)

Note that the definition does not depend on t. In ψi are convex,

σ2
Ψ∗ = Varx(∇Ψ̂t(θ

∗)) = Ex[∥∇Ψ̂t(θ
∗)∥2] (7.17)

since

Ex

[
∇Ψ̂t(θ

∗)
]

= ∇Ψ(θ∗) = 0 .

The next lemmas, called variance transfer, control the variance of the stochastic gra-
dient at any point θ by the corresponding variance at θ∗

156

Lemma 7.9.2. Assume that ψi are L-smooth. Then for any θ ∈ Rp and any t ∈ N,

Ex

[
∥∇Ψt(θ)∥2

]
≤ 4L(Ψ(θ) − Ψ∗) + 2σ2

Ψ∗ .

Proof. We have

∥∇Ψ̂t(θ)∥2 ≤ 2∥∇Ψ̂t(θ) −∇Ψ̂t(θ
∗)∥2 + 2∥∇Ψ̂t(θ

∗)∥2 .

Apply Ex to get

Ex

[
∥∇Ψ̂t(θ)∥2

]
≤ 2

1

n

n∑
j=1

∥∇ψj(θ) −∇ψj(θ∗)∥2 + 2E
[
∥∇Ψ̂t(θ

∗)∥2
]
.

Apply Lemma 7.2.6 to each ψj to get

Ex

[
∥∇Ψ̂t(θ)∥2

]
≤ 2

1

n

n∑
j=1

∥∇ψj(θ) −∇ψj(θ∗)∥2 + 2E
[
∥∇Ψ̂t(θ

∗)∥2
]

≤ 4Lmax
1

n

n∑
j=1

(ψj(θ) − ψj(θ
∗) − ⟨∇ψj(θ∗),θ − θ∗⟩) + 2E

[
∥∇Ψ̂t(θ

∗)∥2
]

= 4Lmax(Ψ(θ) − Ψ(θ∗)) − ⟨∇Ψ(θ∗),θ − θ∗⟩ + 2E
[
∥∇Ψ̂t(θ

∗)∥2
]
.

We conclude by ∇Ψ(θ∗) = 0 and (7.17).

157

158

Chapter 8

Conclusion and future direction of
research

8.1 Conclusion

The goal of this thesis was to address privacy and data utility issues in the rapidly evolv-
ing field of differential privacy. By exploring differential privacy in a mathematical and
statistical context, this research has made several significant contributions.

The primary outcome of this work is a unified mathematical framework for differential
privacy, merging the language and vocabulary of computer science with probability and
statistics. Next, novel mechanisms were proposed in order to integrate concepts from
different fields (probability, statistics, data science, time series, machine learning) to pro-
vide differential privacy guarantees. We proposed a new class of sensitivity functions to
address significant practical data utility challenges. We studied differential privacy in
temporal dependency structures to understand the impact of privacy and utility over
time, broadening the applicability of differential privacy in real-world settings.

We believe that the impact of these findings and contributions can be significant.
They contribute to the existing body of knowledge by providing mechanisms to improve
the utility of data. These contributions are essential for the secure and responsible use
(and reuse) of data, especially in areas where sensitive data exists, such as healthcare.
Moreover, the framework developed in this thesis enables researchers to study other top-
ics in statistics with differential privacy.

Despite these contributions, this research is not without its limitations. Often, the
framing of the problem has been as difficult as the proof of differential privacy guarantees.
This was particularly noticeable in the time series and machine learning chapters, where
complex modelling problems and temporal dependencies make the use of differential pri-
vacy more challenging. There are many avenues that future work can take to explore

159

the theoretical properties in complex data structures or the more practical real-world
applications. These are outlined in Section 8.2.

In conclusion, this thesis helps to emphasize the importance of developing robust
privacy-preserving techniques in the era of big data. The contributions made here pro-
vide a foundation for future research and practical applications, for the intersection of
mathematics and statistics with privacy. And, most importantly, they contribute to
further innovation in the safe and responsible use of data. In particular, some of the
research in this thesis led to a US patent and to practical studies for the Office of the
Privacy Commissioner of Canada.

8.2 Future work

Future work in this area can focus on several promising directions to further enhance
both data utility and data privacy guarantees, in practical applications.

Combining techniques

One direction is to combine several separate techniques proposed in this thesis to improve
privacy and utility guarantees. For example,

� General sensitivity methodology can be applied to study differential privacy in both
time series and Stochastic Gradient Descent.

� Likewise, the Mixed Noise mechanism can be applied to time series and Stochastic
Gradient Descent to minimize the amount of noise needed at each time/iteration.

� k-noise can be made differentially private by applying novel mechanisms to the
group sizes, thus extending its application to benchmark against existing statistical
disclosure methods while improving data utility.

Differentially private machine learning

There is a significant need to study various machine learning algorithms under differ-
entially private constraints ([40]). Differentially private mechanisms are applied to such
problems as Stochastic Gradient Descent algorithm (possibly with mini-batching), coor-
dinate descent algorithm, expectation-maximization (EM) algorithms. The current focus
is on privacy, with little emphasis on data utility (such as convergence of differentially
private algorithm).

Differentially private principal component analysis

Investigating differentially private component analysis (PCA) by utilizing novel mecha-
nisms and sensitivity functions could provide insights into the effects of adding noise to

160

the data versus the principal components. This approach aims to maximize data utility
while maintaining privacy in these more complex scenarios.

Differentially private guarantees in Large Language Models (LLMs)

Novel mechanisms and functions can be applied in the context of LLMs to provide privacy
guarantees within an LLM and ensuring outputs do not leak sensitive information.

161

162

Chapter 9

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, October 2016.

[2] Luk Arbuckle and Khaled El Emam. Building an Anonymization Pipeline: Creating
Safe Data. O’Reilly Media, 2020.

[3] Marco Avella-Medina. Privacy-preserving parametric inference: A case for robust
statistics. Journal of the American Statistical Association, 116(534):969–983, 2021.

[4] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsam-
pling: Tight analyses via couplings and divergences, 2018.

[5] Aurélien Bellet. Privacy preserving machine learning - lecture 5: Differentially
private stochastic gradient descent.

[6] Devyani Biswal, Luk Arbuckle, and Rafal Kulik. The Exploration of Identifiability
Through the Definition and Examination of Privacy Models. In Privacy in Statistical
Databases, 2020.

