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Chapter 1

Introduction

1.1 Data Privacy

We use data in every aspect of our lives. Having data helps researchers to test new drugs
or companies to better target advertising campaigns. However, data may also contain
private information which causes serious privacy problems. Even if data is somehow
anonymized, as data becomes more detailed, there’s a higher risk of revealing personal
information, which can result in misuse, identity theft, discrimination, and a loss of pub-
lic trust. A big challenge is to balance data privacy with data utility.

This thesis, funded by MITACS and an Ottawa-based company Privacy Analytics,
deals with several practical questions that the company needs to address when dealing
with clients. We provide explanations and insights into several disclosure risk measures,
such as a widely-used Correct Attribution Probability (CAP). We show that some of
these measures lack interpretability or have a limited applicability. As such we provided
some solutions. Additionally, we reviewed the methods for synthetic data generation.
Many of these methods are used by practitioners to create ”private” data. Again, we
indicate several issues with different approaches and propose solutions.

Disclosure risk measures. To be more specific, despite the importance of disclosure
risk measures like Correct Attribution Probability (CAP), explaining them to clients is
a significant challenge. Clients need to understand the risks of data disclosure in simple
and clear terms to make informed decisions about how to handle data and protect pri-
vacy. This thesis focuses on developing effective ways to explain disclosure risk measures,
especially CAP, to clients in an easy-to-understand manner. It also addresses the lim-
itations of the traditional CAP by proposing a new modified CAP. This new approach
is based on equivalence classes, has a proper interpretation and can be applied to both
discrete and continuous data.
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Synthetic data generation. Additionally, the thesis explores ways to ensure that
synthetic data are similar to the original data in terms of statistical properties and use-
fulness. Synthetic data generation is a key technique in data privacy, it is a form of data
anonymization by creating entirely new datasets that replicate the statistical characteris-
tics of the original data. This approach ensures that no original data is released, thereby
minimizing the disclosure risk while still allowing meaningful data analysis. The method-
ologies discussed here include the Inverse Transformation Method, Multivariate Inverse
Transform Sampling, Acceptance-Rejection Method, Bootstrapping, and the Synthetic
Minority Over-sampling Technique (SMOTE) and interpolation methods. As the names
suggest, some of these methods are just traditional simulation methods, while others
are less known. One has to mention that traditionally the synthetic data generation
techniques focus on data utility, with less focus on data privacy. We brought the latter
aspect to our analysis.

Synthetic data generation - Synthpop package. In the context of synthetic data
generation, one of the key focus of this thesis is the detailed examination of a software
package called Synthpop. This package is widely used in the community. The detailed
analysis covers its algorithms, including various models used to generate synthetic data.
However, the thesis also highlights current limitations of Synthpop, such as challenges
in maintaining dependency structures between variables and handling complex dataset.
For instance, the package may struggle to preserve complex inter-variable relationships,
leading to synthetic data that does not accurately reflect the original dataset’s structure
and statistical properties. Moreover, the thesis critiques the utility metrics used by Syn-
thpop, pointing out that some of the statistical tests, like the Kolmogorov-Smirnov test,
may be incorrectly applied. These tests assume independence between samples, which
is not the case when comparing original and synthetic datasets, potentially resulting in
misleading conclusions about data similarity.

To address these issues, the thesis proposes several improvements. Instead of gen-
erating variables sequentially, each variable is modeled using all other variables as pre-
dictors, with appropriate model selection tools. This approach helps preserving depen-
dencies without relying on a fixed generation order. Furthermore, the thesis introduces
more appropriate statistical tests and metrics that account for the dependencies between
datasets, ensuring a more accurate assessment of data utility.

Furthermore, the package focuses on data utility of generated datasets, ignoring their
privacy. Therefore, in the thesis we address the data privacy issues using the modern
tools such as differential privacy. With its help, the synthetic data generation process
provides stronger privacy guarantees while maintaining data utility.

By identifying and addressing these limitations, the thesis aims to improve the effec-
tiveness of Synthpop and similar tools in the generation of high-quality synthetic data.
This ensures that synthetic datasets are not only useful for analysis but also robust in
protecting individual privacy. These enhancements contribute to the overall goal of bal-
ancing data utility with privacy, providing a reliable tool for data sharing and analysis
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without compromising the confidentiality of sensitive information.

1.2 Thesis Structure and Descriptions

In Chapter 2 we explore disclosure risk measures. We start with the basic terminology,
such as the notion of a sensitive attribute or a quasi-identifier.

� Section 2.1 discusses basic metrics for assessing disclosure risks such as the propor-
tion of unique entries and their relative frequencies within datasets. These metrics
apply to discrete data.

� Section 2.2 explores k-anonymity as a privacy-enhancing technique or as a privacy
measure that protects against data re-identification by ensuring that each record
is indistinguishable from at least k− 1 other records. To achieve this, the data are
grouped in equivalence classes.

� Section 2.3 discusses ℓ-diversity, a method that provides stronger than k-anonymity
guarantees by ensuring that each equivalence class has at least ℓ well-represented,
distinct sensitive values, thus preventing attribute disclosure.

� Section 2.4 examines t-closeness which requires the distribution of a sensitive at-
tribute within any equivalence class to closely resemble the overall distribution for
that attribute across the entire dataset.

� Section 2.5 explores differential privacy, a more advanced mathematical framework
to quantify the privacy techniques used to ensure that the results of the analyzes
are not overly dependent on any individual record in the data set.

� Section 2.6 provides detailed analysis of Correct Attribution Probability (CAP),
a measure that assesses the risk of an attacker correctly re-identifying sensitive
information through statistical inferences. To be more specific:

– Section 2.6.2 discusses the original CAP scores, their computation, implica-
tions for data privacy, and their limitations, particularly when dealing with
continuous data.

– Section 2.6.3 and Section 2.6.4 introduce a new approach to CAP by using
equivalence classes, making it easier to assess complex real-world datasets.

– Section 2.6.5 explores CAP from a population-level perspective, offering a
measure on how well entire datasets protect against inference attacks.

– Section 2.6.5 compares the disclosure risks associated with the original and
anonymized datasets, highlighting the effectiveness of applied anonymization
techniques.
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– Section 2.6.6 explores how adding noise, intended to increase privacy, impacts
CAP scores. We also reveal that the scores vary depending on the chosen
equivalence classes.

In Chapter 3 we explore some methods for synthetic data generation, starting with
the basic ones (well-known in the probabilistic and statistical communities), and then
presenting less known ones.

� Section 3.2 explains how to create synthetic data when we know the exact data
distribution.

� Section 3.2.1, Section 3.2.2, Section 3.2.3 discuss inverse transform sampling for
creating data that follows a specified distribution, suitable for both continuous and
discrete data.

� Section 3.2.4 introduces the acceptance-rejection method for sampling from com-
plex distributions.

� Section 3.2.5 and Section 3.2.6 describe how data transformations, conditioning
and mixture distributions are applied to achieve specific properties in synthetic
data.

� Section 3.2.7 focuses on using parametric methods.

� Section 3.2.8 explains how to create multivariate distributions using a decomposi-
tion.

� Section 3.2.9 explores the bootstrap method for resampling data to create new
datasets.

� Section 3.2.10 compares inverse transformation and bootstrap techniques.

� Section 3.2.11 introduces the Synthetic Minority Over-sampling Technique (SMOTE),
a machine learning method for generating synthetic samples which can address class
imbalance.

� Section 3.2.12 discusses linear interpolation techniques for generating data points
from observed data points.

In Chapter 4, we detail the Synthpop software package, focusing on its description,
challenges, and solutions:

� Section 4.2 explains the simulation algorithm used by the package, detailing various
model selection options.

� Section 4.3 discusses how the Synthpop package handles missing data and correla-
tion between variables.
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� Section 4.4 examines how the package measures the data utility of synthetic data
while pointing out limitation of the measures provided.

– Section 4.4.1 focuses on the use of the Mean Squared Error and coefficient of
determination to evaluate the accuracy and reliability of synthetic data.

– Section 4.4.2 and Section 4.4.3 cover the comparison of marginal empirical
cumulative distribution functions and the use of contour plots to assess the
similarity between original and synthetic data distributions.

– Section 4.4.4 explains how propensity scores are used to assess the probabil-
ity of each data point being synthetic or real, aiding in utility and privacy
evaluations.

– Section 4.4.5 looks at how contingency tables are utilized to compare categor-
ical data across original and synthetic datasets.

– Section 4.4.6 discusses permutation tests used to statistically compare the
distributions of original and synthetic data.

– Section 4.4.7 explores how the Gini index is applied to measure inequality in
the distribution of attributes between original and synthetic datasets.

� Section 4.5 addresses specific challenges and limitations encountered when using
the Synthpop package, providing solutions and workarounds.

– Section 4.5.1 details how the Synthpop package relies on the sequential rela-
tionships in the original data, we also demonstrates that incorrect sequential
relationships can lead to errors.

– Section 4.5.2 describes scenarios where no sequential relationships exist, lead-
ing to potentially lower utility in generated data. We also propose a method
to address this issue.

� Section 4.6 proposed a differential privacy method for data generation that relies
on statistical models.

1.3 Thesis Contributions

This thesis contributes to the field of data privacy and synthetic data generation by pro-
viding statistical and probabilistic interpretations and improvements to existing method-
ologies. We indicate several issues and propose some solutions. The primary contribu-
tions are outlined as follows:

� In Chapter 2, we provide a comprehensive review of current disclosure risk measures
such as k-anonymity, l-diversity, t-closeness, and differential privacy, analyzing their
applicability and limitations. we also introduced a novel approach for Disclosure
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Risk Assessment based on Correct Attribution Probability (CAP), which considers
equivalence classes to improve interpretability.

� Chapter 3 reviews various synthetic data generation techniques.

� In Chapter 4 we analyse the Synthpop software package, where we introduced new
features that address limitations such as selecting the correct sequence and handling
non-sequential data relationships. Additionally, we implemented and validated new
metrics for evaluating synthetic data. Moreover, we developed a differentially pri-
vate method of data generation based on statistical models, significantly enhancing
privacy while maintaining data utility.
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Chapter 2

Disclosure Risk Measures and
Anonymization

This chapter explores methods for measuring disclosure risk in databases. We discuss:

� measures based on analyzing data uniqueness across population, sample, and anonymized
datasets; see Section 2.1;

� k-anonymity; see Section 2.2;

� ℓ-diversity; see Section 2.3;

� t-closeness; see Section 2.4;

� differential privacy; see Section 2.5;

� Correct attribution probability (CAP); Section 2.6.

These concepts are essential for protecting privacy. We present examples and discuss
both applicability and limitations of these measures. Each measure requires a different
set-up. It should be pointed out that although measures of uniqueness, k-anonymity,
t-closeness, ℓ-diversity and CAP are of similar type, the concept of differential privacy is
completely different.

This chapter is based on the existing literature. The reviewed literature includes [11],
[36], [34], [31], [3], [13], [16], [29], [9], [10], [19], [17], [5], [3], [28], [14], [11], [11], [33],
[20], [8]. Some of the definitions are quite obvious and it is hard to identify when they
appeared for the first time in the literature.

2.1 Basic disclosure risk measures

In this section we discuss basic, non-probabilistic, disclosure risk measures, that are
randomly scattered through the literature. The list includes:
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� proportion of unique entries; see Section 2.1.1.

� Relative frequency of unique entries; see Section 2.1.2.

2.1.1 Proportion of unique entries

These measures typically consider uniqueness of particular records. As such, they are
typically applicable to discrete data. The main idea behind the following definition is
that data with unique quasi-identifiers are considered risky, as the attacker can identify
such individuals with probability 1.

Problem setup: We are given databases: the population database Z, the sample
database X and the anonymized database Y .

Definition 2.1.1 (Proportion of Unique Entries). Consider a dataset Q = (Q1, . . . , QN)
of size N , indexed by U = {1, . . . , N}. Assume that we have J equivalence classes,
denoted as [1], . . . , [J ]. We define

PUE(Q) :=
1

J

J∑
j=1

1 {fj(Q) = 1} , (2.1)

where 1 is the indicator function and fj(Q) =
∑

i∈U 1 {Qi ∈ [j]} , j = 1, · · · , J .

It calculates the proportion of units in the given dataset which are unique. The
bigger the number is (on the scale [0,1]), the more unique items, the less privacy. The
abbreviation PUE(Q) stands for “Proportion of Unique Entries” (of the database Q).

We will apply this definition to either Z (population database), X (sample database)
or Y (anonymized database). Note that the equivalence classes and the sample size may
be different for each of the databases X, Y or Z. Comparing the PUE numbers between
the databases allows us to conclude which one is more private.

Example 2.1.2. For this example,

� The dataset Z consists of 31 people and contains their names, gender and date of
birth (DOB). We have many equivalence classes.

� The original database X contains n = 14 people with their names, gender, DOB,
EIs, QIs, as well as medical test results (SAs).

� The dataset Y has been obtained from X via anonymization procedure (called
2-anonymization, to be discussed later). The names are removed and the gender
is kept, while the DOB is replaced with a range of dates. The test results are
kept. We have J = 5 equivalence classes that correspond to “{Male, [1950-1959]}”,
“{Male, [1960-1969]}”, etc.
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Table 2.1: Z
EI QI

ID Name Gender Year of Birth
5 Alicia Freds Female 1942
31 Natasha Markhov Female 1941
28 Alex Long Female 1952
3 Alice Brown Female 1955
29 Britney Goldman Female 1956
18 Jane Doe Female 1961
7 Marie Kirkpatriek Female 1966
21 Kathy Last Female 1966
19 Nina Brown Female 1968
11 Beverly McCulsky Female 1964
24 Alexandra Knight Female 1974
6 Gill Stringer Female 1975
13 Freda Shields Female 1975
17 Lillian Barley Female 1978
8 Leslie Hall Female 1987
30 Lisa Marie Female 1988
27 Almond Zipf Male 1954
4 Hercules Green Male 1959
1 John Smith Male 1959
12 Douglas Henry Male 1959
15 Joe Doe Male 1961
2 Alan Smith Male 1962
14 Fred Thompson Male 1967
22 Deitmar Plank Male 1967
26 Anderson Heft Male 1968
10 Albert Blackwell Male 1978
20 William Cooper Male 1973
23 Anderson Hoyt Male 1971
9 Bill Nash Male 1975
16 Mark Fractus Male 1974

Table 2.2: X
EI QI SA

ID Name Gender Year of Birth Test Result
5 Alicia Freds Female 1942 - ve
3 Alice Brown Female 1955 - ve
11 Beverly McCulsky Female 1964 - ve
7 Marie Kirkpatrick Female 1966 Zero
13 Freda Shields Female 1975 - ve
6 Gill Stringer Female 1975 - ve
8 Leslie Hall Female 1987 - ve
4 Hercules Green Male 1959 - ve
12 Douglas Henry Male 1959 + ve
1 John Smith Male 1959 + ve
2 Alan Smith Male 1962 - ve
14 Fred Thompson Male 1967 - ve
9 Bill Nash Male 1975 - ve
10 Albert Blackwell Male 1978 - ve

Table 2.3: Y
QI SA

ID Gender Decade of Birth Test Result
13 Female 1970-1979 -ve
6 Female 1970-1979 -ve
11 Female 1960-1969 -ve
7 Female 1960-1969 Zero
12 Male 1950-1959 +ve
1 Male 1950-1959 +ve
4 Male 1950-1959 -ve
2 Male 1960-1969 -ve
14 Male 1960-1969 -ve
9 Male 1970-1979 -ve
10 Male 1970-1979 -ve
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For the database Z, we consider the Equivalence Class = {Gender, Year of Birth}.
We have:

� for j = 1, {Female, 1942}, the equivalence class is unique in the population data,
thus we have f1(Z) = 1;

� for j = 2, {Female, 1941}, the equivalence class is unique in the population data,
thus we have f2(Z) = 1;

� similarly, for j = 3 to 25, except for 7, 11, 16 and 19, we also have fj(Z) = 1;

� 21 out of 25 equivalence class are sample unique, thus

PUE(Z) =
21

25
.

This number is high, close to 1. This is concerning from the point of view of privacy
and some anonymization is needed.

Further, we consider the sampled dataset X. Here, we have the same Equivalence Classes
as for Z.

� for j = 1, the equivalence class {Female, 1942} is unique in the sample data, thus
f1(X) = 1;

� similarly, we have fj(X) = 1 for j = 1, 2, 3, 4, 6, 8, 9, 10, 11;

� for j = 5 {Female 1975}, there are two samples for this equivalence class, f5(X) = 2;

� for j = 7 {Male 1959}, there are three samples for this equivalence class, f7(X) = 3;

� hence,

PUE(X) =
11

13
.

The sampled data has almost the same level of privacy as the external data Z.

Now, we consider the anonymized database Y . Here, Equivalence Class = {Gender,
Range for Year of Birth}.

� for j = 1 and {Female, [1970-1979]}, there are 2 data in the sample that have the
same equivalence class, thus we have f1(Y ) = 2;

� for j = 2 and {Female, [1960-1969]}, there are 2 data in the sample that have the
same equivalence class, thus we have f2(Y ) = 2;

� Similarly, f3(Y ) = 3, f4(Y ) = 2 and f5(Y ) = 2.

None of the data in the sample is unique in the sample. Hence, the expression in (2.1)
is zero. It is an indication that some level of privacy was achieved. □
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2.1.2 Relative frequency of unique entries

Once we calculate the number of unique entries, we can relate unique entries between
the population and the sampled databases. We will consider the following two scenarios.

Problem setup:

� Scenario 1:

– The identification dataset Z is given.

– The sample dataset X is given.

� Scenario 2:

– The sample dataset X is given.

– The population dataset is not given. Thus, we need to estimate the number
of sample that is unique in the population.

We note that this method requires that the equivalence classes are the same for the
databases being compared. For example, dataset X and dataset Y cannot be compared
because they have different equivalence classes.

Definition 2.1.3 (Relative Frequency of Unique Entries). Consider datasets Q1, Q2 of
size N1, N2, indexed by Uj = {1, . . . , Nj}, j = 1, 2, respectively, with the same equivalence
classes, denoted as [1], . . . , [J ]. We define

RFUE(Q2 | Q1) :=

∑J
j=1 I {fj(Q1) = 1, fj(Q2) = 1}∑J

j=1 I {fj(Q1) = 1}
.

The above expression is easy to compute when Q1 = X and Q2 = Z are given. That
is, we compare the sampled database with the population. If the population database is
not given, the aforementioned probability can be approximated using the Bayes Rule:

R̂FUE(Z | X) =
p̂1 · P (fj(X) = 1 | fj(Z) = 1)∑
all i p̂i · P (fj(X) = i | fj(Z) = i)

,

where p̂i is the estimated proportion of equivalence classes of size i in the population
and P (fj(X) = i | fj(Z) = i), the probability that an equivalence class [j] in the sample
has size i, given that it has the same size in the population, can be assumed to follow
hypergeometric distribution for all i’s. That is,

P (fj(X) = i | fj(Z) = i) =

(
i
i

)(
N−i
n−i

)(
N
n

) , j = 1, . . . , J ,

where N is the size of the original population and n the size of the sample.
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Example 2.1.4. We continue with data from Example 2.1.2.

� We assume that Z is not given, We first calculate p̂j and we estimate R̂FUE based
on the sampled database X.

– among 11 equivalence classes ({Gender, DOB}), we have 9 sample unique
equivalence classes. Hence, p̂1 =

9
11
;

– we have 1 equivalence class of size 2: p̂2 =
1
11
;

– and we have 1 equivalence class of size 3: p̂3 =
1
11
.