[7] Devyani Biswal, Luk Arbuckle, and Rafa l Kulik. Disclosure metrics born from
statistical evaluations of data utility, 2021. Expert Meeting on Statistical Data
Confidentiality (UNECE), Poznan (Poland).

[8] Devyani Biswal, Rafa l Kulik, and Luk Arbuckle. Mixed noise mechanism (mnm):
an approximate differentially private gaussian mechanism for low sensitivity queries.
In preparation, 2023.

[9] Alberto Blanco-Justicia, David Sanchez, Josep Domingo-Ferrer, and Krishnamurty
Muralidhar. A Critical Review on the Use (and Misuse) of Differential Pri-
vacy in Machine Learning. ACM Computing Surveys, 55(8):1–16, August 2023.
arXiv:2206.04621 [cs].

163

[10] Peter Brockwell and Richard Davis. Time Series: Theory and Methods. Springer,
1991.

[11] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. arXiv, 2016.

[12] T. Tony Cai, Yichen Wang, and Linjun Zhang. The Cost of Privacy: Opti-
mal Rates of Convergence for Parameter Estimation with Differential Privacy.
arXiv:1902.04495 [cs, stat], 2020.

[13] Yang Cao, Masatoshi Yoshikawa, Yonghui Xiao, and Li Xiong. Quantifying differ-
ential privacy under temporal correlations. In Proc. Int. Conf. Data Eng., pages
821–832, 2017.

[14] George Casella and Roger Berger. Statistical Inference. Duxbury advanced series in
statistics and decision sciences. Thomson Learning, 2002.

[15] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially
private empirical risk minimization, 2011.

[16] Cynthia Dwork. Differential privacy. In International Colloquium on Automata,
Languages, and Programming, pages 1–12. Springer, 2006.

[17] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[18] Cynthia Dwork and Guy Rothblum. Concentrated differential privacy.
CoRR,abs/1603.01887, 2016.

[19] Khaled El Emam and Luk Arbuckle. Anonymizing Health Data. O’Reilly Media,
October 2013.

[20] Mark Elliot, Elaine Mackey, and Kieron O’Hara. The anonymisation decision-
making framework 2nd Edition: European practitioners’ guide. UKAN, November
2020.

[21] European Union. General data protection regulation (gdpr). https://eur-lex.

europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679, 2016.

[22] Liyue Fan, Li Xiong, and Vaidy Sunderam. Differentially private multi-dimensional
time series release for traffic monitoring. In 27th Data and Applications Security
and Privacy (DBSec), Jul 2013, Newark, NJ, United States, pages 33–48, 2013.

[23] Guillaume Garrigos and Robert M. Gower. Handbook of convergence theorems for
(stochastic) gradient methods, 2024.

164

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679

[24] J.M. Gouweleeuw, P. Kooiman, L.C.R.J. Willenborg, and P.-P. de Wolf. Post ran-
domisation for statistical disclosure control: Theory and implementation. Journal
of official Statistics, 14(4):463, 1998.

[25] Health Information Trust Alliance. Hitrust de-identification framework, 2015.

[26] Naoise Holohan. Mathematical Foundations of Differential Privacy. PhD thesis,
Trinity College Dublin, 2016.

[27] Naoise Holohan, Spiros Antonatos, Stefano Braghin, and Pól Mac Aonghusa. The
bounded laplace mechanism in differential privacy. arXiv, 2018.

[28] Anco Hundepool, Josep Domingo-Ferrer, Laura Franconi, Sarah Giessing,
Eric Schreuder Nordholt, Kevin Spicer, and Peter-Paul De Wolf. Handbook on
Statistical Disclosure Control, 2010.

[29] Anco Hundepool, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing,
Eric Schulte Nordholt, Keith Spicer, and Peter-Paul de Wolf. Statistical Disclo-
sure Control. Wiley, 2012.

[30] International Electrotechnical Commission International Organization for Standard-
ization. Privacy enhancing data de-identification terminology and classification of
techniques. Technical report, 2018.

[31] International Electrotechnical Commission International Organization for Standard-
ization. Iso/iec 27559:2022 information security, cybersecurity and privacy protec-
tion – privacy enhancing data de-identification framework. Technical report, 2020.

[32] Noah Johnson, Joseph P. Near, and Dawn Song. Towards practical differential
privacy for sql queries. Proc. VLDB Endow., 11(5):526–539, 2018.

[33] Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation
of heavy-tailed distributions. In Proceedings of Machine Learning Research, volume
125, pages 1–32, 2020.

[34] Sonali Kochhar, Bartha Knoppers, Carrol Gamble, Alan Chant, Jeffrey Koplan, and
Georgina S Humphreys. Clinical trial data sharing: here’s the challenge. BMJ Open,
9(8), 2019.

[35] Ashwin Machanavajjhala, Xi He, and Michael Hay. Differential privacy in the wild:
A tutorial on current practices & open challenges. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 1727–1730, 2017.

[36] Paul Mangold, Aurélien Bellet, Joseph Salmon, and Marc Tommasi. Differentially
private coordinate descent for composite empirical risk minimization, 2022.

165

[37] Michael J. Mauboussin. If you say something is likely, how likely do people think it
is? Harvard Business Review, July 2018.

[38] Arvind Narayanan, Joanna Huey, and Edward W. Felten. A Precautionary Approach
to Big Data Privacy, pages 357–385. Springer Netherlands, 2016.

[39] Kobbi Nissim, Sonya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. STOC 2007, 2007.

[40] National Institute of Standards and Technology. Adversarial machine learning: A
taxonomy and terminology of attacks and mitigations. Technical report, 2024.

[41] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. Microsoft Tehcnical Reports, 2009.

[42] Adam Smith. Efficient, differentially private point estimators, 2008.
arXiv:0809.4794v1 [cs.CR].

[43] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient
descent with differentially private updates. In 2013 IEEE Global Conference on
Signal and Information Processing, pages 245–248, 2013.

[44] Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570,
2002.

[45] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy.
Journal of the American Statistical Association, 105(489):375–389, 2010.

[46] Leon Willenborg and Ton de Waal. Elements of statistical disclosure control. Lecture
notes in statistics. Springer, October 2000.

[47] Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, and Huishuai
Zhang. Individual privacy accounting for differentially private stochastic gradient
descent, 2023.

166

Index

(α, β)-admissible, 57
L-Lipschitz, 144
L-Smoothness, 144
k-PRAM, 24
k-anonymity, 22
k-noise, 25

Absolute Privacy Measure, 22
Approximate Differential Privacy, 39

Confidence interval, 109

Blocking
Mean, 95
Median, 95

Bounded Laplace Mechanism, 99

Confidence Interval
(ε, δ)-differential privacy, 109
Differential privacy, 108
Mean, 108
Noisy mean, 109

Differential Privacy
ε-differential privacy, 37
Blocking, 92, 96
Bounded Laplace Mechanism, 99
Composition property, 49
Confidence intervals, 108
Gaussian-mechanism, 39
Group privacy, 48
Laplace-mechanism, 38
Mixed Noise Mechanism, 75, 77
Post-processing, 43
Preservation properties, 41

Privacy budget, 37
Privacy loss, 38
Smooth sensitivity, 56
Time Series

Independence, 121
Total dependence, 120

Time series, 123, 128, 129, 136
Total dependence, 120
Total independence, 121
Zero-concentrated, 111

Dilation Property, 57
Disclosure Methods

k-PRAM, 24
k-anonymity, 22
k-noise, 25
Noise addition, 25
PRAM, 23

Distance Measures
Eγ divergence, 19
Kullback-Leibler, 18
Max-divergence, 18
Rényi divergence, 18
Total variation, 18

Gaussian Distribution, 17
General Sensitivity, 65
Global Sensitivity, 12

Sample mean, 13
Sample median, 13
Sample variance, 13

Gradient Descent, 145
gradient noise, 156

Laplace Distribution, 17, 18

167

Learning Rate, 144
Local Sensitivity, 12

Distance k, 60
Sample mean, 13
Sample median, 13
Sample variance, 13
Smooth bound, 56
Violation of DP, 55

Mean
Smooth sensitivity, 61

Mean Query, 11
Blocking, 95
Post-processing, 101
Pre-processing, 101

Mean Squared Error, 52
Laplace mechanism, 52

Median
Smooth sensitivity, 61

Median Query, 11
Blocking, 95
Post-processing, 106
Pre-processing, 106

Mixed Noise Mechanism, 75
Algorithm, 80
Confidence interval table, 89
Median, 89
Sample mean, 87
Threshold, 77

Noise addition, 25

Output Perturbation Mechanism, 14

Post-Processing, 14
Sample mean, 101
Sample median, 106
Sample variance, 102

PRAM, 23
k-PRAM, 24

Pre-Processing, 14
Sample mean, 101
Sample median, 106

Sample variance, 103
Privacy

Event level, 119
User level, 119

Query
Identity, 11
Mean, 11
Median, 11
Variance, 13

Response mechanism, 13

Sample Mean
Global Sensitivity, 13
Local Sensitivity, 13

Sample Median
Global Sensitivity, 13
Local Sensitivity, 13

Sample Variance
Global Sensitivity, 13
Local Sensitivity, 13

Sanitized Response Mechanism, 14
Sensitivity

General, 63
Global, 12
Local, 12
Weighted, 66

Sliding Property, 57
Smooth Sensitivity, 56

Mean query, 61
Median query, 61

Smooth sensitivity
Differential privacy property, 58

Stochastic Gradient Descent, 147

Variance Query, 13
Post-processing, 102
Pre-processing, 103

Vector AutoRegressive Model, 119

Weighted sensitivity, 66

Zero-Concentrated Differential Privacy, 111
Approximate, 112

168

Appendices

169

Appendix A

R codes

In this chapter we include the codes that are used for different numerical experiments
presented in the thesis.

R Code A.0.1. This example presents R code for local sensitivity for the mean, median,
and variance. This code is used in Section 5.3 and Section 5.6.

Local sensitivity for the mean:

Sensitivity <- function(X) { #Sensitivity function for the mean

n=length(X)

f = rep(0, n)

for(i in 2:n-1){

a = 1:(i-1)

b = (i+1):n

X_2 = c(X[a], X[b])

f[i] = abs(mean(X) - mean(X_2)) }

max(f) }

Local sensitivity for the median:

Sensitivity_med <- function(X) { #Median sensitivity function

X <- sort(X)

n=length(X)

f = rep(0, n)

for(i in 2:n-1){

a = 1:(i-1)

b = (i+1):n

171

X_2 = c(X[a], X[b])

f[i] = abs(median(X) - median(X_2)) }

max(f) }

Local sensitivity for the variance:

Sensitivity_var <- function(X) { #Variance sensitivity function

n=length(X)

f = rep(0, n)

for(i in 2:n-1){

a = 1:(i-1)

b = (i+1):n

X_2 = c(X[a], X[b])

f[i] = abs(var(X) - var(X_2)) }

max(f) }

R Code A.0.2. This example presents R code for produce a distribution from a Laplace-
Normal random variable. It also produces a plot that compares a Laplace-Normal,
Laplace, and Normal densities with equal variance. This code is used in 5.4.1.

Algorithm Block DP-I:

library(ggplot2)

library(stats)

library(rmutil)

#write function to split blocks and add mean of laplace noise to mean

of median of blocks

for Algorithm Block-DP I

split_noisy_median <- function(Lambda, m, n) {

Generate the dataset X with n random numbers uniformly distributed

between 0 and Lambda

m is the number of blocks you want

X <- runif(n, 0, Lambda)

Calculate the size of each block

block_size <- ceiling(n / m)

172

Initialize a vector to store medians of each block

medians <- numeric(m)

noise <- numeric(m)

Split X into m blocks and compute median for each block

for (i in 1:m) {

Calculate start and end indices of each block

start_thr = (i-1)*Lambda/m

end_thr <- i*Lambda/m

Extract the block based on threshold

block <- X[X>= start_thr]

block <- block[block<end_thr]

Calculate the median of the block and store it

medians[i] <- median(block)

noise[i] <- rlaplace(1,0,2*Lambda/m)

}

Compute and return the mean of the medians

mean_medians <- mean(medians)

mean_noise <- mean(noise)

noisy_median_DP1 = mean_medians + mean_noise

return(noisy_median_DP1)

}

#test function for m=5,10,20

split_noisy_median(100,5,1000)

split_noisy_median(100,10,1000)

split_noisy_median(100,20,1000)

Run the experiment

set.seed(123) # Seed for reproducibility

Lambda <- 100

n <- 1000

m_values <- c(5,7,10,15,20)

trials <- 1000

results <- data.frame(m = integer(), MSE = numeric())

Empty data frame for results

true_median <- Lambda / 2 # True median for U(0, Lambda)