� We now use hyper geometric distribution to estimate P (fj(X) = i | fj(Y ) = i) for
each i:

– for i = 1 we have P (fj(X) = 1 | fj(Y ) = 1) =
(11)(

31−1
14−1)

(3114)
= 0.4516;

– for i = 2 we have P (fj(X) = 2 | fj(Y ) = 2) = 0.196;

– and i = 3 we have P (fj(X) = 3 | fj(Y ) = 3) = 0.081.

� Therefore, our estimated quantity is

0.818× 0.4516

0.818× 0.4516 + 0.091× 0.196 + 0.091× 0.081
= 0.9361 .

What does it mean? If we see an a unique record in our sample, we are 93% sure that this
record is also unique in the population. Thus, the sampled database has little privacy
and has to be anonymized. □

2.2 Measuring disclosure risk via k-anonymity

In Section 2.1 we introduced some measures that tell us how private is our database.
These measures were primarily applied to the population and sampled databases, Z and
X. If there is not enough privacy, we need to perform some anonymization. The simplest
approach is grouping and generalization with the associated measure of disclosure risk
called k anonymity. The term k-anonymity was first introduced by Pierangela Samarati
and Latanya Sweeney in the paper published in 1998 ([27]), although the concept dates
to a 1986 paper by Tore Dalenius; [6].

Definition 2.2.1 (k-anonymity). A database satisfies k-anonymity if each equivalence
class of Quasi-Identifiers consist of at least k units.

In principle, k-anonymity should guarantee that the chance of re-identification is at
most 1/k. However, if we possess less information (e.g., we do not know whether the
individual is in the dataset), the chance of re-identification is lower. Conversely, if we
have additional information (e.g., knowledge of certain quasi-identifiers or demographic
details about the individual), the chance of re-identification can increase.
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Problem setup: We assume the attacker is applying the homogeneity attack. The
attacker has no information about data distribution and only has access to two datasets:

� The dataset X of size n. It contains Explicit Identifiers (EI), Quasi-Identifiers
(QI) and Sensitive Attributes (SA). The entries in the database are denoted by
X1, . . . , Xn.

� The size of the anonymized dataset Y ,m, may not be equal to n. It is obtained from
X via k-anonymization. Generalization and suppression are typically employed
to achieve k-anonymity. Generalization reduces the detail of quasi-identifiers by
grouping specific values into broader categories, making records less distinct and
harder to trace to individuals. Suppression involves removing data by deleting spe-
cific entries or entire attributes that are too identifying or insufficiently generalized.
The entries of the database are denoted by Y1, . . . , Ym. This dataset is available to
the attacker.

� We will denote by [j], j = 1, . . . , J , the equivalence classes determined by the
anonymized dataset.

� To apply k-anonymization algorithm the equivalence class is determined by original
data. To calculate disclosure risk, equivalence class is determined by anonymized
dataset.

� If we want to calculate the probability of disclosure we need to consider an external
or identification dataset Z. In this context, we are considering the original dataset
X with sensitive attributes removed, meaning we know exactly which individuals
are in the dataset. If a different external dataset Z is used, the probability of
re-identification will differ.

Example 2.2.2. We continue with Example 2.1.2. Recall that

� The database X contains n = 14 people with their names (EIs), gender and date
of birth, DOB, (QIs) as well as medical test results (SA).

� The dataset Y has been obtained from X via 2-anonymization. The names are
removed, the gender is kept, while the DOB is replaced with a range of dates to
achieve 2-anonymity. The test results are kept.

� We have J = 5 equivalence classes that correspond to ”Male, [1950-1959]”, ”Male,
[1960-1969]” etc.

We consider the 2-anonymized database Y . We note that in this example above there
is 2-anonymity achieved with respect to Gender and DOB, but not with respect to Test
Result. Indeed, if we know that Hercules Green is in the anonymized database (we know
his range of DOB), then the chance of guessing his Test Result is 1/2. However, if we know
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Table 2.4: Table Y
QI SA

ID Gender Decade of Birth Test Result
13 Female 1970-1979 -ve
6 Female 1970-1979 -ve
11 Female 1960-1969 -ve
7 Female 1960-1969 Zero
12 Male 1950-1959 +ve
1 Male 1950-1959 +ve
4 Male 1950-1959 -ve
2 Male 1960-1969 -ve
14 Male 1960-1969 -ve
9 Male 1970-1979 -ve
10 Male 1970-1979 -ve

that Freda Shields is in the database (again, we know her DOB), then we automatically
know what is her Test Result. We have attribute disclosure for Freda Shields! In other
words, this example shows that k-anonymity measures identity disclosure, not
attribution disclosure. Even though we know the sensitive attribute for the individual,
the probability of knowing that a particular row belongs to the individual is still 1/k.
For example, the probability of knowing Freda Shields’s ID is still 1/2. □

To illustrate further that k-anonymity does not deal with the attribution disclosure,
we consider the following example.

Example 2.2.3. Assume that X contains the names, the gender, the DOB and the
income (SA) of all graduate students in the Department of Mathematics and Statistics,
uOttawa and Y is obtained via k-anonymization as in the previous example. In particu-
lar, we have 100 graduate students, and one equivalence class will be of the form ”Male,
born in 1995” and will likely consist of several students. So, from the technical point
of view, the dataset Y will be e.g. 5-anonymized. However, it is almost certain that
all the students in this equivalence class will have the same income. Hence, even after
k-anonymization we did not achieve anything from the point of view of data privacy with
respect to the income. □

In Example 2.2.2, we assumed that the attacker knows that Alan Smith is in the
original database X. It is possible instead, that the attacker knows only that Alan
Smith is in a bigger dataset Z, while X is obtained as a subset of Z. Then, as before,
Y is obtained via k-anonymization of X. The attacker is then not sure if Alan Smith is
in the released database Y . Hence, re-identification probability might be much smaller
than 1/k. This is addressed below, based on [9].

Problem Setup: We have three datasets:

� The identification dataset Z of size N . It is treated as an external file or
population data, indexed by U = {1, . . . , N}. It contains Explicit Identifiers (EIs)

14



and Quasi-Identifiers (QIs), but does not contain Sensitive Attributes. The entries
of the database are denoted by Z1, . . . , ZN . This dataset is public.

� The dataset X of size n (where n ≤ N). It is treated as sample or original data,
indexed by S = {1, . . . , n}. It contains EIs, QIs, and Sensitive Attributes. Al-
though X is treated as a sample from Z, formally, records in X cannot be obtained
by sampling records from Z because the latter is missing the target variables. The
entries of the database are denoted by X1, . . . , Xn, with the idea being to sample
individual IDs from the population and obtain their QIs and sensitive attributes.

� The anonymized dataset Y of size m (which may not equal n). It is obtained
from X via an anonymization mechanism, such as suppression or generalization,
to achieve k-anonymity. It is also treated as ”released data,” indexed by S ′ ⊆ S.
The entries of the database are denoted by Yi, i ∈ S ′. This dataset is available to
the attacker.

Example 2.2.4. This example is based on [9]; see Example 2.2.2. In this example,
an intruder has access to the identification database (external file) denoted by Z. The
intruder then attempts re-identification by matching an arbitrary record in Z against
the records in the published database Y on year of birth and gender. In our example,
once an arbitrary individual is re-identified, the intruder will have that individual’s ID
number in the anonymized data and hence its test result. The database Y is obtained
through 2-anonymization process from the original database X.

For this example,

� The dataset Z consists of 31 people and contains their names, gender and DOB.

� The database X contains n = 14 people with their names, gender and date of birth
(EIs and QIs) as well as medical test results (SA).

� The dataset Y has been obtained from X via 2-anonymization. The names and
ID are removed, the gender is kept, while the DOB is replaced with a range of
dates. The test results are kept. The ID is kept in the example for demonstration
purpose.

� We have J = 5 equivalence classes that correspond to ”Male, [1950-1959]”, ”Male,
[1960-1969]” etc.

The main difference between the disclosure risk (identity disclosure or attribution disclo-
sure) in this setup and Example 2.2.2 is as follows: Example 2.2.2 assumes the attacker
knows the individual is in the original dataset, focusing on the anonymization process
only between X and the anonymized dataset Y . The setup of Example 2.2.4 considers
an additional dataset Z, representing a larger population, which introduces uncertainty
about whether an individual is actually included in X. □
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In summary,

� k-anonymity measures identity disclosure, not attribution disclosure.
The probability of correctly identifying an individual is at most 1

k
, assuming

that an adversary does not have access to additional external information that
could be used to narrow down the individual’s identity further.

� As the value of k increases, each individual’s data becomes hidden among a
larger group of people with similar quasi-identifier attributes. This increase in
k directly enhances privacy by reducing the likelihood of re-identification based
on these attributes.

2.3 Beyond k-anonymity: ℓ-diversity

ℓ-diversity. This concept was introduced in [19]. The ℓ-diversity is supposed to address
the limitations of k-anonymity mentioned in the previous section. This approach not
only protects against identity disclosure, but also against attribution disclo-
sure. This is achieved by ensuring that each equivalence class in the dataset contains a
diverse set of sensitive attributes, which helps prevent any potential attribute disclosure.
The number ℓ can be interpreted as the minimum number of distinct, well-represented
sensitive attribute values required within each equivalence class to rule out certain infer-
ences about an individual’s attributes.

ℓ-diversity is a measure of attribution disclosure which is formally defined as:

Definition 2.3.1 (ℓ-diversity). An equivalence class is said to have ℓ-diversity if there
are at least ℓ well-represented values for the sensitive attribute. The table is said to have
ℓ-diversity if every equivalence class of the table has ℓ-diversity.

Note that ℓ-diversity is similar in concept to k-anonymity but targets a different
aspect of privacy. While k-anonymity focuses on the indistinguishability of individuals
based on Quasi-Identifiers, ℓ-diversity ensures diversity in Sensitive Attributes within
these groups. This distinction is crucial for preventing attribute-based inferences.

Problem Setup:

� To calculate the disclosure risk measure, we only need the released dataset, either
X or Y , depending on which dataset has been made available to the public or
potential attackers.

Example 2.3.2. Assume the data holder releases the dataset Y from Example 2.2.2.
For each equivalence class we have:
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� Female, 1970-1979: Distinct Test Results = {-ve} → ℓ-diversity = 1,

� Female, 1960-1969: Distinct Test Results = {-ve, Zero} → ℓ-diversity = 2,

� Male, 1950-1959: Distinct Test Results = {+ve, -ve} → ℓ-diversity = 2,

� Male, 1960-1969: Distinct Test Results = {-ve} → ℓ-diversity = 1,

� Male, 1970-1979: Distinct Test Results = {-ve} → ℓ-diversity = 1.

The overall ℓ-diversity of the dataset is determined by the lowest diversity value in any
equivalence class, which is 1. This indicates that the dataset does not adequately protect
against attribute disclosure for most equivalence classes. We mentioned this already
before.
In order to achieve ℓ-diversity, one can create additional records. For example, consider
the following record.

11 Female 1960-1969 -ve
11′ Female 1960-1969 -ve
7 Female 1960-1969 Zero

In the equivalence class Female, 1960-1969, there are two possible outcomes (-ve
and Zero). Without additional information, an attacker would guess -ve or Zero with
equal probability, so the probability of correctly guessing the sensitive attribute for an
individual from this equivalence class will be 1

2
. However, when the sensitive attribute is

not unique, the probabilistic interpretation of ℓ-diversity is lost. Assuming there are three
people in the equivalence class Female, 1960-1969, there are still two possible outcomes
(-ve and Zero), that is: The probability of correct guessing attributes for individual with
ID 11 and 11′ will be 2/3 instead of 1/2. □

Example 2.3.3. In some extreme cases, ℓ-diversity may fail to adequately protect pri-
vacy. For example, consider an equivalence class where there are 99 records with a
positive result and only 1 record with a negative result. In this scenario, ℓ-diversity
does not guarantee privacy for the individual associated with the negative result. Fur-
thermore, it also cannot handle the continuous target and key variable. For example,
assume we have another Sensitive Attribute, the weight: Here, the weights 55.1, 55.3,

11 Female 1960-1969 -ve 55.1
11′ Female 1960-1969 -ve 55.3
7 Female 1960-1969 Zero 55.4

and 55.4 differ slightly only, the disclosure metric would still return 3-diversity because
each weight is considered distinct. This can give a misleading measure of privacy pro-
tection, as the slight variations in weight can not mask individual attribute effectively.
□
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In summary,

� ℓ-diversity measures both identity and attribution disclosure by en-
suring that each equivalence class contains at least ℓ well-represented, distinct
values for sensitive attributes.

� As ℓ increases, the diversity within each equivalence class also grows, making
it more challenging for an attacker to make accurate assumptions or inferences
about any individual’s sensitive attributes. Consequently, a higher ℓ value
enhances privacy protection.

2.4 Beyond k-anonymity: t-closeness

t-closeness. This concept was introduced in [17]. t-closeness is a further generalization
of k-anonymity and ℓ-diversity. It takes into account the distribution of the Sensitive
Attribute values.

Definition 2.4.1 (t-closeness). An equivalence class is said to have t-closeness if the
distance between the distribution of a sensitive attribute in this class and the distribution
of the attribute across the entire table does not exceed a threshold t. Mathematically, it
is defined as:

d{Pj, Q} ≤ t ∀ j;

where Pj is the distribution within the equivalence class [j], Q is the distribution of the
released data, and d represents a distance function between probability distributions.

A table is said to have t-closeness if all its equivalence classes achieve t-closeness. This
measure assesses the similarity between the distribution of a sensitive attribute within
any given equivalence class and the overall distribution in the dataset. A small distance
indicates that the sensitive attribute’s distribution in the class does not significantly
differ from its overall distribution in the dataset, thereby making it difficult to predict
the sensitive value based on non-sensitive attributes within any given class.

Example 2.4.2. Continuing with Example 2.2.2, we show calculation of the t-closeness
for each equivalence class by determining the empirical distribution of the Sensitive At-
tribute, the test result, from the released data. We observed 2 positive, 8 negative, and
1 zero result in dataset Y . Thus, the probabilities of test result for the dataset are: 2

11

for positive, 8
11

for negative and 1
11

for zero.

For the equivalence class of Males from 1950-1959, we observed:
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� 2 Positive and 1 Negative test result, giving probabilities of 2
3
for Positive, 1

3
for

Negative and 0 for Zero.

The KL-divergence for this equivalence class, using the overall distribution, is calculated
as:

dKL =
2

3
log

(
2/3

2/11

)
+

1

3
log

(
1/3

8/11

)
= 0.606.

Similarly, for other equivalence classes, we calculate:

� For Males 1960-1969, we have only negative results: dKL = 1 log
(

1
8/11

)
= 0.318.

� For Males 1970-1979, we have only negative results: dKL = 1 log
(

1
8/11

)
= 0.318.

� For Females 1950-1959, we have only negative results: dKL = 1 log
(

1
8/11

)
= 0.318.

� For Females 1960-1969, we have one negative results and one zero result: dKL =
1
2
log
(

1/2
8/11

)
+ 1

2
log
(

1/2
1/11

)
= 0.752.

Thus, we choose the largest DKL and the released database Y has t = 0.752 closeness.
What does it mean? We cannot really interpret this number on its own; however, we can
consider another database and calculate its t-closeness. This will give us a comparison
of the databases in terms of privacy.
Now, we modify the dataset Y as follows. Intuitively, this table is more private. We

Table 2.5: Table Y
QI SA

ID Gender Decade of Birth Test Result
13 Female 1960-1979 -ve
6 Female 1960-1979 -ve
11 Female 1960-1979 -ve
7 Female 1960-1979 +ve
12 Male 1950-1979 +ve
1 Male 1950-1979 +ve
4 Male 1950-1979 -ve
2 Male 1950-1979 -ve
14 Male 1950-1979 -ve
9 Male 1950-1979 -ve
10 Male 1950-1979 -ve

recalculated the KL-divergence for the new equivalence classes to determine the new t-
closeness. The overall distribution of test results remains the same: +ve = 2

11
, −ve = 8

11
,

Zero = 1
11
.

� For the combined male class, we have dKL = 0.116.
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� For the combined female class, we have dKL = 0.276.

Thus, we choose the largest DKL and the released database Y has t = 0.276 closeness.
Notice that compared to Table 2.4, the value of t is smaller, indicating better privacy.
□

We note that t-closeness equal to zero means ”perfect privacy” - all equivalence classes
follow the same distribution as the population distribution. A larger t allows for a greater
discrepancy between the attribute distributions in each equivalence class and the entire
dataset. Thus, a smaller value of t improves privacy by ensuring that the sensitive
attributes of any group cannot be distinguished significantly from those of the overall
population.

2.5 Differential privacy

This concept was introduced in [7] and became extremely popular in the last few years.
It has a completely different interpretation, compared to the privacy measures discussed
above. Differential privacy ensures that the addition or removal of an individual’s data
does not significantly change the results of a statistics. The goal is to protect the privacy
of individual data while allowing the analysis of aggregated data.

In what follows, we denote:

� D and D′ as any two datasets that differ by at most one element, often referred
to as ”neighboring datasets.” This difference could be the addition or removal of a
single record (an individual’s data).

� Epsilon (ϵ) as a non-negative real number that quantifies the level of privacy pro-
tection provided by the mechanism. Smaller values of ϵ indicate stronger privacy
guarantees. It essentially controls the permissible variation in output probabilities
when comparing two neighboring datasets.

� Mechanism (M) as the randomized mechanism or algorithm used. This mechanism
takes a data set as input and outputs a result that has been added to the noise or
has been transformed in some other way to protect privacy.

� Output set (S) as any measurable subset of possible outputs of the mechanism M.
These sets contain all possible outcomes that the mechanism can produce.

� The function f with values in Rk is a query function, which is used to calculate
specific information or statistics from the dataset, such as sums, averages, or more
complex outputs.
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� ∆f as the sensitivity of the function f , defined as:

∆f = sup
D,D′

∥f(D)− f(D′)∥,

where ∥ · ∥ is a norm on Rk. Sensitivity quantifies the maximum difference in the
output of a function when applied to two neighboring datasets. The amount of
noise added is directly proportional to the sensitivity, ensuring that we understand
the worst-case impact that a single individual’s data can have on the function’s
output, thus providing a bound for the likelihood ratio.

Definition 2.5.1. A randomization mechanism M satisfies ϵ-differential privacy if for
all datasets D and D′ and for all measurable output sets S, the following inequality holds:

sup
S

∣∣∣∣log( P[M(D) ∈ S]

P[M(D′) ∈ S]

)∣∣∣∣ ≤ ϵ.

The logarithm converts the probability ratio into a quantifiable measure of informa-
tion in information theory, typically measured in ”bits”. This measure helps to assess
how much information about an individual is revealed by the output of a randomized
mechanism. When taking the logarithm of a probability ratio, the result can be inter-
preted as the amount of information gained or lost, making it easier to assess privacy
risks. The definition of differential privacy ensures that the likelihood ratio is always
bounded between eϵ and e−ϵ, indicating that the maximum change in information, due
to the presence or absence of a single individual’s data, is tightly controlled.

The Laplace mechanism is a fundamental tool for achieving differential privacy using
an additive noise mechanism. It adds noise to the output of a function to protect indi-
vidual privacy. The noise comes from the Laplace distribution, which is characterized
by a scale parameter determined by the desired level of privacy and the sensitivity of
the function f . The Laplace mechanism is a postprocessing algorithm, meaning that any
function applied to the output of a differentially private mechanism remains differentially
private.