173

Perform trials and calculate MSE for each m

for (m in m_values) {

trials_data <- replicate(trials, split_noisy_median(Lambda, m, n))

mse <- mean((trials_data - true_median)^2)

results <- rbind(results, data.frame(m = m, MSE = mse))

}

Print the results table

print(results)

Plot the results

ggplot(results, aes(x = m, y = MSE)) +

geom_point(color = "black") +

geom_line(color = "black", size=0.5) +# Scatter plot of MSE values

#geom_smooth(method = "loess", se = FALSE, color = "black",

size = 0.5) + # Fitted curve

#geom_hline(yintercept = true_median, linetype = "dashed",

color = "red") +

labs(title = "MSE for Blocking DP-I",

x = "Number of Blocks (m)",

y = "MSE",

caption = "MSE for Blocking - DP-I") +

theme_minimal()

R Code A.0.3. This example presents R code for produce a distribution from a Laplace-
Normal random variable. It also produces a plot that compares a Laplace-Normal,
Laplace, and Normal densities with equal variance. This code is used in 5.4.2.

Algorithm Block DP-II:

library(ggplot2)

library(stats)

library(rmutil)

#write function to split blocks for Algorithm Block-DP II

split_assign_blocks <- function(Lambda, n, m) {

X <- runif(n, 0, Lambda)

block_size <- floor(n / m) # Use floor to ensure integer division

174

blocks <- list() # Initialize an empty list to store blocks

for(i in 1:m) {

start_index <- (i - 1) * block_size + 1

end_index <- min(i * block_size, n) # Ensure not to go out of

bounds

block_name <- paste("block", i, sep = "")

blocks[[block_name]] <- X[start_index:end_index]

}

return(blocks) # Return the list of blocks

}

compute_noisy_median <- function(Lambda, n, m) {

Split X into blocks

blocks <- split_assign_blocks(Lambda, n, m)

Compute the median of each block

medians <- sapply(blocks, median)

Calculate the average of medians

average_median <- mean(medians)

Add Laplace noise to the average with parameter Lambda/m

noisy_median <- average_median + rlaplace(1, 0, Lambda / m)

return(noisy_median)

}

set.seed(123) # For reproducibility

Lambda <- 100

n <- 1000

m_values <- c(5,7,10,15,20)

trials <- 1000

results2 <- data.frame(m = integer(), MSE = numeric())

true_median <- Lambda / 2

Perform trials and calculate MSE for each m

for (m in m_values) {

trials_data2 <- replicate(trials, compute_noisy_median(Lambda, n, m))

175

mse <- mean((trials_data2 - true_median)^2)

results2 <- rbind(results2, data.frame(m = m, MSE = mse))

}

Plotting the MSE results

ggplot(results2, aes(x = m, y = MSE)) +

geom_point(color = "black") +

geom_line(color = "black", size=0.5) +

#geom_smooth(method = "loess", se = FALSE, color = "black",

size=0.5) +

#geom_hline(yintercept = true_median, linetype = "dashed",

color = "red") +

labs(title = "MSE for Blocking DP-II",

x = "Number of Blocks (m)",

y = "MSE",

caption = "MSE for Blocking - DP-II.") +

theme_minimal()

R Code A.0.4. This example presents R code for produce a distribution from a Laplace-
Normal random variable. It also produces a plot that compares a Laplace-Normal,
Laplace, and Normal densities with equal variance. This code is used in 4.5.9.

Density of Laplace-Normal convolution:

Code for figure in 4.5.9

library(ggplot2)

n <- 1e6 # Size of simulation

mu <- 0

sigma <- 1

alpha <- 2

lambda <- 0

beta <- 2

Generate data

set.seed(123)

X <- rnorm(n, mu, sigma)

Y <- ifelse(runif(n, 0, alpha + beta) < alpha, alpha, -beta)

* rexp(n) + lambda

W <- X + Y

176

Plot the histogram of the Laplace-normal distribution

hist(W, freq=FALSE, breaks=200, cex.main=1, main="Laplace-Normal,

Normal, and Laplace Distributions", xlab="Value",

ylab="Density",ylim=c(0,0.25))

Overlay Normal distribution with variance 9

curve(dnorm(x, mean=mu, sd=3), add=TRUE, col="blue", lwd=2)

Overlay Laplace distribution with variance 9

dlaplace <- function(x, mu, b) {

return (1/(2*b) * exp(-abs(x-mu)/b))

}

b <- sqrt(9/2) # Standard deviation for Laplace is sqrt(2)*b

curve(dlaplace(x, mu, b), add=TRUE, col="red", lwd=2)

legend("topright", legend=c("Laplace-Normal",

"Normal (Variance 9)", "Laplace (Variance 9)"),

col=c("black", "blue", "red"), lwd=2)

R Code A.0.5. This example presents R code for produce to the experimental analysis
performed in Techniques for disclosure control. It includes code to perform k-noise and k-
PRAM and includes additional codes to compare the two using kernel-density estimation.
This code specifically was used for experiments presented at the 2021 Proceedings of the
Joint UNECE/Eurostat Expert Meeting on Statistical Data Confidentiality. This code
is used in Section 3.6, to produce figures in Section 3.8.

k-PRAM and k-Noise:

library(Metrics)

library(KSgeneral)

library(tidyverse)

library(dplyr)

library(ggplot2)

library(gt)

library(glue)

library(transport)

library(philentropy)

library(gridExtra)

library(ggthemes)

177

dm_r = read.csv("~/Downloads/dm_r.csv")

Smoking = subset(dm_r, select=c(AGE))

#Create column to index individuals

ID = c(1:659)

Smoking = cbind(ID,Smoking)

First we need to turn age into non integer number. To each value

we will add

a random number from (1:365)/365 and add it to the age indicated.

Smoking$DOB = rep(0,659)

for(i in 1:length(Smoking$AGE)){

Smoking$DOB[i]=Smoking$AGE[i]+(sample(c(1:365),1)/365)

}

We will do two approaches: one will be to set fixed buckets and

#randomize within the bucket. The second will be to add a uniform

#jitter to each age with no buckets.