Theorem 2.5.2. Let D be a database and let f be a real-valued query. Define the Laplace
mechanism ML as

ML(D) = f(D) + Lap(0, λ)

where Lap(0, λ) is the Laplace distribution with mean 0 and scale parameter λ = ∆f
ϵ
.

Then, the Laplace mechanism satisfies differential privacy.

Proof. In what follows, we will write g(x;Y ) for the density of the random variable Y at
the point x. Let D′ be a neighbouring database. We have

g(x;ML(D))

g(x,ML(D′))
=

exp
(
− |x−f(D)|

λ

)
exp

(
− |x−f(D′)|

λ

) = exp

(
|x− f(D′)| − |x− f(D)|

λ

)
,
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by the triangle inequality:

|x− f(D′)| − |x− f(D)| ≤ |f(D)− f(D′)|.

Since |f(D)− f(D′)| ≤ ∆f , we have:

g(x;ML(D))

g(x,ML(D′))
≤ exp

(
∆f

λ

)
,

Given that λ = ∆f
ϵ
, the expression simplifies to:

g(x;ML(D))

g(x,ML(D′))
≤ exp(ϵ).

Therefore, the Laplace mechanism satisfies ϵ-differential privacy, as the ratio of proba-
bilities is bounded by eϵ.

In summary, lower values of ϵ imply more privacy protections at the cost of adding
more noise to the data, which can affect the data’s utility for detailed analysis.

Local Differential Privacy (LDP) modifies the traditional concept of differential pri-
vacy by applying privacy-preserving randomization at the individual data source level.

Definition 2.5.3. A local randomization mechanism M satisfies ϵ-local differential pri-
vacy if, for any data entries x and x′, and for all measurable output sets S, the inequality
below holds:

sup
S

∣∣∣∣log( P[M(x) ∈ S]

P[M(x′) ∈ S]

)∣∣∣∣ ≤ ϵ.

Notice that local differential privacy is a sqecial case of differential privacy where
the qurey function f(D) is defined as a identity function applied to the individual’s data
point. In LDP, when we refer to neighboring datasets D and D′, we consider two different
possible values that an individual’s data point can take, x and x′.

Theorem 2.5.4. Let ML be a mechanism defined by

ML(x) = x+ Lap

(
0,

∆Id

ϵ

)
,

where ∆Id is the sensitivity of the identity query, representing the maximum difference
between two arbitrary data points. Then, ML satisfies ϵ-local differential privacy.

Proof. For any two data points x and x′ and output s, the probability ratio is given by:

g(s;ML(x))

g(s;ML(x′))
= exp

(
|s− x′| − |s− x|

1/ϵ

)
.
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Using the triangle inequality, we have:

|s− x′| − |s− x| ≤ |x′ − x|.

Given that the maximum change (sensitivity) between any two data points x and x′ is
∆Id, the exponent in the probability ratio can at most be ϵ, thus:

g(s;ML(x))

g(s;ML(x′))
≤ exp(ϵ).

Definition 2.5.5. A randomization mechanism M satisfies (ϵ, δ)-differential privacy if
for all datasets D and D′ that differ on at most one element, and for all output subsets
S, the following holds:

P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ

(ϵ, δ)-Differential Privacy: Unlike ϵ-differential privacy, (ϵ, δ)-differential privacy in-
troduces a small probability δ, which accounts for the event that ϵ-differential privacy
may not be strictly held.

Theorem 2.5.6. Let D be a database. Let f : Rn → Rk. The Gaussian mechanism is
defined as

MG(D) = f(D) + (Y1, . . . , Yk),

where the Yi are independent N (0, σ2) random variables with σ2 = 2 ln(1.25
δ
)∆

2

ϵ2
.

Proof. Without loss of generality, assume that k = 1. Define the privacy loss L(x) as

L(x) = log

(
g(x;MG(D))

g(x;MG(D′))

)
.

Let f(D′) = f(D) + v. Note that v depends on the databases D and D′, however,
|v| < ∆f , the sensivity of the query f . Then

L(x) = log

exp
(
− (x−f(D′))2

2σ2

)
exp

(
− (x−f(D))2

2σ2

)


=
−(x− f(D)− v)2 + (x− f(D))2

2σ2

=
2(x− f(D))v − v2

2σ2

=
2ηv − v2

2σ2
,
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where η = x− f(D). Here, x is an outcome of the randomization algorithm. Thus, η is
a realization of the normal random variable Y1. Then

P
(
Y1v

σ2
− v2

2σ2
≥ ϵ

)
= P

(
Y1v

σ2
≥ ϵ+

v2

2σ2

)
.

Define Z = Y1/σ, therefore Z ∼ N (0, 1), hence we need to evaluate

P

(
Z ≥

ϵσ − v2

2σ

v

)
.

Recall that

σ =
∆f

ϵ

√
2 ln

(
1.25

δ

)
, |v| ≤ ∆f.

Then

P

(
Z ≥

ϵσ − v2

2σ

v

)
≤ P

Z ≥

√
2 ln

(
1.25

δ

)
−

√
2 ln

(
1.25
δ

)
2


≤ P

Z ≥

√
2 ln

(
1.25
δ

)
2

 .

Given the properties of the Gaussian distribution:

P(Z ≥ z) ≈ 1− Φ(z).

Thus:

P

(
Z ≥

ϵσ − v2

2σ

v

)
= P

Z ≥

√
2 ln

(
1.25
δ

)
2

 ≤ δ.

Thus the Gaussian mechanism satisfies (ϵ, δ)-differential privacy.

2.6 Correct attribution probability (CAP)

CAP, or Correct Attribution Probability, serves as a metric to measure the risk of dis-
closing sensitive information or target value through an inference or linking attack, as-
suming that some values in real data are public knowledge. An attacker might combine
this known information with released (often anonymized) data, to make a prediction or
guess about other sensitive values. CAP metric evaluates the difficulty an attacker faces
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in correctly guessing the sensitive information.

We start with the basic definition of CAP scores based on [12] and [32]; see Sec-
tion 2.6.2. We provide several examples and the key finding is that population-level
CAP scores, as defined in the aforementioned papers, may not be interpretable. In
particular, these scores cannot be interpreted as probabilities (as originally intended in
those papers). Furthermore, the traditional CAP is not adequate for continuous data.
To address these issues, we propose modified CAP scores based on equivalence classes
(Section 2.6.3). This way we achieve two goals: we are able to handle continuous data
while preserving CAP scores interpretation in terms of probability measures.

Furthermore, we analysed a connection between anonymization through noise addi-
tion (as in differential privacy) and CAP calculation. In principle, the more noise, the
more privacy, and this should an effect on CAP calculation. We will illustrate that this
connection is not so obvious; see Section 2.6.6. Likewise, we analyse how the choice of
equivalence classes affects calculations of CAP scores, and hence their interpretations
in terms of privacy. We recognize similar issues as bandwidth choice in nonparametric
estimation. See Section 2.6.7.

In summary, the original CAP scores proposed in the literature have a limited appli-
cability and may lack interpretation in the context of privacy. We proposed CAP scores
based on equivalence classes. This proposal solves some problems, but at the same time
introduces another set of issues.

2.6.1 Set up and terminology

� We have two datasets: the original and the anonymized one.

� Both datasets include key (nonsensitive) variables and target (sensitive) variables.
In the terminology introduced before, key variables correspond to Quasi-Identifiers,
while target variables correspond to Sensitive Attributes.

� When the anonymized key matches the original key, we will talk about the match.

� When (anonymized key, anonymized target) is matched with (original key, original
target), we will discuss the correct match.

� KO,j is the key value for the jth individual in the original dataset.

� Ko is a random variable that represents the key values of individuals in the original
dataset.

� TO,j is the target value for the jth individual in the original dataset.

� To is a random variable that represents the target values of individuals in the
original dataset.
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� KA,j is the key value for the jth individual in the anonymized dataset.

� Ka is a random variable that represents the key values of individuals in the anonymized
dataset.

� TA,j is the target value for the jth individual in the anonymized dataset.

� Ta is a random variable that represents the target values of individuals in the
anonymized dataset.

� nO is the number of observations in the original dataset.

� nA is the number of observations in the anonymized dataset.

� IdO,j is the identifier for the jth individual in the original database, while IdA,i is
just an indicator for an ith entry in the anonymized dataset. It is important to
note that IdA,i does not necessarily refer to the identifier of this individual in the
original data set.

� When the anonymized dataset is released, the attackers have an information about
the pair of variables Ta, Ka and we assume that the attacker also has an access to
an external dataset that contains both the variable Ko and explicit identifiers EI.

� It is also assumed that the keys Ko and the explicit identifier pair (EI) in the
external data set are exactly the same as the pairs in the original dataset; note
that this assumption will not always hold in practice.

2.6.2 Original CAP

There are two types of scores that we can calculate. The first is the record level score,
which offers information about an individual’s or equivalence class risk of disclosure. The
second is the population level score, which provides an overall measure of risk for the
entire dataset.

CAP record level score based on the original dataset:

CAPO,j =

∑nO

i=1 1{TO,i = TO,j, KO,i = KO,j}∑nO

i=1 1{KO,i = KO,j}
, j = 1, . . . , nO . (2.2)

This formula, in principle, approximates:

P(To = TO,j | Ko = KO,j) ,

the conditional probability that a randomly selected individual from the original database
has the particular attribute (TO,j, KO,j), given the randomly selected individual from
the original has the particular key attribute KO,j. This formula does not compare the
anonymized dataset with the original one; it serves as a baseline.
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CAP population level score for the original dataset:

CAPO,score =
1

nO

nO∑
j=1

CAPO,j . (2.3)

This score does not have a proper interpretation, which will be explained later.

CAP records level score based for anonymized dataset:

CAPA,j =

∑nA

i=1 1{TA,i = TO,j, KA,i = KO,j}∑nA

i=1 1{KA,i = KO,j}
, j = 1, . . . , nA . (2.4)

This formula, in principle, is an approximation to

P(Ta = TO,j | Ka = KO,j) ,

the probability that a randomly selected individual from the anonymized database has
the particular attribute (TO,j, KO,j) given that this individual has the particular key at-
tribute KO,j.

Intuitively, the bigger value of the CAP, the more similar the original and
the anonymized database are, the less privacy.

CAP dataset score for anonymized dataset:

CAPA,score =
1

nA

nA∑
j=1

CAPA,j . (2.5)

In principle, if the CAPA,score is smaller than CAPO,score then the anonymized database
has some level of privacy. However, does not always has such interpretation, as we will
explain later.

Example 2.6.1. In this example, we demonstrate the calculation for the scores men-
tioned above: the dataset contains one key variable (gender) and one target variable (test
result), both of which are categorical variables. We present this example to illustrate the
calculation steps.

� The original database X contains nO = 4 records;

� j correspond to the person in original data with IdO,j;

� i correspond to the person in anonymized data with IdA,i;

� KO,j can take value (M,F );
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Table 2.6: X
IdO original key, Gender original target, Test Result
1 M P
2 M P
3 F P
4 F N

Table 2.7: Z
IdO original key, Gender
1 M
2 M
3 F
4 F

Table 2.8: Y
IdA anonymized key, Gender anonymized target, Test Result
1 M P
2 F P
3 F N
4 F N

� TO,j can take value (P,N).

The data holder can see the original data X, Table 2.6, and Y is the anonymized
dataset. An adversary can see table Z, Table 2.7, and Y Table 2.8. Note that IdA does
not correspond to any explicit identifier (EI) in the original dataset; it is used here solely
for demonstration purposes.

Calculations for CAPO : We first provide calculation of CAPO,j, we use formula (2.2),
the jth individual score for original. Note that for CAPO,j individual score, we only need
original dataset for calculation:

� j = 1: To calculate the denominator of formula (2.2), here KO,1 = M and we have
two key entries in the original dataset that match M . To calculate the numerator
of formula (2.2), (KO,1, TO,1) = (M,P ) and we have two entries in the original
dataset that match this pair. Hence, CAPO,j=1 = 1. This number has the proper
interpretation: given that the original key is M , there is a 100% chance that the
original target will be P .

� Similarly, for j = 2, CAPO,j=2 = 1.

� j = 3: To calculate the denominator of formula (2.2), here KO,3 = F and we have
two key entries in the original dataset that match F . To calculate the numerator of
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formula (2.2), (KO,3, TO3) = (F, P ) and we have one entry in the original dataset
that matches this pair. Hence, CAPO,j=3 = 1/2. This number has the proper
interpretation: given that the original key is F , there is a 50% chance that the
original target will be P .

� Similarly, for j = 4, CAPO,j=4 = 1/2.

Calculations for CAPA: We can calculate CAPA,j, the j-th individual score for
anonymized data, using formula (2.4):

� j = 1: To calculate the denominator of formula (2.4), here KO,1 = M and we
have one key entry in the anonymized dataset that matches M . To calculate the
numerator of formula (2.4), (KO,1, TO,1) = (M,P ) and we have one entry in the
anonymized dataset that matches this pair. Hence, CAPA,j=1 = 1. This number
has the proper interpretation: given that the original key is M , there is a 100%
chance that the anonymized target will be P .

� Similarly, for j = 2, we have (KO,2, TO,2) = (M,P ), hence CAPA,j=2 = 1.

� j = 3: To calculate the denominator of formula (2.4), here KO,3 = F and we
have three key entries in the original dataset that match F . To calculate the
numerator of formula (2.4), (KO,3, TO,3) = (F, P ) and we have one entry in the
original dataset that matches this pair. Hence, CAPA,j=3 = 1/3. This number has
the proper interpretation: given that the original key is F , there is a 1/3 chance
that the original target will be P .

� j = 4: Here KO,4 = F and we have three key entries in the original dataset
that match F . To calculate the numerator of formula (2.4), (KO,4, TO,4) = (F,N)
and we have two entries in the original dataset that match this pair. Hence,
CAPA,j=4 = 2/3. This number has the proper interpretation: given that the
original key is F , there is a 2/3 chance that the original target is N .

So, the record level CAP scores have the proper interpretation of the conditional prob-
ability and give us some information about privacy. At the same time, both CAPO,score

and CAPA,score are equal to 3/4. Hence, we cannot here get any interpretation of
these scores in terms of privacy. □

Example 2.6.2. In this example, we show calculation of CAP scores in a multivariate
case. We extend the previous dataset, by adding another variable, age. We now have 2
key variable and 1 target variable, age is treated as the categorical variable. Notice that
the target and the key are both unique in the original dataset. We will calculate CAP
dataset scores, (2.3) and (2.5).
Similarly, only the data holder can see the original table X, Table 2.9. An adversary

will see table Z; Table 2.10 the original data with sensitive attributes removed, and Y
2.11 the anonymized dataset.
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Table 2.9: X
IdO original key1 (Age) original key2 (Gender) original target (Test Result)
1 18 M A
2 19 M B
3 20 M C
4 21 M D
5 18 F E
6 19 F F
7 20 F G
8 21 F H

Table 2.10: Z
IdO original key1 (Age) original key2 (Gender)
1 18 M
2 19 M
3 20 M
4 21 M
5 18 F
6 19 F
7 20 F
8 21 F

Table 2.11: Y
IdA anonymized key1 (Age) anonymized key2 (Gender) anonymized target (Result)
1 18-21 M A
2 18-21 M B
3 18-21 M C
4 18-21 M D
5 18-21 F E
6 18-21 F F
7 18-21 F G
8 18-21 F H
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� To create a database Y (Table 2.11), we consider all entries in X and then apply
4-anonymization with respect to gender and age.

� KO,j is the key value for the j-th individual in the original dataset. KO,j can take
values {(18,M), (19,M), . . .}.

� TO,j is the target value for the j-th individual in the original dataset. TO,j can take
values {A,B,C,D,E, F,G,H}.

To calculate CAPO,score, we use the formula (2.4). In what follows, j stands for the
j-th individual in the data. For example:

� For j = 1, CAPO,j = 1. Indeed, here KO,j = (18,M) and we have one key match
in the original dataset. Also, (TO,j, KO,j) = (18,M,A) and we have one pair in
the original dataset that matches the original pair.

� Similarly, CAPO,j = 1,∀j.

� Hence, using (2.3), CAPO,score = 1.

� Thus, the 1 value for the CAP score can be interpreted as a ”perfect match,” since
we are comparing the original dataset with itself.

To calculate CAPA,score, we use the formula (2.4). For example:

� CAPA,1 = 1/4. Indeed, here KO,j = (18,M) and we have four key matches in the
anonymized dataset. Also, (TO,j, KO,j) = (18,M,A) and we have one pair in the
anonymized dataset that matches the original pair.

� Similarly, CAPA,j = 1/4 ∀ j.

� Hence, using (2.5), CAPA,score = 1/4.

Hence, the CAP score for the anonymized data set is much lower than for the original
data set. In this example, the CAPA,score provides some interpretation in terms of privacy.
□

Issues with CAP scores

CAP dataset scores are easy to calculate, but often lack the proper interpretation (in
principle, the lower CAP score, the more privacy). Specifically, the scores of the CAP
dataset, calculated by averaging the sum of each CAP at record level, cannot be di-
rectly interpreted as probabilities. Indeed, the CAP score calculations CAPO,score =
1
nO

∑nO

j=1 CAPO,j are intended to represent the probability of accurate predictions based
on the matched keys between the original and anonymized datasets. However, if these
calculations do not consider equivalence classes, their interpretation as probabilities be-
comes incorrect.
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� In the provided example, both CAPO,j=1 and CAPO,j=2 attempt to measure the
conditional probability that an individual in the original dataset, identified by a
certain key, satisfies a target attribute. However, these are not isolated instances;
they encompass multiple occurrences within the same key equivalence class (the
same key, different targets).

� Interpreting these scores as distinct probabilities without recognizing that they
pertain to repeated occurrences within the same equivalence class leads to over-
counting of the probability.

� For a simple example, the probability P(To = TO,j), which expresses the likelihood
of observing the target value TO,j for any individual chosen at random from the
original dataset, is given by:

P(To = TO,j) =

∑nO

i=1 1{TO,i = TO,j}
nO

.

� The indicator sum:

I :=

nO∑
j=1

P(To = TO,j)

aggregates the probabilities for each distinct target value appearing in the dataset.
If I is the probability, it should be less than or equal to 1. However, due to mul-
tiplicity—where several entries share the same target value, I can exceed 1. This
overcount occurs because the sum treats repeated values within the same equiv-
alence class as independent probabilities. This miscalculation demonstrates that
simply adding each j without adjusting for equivalence classes loses the interpre-
tation of probability; thus, the equation of the CAP score

CAPO,score =
1

nO

nO∑
j=1

CAPO,j

cannot be interpreted as a probability.

This issue highlights the importance of considering the existence of equiv-
alence classes when calculating CAP scores. We will discuss it thoroughly in
Section 2.6.3.

Furthermore, the CAP score, as defined, has limitations when applied to continuous
data. Even a minor change in continuous data is captured by the CAP score as a
difference value, which can be misleading and underestimate the risk of disclosure.

Example 2.6.3. Consider the following original dataset: In this case, the CAP score for
the anonymized dataset would return 0 (indicating possibly the perfect privacy). This
result occurs because the CAP calculation treats any difference, no matter how small, as
significant. However, such minor differences in practice do not affect privacy. To address
this limitation, it is more practical to consider equivalence class methods for CAP. These
methods group similar continuous values into categories or bins. □
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Table 2.12: Original and Anonymized Datasets
IdO Original key (Height) Original target (Weight)
1 160 48
2 161 52
3 168 52
4 170 59

IdA Anonymized key (Height) Anonymized target (Weight)
1 160 48.01
2 161 52.01
3 168 52.01
4 170 59.01

2.6.3 Record-level equivalence classes CAP

We aim to address two primary challenges: first, multiplicity, which will be resolved
using equivalence classes, and second, handling of continuous data, also resolved through
a generalized definition of equivalence classes, as outlined below.

Problem Setup: The problem setup considers a common scenario in linkage attacks
where an attacker has potential access to two manipulated versions of an original dataset.
The two datasets typically involved are:

1. A dataset from which explicit identifiers (EI) have been removed, along with the
application of a possible randomization algorithm. This dataset, often treated as
the anonymized or released data, is assumed to be accessible to the public.

2. A dataset where sensitive attributes are removed, but explicit identifiers (EI) and
key variables are retained. This dataset is treated as external data and may be
available through other sources, providing additional information to the attacker.
While this is not the only possible scenario, considering this context is important
for interpreting the original CAP as a probability of prediction. Under this as-
sumption, we can also interpret the equation (2.8) below as the probability of a
correct prediction for a given target key equivalence class match.

Equivalence Classes:

� K[j1] represents the j1th equivalence class for the key variable, indexed by j1 ∈
1 . . . J1, where J1 indicates the total number of equivalence classes for the key
variable.

� T[j2] represents the j2th equivalence class for the target variable, indexed by j2 ∈
1 . . . J2, with J2 representing the total number of equivalence classes for the target
variable.
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It is assumed that the equivalence classes are the same for both original and anonymized
dataset. As such, in the notation, we omit the A and O subscript.

Equivalence classes can be intervals or single numbers, which extend the concept of
original CAP. Proper setup of these classes requires that TA,j, the target values in the
anonymized dataset, fall within the union of the target equivalence classes. Formally,
this can be represented as:

TA,j ∈
⋃
j2

T[j2].

Additionally, the intersection of different equivalence classes for both keys and targets
should be empty, ensuring that each class is mutually exclusive with each other:⋂

j1 ̸=j2

K[j1] ∩K[j2] = ∅ and
⋂

j1 ̸=j2

T[j1] ∩ T[j2] = ∅.

Linkage and Attack Prediction: The attacker typically employs a straightfor-
ward record linking technique, focusing on matching individuals from an external data
set to those in an anonymized data set. In this approach, the attacker starts with each
individual in the external dataset and attempts to find a corresponding match in the
anonymized dataset, then the attacker tries to predict the target attributes of individuals
from the external dataset based on the anonymized data.

� For a given [j1], [j2], a match is recognized when one or multiple individuals j from
the anonymized data satisfy KA,j ∈ K[j1], and there exists one or more KO,i within
K[j1]. Again, we assume the external dataset contains original key-target attribute
pairs Ko and To.

� The attacker’s prediction of the sensitive attributes T[j′] for the target value TO,i

of the matching unit would then be one or more values from T ′[j2], where T ′[j2] are
selected if for some j, TA,j ∈ T[j2]. If multiple T[j2] are selected, the probabilities of
choosing a specific T ′[j2] depend on the problem setup and the level of data access,
as explained later in Example 2.6.6.

� When TO,j is within the range of selected T ′[j2], it is considered as a correct match.

The equation (2.8) quantifies the probability that an attacker can correctly predict
the target value for individuals within a given key target equivalence class [j1], [j2]
given a match.

Formulas: Now, we propose the generalized CAP record level scores for both original
and anonymized dataset.

CAP individual score based on the original dataset:

CAPO,[j1],[j2] =

∑nO

i=1 1{TO,i ∈ T[j2], KO,i ∈ K[j2]}∑nO

i=1 1{KO,i ∈ K[j2]}
. (2.6)
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This formula represents the conditional probability that a randomly selected pair ”(orig-
inal target, original key)” belongs to the particular equivalence class, given that the
randomly selected ”original key” belongs to that equivalence class. That is,

P(To ∈ T[j2] | Ko ∈ K[j1]).

Assuming the data holder released the original data with the explicit identifiers (EI)
removed but without applying anonymization techniques, and considering the same ex-
ternal dataset mentioned in the problem setup, this formula estimates the probability
that an attacker can accurately predict the target value for individuals within the same
target equivalence class [j2], who are grouped within the same key equivalence class [j1].
CAPO,[j1],[j2] equals 1 when there is exactly one individual in each key equivalence class,
implying that for every match identified by an attacker, there is only one possible predic-
tion available, which is also a correct match. However, if there are multiple individuals
within the same key equivalence class who belong to different target equivalence classes,
the attacker’s prediction of the target class becomes random, depending on the distribu-
tion of target classes within that specific key equivalence class.

Our next goal is to introduce the CAP score for the anonymized data set. In the
spirit of (2.6), the natural proposal would be∑nA

i=1 1{TA,i ∈ T[j2], KA,i ∈ K[j1]}∑nA

i=1 1{KA,i ∈ K[j1]}
, (2.7)

∀ [j1] ∈ {1 . . . J1} s.t. ∃ KO,i ∈ K[j1].

This formula represents the conditional probability that a randomly selected pair:

(anonymized target, anonymized key)

belongs to a particular equivalence class, given that a randomly selected ”anonymized
key” belongs to that equivalence class. However, this formula does not involve original
data, which creates a problem in interpreting the probability of a correct prediction.
This issue will be demonstrated in Example 2.6.4.

CAP individual score based on the anonymized dataset:
Let [j1] be an equivalence class for the key variable such that there exist i, i′ such

that KO,i, KA,i′ ∈ K[j1]. Define then

CAPA,[j1],[j2] = 1{(KO,i, TO,i) ∈ (K[j1], T[j2]) for some i}
∑nA

i=1 1{TA,i ∈ T[j2], KA,i ∈ K[j1]}∑nA

i=1 1{KA,i ∈ K[j1]}
.

(2.8)
If there are no KO,i, KA,i′ that belong to K[j1], the CAP score above will not be defined.
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Since the attacker will ignore any equivalence class that does not make a match from
the external data (original with target removed), to calculate the CAP score, we only
consider a subset of j1 such that the equivalence class K[j1] is not empty in terms of both
external and anonymized data.
This formula represents the estimation of the conditional probability that a randomly
selected pair (anonymized target, anonymized key) belongs to the particular equivalence
class that also contains an original pair, given that a randomly selected anonymized key
belongs to the particular equivalence class that also contains an original key:

1{(Ko, To) ∈ (K[j1], T[j2])}P(Ta ∈ T[j2] | Ka ∈ K[j1])

This number has the proper interpretation: given that both the anonymized and original
target equivalence classes have attributes in K[j1], there is a CAPA,[j1],[j2] probability that
the anonymized pair will have an original value in T[j2].

Example 2.6.4. In this example, we revisit the scenario from Example 2.6.1 with a
modified data set to illustrate the issues with the initial CAP formula (2.7).

Table 2.13: X
IdO Original key (Gender) Original target (Test Result)
1 M P
2 M P
3 M P
4 M P

Table 2.14: Z
IdO Original key (Gender)
1 M
2 M
3 M
4 M

Table 2.15: Y
IdA Anonymized key (Gender) Anonymized target (Test Result)
1 M P
2 M N
3 F P
4 F N

� Only the data holder can see Table X, which contains the original data. The ad-
versary, on the other hand, can only access Table Z, where the sensitive attributes
have been removed from the original data. Table Z can be treated as an external
file, and Y represents the anonymized dataset. Note that IdA does not correspond
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to any explicit identifier (EI) in the original dataset; it is used here solely for
demonstration purposes

� Since there are no females in the original dataset, an attacker cannot link specific
female individuals from the anonymized dataset.

� Furthermore, since the original sensitive attributes do not include negative results,
the attacker’s prediction of a negative result will be considered incorrect.

Issue with Formula (2.7):

� For [j1] = 1, [j2] = 1:

– Denominator: K[j1]=1 = M has two matching entries in the anonymized
dataset.

– Numerator: (K[j1]=1, T[j2]=1) = (M,P ) has one matching entry in the anonymized
dataset.

– CAP Score: CAPA,[j1]=1,[j2]=1 =
1
2
.

� For [j1] = 1, [j2] = 2:

– Denominator: K[j1]=1 = M has two matching entries in the anonymized
dataset.

– Numerator: (K[j1]=1, T[j2]=2) = (M,N) has one matching entry in the anonymized
dataset.

– CAP Score: CAPA,[j1]=1,[j2]=2 =
1
2
.

– Notice that this calculation is incorrect because the prediction for (M,N) will
be considered incorrect since there is no original data with such attributes.
Thus, we need to consider 1{To ∈ T[j2]} in equation (2.8).

� For [j1] = 2, [j2] = 1 and [j1] = 2, [j2] = 2:

– Denominator: K[j1]=2 = F has zero matching entries in the anonymized
dataset.

– Notice that the denominator equals 0, which is why we only consider

∀ [j1] ∈ {j1} s.t. ∃ i : KO,i ∈ K[j1].

– The CAP score should not be calculated because the attacker will not make
predictions for individuals with gender F , as there is no corresponding key in
the original dataset.

□
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Figure 2.1: Attackers Perspective

2.6.4 Probability of a correct prediction for the target attributes

In this section, we show that CAPA,[j1],[j2] can be interpreted as the probability of correct
prediction for the given ([j1], [j2]) equivalence class under the assumption outlined in the
problem setup.

Example 2.6.5. We first demonstrate how attackers make predictions for the target
value based on the external and anonymized data set. In this example, we use the fol-
lowing datasets: The data holder can see the original data X, Table 2.16, and Y is the
anonymized dataset. An adversary can see external dataset Z, Table 2.17, and Y Ta-
ble 2.18. Note that IdA does not correspond to any explicit identifier (EI) in the original
dataset; it is used here solely for demonstration purposes. The equivalence classes for key
K are defined as intervals K[0,1), K[1,2), K[2,3), and K[3,4), while the equivalence classes
for target T are defined as T[0,1), T[1,2), and T[2,3).

Two scatter plots are presented. The first plot demonstrates the attacker’s perspec-
tive on a linkage attack: it visualizes how an attacker attempts to match external and
anonymized datasets. Data points are color-coded: blue for the external dataset (Ko, To),
with To omitted as 0 since the attacker do not observe target value for original dataset;
red points are for the anonymized dataset (Ka, Ta).

Notice that for the individual with Ido = 9 and a key value of 4.3, no anonymized
key falls within the same equivalence class, preventing attackers from making a match
(recall that equivalence classes are constructed based on the anonymized data set). As
a result, they will not predict the target value for this individual. Consequently, since
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Table 2.16: Original Dataset X
IdO key (Ko) target (To)
1 0.5 0.5
2 1.3 0.5
3 1.5 2.3
4 2.1 1.3
5 2.2 1.4
6 2.5 2.6
7 3.1 1.7
8 3.3 1.8
9 4.3 2.2

Table 2.17: External Dataset Z
IdO key (Ko)
1 0.5
2 1.3
3 1.5
4 2.1
5 2.2
6 2.5
7 3.1
8 3.3
9 4.3

Table 2.18: Anonymized Dataset Y
IdA key (Ka) target (Ta)
1 0.3 0.7
2 0.7 2.5
3 1.5 1.5
4 2.3 1.7
5 2.8 2.5
6 3.3 1.7
7 3.7 2.7
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Figure 2.2: Calculation of CAP

the probability of correct prediction cannot be calculated for Ido = 9, they must be
excluded from the external data set during this calculation. The second graph illustrates
the calculation of the probability of a correct prediction when comparing the original
and anonymized data sets. The data points are color-coded: blue for the original dataset
(Ko, To) and red for the anonymized dataset (Ka, Ta). When blue points and red points
share the same grid, it is counted as a correct match. When blue points and red points
share the same key value bin, it is counted as a match.

We illustrate the attacker’s prediction strategy for the following selected equivalence
classes:

� Equivalence Class K[0,1), Target TO,1 with Individual 1: For Individual 1,
with KO,1 = 0.5 and TO,1 = 0.5, the attacker observes KO,1 = 0.5, which belongs to
the K[0,1) equivalence class. Upon searching the anonymized dataset, the attacker
finds KA,1 = 0.3 within the same key equivalence class. The predicted value for
TO,1 is TA,1 = 0.7, which also falls within the T[0,1) category. This category matches
the original target’s equivalence class TO,1 = 0.5, resulting in the correct prediction.

� Equivalence Class K[1,2), Target TO,2 with Individual 2: For Individual 2,
with KO,2 = 1.3 and TO,2 = 0.5, the attacker observes KO,2 = 1.3, placing it in
the K[1,2) equivalence class. In the anonymized dataset, the attacker matches this
with KA,3 = 1.5, which also falls within the K[1,2) class. However, the predicted
target TA,3 = 1.5 falls into the T[1,2) category, different from the original target’s
class T[0,1), leading to an incorrect prediction.
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� Equivalence Class K[3,4), Target TO,7, TO,8 with Individuals 7 and 8: For
Individual 7, with KO,7 = 3.1 and TO,7 = 1.7, and for Individual 8, with KO,8 = 3.3
and TO,8 = 1.8, the attacker observes KO,7 = 3.1 and KO,8 = 3.3, both within the
K[3,4) equivalence class. In the anonymized dataset, the attacker finds KA,6 = 3.3
and KA,7 = 3.7, which also fall within the K[3,4) class. The predicted targets are
TA,6 = 1.7 or TA,7 = 2.7, corresponding to the T[1,2) and T[2,3) classes, respectively,
with an equal probability of 1/2 for each. One of these predictions matches the
original target class T[2,3), resulting in a 1/2 probability of a correct prediction.

□

In what follows, we provide computations that justify the interpretation of (2.8) as
the probability of the correct prediction. We consider the equivalence class [j1] such that
∃ KO,i ∈ K[j1] and KA,i′ ∈ K[j1]. This represents the scenario where an attacker can
match within the key equivalence class [j1]. We denote by T[j′] the value predicted by
the attacker (the attacker does not predict the specific value, rather than the equivalence
class). The probability of correctly predicting the target value for individuals whose key
value falls within the equivalence class K[j1] and whose target value falls within T[j2] is
given by:

1{(Ko, To) ∈ (K[j1], T[j2])}P(T[j′] ∈ T[j2] | Ka ∈ K[j1]). (2.9)

First, we need to verify that a target-key pair from the original dataset belongs to
the [j1], [j2] equivalence class. If no such individual exists in the original dataset, the
probability of a correct prediction will be zero. The next term P(T[j′] ∈ T[j2] | Ka ∈ K[j1])
represents the probability that the predicted target value T[j′] falls within T[j2], which
corresponds to correctly predicting the target value. The condition Ka ∈ K[j1] reflects
the situation in which the attacker matches. Then, the expression in (2.9) equals to

1{(Ko, To) ∈ (K[j1], T[j2])}
∑
[j2]′

P({T[j′] ∈ T[j2]} ∩ {Ta ∈ T[j2]′} | Ka ∈ K[j1])

= 1{(Ko, To) ∈ (K[j1], T[j2])}

×
∑
[j2]′

P(Tj′ ∈ T[j2] | {Ta ∈ T[j2]′} ∩ {Ka ∈ K[j1]})P(Ta ∈ T[j2]′ | Ka ∈ K[j1]).

The above equality holds because each bin T[j2]′ is mutually exclusive and the union of
all T[j2]′ bins covers the entire set Ta. We note that when the attacker observes Ta ∈ T[j2]′

and Ka ∈ K[j1] for a fixed [j′2] and a fixed [j1], it indicates that the pair of random
variables Ka and Ta fall into specific equivalence classes. Given this observation, the
attacker will predict T[j′] = T[j2]′ with probability one. This means that Tj′ ∈ T[j2] if and
only if Ta ∈ T[j2]. Thus,

P(Tj′ ∈ T[j2] | Ta ∈ T[j2]′ ∩Ka ∈ K[j1]) =

{
0 if T[j2]′ ̸= T[j2],

1 if T[j2]′ = T[j2].
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Finally, we have

1{(Ko, To) ∈ (K[j1], T[j2])}P(T[j′] ∈ T[j2] | Ka ∈ K[j1])

= 1{(Ko, To) ∈ (K[j1], T[j2])}P(Ta ∈ T[j2] | Ka ∈ K[j1]).

We notice that the probability

P(To ∈ T[j′] | {Ta ∈ T[j2]} ∩ {Ka ∈ K[j1]})

could vary under different problem configurations. It depends on the level of information
that an attacker obtains; we will demonstrate this in the next Example 2.6.6.

Example 2.6.6. We revisit Example 2.6.1 with some modifications to demonstrate the
calculation of the proposed individual CAP score and how the different levels of infor-
mation available to an attacker influence the CAP score. We have {1, 1} corresponding
to the equivalence class (M,P ); {1, 2} corresponding to the equivalence class (M,N);
{2, 1} corresponding to the equivalence class (F,N); and {2, 2} corresponding to the
equivalence class (F, P ). In the anonymized dataset Y , notice that the attacker does not

Table 2.19: Original Dataset
IdO Original key (Gender) Original target (Test Result)
1 M P
2 M P
3 F N
4 F N

Table 2.20: Anonymized Dataset
IdA Anonymized key (Gender) Anonymized target (Test Result)
1 M N
2 F N
3 F N
4 F N

have access to IdO, the true identifiers of the original dataset. Identifiers IdA are shown
solely for demonstration purposes and do not correspond to the original identifiers.

� CAPO,[j1],[j2]

– [j1] = 1, [j2] = 1: CAPO,[j1]=1,[j2]=1 =
2
2
= 1,

– [j1] = 1, [j2] = 2: CAPO,[j1]=1,[j2]=2 =
0
2
= 0,

– [j1] = 2, [j2] = 1: CAPO,[j1]=2,[j2]=2 =
0
2
= 0,

– [j1] = 2, [j2] = 2: CAPO,[j1]=2,[j2]=2 =
2
2
= 1.
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� Anonymized Dataset Y :

– [j1] = 1, [j2] = 1: CAPA,[j1]=1,[j2]=1 =
0
1
= 1,

– [j1] = 1, [j2] = 2: CAPA,[j1]=1,[j2]=2 =
0
1
= 0,

– [j1] = 2, [j2] = 1: CAPA,[j1]=2,[j2]=1 =
0
3
= 0,

– [j1] = 2, [j2] = 2: CAPA,[j1]=2,[j2]=2 =
3
3
= 1.

1. High Knowledge Scenario: If the attacker has more knowledge of the dataset,
such as knowing that all men have a positive result, then the probability that any
prediction T[j′] belongs to positive, given the observing male, is 1 regardless of the
anonymized target equivalence class Ta ∈ T[j2]′ , thus P(Tj′ = P | Ta ∈ M) = 1.
This is represented by the following summation:

1{(Ko, To) ∈ (K[j1], T[j2])}P(T[j′] ∈ T[j2] | Ka ∈ K[j1])

=
∑
[j2]′

P(Tj′ ∈ T[j2] | {Ta ∈ T[j2]′} ∩ {Ka ∈ K[j1]})P(Ta ∈ T[j2]′ | Ka ∈ K[j1])

= P(Tj′ = P | Ta ∈ M)P(Ta ∈ P | Ka ∈ M)

+ P(Tj′ = N | Ta ∈ M)P(Ta ∈ N | Ka ∈ M)

= 1 + 0 = 1.