Buckets are global and fixed: [0,4],[5,9],... etc

Since our min and max value is 22 and 77 we will only code those

buckets. Bin that defines the intervals of buckets

bin = seq(19,79, by =5)

One way to do this is, randomly sample length(Bucket) from the bucket

#range. This will ensure that no number can jump out of the bucket

#it’s in.

for(i in 1:nrow(Bucket1)){

Bucket1$DOB[i] = runif(1,20,24)

}

for(i in 1:nrow(Bucket2)){

Bucket2$DOB[i] = runif(1,24,29)

}

for(i in 1:nrow(Bucket3)){

Bucket3$DOB[i] = runif(1,29,34)

}

for(i in 1:nrow(Bucket4)){

Bucket4$DOB[i] = runif(1,34,39)

}

for(i in 1:nrow(Bucket5)){

Bucket5$DOB[i] = runif(1,39,44)

178

}

for(i in 1:nrow(Bucket6)){

Bucket6$DOB[i] = runif(1,44,49)

}

for(i in 1:nrow(Bucket7)){

Bucket7$DOB[i] = runif(1,49,54)

}

for(i in 1:nrow(Bucket8)){

Bucket8$DOB[i] = runif(1,54,59)

}

for(i in 1:nrow(Bucket9)){

Bucket9$DOB[i] = runif(1,59,64)

}

for(i in 1:nrow(Bucket10)){

Bucket10$DOB[i] = runif(1,64,69)

}

for(i in 1:nrow(Bucket11)){

Bucket11$DOB[i] = runif(1,69,74)

}

for(i in 1:nrow(Bucket12)){

Bucket12$DOB[i] = runif(1,74,79)

}

Now that we have the anonymized/changed values we can store these

values in a new dataframe.

SmokingBucket = rbind(Bucket1,Bucket2,Bucket3,Bucket4,Bucket5,Bucket6,

Bucket7,Bucket8,Bucket9,Bucket10,Bucket11,Bucket12)

dim(Smoking)

dim(SmokingBucket)

same dimension as original. Reorder by ID number

SmokingBucket = SmokingBucket[order(SmokingBucket$ID),]

SmokingNoise= rep(0,659)

for(i in 1:659){

SmokingNoise[i]=Smoking$DOB[i]+runif(1,-2.5,2.5)

}

179

Smoking_Gen = data.frame(Smoking$ID, Smoking$AGE, Smoking$DOB ,

SmokingBucket$DOB, SmokingNoise)

names(Smoking_Gen) = c("ID","AGE","DOB","Bucket","Noise")

FAssign Vector that assigns the Bucket number to Age anonymized

by both methods

BinBucket = cut(Smoking_Gen$Bucket, breaks=bin)

BinNoise = cut(Smoking_Gen$Noise, breaks=bin)

Smoking_Gen$BinBucket = tapply(Smoking_Gen$Bucket, BinBucket)

Smoking_Gen$BinNoise = tapply(Smoking_Gen$Noise,BinNoise)

Reorder to place Bin after Randomized Age

Smoking_Gen = Smoking_Gen[c(1,2,3,4,6,5,7)]

Smoking_Gen$BucketJump = Smoking_Gen$BinBucket - Smoking_Gen$BinNoise

Measure the bias between Bucketed Ages and Noise Ages against DOB

Similar = dataSimilarity(SmokingO, SmokingB,dropDiscrete = NA)

bias_bucket = bias(Smoking_Gen$DOB, Smoking_Gen$Bucket)

mse_bucket = mse(Smoking_Gen$DOB, Smoking_Gen$Bucket)

rmse_bucket = rmse(Smoking_Gen$DOB, Smoking_Gen$Bucket)

bias_noise = bias(Smoking_Gen$DOB, Smoking_Gen$Noise)

mse_noise = mse(Smoking_Gen$DOB, Smoking_Gen$Noise)

rmse_noise = rmse(Smoking_Gen$DOB, Smoking_Gen$Noise)

diff_bucket = rep(0,659)

for (i in 1:659){

diff_bucket[i] = Smoking_Gen$Bucket[i]-Smoking_Gen$DOB[i]

}

diff_noise = rep(0,659)

for (i in 1:659){

diff_noise[i] = Smoking_Gen$Noise[i]-Smoking_Gen$DOB[i]

}

differences = data.frame(ID,diff_bucket,diff_noise)

names(differences) = c("ID","Bucket","Noise")

plot(diff_noise)

180

scatterPlot <- ggplot(differences,aes(x = ID)) +

geom_point(aes(y=diff_bucket), color="black") +

geom_point(aes(y=diff_noise),color = "red") +

labs(x="ID", y="Change in Age",title="Scatterplot: Change in Age")+

theme(panel.background = element_blank())

Amount of people in each persons bucket where they are

centered at +-2.5 around them. Theoretical group size

ExpBucket = rep(0,659)

for(i in 1:659){

m = Smoking_Gen$DOB[i]

ExpBucket[i] = nrow(filter(Smoking_Gen,

Smoking_Gen$DOB >= m-2.5, Smoking_Gen$DOB <= m+2.5))

}

plot(ExpBucket)

###

MC of expected number of people in theoretical bucket

How noise affects histogram of data

binsizes = c(rep(0,659)) ;

data_noise = c(rep(0,659)) ;

N=1000

for(n in 1:N)

{

Noise = runif(659,-2.5,2.5)

SmokingNoise= Smoking_Gen$DOB + Noise

data_noise = data_noise + SmokingNoise

ExpBucket = rep(0,659)

for(i in 1:659){

q = Smoking_Gen$DOB[i]

ExpBucket[i] = length(which(SmokingNoise>=q-2.5 &

SmokingNoise<= q+2.5))

}

currentbucketsize = ExpBucket

binsizes = binsizes + currentbucketsize

181

}

End of the MC loop

binsizes = binsizes/N

data_noise = data_noise/N

binsizes_round = round(binsizes)

par(mfrow=c(1,1))

hist(Smoking_Gen$DOB,

breaks = bin,

main="Histogram: Original Data",

xlab="Age",

border="black",

col="white",

xlim=c(10,80))

hist(data_noise,

breaks = bin,

main="Histogram: Noisey Data",

xlab="Age",

border="black",

col="white",

xlim=c(10,80))

hist(Smoking_Gen$Bucket,

breaks = bin,

main="Histogram: Grouped Data",

xlab="Age",

border="black",

col="white",

xlim=c(10,80))

binned = cut(Smoking_Gen$Noise, breaks=(c(19,24,29,34,39,44,49,54,59,

64,69,74,79)))

Bin2 = tapply(Smoking_Gen$Noise,binned)

Bin2 <- as.factor(Bin2)

table(Bin2)