2. Low Knowledge Scenario: If the attacker has limited information, such as
knowledge of a larger external dataset with some names associated with the female
equivalence class, Assume that there is a 50% chance that these individuals are in-

Table 2.21: Z
IdO Original key (Gender)
3 F
4 F
5 F
6 F

cluded in the anonymized data set. If they are included, the predictions are based
on the previous CAP set-up, as previously calculated: CAPA,[j1]=2,[j2]=2 = 3

3
= 1.

If they are not included, the attacker assumes equal probabilities for positive and
negative outcomes, resulting in the correct prediction probability of 1

2
. Thus, the

overall probability is calculated as:

P(T[j′] = N | Ta ∈ N ∩Ko ∈ F ) =
1

2
× 1 +

(
1

2
× 1

2

)
=

3

4
.
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Since there is no Ta that is P , the overall probability of making a correct prediction
in this scenario is:

1{To ∈ N}
∑
j2

P(Tj′ ∈ N | Ta ∈ Tj2 ∩ Ka ∈ F )P(Ta ∈ j2 | Ka ∈ F )

= 1{To ∈ N}P(Tj′ ∈ N | Ta ∈ N ∩ Ka ∈ F )P(Ta ∈ N | Ka ∈ F ) = 3/4.

This has a lower probability of correct prediction compared to the CAP setup:
CAPA,[j1]=2,[j2]=1 =

3
3
= 1.

□

In conclusion, the probability of the correct predictions of the attacker are depen-
dent on the level of information available to the attacker. When the attacker has more
knowledge about the results associated with each gender in the dataset, the predictions
are more accurate, resulting in a higher CAP score. In contrast, when the attacker
lacks detailed information about the presence of specific individuals or their test results,
making the correct predictions becomes more complex and uncertain, leading to greater
variability in the CAP score.

2.6.5 Population-level equivalence classes CAP

Under a linkage attack, when an anonymized dataset is released, the attackers have in-
formation about a pair of variables Ta, Ka and an external dataset that contains a pair
of variables Ko and explicit identifiers (EI). In the CAP framework, it is assumed that
the keys Ko and the explicit identifier pair (EI) in the external dataset are exactly the
same as the pairs in the original dataset.
For each individual i identified within a specific key equivalence class K[j1] in the ex-
ternal dataset, the attacker attempts to find a match in the anonymized dataset where
KA,k ∈ K[j1] for one or more k. Upon successful identification of such matches, the pre-
dicted value of TO,i is assigned based on one of the corresponding values TA,k from the
matched entries. The selection of TA,k depends on the distribution of pairs (TA,k, KA,k).

Recall that the attacker sees the external dataset, not the original dataset. Therefore,
the disclosure risk measure should be based on a subset of the former one (called the
matching set). We denote the number of data in the matching dataset as nO,m. We
only consider equivalence classes j1 such that there exist i, i′ such that KO,i ∈ K[j1] and
KA,i′ ∈ K[j1], as this is the situation in which an attacker will match the equivalence class
[j1]. In order to calculate the risk of disclosure at the dataset level, we need to compare
the anonymized dataset to the matching dataset. We have the probability of a correct
prediction:
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Pa(correct match) (2.10)

=

J1∑
[j1]=1

J2∑
[j2]=1

(∑nO,m

i=1 1{KO,i ∈ K[j1], TO,i ∈ T[j2]}
nO,m

)
·
(∑nA

k=1 1{TA,k ∈ T[j2], KA,k ∈ K[j1]}∑nA

k=1 1{KA,k ∈ K[j1]}

)
.

This formula is an approximation of:∑
[j1]

∑
[j2]

P({Ko ∈ K[j1]} ∩ {To ∈ T[j2]})P(Ta ∈ T[j2] | Ka ∈ K[j1]).

This formula sums up all possible equivalence classes for keys and targets, calculating
the product of two probabilities for each combination. The first probability, P(Ko ∈
K[j1] ∩ To ∈ T[j2]), represents the proportion of individuals in the matching dataset
that fall into the equivalence class of the target key K[j1], T[j2]. The second probability,
P(Ta ∈ T[j2] | Ka ∈ K[j1]), is the conditional probability that, given that an individual in
the anonymized data set belongs to the key class K[j1], their target also matches the class
T[j2]. Since equivalence classes are mutually exclusive, summing all possible equivalence
classes of these probabilities provides the overall probability that a target value in the
original data can be correctly identified.

We can also calculate the probability of correct prediction when the original dataset is
released as a baseline. When the original data set is released, the attacker has information
about a pair of variables To, Ko and an external dataset that contains KO and explicit
identifiers EI. The probability of a correct prediction in this scenario is:

Po(correct match) (2.11)

=

J1∑
[j1]=1

J2∑
[j2]=1

(∑nO

i=1 1{KO,i ∈ K[j1], TO,i ∈ T[j2]}
nO

)
·
(∑nO

k=1 1{TO,k ∈ T[j2], KO,k ∈ K[j2]}∑nO

k=1 1{KO,k ∈ K[j2]}

)
.

Note that, since this serves as the baseline for correct predictions in the anonymized
dataset, the equivalence classes [j1] and [j2] are the same as those in the anonymized
dataset.

Example 2.6.7. For Example 2.6.1, we demonstrate the calculation for the score (2.10).

� The original database X contains nO = 4 records.

� j correspond to person in original data with IdO,j.

� i correspond to person in anonymized data with IdA,i.

� KO,j can take the value (M,F ).

� TO,j can take the value (P,N).
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Table 2.22: X
IdO Original key, Gender Original target, Test Result
1 M P
2 M P
3 F P
4 F N

Table 2.23: Z
IdO Original key, Gender
1 M
2 M
3 F
4 F

The data holder can see the original data X, Table 2.22, and Y is the anonymized
data set. An adversary can see table Z, Table 2.23, and Y Table 2.24. Note that IdA
does not correspond to any explicit identifier (EI) in the original dataset; it is used here
solely for demonstration purposes. Note that all individuals in the external data set can
be matched, so the matching data set is identical to the external data set.

� Equivalence classes for the key K: K[M ] for M,K[F ] for F.

� Equivalence classes for the target T : T[P ] for P, T[N ] for N.

� Calculate the first term P(Ko ∈ K[j1] ∩ To ∈ T[j2]):

P(Ko ∈ K[M ] ∩ To ∈ T[P ]) =
2

4
= 0.5,

P(Ko ∈ K[F ] ∩ To ∈ T[P ]) =
1

4
= 0.25,

P(Ko ∈ K[F ] ∩ To ∈ T[N ]) =
1

4
= 0.25.

Table 2.24: Y
IdA Anonymized key, Gender Anonymized target, Test Result
1 M P
2 F P
3 F N
4 F N
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� Calculate the second term P(Ta ∈ T[j2] | Ka ∈ K[j1]):

P(Ta ∈ T[P ] | Ka ∈ K[M ]) =
1

1
= 1,

P(Ta ∈ T[P ] | Ka ∈ K[F ]) =
1

3
≈ 0.33,

P(Ta ∈ T[N ] | Ka ∈ K[F ]) =
2

3
≈ 0.67.

Using the formula (2.10):

Pa(correct match) = (0.5× 1) + (0.25× 0.33) + (0.25× 0.67) = 0.75.

The overall probability of correct prediction for the dataset disclosure risk in this example
is 0.75. □

Comparison Between Original and Anonymized Disclosure Risk

The score (2.10) provides a proper interpretation as a probability, allowing us to assess
the likelihood of correct prediction. However, to effectively evaluate the level of privacy
that the anonymized dataset offers, it is crucial to establish a baseline for comparison.
Here, we use the probability of correct prediction for the original data as the baseline.

Change in Probability of Attribute Disclosure. To assess the differences in the
CAP dataset scores between the anonymized and original datasets, we use equation (2.10)
and equation (2.11):

CAPchange = Pa(correct match)− P(correct match)o. (2.12)

The CAPchange quantifies the overall probability change of making a correct prediction.
This measure helps to determine the effectiveness of the anonymization process in re-
ducing the risk of attribute disclosure. However, in some cases, the change for particular
equivalence classes could be zero, indicating that there is no improvement in privacy pro-
tection for particular equivalence classes. This scenario may represent a higher privacy
risk for a certain group of people.

Min Differences. To address this issue and provide a more alternative assessment,
we introduce the measure to calculate the minimum change in the correct prediction
probabilities between the anonymized and original datasets across all equivalence classes.
Recall the definitions (2.6) and (2.8). Define

CAPmin = min
[j1],[j2]

(
CAPA,[j1],[j2] − CAPO,[j1],[j2]

)
. (2.13)
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The measure above considers the worst-case scenario with respect to the risk of individual-
level disclosure. It highlights the smallest improvement in privacy provided by the
anonymization process in all defined equivalence classes. A value closer to zero or neg-
ative in this metric suggests minimal to no privacy improvement for a certain combina-
tion of key target equivalence class, indicating potential vulnerabilities in privacy for the
anonymization technique used.

2.6.6 Performance of equivalence classes CAP scores

In what follows, we illustrate the performance of our equivalence classes CAP scores. We
investigate how does noise addition (Which in principle should increase data privacy)
affect CAP scores. In principle, the more noise, the more privacy, the lower CAP score.
However, as we will see this picture is not obvious. In fact, the resulting CAP scores are
sensitive to the choice of equivalence classes and binning.

Example 2.6.8. The experiment investigates the impact of an additive noise mecha-
nism on Correct Attribution Probability (CAP) scores, aiming to assess how these scores
change with increasing levels of privacy. In the experiment, an original dataset is gen-
erated in which the key and target variables are sampled from a multivariate normal
distribution defined by a mean vector of µ = [10, 20] and a covariance matrix

Σ =

[
20 10
10 20

]
,

producing a total of n = 1000 observations. To simulate data anonymization and evaluate
its impact on privacy, a noise additive method is applied, and a noise with normal
distribution is added to the target variable of the original dataset. The noise level
is with the mean from 0 to 50 and a standard deviation consistently set at 10, thus
creating multiple anonymized datasets, each corresponding to a different level of noise
added. The idea being that the more noise added, the better privacy. Hence, the bigger
mean of the noise, the better privacy.

For each dataset, equivalence classes are established by cutting the range of key and
target variables into bins of equal length, and then CAP scores are calculated to assess
the probability of correct identification within these classes. In Figure 2.3, the CAP score
for population-level equivalence classes in the original dataset (that is, Po(correct match)
in (2.11)) initially remains stable when noise is added. This is because the original data
remain unchanged and any small variations are from the selection of different equivalence
classes. Note that the selection of target equivalence class depends only on the target
value from the anonymized data set. Therefore, as more noise is introduced, the score will
eventually approach zero. This happens because as the noise increases, the anonymized
target values diverge more from the original data. Eventually, no original targets match
the corresponding target equivalence classes. Consequently, there will be no correct
match and the original Figure 2.3 score will drop to zero.
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Figure 2.3: Population-level equivalence classes CAP score for the original dataset

Figure 2.4: Population-level equivalence classes CAP score for the anonymized dataset
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Figure 2.5: CAP score difference between original and anonymized dataset

In Figure 2.4, as more noise is added to the target value, the score Pa(correct match)
in (2.10) for the anonymized dataset decreases accordingly, indicating an improvement
in privacy.

In Figure 2.5, as more noise is added to the target value, the score CAPchange in
(2.12) increases. However, at a certain point, this difference will drop significantly. This
significant drop is due to the decrease in the CAP score of the original dataset that was
mentioned earlier.

In Figure 2.6, the CAPmin score (Equation (2.13)) shows some values below zero,
indicating that adding noise may increase the risk of disclosure and reduce privacy for
certain equivalence classes. This is a very strange effect, however, this happens because
when only a small amount of noise is introduced, attackers may have a higher probability
of making correct predictions for a particular equivalence class, despite a general decrease
in disclosure risk across the dataset. Furthermore, CAPmin (Equation (2.13)) does not
increase significantly as more noise is added. The noticeable jump, observed after adding
a substantial amount of noise, is due to the earlier decline in the CAP score of the original
dataset. □

2.6.7 Impact of intervals on continuous data

Example 2.6.9. In this example, we illustrate the impact of selecting different intervals
for equivalence classes. To demonstrate this effect, we create a dataset containing only
continuous data.

The database X contains n = 4 entries, as shown in Table 2.25. To create a database
Y (Table 2.27), we first consider all entries in X and then apply 2-anonymization with
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Figure 2.6: Minimum change in the CAP score for each equivalence class between the
original and anonymized datasets

Table 2.25: X
IdO Original key (Height) Original target (Weight)
1 160 48
2 161 52
3 168 52
4 170 59

Table 2.26: X
IdO Original key (Height)
1 160
2 161
3 168
4 170

Table 2.27: Y
IdA Anonymized key (Height) Anonymized target (Result)
1 160-165 48
2 160-165 52
3 165-170 52
4 165-170 59
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respect to height, resulting in 4 records. The target variable remains unchanged in this
process.

We select equivalence classes for the key variable according to k-anonymity as follows:

� K[j1]=1 = (160− 165)

� K[j1]=2 = (165− 170)

Next, we choose equivalence classes for the target variable with following interval:

� T[j2]=1 = 48

� T[j2]=2 = 52

� T[j2]=3 = 59

� We now calculate CAPO,[j1],[j2] using formula (2.6), which represents the equivalence
class score for the original data. Note that for the CAPO,[j1],[j2] individual score,
we only need the original dataset.

� [j1] = 1, [j2] = 1:

– Denominator: K[j1]=1 = (160−165), with two matching entries in the original
dataset.

– Numerator: (K[j1]=1, T[j2]=1) = (160− 165, 52), with one matching entry.

– Result: CAPO,[j1]=1,[j2]=1 = 1/2.

� Similarly, we have CAPO,[j1]=1,[j2]=2 = 1/2, CAPO,[j1]=1,[j2]=3 = 0, CAPO,[j1]=2,[j2]=1 =
0, CAPO,[j1]=2,[j2]=2 = 1/2 and CAPO,[j1]=2,[j2]=3 = 1/2.

� We now calculate CAPA,[j1],[j2] using formula (2.8), which represents the equivalence
class score for anonymized data.

� [j1] = 1, [j2] = 1:

– Denominator: K[j1]=1 = (160−165), with two matching entries in the anonymized
dataset.

– Numerator: (K[j1]=1, T[j2]=1) = (160− 165, 52), with one matching entry.

– Result: CAPA,j=1 = 1/2.

� Similarly, we have CAPA,[j1]=1,[j2]=2 = 1/2, CAPA,[j1]=1,[j2]=3 = 0, CAPA,[j1]=2,[j2]=1 =
0,CAPA,[j1]=2,[j2]=2 = 1/2 and CAPA,[j1]=2,[j2]=3 = 1/2.

We can also relax the matching and correct matching criteria so that we can consider
equivalence classes for the key variable as K[j1]=1 = (160 − 170) and select equivalence
classes for the target variable as T[j2]=1 = (48− 59).
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� We now calculate CAPO,[j1],[j2] using formula (2.6), which represents the equivalence
class score for the original data. Note that for the CAPO,[j1],[j2] individual score,
we only need the original dataset.

� [j1] = 1, [j2] = 1:

– Denominator: K[j1]=1 = (160−170), with four matching entries in the original
dataset.

– Numerator: (K[j1]=1, T[j2]=1) = (160−170, 48−59), with four matching entries.

– Result: CAPO,[j1]=1,[j2]=1 = 1.

� We now calculate CAPA,[j1],[j2] using formula (2.8), which represents the equivalence
class score for anonymized data.

– Denominator: K[j1]=1 = (160−170), with four matching entries in the anonymized
dataset.

– Numerator: (K[j1]=1, T[j2]=1) = (160−170, 48−59), with four matching entries.

– Result: CAPA,j=1 = 1.

□

Comments. Relaxing the matching and correct matching criteria at certain points
leads to identical scores between the original and anonymized datasets. As the size
of the equivalence classes increases further, the CAP scores for both the original and
anonymized datasets converge to 1. This suggests that with larger equivalence classes,
the CAP score loses its ability to provide meaningful insights into the dataset’s privacy.
Essentially, broader classes generalize the data to such an extent that the distinctions
between anonymized and original data disappear, making the CAP score ineffective for
privacy evaluation.

We can also consider varying the support for key and target intervals based on the
information that is presumed to be accessible to the attacker. Here, we assume that the
attacker has access to both original and anonymized key values but can only view the
anonymized target values. This setup, which was previously introduced, allows the CAP
score to be interpreted as the probability of a correct prediction, reflecting the realistic
constraints of what the attacker can see and use.

The choice of equivalence class for calculating correct prediction is heavily influenced
by how attackers perceive differences between data points. For instance, if an attacker
considers heights of 160 cm and 170 cm indistinguishable, they are likely to treat these
as a single equivalence class. The selection of equivalence classes generally depends on
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the willingness to lose information, meaning that when choosing equivalence classes, at-
tackers must consider how much detail can be sacrificed. Broader equivalence classes
simplify the data further, reducing specificity, while narrower classes contain more de-
tailed information. From the data owner’s perspective, since the attacker’s strategy in
selecting equivalence classes is unknown, multiple strategies for setting these classes can
be adopted to measure data privacy effectively. Some methods include:

1. Equal length intervals: Dividing continuous data into intervals of equal length.
This is a simple straightforward method; however, it could potentially leave some
intervals denser than others.

2. Equal frequency intervals: Dividing the data into intervals, each containing a
similar number of data points. This method aims to balance the distribution of
data across intervals, reducing sparse or overly dense areas.

The goal of this experiment is to test how different binning strategies influence the
probability of correct prediction.

Example 2.6.10. An original dataset is created by sampling key and target variables
from a multivariate normal distribution, characterized by a mean vector of µ = [5, 15]
and a covariance matrix

Σ =

[
15 15
15 15

]
,

resulting in a total of n = 10000 observations. That is, we have a vector of perfectly
dependent normals, with different means. To simulate data anonymization and assess
its impact on privacy, a fixed exponential noise is added to the target variable of the
original data set with a rate parameter of 0.5, generating an anonymized dataset with
altered target values and the same key values.

Equivalence classes are then constructed by cutting the ranges of key and target
variables into different bin sizes, number of bins from 1 to 10. This procedure is applied
with two different binning methods: equal length and equal frequency. CAP scores are
calculated for each selection of the binning method to evaluate the probability of correct
prediction within different classes. From Figure 2.7, as the binning size increases, the
CAP score decreases. This is because larger equivalence classes include a wider range of
data, which decrease the precision of the information within each class. As the criteria
for making and claiming a correct match become less strict, attackers find it easier to
make a match and claim that they have a correct match with less precision. For example,
if the actual income of a person is $50,000, tighter equivalence classes might only allow
claims around $45,000-$55,000 as a match. However, as the equivalence classes expand,
an attacker could claim a correct match even if the prediction is as far off as $30,000-
$80,000.
The use of the equal frequency method leads to a smoother 3D plot, which improves
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Figure 2.7: 3D plot of equal length method, CAP vs. number of bins for target and key

overall visualization. This smoother representation helps better understand and analyze
the changes and patterns in the CAP scores, providing clearer insights into how data
anonymization affects the probabilities of attribution.

The following four graphs provide 2D contour plots to visualize Correct Attribution
Probability (CAP) scores for original and anonymized datasets under two binning strate-
gies: equal length and equal frequency: Figure 2.9, Figure 2.10, Figure 2.11, Figure 2.12.
Each plot uses shades of blue and red to represent the CAP scores for the original and
anonymized data, respectively, mapped against the number of bins for key and target
variables.