Bin2

1 2 3 4 5 6 7 8 9 10 11 12

39 96 119 72 73 77 74 64 31 11 2 1

a1 <- data.frame(Bucket=c("1","2","3","4","5","6","7","8","9","10",

182

"11","12"), values=c(32, 100, 121,81,62,79,84,57,31,9,2,1))

b1 <- data.frame(Bucket=c("1","2","3","4","5","6","7","8","9",

"10","11","12"), values=c(39, 96, 119, 72, 73, 77, 74, 64,31, 11,2,1))

a1$Bucket <- factor(a1$Bucket, # Change ordering manually

levels = c("1","2","3","4","5","6","7","8","9","10","11","12"))

b1$Bucket <- factor(b1$Bucket, # Change ordering manually

levels = c("1","2","3","4","5","6","7","8","9","10","11","12"))

ggplot(a1, aes(x=Bucket, y=values, sort=FALSE))+

geom_bar(stat = "identity") +

labs(title = "Method: k-PRAM") +

geom_text(aes(label = values),

position = position_dodge(0.9), vjust = -0.5,

check_overlap = TRUE) +

xlab("Age") +

ylab("Frequency") +

theme_tufte()

ggplot(b1, aes(x=Bucket, y=values, sort=FALSE))+

geom_bar(stat = "identity") +

labs(title = "Method: k-noise") +

geom_text(aes(label = values),

position = position_dodge(0.9), vjust = -0.5,

check_overlap = TRUE) +

xlab("Age") +

ylab("Frequency") +

theme_tufte()

Expected number of people in theoretical group per individual

data point

GroupSize = data.frame(Smoking_Gen$DOB,binsizes_round)

names(GroupSize) = c("DOB","GroupSize")

ggplot(GroupSize,aes(x = DOB))+

geom_histogram(color="black", fill="white",binwidth = 5 ,

breaks=c(19,24,29,34,39,44,49,54,59,64,69,74,79))+

geom_point(data=GroupSize,aes(x=DOB,y=GroupSize)) +

labs(x="Age", y="Frequency ",

title="Expected Number of Ages in Localized Group")+

183

theme_tufte()

ggplot(Age2,aes(x=Generalized)) +

geom_histogram(color="black", fill="white",binwidth = 5 ,

breaks=c(19,24,29,34,39,44,49,54,59,64,69,74,79)) +

geom_point(data=OrderedExpB,aes(x=Age,y=Noise)) +

labs(x="Age", y="Frequency ",title="Expected Number of

Ages in Localized Group")+

theme_tufte()

###########Local noise distribution ##################

Idea is to add noise inversely proportionate to the

group size the datapoint belongs to

Example: Individual 9: DOB GroupSize

9 52.72329 80

So the noise added to that individual will be uniform(+- constant/80)

perhaps the constant can be the mean of the binsizes

#in this iteration: 81 mean(binsizes)

#[1] 81.40651

Smoking_MovingNoise = rep(0,659)

for(i in 1:659){

t = binsizes_round[i]

Noise = runif(1,-meanbin/t,meanbin/t)

Smoking_MovingNoise[i] = Smoking_Gen$DOB[i]+ Noise

}

Problem occurring at extreme end when only 1-5 people in buckets

adds way to much noise. Need to impose condition on the noise,

min(meanbin/t and 5)

Smoking_MovingNoise[337]

[1] 144.6984

> Smoking_Gen$DOB[337]

[1] 76.63014

Make table summarizing these results

summ1 <- tibble(Method = c("k-PRAM","k-Noise"),

Bias = c(bias_bucket,bias_noise),Mse = c(mse_bucket,mse_noise),

Rmse = c(rmse_bucket,rmse_noise))

summ1 %>%

184

gt() %>%

cols_align(

align = "center",

columns = everything()

)%>%

tab_style(

style = list(

cell_text(weight = "bold")

),

locations = list(

cells_column_labels(gt::everything())

)

) %>%

tab_header(

title = "Summary of Utility Estimators"

)

#########Some statistical tests #######################

kern.dens.DOB = density(Smoking_Gen$DOB,kernel = c("gaussian"))

kern.dens.Bucket = density(Smoking_Gen$Bucket,kernel = c("gaussian"))

kern.dens.Noise = density(Smoking_Gen$Noise,kernel = c("gaussian"))

kern.test.DOB = kern.dens.DOB$y

kern.test.Bucket = kern.dens.Bucket$y

kern.test.Noise = kern.dens.Noise$y

par(mfrow=c(1,2))

plot(kern.test.DOB , type = "l", col = "blue")

lines(kern.test.Bucket,col="green")

plot(kern.test.DOB , type = "l", col = "blue")

lines(kern.test.Noise,col="red")

densities = data.frame(dens = c(kern.test.DOB, kern.test.Bucket,

kern.test.Noise)

, lines1 = rep(c("DOB", "k-PRAM","k-Noise"), each = 512))

densities1 = data.frame(dens = c(kern.test.DOB, kern.test.Bucket)

, lines1 = rep(c("DOB", "k-PRAM"), each = 512))

densities2 = data.frame(dens = c(kern.test.DOB,kern.test.Noise)

, lines2 = rep(c("DOB","k-Noise"), each = 512))

185

#Plots

g1 = ggplot(densities1, aes(x = dens, fill = factor(lines1))) +

geom_density(alpha = 0.5)+

scale_fill_manual(values = c("red","blue"))+

labs(x="x", y=" Density ",title="Kernel Density Estimation")+

theme_tufte()

g2 = ggplot(densities2, aes(x = dens, fill = factor(lines2))) +

geom_density(alpha = 0.5)+

scale_fill_manual(values = c("blue","green")) +

labs(x="x", y=" Density ",title="Kernel Density Estimation")+

theme_tufte()

g = ggplot(densities, aes(x = dens, fill = factor(lines1))) +

geom_density(alpha = 0.5)+

scale_fill_manual(values = c("red","blue","green","orange"))

grid.arrange(g1,g2)

wasserstein1d(kern.test.DOB,kern.test.Bucket,p=2)

wasserstein1d(kern.test.DOB,kern.test.Noise,p=2)

wasserstein1d(kern.test.DOB,kern.test.NoiseMove,p=2)

wasserstein1d(kern.test.DOB,kern.test.DOB,p=1)

R Code A.0.6. This example presents R code for statistics generated from pre-processing
and post-processing differentially private mechanisms. It also produces the plot for com-
paring the results for the median for DOB. This code is used to produce Figure 5.15, in
Section 5.6.