In conclusion, a smaller number of bins group data into broader categories,
resulting in a higher CAP score; this does not necessarily imply reduced
privacy. The choice of binning strategy affects the CAP score, and the scores
from different binning strategies are not directly comparable. □

As demonstrated in the previous example, the CAP scores change depending on the
number of bins used for the key and target variables. To effectively compare different
anonymization algorithms especially applied to different original datasets, it is impor-
tant to evaluate CAP scores with varying numbers of bins. By dividing key and target
attributes into different bin counts, we can see CAP scores under different numbers of
bins.

Example 2.6.11. The experiment is designed to analyze probability of correct predic-
tion across two distinct datasets. The first dataset is generated by sampling 10,000
observations from a multivariate normal distribution with mean vector µ = [5, 15] and
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Figure 2.8: 3D plot of equal frequency method, CAP vs. number of bins for target and
key

Figure 2.9: 2D plot of equal length method for original data, CAP vs. number of bins
for target and key
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Figure 2.10: 2D plot of equal length method for anonymized data, CAP vs. number of
bins for target and key

Figure 2.11: 2D plot of equal frequency method for original data, CAP vs. number of
bins for target and key
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Figure 2.12: 2D plot of equal frequency method for anonymized data, CAP vs. number
of bins for target and key

covariance matrix

Σ =

[
15 15
15 15

]
.

Similarly, the second dataset is produced with a mean vector µ = [1, 5] and a simpler
covariance matrix

Σ =

[
5 5
5 5

]
.

In both cases, the target variable is modified by adding noise drawn from an exponen-
tial distribution, with the first dataset undergoing modifications with a rate parameter
of 0.5 and the second with a rate parameter of 5. This procedure aims to create two
levels of anonymized data sets, each reflecting a different addition of noise. In this case,
we cannot justify which anonymized dataset is more private. To address this, we employ
a 3D plot to visually compare the CAP scores across different bin sizes and noise levels.

□
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Figure 2.13: Comparison of CAP anonymized score between 2 randomization algorithm
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Chapter 3

Synthetic Data Generation

In data generation, the methodology can be determined based on knowledge of the density
or cumulative distribution functions (CDFs) of the data set. The process can be described
as follows:

� Exact knowledge of density or CDF: If exact density or cumulative distribution
functions are known, proceed directly to techniques such as inverse transformation
or acceptance-rejection methods.

� Some knowledge of density or CDF, or a model: If we know that a density
or CDF comes from a particular family, but we do not know their parameters, we
can proceed as follows. Estimate the parameters and apply the methods mentioned
above. Furthermore, we may have knowledge of a parametric model (for example,
a regression model). This leads to parametric-based data generation methods.

� No assumptions or knowledge: If neither the density nor the CDF is known,
a non-parametric approach is appropriate. This involves using methods such as
bootstrap, SMOTE, or linear piecewise techniques.

Most of the methods are standard methods that can be found in textbooks. There are
some exceptions, for example SMOTE is relatively less known; see [4].

3.1 Terminology

In what follows, we will need the following terminology.

� F is the cumulative distribution function (CDF) of a univariate random variable
X .

� f is the density of F (if it exists).
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� The left and right endpoints a, b of F are defined by a = inf{t ∈ R : F (t) > 0},
b = sup{t ∈ R : F (t) < 1}.

� The quantile function or generalized inverse function of F is defined as

Q(u) := F←(u) := inf{x ∈ R : F (x) ≥ u} .

� If F is strictly increasing and continuous then the generalized inverse is equal to
the classical inverse. We then denote the quantile function as F−1 .

� If we need to emphasize which random variable we are dealing with, we are going
to write FX , QX , F

−1
X , F←X .

� Fn is the empirical distribution based on data X1, . . . , Xn, defined as

Fn(x) =
1

n

n∑
i=1

1[Xi,∞)(x).

3.2 Exact Knowledge of Density

3.2.1 Inverse Transformation for continuous random variables

Proposition 3.2.1. If F is continuous and strictly increasing on (a, b), then F−1, the
inverse of F , exists and is also continuous and strictly increasing. Furthermore

� Let a and b be the left and the right endpoints of F . Then

lim
u→0+

F−1(u) = a, lim
u→1−

F−1(u) = b.

The results hold also if a = −∞ or b = +∞.

� For x, x′ ∈ [a, b], F−1(F (x)) = F−1(F (x′)) ⇒ x = x′.

� For all x ∈ (0, 1), we have F (F−1(x)) = x.

� F (x) = u ⇔ x = F−1(u), for all x ∈ (a, b) and u ∈ (0, 1).

Theorem 3.2.2. Let F be a CDF. Assume that F is continuous and strictly increasing.

� Let U be a random variable, uniformly distributed on [0, 1]. Then the CDF of the
random variable F−1(U) is F .

� Let X be a random variable with CDF F . Then F (X) is uniformly distributed on
[0, 1].
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Proof. � Let U be a random variable, uniformly distributed on [0, 1]. Then for x ∈
(a, b),

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

� Next, for x ∈ [0, 1],

P(F (X) ≤ x) = P(F−1(F (X)) ≤ F−1(x))

= P(X ≤ F−1(x)) = F (F−1(x)) = x.

Thus, F (X) has a uniform distribution.

Simulation Algorithm

� Generate a sample of size n from the uniform distribution on [0, 1]. Denote it
by ui, i = 1, . . . , n.

� For each ui, calculate xi = F−1(ui).

� Then xi, i = 1, . . . , n, is a sample from the CDF F .

Algorithm complexity The overall complexity depends on the complexity of the
inverse function F−1. For univariate data with a closed-form inverse function, the com-
plexity of generating a single F−1(ui) does not depend on n, denote it as m1.

� Generating n uniform random numbers between 0 and 1 using the runif function
takes n operations.

� Assume generating F−1(ui) for each sample involves m operations or with big O
notation O(1).

Thus, the complexity for a sample of size n is n×m operations or with big O notation
O(n).

Example 3.2.3. We want to generate data from an exponential distribution with pa-
rameter λ = 1, that is F (x) = 1− e−x, x ≥ 0.

� We first find F−1(p) = − 1
λ
ln(1− p).

� We generate n observations ui from the standard uniform distribution.
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� Then we calculate xi = − 1
λ
ln(1− ui) for each i.

The overall complexity depends on the following steps:

� Generating n uniform random numbers ui using the runif function takes n oper-
ations, with a complexity of O(n).

� Calculating − 1
λ
ln(1 − ui) for each i involves one logarithm calculation and one

multiplication. Assume takes constant number of operation m1, the complexity of
each logarithm calculation is O(1).

� Thus, for a sample of size n, it takes nm1 operations, resulting in a total complexity
of O(n).

Assume the complexity per number generated is m1 for generating a logarithmic calcu-
lation, resulting in a total complexity of m1 × n for a sample of size n, or with a big O
notation, O(n). □

3.2.2 Inverse transformation for discrete random variables

We want to generate random numbers from a non-continuous random variable X. This
means that the associated cumulative distribution function (CDF) F is right-continuous
only, but not continuous. Also the CDF is not strictly increasing. In this case, the inverse
function F−1 is not defined, but the generalized inverse Q is well defined. Here, F is
assumed to be known.

Example 3.2.4. Consider a random variable X where P(X = 0) = P(X = 1) = 1
2
. The

cumulative distribution function (CDF) and the quantile function for X are as follows:
The CDF, F (x), is given by:

F (x) =


0 if x < 0,
1
2

if 0 ≤ x < 1,

1 if x ≥ 1.

The quantile function, QX(p), is given by:

Q(p) =

{
0 if 0 ≤ p < 1

2
,

1 if 1
2
≤ p ≤ 1.

□

Proposition 3.2.5. � Let a and b be the left and right endpoints of F . Then limu→0Q(u) =
a, limu→1Q(u) = b. The results also hold if a = −∞ or b = +∞.

� For x, x′ ∈ [a, b], F (x) ≤ F (x′) ⇒ Q(F (x)) ≤ x′.
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� F (x) ≥ u ⇔ x ≥ Q(u), for all x ∈ (a, b) and u ∈ (0, 1).

Proof. � We first prove that Q is left-continuous and non-decreasing. Let u < v, as
F (Q(v)) ≥ v ⇒ F (Q(v)) ≥ u, therefore, Q(u) ≤ Q(v), thus Q is non-decreasing.

� Now we prove F (x) ≤ u ⇔ x ≤ Q(u). For a given x such that F (x) ≤ u and Q(u)
is the infimum of all x′ such that F (x′) ≥ u, which is greater than or equal to x as
F is a non-decreasing function. The reverse is true with a similar proof.

Theorem 3.2.6. Let F be a CDF and let Q be its associated quantile function.

� Let U be a random variable, uniformly distributed on [0, 1]. Then the CDF of the
random variable Q(U) is F .

� Let X be a random variable with CDF F . Then Q(X) is uniformly distributed on
[0, 1].

Proof. We use Proposition 3.2.5.

� Let U be a random variable, uniformly distributed on [0, 1]. Then for −∞ < x <
∞, we have:

P(Q(U) ≤ x) = P(U ≤ F (x)) = F (x)

� Next x ∈ [0, 1]:

P(F (X) ≤ x) = P(Q(F (X)) ≤ Q(x)) = P(X ≤ Q(x)) = F (Q(x)) = x

This shows that F (X) has the uniform distribution.

We present the simulation algorithm for a discrete random variable, where P(X =
xi) = fi for i = 1, . . . , q, with

∑q
i=1 fi = 1 and fi > 0. Then, the CDF is

F (xi) = P(X ≤ xi) = Fi =
i∑

j=1

fj,

and F (x) = F (xi) whenever xi ≤ x < xi+1. The corresponding quantile function is given
by:

Q(u) = xk where k = min{i : F (xi) ≥ u} .

We have the following algorithm when dealing with a discrete cumulative distribution
function that has a finite domain of possible values.
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Simulation Algorithm for Finite Domain

� Generate a sample of size n from the uniform distribution on [0, 1]. Denote it
by uj, j = 1, . . . , n.

� For each j = 1, . . . , n, if Fi−1 < uj ≤ Fi, then set xi as a random number from
the CDF F .

Algorithm Complexity for Discrete Distribution with Finite Domain The
overall complexity of the simulation algorithm depends on the efficiency of determining
which interval [Fi−1, Fi] the uniform sample uj falls in, where Fi represents the cumulative
probability up to the ith value and uj are generated from a uniform distribution.

� Generate a sample of size n from the uniform distribution on [0, 1]. Denote these
samples by uj, where j = 1, . . . , n. Generating n such numbers has a complexity
of O(n).

� For each uj, determining which interval it falls into requires checking against the
intervals defined by the Fi values. The complexity of this step depends on the
method used for checking:

– Linear Search Complexity: In a linear search, each uniform sample uj

is compared sequentially with cumulative probabilities F1, F2, . . . , Fq. The
algorithm starts by checking if uj ≤ F1. If not, it moves to the next interval,
checking uj ≤ F2, and so on, until it finds the correct interval [Fi−1, Fi] where
Fi−1 < uj ≤ Fi. Number of comparisons: The worst-case scenario occurs
when the sample is close to Fq, requiring q comparisons. However, because
the samples are uniformly distributed, on average a sample uj will be found
around the middle of the distribution. This results in the expected number of
comparisons being q/2. In big O notation, O(q/2) is equivalent to O(q).

– Binary Search Complexity: In a binary search, each uj is located in the
correct interval by repeatedly dividing the set of intervals in half. The search
begins by comparing uj with the middle of cumulative probability F⌈q/2⌉. De-
pending on whether uj is less than or greater than this value, the search
continues in the left or right half of the interval set. This search process con-
tinues until the correct interval is found. Number of comparisons: The binary
search requires at most O(log2 q) comparisons to find the correct interval for
a single uj. This is because the binary search splits the search space in half
with each comparison. After one comparison, there are q/2 possible intervals
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remaining, after two comparisons, q/4, and so on, until the correct interval
is identified. The number of splits needed to reduce the set interval to 1 is
logarithmic in the number of intervals, hence O(log2 q).

Thus, the total complexity is O(nq) using linear search and O(n log2 q) using binary
search.

Example 3.2.7 (Linear search). Suppose we have a discrete random variable X with
three possible values, x1 = 1, x2 = 2, and x3 = 3, and corresponding probabilities
P(X = x1) = 0.2, P(X = x2) = 0.5, and P(X = x3) = 0.3. The cumulative distribution
function (CDF) values are:

F1 = 0.2, F2 = 0.7, F3 = 1.0

We generate a uniform random sample uj = 0.6. Using a linear search, we check uj

against each Fi in sequence:

� Check if F1 = 0.2: 0.6 > 0.2 (move to the next interval)

� Check if F2 = 0.7: 0.6 ≤ 0.7 (stop and select x2 as the random value corresponding
to uj = 0.6)

This method requires checking each interval sequentially until the appropriate one is
found, which in this case took 2 checks. □

Example 3.2.8 (Linear vs. binary search). Suppose that we have a discrete random
variable X with five possible values, x1 = 1, x2 = 2, x3 = 3, x4 = 4, and x5 = 5, and
corresponding probabilities P(X = x1) = 0.1, P(X = x2) = 0.2, P(X = x3) = 0.3,
P(X = x4) = 0.2, and P(X = x5) = 0.2. The cumulative distribution function (CDF)
values are as follows:

F1 = 0.1, F2 = 0.3, F3 = 0.6, F4 = 0.8, F5 = 1.0

We generate three uniform random samples: u1 = 0.15, u2 = 0.75, and u3 = 0.95.
Using a linear search, we check each uj against the Fi values in sequence:

� For u1 = 0.15:

– Check F1 = 0.1: 0.15 > 0.1 (move to the next interval)

– Check F2 = 0.3: 0.15 ≤ 0.3 (select x2)

– Total comparisons: 2.

� For u2 = 0.75:

– Check F1 = 0.1: 0.75 > 0.1 (move to the next interval)
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– Check F2 = 0.3: 0.75 > 0.3 (move to the next interval)

– Check F3 = 0.6: 0.75 > 0.6 (move to the next interval)

– Check F4 = 0.8: 0.75 ≤ 0.8 (select x4)

– Total comparisons: 4.

� For u3 = 0.95:

– Check F1 = 0.1: 0.95 > 0.1 (move to the next interval)

– Check F2 = 0.3: 0.95 > 0.3 (move to the next interval)

– Check F3 = 0.6: 0.95 > 0.6 (move to the next interval)

– Check F4 = 0.8: 0.95 > 0.8 (move to the next interval)

– Check F5 = 1.0: 0.95 ≤ 1.0 (select x5)

– Total comparisons: 5.

In this example, the linear search required 2, 4, and 5 comparisons for each sample,
respectively, depending on how far down the list the sample was found.

Using the same discrete random variable X and CDF values as above, we again
generate the same uniform random samples: u1 = 0.15, u2 = 0.75, and u3 = 0.95. Using
binary search, we perform the following steps:

� For u1 = 0.15:

– Compare with the middle value F3 = 0.6: 0.15 ≤ 0.6 (search the left half)

– Compare with F2 = 0.3: 0.15 ≤ 0.3 (search the left half)

– Compare with F1 = 0.1: 0.15 > 0.1 (select x2)

– Total comparisons: 3.

� For u2 = 0.75:

– Compare with the middle value F3 = 0.6: 0.75 > 0.6 (search the right half)

– Compare with F4 = 0.8: 0.75 ≤ 0.8 (select x4)

– Total comparisons: 2.

� For u3 = 0.95:

– Compare with the middle value F3 = 0.6: 0.95 > 0.6 (search the right half)

– Compare with F4 = 0.8: 0.95 > 0.8 (search the right half)

– Compare with F5 = 1.0: 0.95 ≤ 1.0 (select x5)

– Total comparisons: 3.

In this example, the binary search required 3, 2, and 3 comparisons for each sample,
respectively. The binary search is generally more efficient, particularly as the number of
intervals q increases. □
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Discrete random variables with infinite domain. If we have an infinite domain,
the previous algorithm for finite domains is not applicable. The main idea is to replace
the finite domain q with a random Q, which depends on the data.

Additional challenges arise from the range of the data. For an infinite domain, we
can have two scenarios:

� The range is bounded. For example, a discrete random variable concentrated on
rational numbers within [0, 1].

� The range is unbounded (on both sides or one side). For example, a Poisson
distribution.

In the second scenario, special care must be taken to manage the ”minimal” and ”max-
imal” points effectively.

Simulation Algorithm for Infinite Domain

� Generate a sample of size n from the uniform distribution on [0, 1]. Denote
these samples by uj, j = 1, . . . , n.

� Estimate the practical minimum value xmin or maximum value xmax based on
the distribution’s characteristics. Start from a sufficiently small (for xmin) or
large (for xmax) value and incrementally compute F (x) until F (x) becomes
greater than or equal to the smallest or largest generated uniform sample umin =
min(u1, u2, . . . , un) or umax = max(u1, u2, . . . , un), respectively.

� Starting from xmin (or xmax), compute the cumulative distribution function
F (x) as the sum of p(k; θ) for all k ≤ x (or k ≥ x if starting from xmax).

� Continue to increment x and sum the probabilities until F (x) > umax (if starting
from xmin) or F (x) > umin (if starting from xmax). This ensures that the
computed CDF covers the entire range of the generated uniform samples.

� For each j = 1, . . . , n, if Fi−1 < uj ≤ Fi, then set xi as a random number
corresponding to uj from the CDF F .

Algorithm Complexity for Discrete Distribution with Infinite Domain The
overall complexity of the algorithm depends on the number of intervals q and the number
of steps m required to find these intervals. Specifically, generating n uniform samples has
a complexity of O(n), and determining the necessary intervals involves m steps, where
m accounts for the operations needed to compute and sum the probabilities until the
CDF sufficiently covers all uniform samples. Once the intervals are identified, searching
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through them to find the corresponding xi for each uj incurs a complexity of O(nq) for
linear search or O(n log q) for binary search. Therefore, the total complexity is O(m) +
O(q2)+O(nq) for the linear search and O(m)+O(q2)+O(n log q) for the binary search,
the overall efficiency being influenced by both the interval-finding process and the chosen
search method.

Example 3.2.9. We aim to generate data from a Poisson distribution with a rate pa-
rameter λ = 3, where the probability mass function is given by

P(X = k) =
3ke−3

k!

for k ≥ 0.

� Generate a sample of size n from the uniform distribution on [0, 1], denoted by uj

for j = 1, . . . , n.

� Since the minimum value for x is known to be 0, start from x = 0 and compute
the cumulative distribution function F (x) as the sum of P(X = k) for all k ≤ x:

F (x) =
x∑

k=0

3ke−3

k!

� Increase x and continue summing the probabilities until F (x) > umax, where umax

is the largest uniform sample generated.

� For each j = 1, . . . , n, if Fi−1 < uj ≤ Fi, set xi as the random number corresponding
to uj based on the CDF F .

The complexity of the algorithm involves:

� Computing the cumulative probabilities for q intervals, where q depends on the
rate parameter λ. This requires O(q) operations.

� Generating n uniform random numbers, which have a complexity of O(n).

� Search through the cumulative probabilities to find the corresponding intervals for
each uj, which takes O(n× q) operations for linear search or O(n log q) for binary
search.

Thus, the total complexity is O(n) + O(q) + O(nq) for the linear search and O(n) +
O(q) + O(n log q) for the binary search. In general, complexity depends mainly on the
number of intervals q, the efficiency of the search method, and the rate parameter λ. □
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3.2.3 Multivariate Inverse Transform Sampling

Our goal is to generate numbers from d-variate distribution by applying the inverse
transformation method. This approach requires knowledge of the conditional inverse
cumulative distribution functions:

F−1X1
, F−1X2|X1

, . . . , F−1Xd|X1,...,Xd−1
.

These functions allow us to convert uniformly distributed random numbers into numbers
that follow the target multivariate distribution.

Simulation Algorithm: Multivariate Inverse Transform Sampling

� For each dimension k from 1 to m repeat follow:

– Generate a random number ui,k from a uniform distribution over [0, 1].

– If k = 1: compute xi, = F−1X1
(ui,1).

– Otherwise if k = 2, . . . , d: compute xi,k =
F−1Xk|X1,...,Xk−1

(ui,k, xi,1, . . . , xi,k−1).

� Repeat above N times.

Complexity Analysis

� This complexity arises because for each sample, each dimension k may require a
different amount of computational effort depending on the complexity of its inverse
CDF function, denoted as Ck for k = 1, . . . , d.

� The total computational cost is hence a product of the number of samples (N)
and the sum of the complexities of computing the inverse CDF for each dimension.
Time Complexity: O(N · (C1 + C2 + . . .+ Cd)).

Example 3.2.10. Suppose that we want to generate samples from a bivariate distribu-
tion follows the following form:

fX1(x1) = λ1e
−λ1x1 , x1 ≥ 0,

and
fX2|X1(x2|x1) = (λ2 + αx1)e

−(λ2+αx1)x2 , x2 ≥ 0.

The first variable, X1, is exponential and has the rate λ1, and the second variable, X2,
is exponential conditionally on X1, and has a rate λ2(X1) = λ2+αX1. The parameter α
determines the strength of dependence between X1 and X2. We apply the Multivariate
Inverse Transform Sampling as follows:
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� Simulate a random number U from the uniform distribution on [0, 1] and compute
X1 = − 1

λ1
log(1 − U), which is the inverse transform sampling for an exponential

distribution.

� Independently simulate another random number V from the uniform distribution
on [0, 1] and calculate X2 using the inverse CDF conditioned on X1, calculated as
X2 = − 1

λ2+αX1
log(1− V ).

□

3.2.4 Acceptance-Rejection Method for Continuous Variables

We want to generate random numbers from a known density f . We assume that it is
difficult to generate directly from f , but we can find a density h that is easy to generate
from and a normalizing constant c such that

sup
x

f(x)

h(x)
≤ c .

Simulation Algorithm: Acceptance-Rejection Method

� Generate a random number y from the density h.

� Independently, generate a random number u from the standard uniform distri-
bution.

� If u ≤ f(y)
ch(y)

, then set x = y.

� Otherwise, go back to the first step.

� The value x is then a random number of the density f .

The function h is called the envelope function.

Theorem 3.2.11. The Acceptance-Rejection algorithm returns a random number from
the density f .

Proof. We need to show that the random variable generated X follows the density f . To
do this, we find the conditional distribution of Y given that U ≤ f(Y )

ch(Y )
. We have

P
(
Y ≤ x | U ≤ f(Y )

ch(Y )

)
=

P(Y ≤ x ∩ U ≤ f(Y )
ch(Y )

)

P(U ≤ f(Y )
ch(Y )

)
.
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For the denominator, applying the total probability rule and using the independence
of U and Y , we get

P
(
U ≤ f(Y )

ch(Y )

)
=

∫
R
P
(
U ≤ f(y)

ch(y)

)
h(y)dy =

∫
R

f(y)

ch(y)
h(y)dy =

1

c

∫
R
f(y)dy =

1

c
.

Similarly, the numerator is∫ x

−∞
P
(
U ≤ f(y)

ch(y)

)
h(y)dy =

∫ x

−∞

f(y)

ch(y)
h(y)dy =

1

c

∫ x

−∞
f(y)dy =

1

c
F (x) .

Thus,

P
(
Y ≤ x | U ≤ f(Y )

ch(Y )

)
= F (x) ,

as required.
From the proof, we also see that the overall acceptance probability is:

1

c
.

Algorithm Complexity

� For each sample of size n, we need to generate an additional uniform random
number for the acceptance step and perform a comparison. If the acceptance
probability is 1

c
, the expected total number of trials will be cn.

� Letm2 be the complexity of generating a single candidate sample from the envelope
distribution h(x).

� Therefore, generating cn candidate samples using the acceptance-rejection method
takes O(cm2 n) operations.

Example 3.2.12. To generate a random variable with a normal distribution with pa-
rameters µ = 1 and σ = 1, we consider the probability density function (PDF) given
by:

f(x;µ, σ) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

.

The corresponding cumulative distribution function (CDF) is:

F (x;µ, σ) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
,
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where erf(x) is the error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt .

Due to the complexity of the error function erf(x), there is no closed-form inverse
for the CDF of the normal distribution. Therefore, we apply the acceptance-rejection
method. Since the normal distribution X is symmetric around its mean, we can generate
|X| first and then apply a random sign to the generated value to obtain a sample from
the normal distribution.

We choose the envelope function as h(x) = e−x, which is the standard exponential
density. It can be shown that:

1√
2π
e−

x2

2

e−x
=

1√
2π

e
x−x2

2 ≤ e√
2π

=: c ,

since x− x2

2
achieves its maximum at x = 1.

The steps of the algorithm are as follows:

� Generate a candidate y from the exponential distribution h(y) with CDF H(y) =
1− e−y and inverse CDF H−1(u) = − ln(1− u).

� Generate a uniform random number u1 on [0, 1].

� Calculate y = − ln(1− u1).

� Generate another uniform random number u2 on [0, 1].

� If u2 ≤ ey−y2/2

c
, set |x| = y.

� Generate another uniform random number u3 on [0, 1].

� If u3 ≤ 0.5, set x = −|x|. Otherwise, set x = |x|.

□

3.2.5 Transformations

Problem Setup. We want to generate random numbers from a complex, known dis-
tribution F . Transformation techniques allow us to generate a target distribution when
a random variable X with distribution F depends on another random variable. This is
a generalization of the previously introduced quantile transform method.

� Assume we can simulate from a random vector Y with values in Rp. For example,
Y could be a vector of independent uniform random variables.
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� Let ϕ : Rp → R be a measurable function.

� Define X = ϕ(Y ).

Simulation Algorithm.

� Simulate a random variable Y from its distribution using the inverse transfor-
mation method. This involves generating a uniform random variable U and
then applying Y = F−1Y (U). Denote these samples as yj, j = 1, . . . , n.

� Apply the function ϕ to each sample yj to obtain xj = ϕ(yj).

Algorithm Complexity.

� Assume the complexity of generating a sample of size n from the distribution Y is
my.

� The complexity of applying the function ϕ to each of the n samples is O(n ·mϕ),
where mϕ denotes the complexity of applying ϕ to a single sample.

� Therefore, the total complexity of the algorithm is given by O(my + n ·mϕ).

Example 3.2.13. To simulate a random variable from the chi-square distribution with
k degrees of freedom, we can sum the squares of k independent standard normal random
variables. Let Z1, Z2, . . . , Zk be independent standard normal random variables.

The transformation function ϕ(Z1, Z2, . . . , Zk) that gives a chi-square distributed ran-
dom variable X is:

ϕ(Z1, Z2, . . . , Zk) = Z2
1 + Z2

2 + · · ·+ Z2
k .

Thus, the random variable X = ϕ(Z1, Z2, . . . , Zk) follows a chi-square distribution with
k degrees of freedom. □

3.2.6 Conditioning and Mixture Distributions

This is a generalization of the previously introduced acceptance-rejection method. To
generate a random sample from the conditional distribution FY (· | c) of a random variable
Y given a constraint function c, the following steps can be used:

� For a constraint function c that involves only Y :

– Simulate a sample y according to the distribution of Y .

– Evaluate the constraint function c(y).
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– If c(y) satisfies the constraint, keep the sample y; otherwise, discard it and
repeat the process.

� For a constraint c that involves multiple random variables, denote these variables
as X, where X could be a vector of random variables:

– Simulate a pair (X, Y ) from their joint distribution.

– Evaluate the constraint function c(X, Y ).

– If c(X, Y ) satisfies the constraint, keep the sample Y ; otherwise, discard it
and repeat the process.

Algorithm Complexity

� Each generation of a sample y from the distribution of Y or a pair (X, Y ) from
their joint distribution is considered one operation.

� Evaluating the constraint function c(y) for a single variable or c(X, Y ) for multiple
variables is also considered one operation per evaluation.

� The expected number of iterations (generation and evaluation) needed depends on
the probability that a generated sample satisfies the constraint. Each trial involves
generating a sample (which is one operation) and evaluating the constraint (which
is another operation). Therefore, each trial takes approximately 2 operations. If
the probability is p for a constraint involving only Y , the expected number of
operations is approximately 2

p
. For a constraint involving (X, Y ), if the probability

is q, the expected number of operations is approximately 2
q
.

Thus, if the probability of y satisfying c(Y ) or (X, Y ) satisfying c(X, Y ) is p or q,
respectively, the total number of operations needed to generate a valid sample Y is
approximately 2

p
when the constraint involves only Y and 2

q
when the constraint involves

both X and Y .

Example 3.2.14. Suppose that we want to generate a random variable X that follows
the β(a, b) (Beta) distribution using two independent random variables U and V , both
uniformly distributed on [0, 1]. We apply a transformation and a conditioning step as
follows:

� Transformation and Condition:

– Simulate U and V from the uniform distribution on [0, 1].

– Compute the transformations U1/aand V 1/b.

– Check the condition U1/a + V 1/b ≤ 1.
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– If the condition is satisfied, compute X as

X =
U1/a

U1/a + V 1/b
.

– If the condition is not met, repeat the simulation from step 1.

� Proof: We prove that this algorithm produces a random number from the required
Beta distribution. We first note that

P
(
U1/a + V 1/b < 1

)
=

∫ 1

0

∫ 1

0

1
{
u1/a + v1/b < 1

}
du dv

=

∫ 1

0

(
1− v1/b

)a
dv = b

∫ 1

0

tb−1(1− t)a dt
(
t = v1/b

)
=

bΓ(b)Γ(a+ 1)

Γ(a+ b+ 1)
=

Γ(b+ 1)Γ(a+ 1)

Γ(a+ b+ 1)
.

Thus, for any bounded function g,

E[g(X)] =
Γ(a+ b+ 1)

Γ(b+ 1)Γ(a+ 1)

∫ 1

0

∫ 1

0

g
(
u1/a/

(
u1/a + v1/b

))
1
{
u1/a + v1/b < 1

}
du dv

=
Γ(a+ b+ 1)

Γ(b+ 1)Γ(a+ 1)

∫ 1

0

∫ 1

0

g(x)abxa−1(1− x)b−1ya+b−1 dx dy.

The change of variables u = (xy)a, v = ((1− x)y)b gives

Γ(a+ b+ 1)

Γ(b+ 1)Γ(a+ 1)(a+ b)

∫ 1

0

g(x)abxa−1(1− x)b−1 dx

=
Γ(a+ b)

Γ(b)Γ(a))

∫ 1

0

g(x)xa−1(1− x)b−1 dx.

This shows that X has a β(a, b) distribution.

□

3.2.7 Simulating from Parametric Families

We assume that our distribution has the form F (·; θ), where F is known, but the param-
eter θ ∈ Rd is unknown.

Simulation Algorithm

� Estimate the parameter θ for the model based on the given data.

� Then use one of the methods mentioned in the previous sections to generate
data from the estimated distribution.
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Example 3.2.15. Suppose that we have a dataset and we assume that the data follow
a normal distribution with mean µ and variance σ2, denoted by N (µ, σ2).

� First, we estimate the parameters µ and σ2 using the sample mean µ̂ and sample
variance σ̂2.

� Then, we generate data from the distribution N (µ̂, σ̂2) using the inverse transfor-
mation method.

□

3.2.8 Generating Multivariate Distribution with Decomposition-
Based Method

To generate a multivariate vector Y = (Y1, . . . , Ym) with dependent components, follow
this approach: If the transformed vectorX = LY+µ retains the same type of distribution
as the independent components Y, where L is a transformation matrix and µ is a vector
that adjusts the mean, then employ this method. We must ensure that µ and the
covariance matrix Σ = LLT are properly defined to establish mean and variance.

Cholesky Decomposition

Theorem 3.2.16. Let Y be a random vector in Rm with independent components and
mean vector µ, let L be a deterministic matrix of size m×m. Then X = LY+ µ′ has a
multivariate distribution with the mean vector Lµ + µ′ ∈ Rm and the covariance matrix
Σ = LLT .

Proof. � Mean of X:

E[X] = E[LY + µ′] = LE[Y] + µ′ = Lµ+ µ′.

Hence, the mean vector of X is Lµ+ µ′.

� Covariance Matrix of X:

Σ = Cov(X) = E[(X− E[X])(X− E[X])T ]

= E[L(Y − µ)(Y − µ)TLT ]

= LE[(Y − µ)(Y − µ)T ]LT .

By the given conditions, the covariance matrix of Y is the identity matrix I:

E[(Y − µ)(Y − µ)T ] = I.

Substituting it into the expression for Σ:

Σ = LILT = LLT .

Thus, X has mean vector Lµ + µ′ and covariance matrix Σ = LLT . Based on this
theorem, we have the following algorithm that utilizes the Cholesky decomposition.
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Simulation Algorithm

(a) For given Σ, apply the Cholesky method to get L.

(b) Generate an m-dimensional vector Y with independent standard normal com-
ponents.

(c) Calculate X = LY + µ′.

(d) Repeat (b)-(c) n times. As a result, we obtain a sample of size n from a
multivariate normal distribution with the covariance matrix Σ = LLT .

Example 3.2.17 (Simulation from Bivariate Normal). Suppose that we want to generate
samples from a bivariate normal distribution with mean vector µ = [0, 1]T and covariance
matrix

Σ =

[
1 0.7
0.7 1

]
.

� The Cholesky decomposition of Σ is:

L =

[
1 0

0.7
√
0.51

]
=

[
1 0
0.7 0.714

]
.

� Transform standard normal samples (y1, y2) using the Cholesky factor L:

(x1, x2)
T = L

[
y1, y2

]
=

[
1 0
0.7 0.714

] [
y1
y2

]
=

[
y1

0.7y1 + 0.714y2

]
.

� Add the mean vector µ to the transformed samples X:

Z = X+ µ =
[
y1, 0.7y1 + 0.714y2

]
+
[
10
]
=

[
y1 + 1

0.7y1 + 0.714y2

]
.

This algorithm generates samples from a bivariate normal distribution with mean µ and
covariance matrix Σ. □

Spectral Decomposition

Theorem 3.2.18. � Any covariance matrix Σ can be factorized as Σ = QΛQT ,
where

– Λ is the diagonal matrix whose diagonal elements are the eigenvalues of Σ,
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– Q is an orthogonal matrix whose columns are the eigenvectors of Σ.

� Let Y be a random vector in Rm with mean vector 0 and identity covariance matrix.
If X = QΛ

1
2Y, then X has a covariance matrix Σ.

Proof. Given that Y has the mean vector 0, we note that

Var(X) = E[XXT ] = E
[
(QΛ

1
2Y)(QΛ

1
2Y)T

]
= E

[
QΛ

1
2YYTΛ

1
2QT

]
= QΛ

1
2E[YYT ]Λ

1
2QT

= QΛQT = Σ

which is the desired covariance matrix.

Simulation Algorithm

(a) For a given Σ, apply the spectral decomposition to get Q.

(b) Generate an m-dimensional vector Y with independent standard normal com-
ponents.

(c) Calculate X = QΛ1/2Y.

(d) Repeat (b)-(c) n times. As a result, we obtain a sample of size n from a
multivariate normal distribution with the covariance matrix Σ = QΛQT .

Example 3.2.19. Suppose we want to generate normal data with the following param-
eters:

� Mean vector: µ =

[
1
0

]
.

� Covariance matrix: Σ =

[
1 0.7
0.7 1

]
.

We proceed as follows:

� The spectral decomposition of Σ is: Σ = QΛQT , where

Q =

[
−
√
2
2

√
2
2√

2
2

√
2
2

]
, Λ =

[
1.7 0
0 0.3

]
.
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� Generate standard normal samples Y :

Y =

[
y1
y2

]
,

where y1 and y2 are realizations of independent standard normal variables.

� Transform the samples using Q and Λ1/2:

X = QΛ1/2Y =

[
−
√
2
2

√
2
2√

2
2

√
2
2

][√
1.7 0

0
√
0.3

] [
y1
y2

]
=

[
−
√
3.4
2

y1 +
√
0.6
2

y2√
3.4
2

y1 +
√
0.6
2

y2

]
.

The resulting data Z follows a multivariate normal distribution with mean vector µ =
[1, 0] and the covariance matrix Σ. □

3.2.9 Bootstrap

If we do not have a model assumption, we can apply non-parametric data genera-
tion techniques. Our objective is to randomly choose individuals from a dataset D =
{X1, . . . , Xn}. Each individual should have the same probability of being selected, and
we repeat the selection process N times.

Simulation Algorithm

� We generate independently N values U = {u1, . . . , uN} from the standard uni-
form distribution.

� for each value uj ∈ U , j = 1, . . . , N , if uj is between i−1
n

and i
n
for some

i = 1, . . . , n, then set xj = Xi.

� Note that some xj’s may have the same value Xi.

3.2.10 Equivalence of inverse transformation and bootstrap

Inverse transformation method applied to the empirical cumulative distribu-
tion function (ECDF) is equivalent to the bootstrap procedure.

Let r(x) denote the number of times a value x appears in the dataset:

r(x) =
N∑
j=1

1{Xj = x}.
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The empirical CDF at the point x is:

F̂n(x) =
1

n

N∑
j=1

1{Xj ≤ x}.

Define x− as the largest value less than x in the dataset (hence, both x− and x are
random numbers). The probability that u falls within this interval, thus selecting x by
the inverse CDF, is:

P
(
u ∈

(
F̂n(x

−), F̂n(x)
])

=
r(x)

n
.

This probability is the same as the bootstrap method in which each data point is equally
likely to be chosen.

3.2.11 SMOTE

SMOTE stands for Synthetic Minority Oversampling Technique; [4]. This method was
popular at some point with practitioners working in data privacy or data generation in
general. A big drawback of this method is that there is no associated mathematical
theory. Another drawback is the emergence of newer data generation methods, such as
Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffu-
sion models (which lack the mathematical theory as well ...). These methods are now
more commonly used because they can generate more realistic and varied synthetic data.
We mention the SMOTE method, since it is still implemented in some packages.

We start with some terminology. A class refers to the categories, groups, or bins in
which data points are grouped based on characteristics. It shares a similar idea from
the equivalence classes previously discussed. A minority class refers to the class that
has fewer samples compared to other classes. For example, in a demographic study, ages
could be categorized as classes, with individuals over 90 forming a minority class because
of their fewer numbers.
Balancing a data set involves adjusting the proportions of different classes to prevent
biases in machine learning models caused by unequal class distributions. This can be
achieved by oversampling the minority class - increasing its representation by duplicating
existing samples or generating new synthetic ones - or by undersampling the majority
class, where excess samples are removed to equalize the class sizes. Note that balancing
dataset is optional in the SMOTE algorithm.

In what follow we have:

� Tj is the set of data points classified under the j-th minority class before any
adjustments.