Median estimator: Pre-processing vs Post-processing

#Importing dataset and randomizing age to DOB

dm_r <- read_csv("~/Downloads/dm_r.csv")

Smoking = subset(dm_r, select=c(AGE)) #Create column to

index individuals

ID = c(1:659)

Smoking = cbind(ID,Smoking) # Create the "original" dataset that will

be used to compare against each # anonymized dataset.

Smoking$DOB = rep(0,659); #how to randomize age

for(i in 1:length(Smoking$AGE)){

Smoking$DOB[i]=Smoking$AGE[i]+(sample(c(1:365),1)/365) }

186

#Pre-processing

library(VGAM)

range_smoke.g <- 110-0

epsilon = 1

mean_DOB_pre.g = NULL ;

median_DOB_pre.g = NULL ;

var_DOB_pre.g = NULL ;

for (i in 1:1000){

noise_DOB.g <- rlaplace(659,0,range_smoke.g/(epsilon))

DOB_anon_pre.g <- Smoking$DOB + noise_DOB.g

mean_DOB_pre.g[i] <- mean(DOB_anon_pre.g)

median_DOB_pre.g[i] <- median(DOB_anon_pre.g)

var_DOB_pre.g[i] <- var(DOB_anon_pre.g)

}

#Post-processing

##MEAN

sen.DOB.g <- 110/659

eDP.DOB.g <- function(data,e){ #Function that adds noise

return(mean(data)+rlaplace(1,0,sen.DOB.g/e))

}

mean_DOB_post.g = NULL;

for (i in 1:1000) {

mean_DOB_post.g[i] <- eDP.DOB.g(Smoking$DOB,1)

}

##MEDIAN

range_med_DOB.g <- abs(median(c(0:109))-median(c(1:110)))

eDP.DOB.g_med <- function(data,e){ #Function that adds noise

return(median(data)+rlaplace(1,0,range_med_DOB.g/e))

}

median_DOB_post.g = NULL;

for (i in 1:1000) {

median_DOB_post.g[i] <- eDP.DOB.g_med(Smoking$DOB,1)

187

}

##Variance

range_var_DOB.g <- c(0:110)

var.DOB = NULL;

for (i in 1:111){

var.DOB[i] <- abs(var(range_var_DOB.g)-var(range_var_DOB.g[-i]))

}

max(var.DOB)

sen.DOB.g_var <- max(var.DOB)/(659)

eDP.DOB.g_var <- function(data,e){ #Function that adds noise

return(var(data)+rlaplace(1,0,sen.DOB.g_var/e))

}

var_DOB_post.g = NULL;

for (i in 1:1000) {

var_DOB_post.g[i] <- eDP.DOB.g_var(Smoking$DOB,1)

}

PLOTS

library(ggplot2)

library(reshape2)

library(ggthemes)

DOB.median.g <- data.frame(median_DOB_pre.g, median_DOB_post.g)

DOB.median.g$ID <- c(1:1000)

colnames(DOB.median.g) <- c("Pre-processing", "Post-processing",

"ID")

DOB.median.m.g <- melt(DOB.median.g, id.vars = "ID",

measure.vars = c("Pre-processing", "Post-processing"))

scatterplot_DOB.median.g <- ggplot(DOB.median.m.g,

aes(ID, value, colour = variable, shape = variable)) +

geom_point(shape = 16, alpha = 0.5) +

Using shape = 16 for circles and setting alpha for 50% opacity

ggtitle("Pre vs Post-processing for the median - DOB") +

scale_color_manual(values = c("black", "#CE8BDC")) +

labs(colour = "Pre vs Post-processing",

188

shape = "Pre vs Post-processing") +

xlab("Number of iterations") +

ylab("Median") +

geom_hline(data = Smoking, aes(yintercept = median(DOB)),

color = "red") +

theme_tufte()

scatterplot_DOB.median.g

R Code A.0.7. This example presents R code for all the plots produced in Chapter 6.

Experiments for Privacy Leakage in Vector Autoregressive models:

Define all variables

Case 1: epsilon_2’ is a function of rho.

library(ggplot2)

library(ggthemes)

epsilon_2 = 1 #epsilon_2 original approx dp formulation

deltaf = 0.5 # sensitivity of f - fixed from 1 to 1/2

a_11 = 1

a_12 = 1

delta = 0.05

var_1 = 0.25 # variance of B_1/2

var_2 = 0.25 # variance of B_2/2

rho = seq(-1,1,0.001)

varepsilon_2 = 1/(1+((1+rho)/4*log(1.25/0.05)))^.5

epsilon.plot = data.frame(rho,varepsilon_2)

g = ggplot(epsilon.plot,aes(x=rho,y=varepsilon_2))+

geom_point(color="darkblue",size = 0.5)+

labs(x = expression(rho),y=expression(epsilon[2]*"’"),)+

theme(axis.text.x = element_text(size = 10),

axis.text.y = element_text(size = 10),

axis.title.x = element_text(size = 20),

axis.title.y = element_text(size = 20))+

189

theme_hc()

print(g + ggtitle("A1+N3"))

############ A2+N1 Experiment v1.1 ################

A<- matrix(c(0.5,0,0.1,0.5),2,2)

det(A)

C<-solve(A)

c_11 = C[1,1]

c_12 = C[1,2]

c_21 = C[2,1]

c_22 = C[2,2]

deltg = (c_11+c_21)/2

delta = 0.05

deltaf = 0.5

epsilon=1

var_1 = 1

var_2 = 1

n=2

rho2 = seq(-1,1,by=0.01)

s1 = c_11+c_21

s2 = c_12+c_22

var_sb = s1^2+s2^2+2*s1*s2*rho2

epsilon1 = deltg/(1+(var_sb)/(2*n*log(1.25/delta)))^0.5

epsilon.plot2 = data.frame(rho2,epsilon1)

g1.1 = ggplot(epsilon.plot2,aes(x=rho2,y=epsilon1))+

geom_point(color="darkblue",size = 0.5)+

labs(x = expression(rho),y=expression(epsilon[1]*"’"),)+

theme(axis.text.x = element_text(size = 10),

axis.text.y = element_text(size = 10),

axis.title.x = element_text(size = 20),

axis.title.y = element_text(size = 20)) +

theme_hc()

print(g1.1 + ggtitle("A2+N1 1.1"))

190

######## A2+N1 Experiment v1.2 #####

A<- matrix(c(0.9,0,0.5,0.9),2,2)

det(A)

C<-solve(A)

c_11 = C[1,1]

c_12 = C[1,2]

c_21 = C[2,1]

c_22 = C[2,2]

deltg = (c_11+c_21)/2

delta = 0.05

deltaf = 0.5

epsilon=1

var_1 = 1

var_2 = 1

n=2

rho2 = seq(-1,1,by=0.01)

s1 = c_11+c_21

s2 = c_12+c_22

var_sb = s1^2+s2^2+2*s1*s2*rho2

epsilon1 = deltg/(1+(var_sb)/(2*n*log(1.25/delta)))^0.5

epsilon.plot2 = data.frame(rho2,epsilon1)

g1.2 = ggplot(epsilon.plot2,aes(x=rho2,y=epsilon1))+

geom_point(color="darkblue",size = 0.5)+

labs(x = expression(rho),y=expression(epsilon[1]*"’"),)+

theme(axis.text.x = element_text(size = 10),

axis.text.y = element_text(size = 10),

axis.title.x = element_text(size = 20),

axis.title.y = element_text(size = 20)) +

theme_hc()

print(g1.2 + ggtitle("A2+N1 1.2"))

######### experiment 3 for A2N1 #########

####### Fix rho = -1,0,1 #####

a_11 = seq(0.1,0.9,by=0.1)

191

a_22 = seq(0.9,0.1,by=-0.1)

det_A = NULL;

c_11 = NULL;

c_12 = NULL;

c_21 = NULL;

c_22 = NULL;

s1 = NULL;

s2 = NULL;

var_sb = NULL;

deltaG = NULL;

epsilon1 = NULL;

rho = 1;

epsilon = 1;

var_1 = 1;

var_2 = 1;

delta = 0.05;

deltaf = .5; #fixed from 1 to 0.5

n=2;

for(i in 1:9){

A = matrix(c(a_11[i],0,0.7,a_22[i]),2,2)

C = solve(A)

c_11[i] = C[1,1]

c_12[i] = C[1,2]

c_21[i] = C[2,1]

c_22[i] = C[2,2]

deltaG[i] = (c_11[i]+c_21[i])/2

s1[i] = c_11[i]+c_21[i]

s2[i] = c_12[i]+c_22[i]

var_sb[i] = (s1[i])^2+(s2[i])^2+2*s1[i]*s2[i]*rho

epsilon1[i] = deltaG[i]/(1+(var_sb[i])/(2*n*log(1.25/delta)))^0.5

}

epsilon.plot2 = data.frame(deltaG,epsilon1)

g2.2 = ggplot(epsilon.plot2,aes(x=deltaG,y=epsilon1))+

geom_line(color="darkblue",size = 1)+

labs(x = "Delta G",y=expression(epsilon[1]*"’"),)+

theme(axis.text.x = element_text(size = 10),

192

axis.text.y = element_text(size = 10),

axis.title.x = element_text(size = 10),

axis.title.y = element_text(size = 20))+

theme_hc()

print(g2.2 + ggtitle("A2+N1 Part 2.2"))

experiment 2.1 for A2N1

######### Fix rho = -1,0,1 ########

a_11 = seq(0.1,0.9,by=0.1)

a_22 = a_11

det_A = NULL;

c_11 = NULL;

c_12 = NULL;

c_21 = NULL;

c_22 = NULL;

s1 = NULL;

s2 = NULL;

var_sb = NULL;

deltaG = NULL;

epsilon1 = NULL;

rho = 1;

epsilon = 1;

var_1 = 1;

var_2 = 1;

delta = 0.05;

deltaf = .5; #fixed from 1 to 0.5

n=2;

for(i in 1:9){

A = matrix(c(a_11[i],0,0.7,a_22[i]),2,2)

C = solve(A)

c_11[i] = C[1,1]

c_12[i] = C[1,2]

c_21[i] = C[2,1]

c_22[i] = C[2,2]

deltaG[i] = (c_11[i]+c_21[i])/2

s1[i] = c_11[i]+c_21[i]

s2[i] = c_12[i]+c_22[i]

var_sb[i] = (s1[i])^2+(s2[i])^2+2*s1[i]*s2[i]*rho

193

epsilon1[i] = deltaG[i]/(1+(var_sb[i])/(2*n*log(1.25/delta)))^0.5

}

epsilon.plot2 = data.frame(deltaG,epsilon1)

g2.1 = ggplot(epsilon.plot2,aes(x=deltaG,y=epsilon1))+

geom_line(color="darkblue",size = 1)+

labs(x = "Delta G",y=expression(epsilon[1]*"’"),)+

theme(axis.text.x = element_text(size = 10),

axis.text.y = element_text(size = 10),

axis.title.x = element_text(size = 10),

axis.title.y = element_text(size = 20))+

theme_hc()

print(g2.1 + ggtitle("A2+N1 2.1"))

194

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Preface
	Introduction
	Structure of the thesis
	Thesis Contributions

	Mathematical foundations
	Notation and basic terminology
	Probability distributions
	Distance between probability distributions

	Techniques for disclosure control
	k-anonymity
	PRAM
	k-PRAM
	Noise addition
	k-noise
	Experimental Results
	Conclusion
	Figures

	Differential privacy
	Introduction
	Basic definition
	Laplace noise and differential privacy
	(,)-Differential Privacy
	Properties
	Preservation of differential privacy under different queries
	Post-processing
	Group privacy
	Compositions

	Differential Privacy from a data utility perspective
	Introduction
	Dealing with sensitivity
	Smooth sensitivity
	Towards general sensitivity

	Mixed Noise Mechanism (MNM)
	Blocking
	Algorithm Block-DP I
	Algorithm Block-DP II

	Bounded Laplace Mechanism
	Pre-processing vs Post-processing
	Confidence Intervals
	Changing the distance between probability distributions
	Conclusion

	Time series
	Introduction
	Differentially private queries in times series
	Data release and attack scenarios

	Privacy leakage for time series
	Total dependence and independence
	Privacy leakage for the mean

	Conclusion

	Towards Machine Learning and Differential Privacy
	Introduction
	Preliminaries
	Gradient Descent
	Stochastic optimization problem
	Stochastic Gradient Descent (SGD)
	Differentially Private Stochastic Gradient Descent
	Convergence of the algorithm
	Comments
	Appendix: Computations for conditional expectations

	Conclusion and future direction of research
	Conclusion
	Future work

	Bibliography
	Index
	Appendices
	R codes