� tj is a subset of selected data points in Tj, and this subset is chosen to modify the
class size to achieve a more representative distribution between different classes.
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� Nj is the percentage of the total data points in Tj that are included in the subset
tj. It determines the proportion of the minority class used in the balance process.

� K denotes the number of nearest neighbors to consider in the given algorithm.

Simulation Algorithm. We can divide the algorithm into two stages: the first stage
involves balancing the dataset, and the second stage focuses on the generation of synthetic
data.

� Determine the proportion of the minority class Tj, the desired balance Nj, and
the maximum number of nearest neighbors K.

� For the j-th minority class Tj, choose a subset denoted by tj such that Nj

percent of the sample from Tj is selected.

� Randomly choose a data point xi from the balanced dataset tj.

� Randomly select a number ki from the set {1, . . . , K}.

� Identify the ki-th nearest neighbor of xi, denoted xki
i .

� Randomly generate a number u between 0 and 1.

� Generate synthetic data xi,new = xi + u(xki
i − xi).

We note that the nearest neighbour may not be unique. This requires a special
treatment.

Example 3.2.20. In our simulation, we generate 10 data points from a multivariate
normal distribution and categorize them into two minority classes, T1 and T2. We selected
Nj = 100% of the data points in each class, eliminating the need for balancing. The
parameter k is set to 2, indicating that we will use the two nearest neighbors of each
selected data point to generate synthetic data points. This approach ensures that each
class is adequately represented while maintaining the statistical characteristics of the
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original dataset.
x1 x2

0.49671 −0.13826
0.64769 0.77997
−0.23415 −0.23414
1.57921 1.54256
0.76743 0.96940
−0.46947 0.54256
−0.46342 −0.46573
0.24196 −0.04535
−1.91328 −1.72492
0.56229 1.31425

Suppose we selected point (0.49671,−0.13826) and two nearest neighbors (according to
the Euclidean distance) of the point are (0.64769, 0.77997) and (0.76743, 0.96940). We
will generate synthetic data points by interpolating these points.

1. Randomly select ki from the set {1, 2}. Assume ki = 2 is chosen for this example.

2. The second nearest neighbor selected according to ki is (0.76743, 0.96940).

3. Choose a random interpolation factor u = 0.65.

4. Calculate the synthetic point:

xnew = (0.49671,−0.13826) + 0.65× ((0.76743, 0.96940)− (0.49671,−0.13826))

= (0.67276, 0.58526).

Same procedure will apply to each data point in the original dataset. In this example,
we have demonstrated the detailed steps for generating synthetic data using the SMOTE
method. □

3.2.12 Linear interpolation techniques

We aim to create synthetic data from an observed dataset. Although the underlying
distribution of the samples is continuous, we have access to only discrete samples from
these data. The following method is designed to address this issue. In what follow we
have:

� n′d represents the number of distinct values in dimension d, where n′d ≤ n, and n is
the total number of data points. In the one-dimensional case, we write n′1 = n′ = n.

� For each d-dimensional data point (xj,1, . . . , xj,d), j = 1 . . . , n we read out the ith
coordinates and we order them:

x(1),i ≤ x(2),i ≤ · · · ≤ x(n′),i.
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� Interval Definition: Based on the ordered values, we create intervals in each dimen-
sion i = 1, . . . , d:

(x(1),i, x(2),i]︸ ︷︷ ︸
=I1,i

, . . . , (x(ℓ),i, x(ℓ+1),i]︸ ︷︷ ︸
=Iℓ,i

. . . (x(n′−1),i, x(n′),i]︸ ︷︷ ︸
=In′−1,i

.

This defines the interval bounds between consecutive values in the sorted data for
each dimension.

� The d-dimensional interval is the Cartesian product of intervals across all dimen-
sions:

I ′ℓ = Iℓ,1 · · · × · · · × Iℓ,d, ℓ = 1, . . . , n′ − 1. (3.1)

This defines multidimensional intervals.

Below, we outline the algorithm for 1-dimensional case only (d = 1). Hence, we drop the
second subscript from x.

Linear Interpolation with additional point I

1. Sort the data points by their values, x(1), . . . , x(n′).

2. Add an additional point x(0) that is smaller than x(1) to adjust the interpolation.

3. Randomly select m points from x1, . . . , xn .

4. For each selected data point x(ℓ), consider the interval (x(ℓ−1), x(ℓ)).

5. Draw a uniform sample from the interval.

The outlined algorithm is equivalent to applying the inverse transformation method
to the piecewise linear function that interpolates between each point on the empirical
CDF. The reason for interpolating to the left is the natural right-continuity of the CDF
function.
We notice that:

� The linear interpolation algorithm does not naturally apply any smoothing for
values smaller than the smallest x in the data. This means that the tail distribution
needs to be estimated separately.
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Figure 3.1: Linear Interpolation with additional point I

� Moreover, the support of dataset also cannot be guaranteed, that is, the lower
bound of the data is smaller than the original data and the upper bound of the
data does not exceed the support.

The following plot shows the ECDF of the original data, with blue lines representing
the cumulative probability using linear interpolation. An additional red point is added
below the minimum value with an ECDF of 0. This added additional point creates some
bias and boundary problems. An alternative method to solve this problem is as follows
(we call it Linear Interpolation II). Instead of adding an additional point at the smallest
value of x, we assign values generated between x(1) and x(2) a higher probability. This
approach not only avoids the need for tail estimation, but also preserves the support of
the dataset (see Figure 3.2).

Multivariate case. In the multivariate case, the empirical cumulative distribution
function (ECDF) and linear interpolation functions become more complex. For ECDF,
it no longer calculates cumulative probabilities for one variable but rather understands
how multiple variables interact collectively. Moreover, linear piecewise functions in these
spaces involve fitting high-dimensional planes to data segments, rather than just con-
necting points. As shown in Section 3.2.10 we can use bootstrap as an alternative to
inverse transformation methods to sample the distribution. This becomes a smoothing
bootstrap problem.
We extend our Linear Interpolation II algorithm to the multi-dimensional case. Instead
of sampling uniformly over intervals in dimension one, we sample uniformly over the
boxes Iℓ defined in (3.1).

Example 3.2.21. We generate 1000 samples from a multivariate normal distribution
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Figure 3.2: Linear Interpolation II

Figure 3.3: Linear interpolation II in dimension 2.
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and compare the ECDFs for the marginal distributions and the dependence structure
using contour plots.

The synthetic data follows the same marginal distribution and dependence structure as
the original ones. However, we can observe some distortion to the left tail of the original
ECDF. As the number of original data points increases, this issue becomes negligible. □

We make the following comments:

� Compared to other methods, these generation techniques ensure maximum utility
with respect to the empirical cumulative distribution function (CDF).

� For each interpolation method, we have the flexibility to sample not only uniformly
but also from other distributions. For example, in the Linear Interpolation II algo-
rithm, we can modify Step 5 to draw a normal sample from the interval. Different
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distributions can be chosen for various purposes. For example, for privacy pur-
poses, we might want to generate synthetic data that deviates significantly from
the original data. In such cases, the chosen distribution would focus more on the
center of the interval, such as a normal distribution or distributions with lighter
tails.

� Different intervals can be selected, and various sampling methods can be applied
within each interval. This transforms the algorithm into a problem similar to
bootstrap smoothing [2] [15] or adaptive bandwidth kernel density estimation [21]
[35] [1].
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Chapter 4

Synthpop Package: Description,
Challenges and Solutions

The synthpop package for R is a tool specifically designed for generating synthetic
datasets from the original dataset, trying to keep the statistical properties of individual-
level data. The synthpop package for R is based on the synthetic data generation
techniques developed in several foundational papers, including those in [25], [18], [22],
and [23]. The methodology used in these articles is based on the concept of multi-
ple imputation, originally designed to handle missing data, as Rubin detailed in [26].
This approach has been adapted in the synthpop package to facilitate the generation
of synthetic datasets that allow the analysis of sensitive datasets without compromising
individual privacy.

In our analysis of the synthpop package, we focus particularly on how effectively it
uses data utility metrics for the generated data, highlighting any limitations or chal-
lenges. We start by reviewing different data utility metrics. We discuss their limitations
and potential lack of interpretation. This is illustrated by many examples. We indicate
that some of the statistical inference tools implemented in the package are not used cor-
rectly. For example, the famous Kolomogorov-Smirnov test is applied to compare the
original and synthetic datasets. The null hypothesis of equality between two datasets is
accepted or rejected based on the calculated p-values. As we will show and discuss, this
is incorrect since the datasets are dependent. These topics are discussed in Section 4.4.

Next, we discuss potential issues with implementation of data generation procedure.
If our goal is to generate synthetic data from a multivariate distribution, we need to pro-
vide a proper sequence in which the variables are generated. In other words, we would
like to preserve not only the univariate characteristics of the original dataset, but also the
dependence structure between the variables. The package does not allow to verify if the
dependence structure is well-preserved. Furthermore, if there is no sequential relation
between the variables in the original dataset, the package will not generate the proper
synthetic dataset. These topics are discussed in Section 4.5.

91



We propose a solution to this problem. Rather than sequentially fitting models to the
data, which might lead to compounding errors and potential privacy leaks, we propose a
method that involves fitting each variable independently, using all other variables in the
data set as predictors.

Finally, the package does not discuss privacy of the synthetic data, focusing on data
utility. We will look at the privacy of synthetic data using the notion of differential
privacy introduced before. These topics are discussed in Section 4.6.

4.1 Terminology

� We have observations (X1j, . . . , Xpj), where j = 1, . . . , n, drawn from a multi-
variate vector (X1, . . . , Xp). When necessary, we refer to these observations as
(X1,obs, . . . , Xp,obs). Thus, the observed data can be written as (X1j,obs, . . . , Xpj,obs),
for j = 1, . . . , n.

� We aim to generate synthetic data (X1,syn, . . . , Xp,syn), which should ideally retain
the statistical properties of the original data (X1,obs, . . . , Xp,obs).

� The function f(Xi+1,obs | Xi,obs, . . . , X1,obs) represents the conditional distribution
of Xi+1,obs given all previously observed variables. The choice of the model for f is
versatile and can depend on the nature of the data.

� The visit sequence is an ordered list that determines the sequence in which the
variables are synthesized, ensuring that the dependencies between the variables
are respected in the synthetic data set: X1′ , . . . , Xp′ . Note that, e.g. X1′ is not
necessary X1,syn.

� The predictor matrix P is a square matrix with dimensions p × p, where p is the
number of variables in the dataset. Each row and column of the matrix correspond
to one of the variables X1, X2, . . . , Xp. Each entry Pij in the matrix is binary:
Pij = 1 indicates that variable Xj is used as a predictor of variable Xi, while
Pij = 0 indicates that variable Xj is not used as a predictor of variable Xi. The
package allows the input of a predictor matrix that represents the correlations or
dependencies between variables, it also outputs a predictor matrix that reflects the
correlations used by the package during data generation. It is important to note
that the input predictor matrix may differ from the output predictor matrix, as
will be demonstrated in example 4.2.2.

� Model fitted for the (i + 1)′-th variable in the visiting sequence is denoted by
f
(
X(i+1)′ | Xt

)
, where the set of predictors Xt is composed of those variables from

the set (X1′ , X2′ , . . . , Xi′) that are indicated by the input predictor matrix P. We
denote P(i+1)′ as the (i+ 1)′-th row of the predictor matrix P.
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4.2 Simulation algorithm

The following simulation algorithm is designed to generate synthetic data by sequentially
modeling each variable in the dataset based on the previously synthesized variables. Ide-
ally, this method ensures that the dependencies between variables are maintained, re-
flecting the structure present in the original data. However, we will demonstrate that
this is not always the case if we use the package. As such, we propose some solutions to
deal with this issue.

The process begins by selecting an initial variable from the observed data, generating
its synthetic counterpart by e.g. bootstrapping, and then progressively modeling and
generating synthetic values for each subsequent variable using a fitted model. The ap-
proach is iterative, with each synthetic variable conditioned on all previously generated
synthetic variables. Note that the sequence of selecting of variables depend on the input
visiting sequence.

Simulation Algorithm

� According to the visit sequence denoted by X1′ , . . . , Xp′ , select the initial vari-
ableX1′,obs. GenerateX1,syn by random sampling with replacement fromX1′,obs.

� For each subsequent variable X(i+1)′,obs in the visit sequence, select a subset
Xt of variables from X1′ , X2′ , . . . , Xi′ according to the input predictor matrix
P, and fit a model f(X(i+1)′,obs | Xt). The predictor matrix specifies which
variables among Xi′ , X(i−1)′ , . . . , X1′ are used to predict X(i+1)′ . This model
represents the conditional distribution of X(i+1)′ given the selected predictors.

� Draw synthetic values X(i+1)′,syn from the model f(X(i+1)′,syn | Xt).

� Repeat the process for all variables in the dataset.

We make the following comments:

� For each fitted model, specific model assumptions are necessary. For continuous
data, linear regression or CART may be used, while for categorical data, models
such as logistic regression or regression trees may be appropriate.

� The choice of the initial variable and the sequence of selection variables must be
specified.

� The predictor matrix that indicates the relationships between the variables should
be specified.
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� Random noise can be added to each predicted variable. There are two methods
to incorporate this noise: one method is to add random noise directly to the pre-
dicted model, such as X(i+1)′,syn = β̂iXi′,syn + · · · + β̂1X1′,syn + ϵ; where β̂1, . . . , β̂i

are estimates of the original model. Alternatively, a Bayesian approach can be
used to estimate the distribution of β, from which samples are drawn, assuming
normal noise. For example, this method would use X(i+1)′,syn = β̃Xi′,syn, where

β̃ ∼ N(β̂, σ(β̂)).

The method used by synthpop involves generating synthetic data by sequentially
modeling each variable based on previously synthesized variables. The algorithm intro-
duced above is used, and the models can be chosen from various options. We provide
a description of several commands from the package, as the description provided in the
manual does not fully reflect what the functions actually do.

In what follows:

� y: Represents X(i+1)′,obs when fitting the model.

� ŷ: Represents X(i+1)′,syn when generating synthetic data.

� x: Represents a column vector (X1′,obs, . . . , Xi′,obs)
T , used when fitting the model.

� Subset xt: A selection of variables from the vector x = (X1′,obs, . . . , Xi′,obs)
T . The

selection is determined by the specifications of the predictor matrix P.

� xp: Represents a column vector (X1′,syn, . . . , Xi′,syn)
T , used when generating syn-

thetic data.

� β: A column vector of parameters used in the models.

� β̂ and β̃: Represent the estimated values of β using the classical and Bayesian
approaches, respectively.

We have the following models provided by the package:

� The .norm.fix.syn function takes three main inputs,

y = X(i+1)′,obs, x = (X1′,obs, . . . , Xi′,obs)
T

and predictor matrix P. This function computes the regression coefficients β̂ =
(β̂1, . . . , β̂i) and estimates the variance of the error σ2 for a linear regression model
with regularization of the ridge:

y = xT
t β + Z, Z ∼ N(0, σ2).

This model is designed to calculate the deterministic part of the response and then
adds normally distributed noise to model errors or unexplained variation.
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� The .norm.draw.syn function also requires three inputs

y = Xi+1,obs, x = (X1′,obs, . . . , Xi′,obs)
T

and predictor matrix P. It uses Bayesian linear regression with ridge penalization
to compute the regression coefficients β and σ2:

y = xT
t β̃ + Z, Z ∼ N(0, σ̃2).

where xt is a subset of variables selected from x = (X1′,obs, . . . , Xi′,obs)
T , based

on the input predictor matrix. Here, β̃ represents the regression coefficients ad-
justed for Bayesian inference, integrating prior belief (regularization) about the
distribution of the coefficients with noise added to reflect uncertainty.

� The syn.lognorm function taking input variables y, x, xp and P which represent
the observed response variable, observed predictors, synthetic predictors and pre-
dictor matrix, respectively. Note that y need to be positive. The predictors xt

are then used to fit a regression model either through a standard penalized lin-
ear approach (via .norm.fix.syn) or a Bayesian approach with ridge penalization
(via .norm.draw.syn). Using estimated coefficients and error terms, the function
generates synthetic values for the response variable:

ˆlog(y) = (xtp)
Tβ′ + Z, Z ∼ N(0, σ2),

where β′ are the estimated coefficients of β̂ or β̃. Finally, the function reverses the
logarithmic transformation by exponential ˆlog(y) to obtain ŷ.

� The syn.sqrtnorm function taking input variables y, x, xp and P representing
the observed response variable, observed predictors, synthetic predictors and pre-
dictor matrix, respectively. We need to ensure that y contains only nonnegative
values, since it undergoes a square root transformation, which is inappropriate
for negative values. After transforming y by taking its square root, the predic-
tors x are utilized to fit a regression model using a standard penalized linear ap-
proach (using .norm.fix.syn) or a Bayesian approach with ridge penalization
(using .norm.draw.syn).

Using the calculated coefficients and error terms, the function generates synthetic
values for the transformed response variable:

√̂
y = (xtp)

Tβ′ + Z, Z ∼ N(0, σ2),

where β′ represents the coefficients estimated from either β̂ or β̃. Subsequently, the
function squares these values to reverse the transformation, obtaining the synthetic
values for y.
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� The syn.normrank function taking input variables y, x, xp and P which represent
the observed response variable, observed predictors, synthetic predictors and pre-
dictor matrix, respectively. This function is adapted for regression synthesis using
Z scores derived from the ranks of y. Initially, the function computes the Z scores
for y using the quantile function (qnorm) applied to the ranks of y, normalized by
the length of y plus one to avoid the extremes of the distribution. The predictors xt

are then used to fit a regression model through either a standard penalized linear
method (via .norm.fix.syn) or a Bayesian approach with ridge penalization (via
.norm.draw.syn). This fitting process aims to model the transformed scores rather
than the original values, maintaining the distributional characteristics. Once the
model is fitted, synthetic Z scores are predicted for the synthetic predictors xp, and
these scores are transformed back to the data scale using the inverse cumulative
distribution function (pnorm). The function ensures that the predicted ranks are
within the valid range and then maps these ranks back to the corresponding values
in y.

� The syn.logreg function taking input variables y, x, xp and P which represent the
observed response variable, observed predictors, synthetic predictors and predictor
matrix respectively. This function fits a logistic regression model to estimate the
probability that y equals 1 given x. The logistic regression model is fitted using:

log

(
p

1− p

)
= xT

t β,

where p is the probability of y = 1. The function allows the user to use fixed β
as the predictor or uses Bayesian techniques to draw the regression coefficients β
from a normal distribution centered on the estimated coefficients with a variance
derived from the model uncertainty. Synthetic data are generated by comparing the
modeled probabilities p with a uniform random variable, determining the binary
result for each synthetic record.

� The syn.cart function is the default method for synthetic data generation in the
package. It takes input variables y, x, xp and P which represent the observed
response variable, observed predictors, synthetic predictors and predictor matrix
respectively. This function employs the Classification and Regression Tree (CART)
method to generate synthetic data.

The process involves fitting a decision tree using the rpart package in R, with
the flexibility to adjust parameters such as the minimum number of observations
required in a tree leaf (minbucket) and the complexity parameter (cp), which
influences the size of the tree. We will illustrate this in detail later in this chapter.

The function syn.cubertnorm synthesizes data by applying a cube root transforma-
tion to the response variable, followed by regression. The predicted values are then
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cubed to return to the original scale. The syn.polyreg function synthesizes categori-
cal response variables employing Bayesian polytomous regression, fitting a multinomial
logistic model and adding noise to the predicted categories. The syn.sample function
generates synthetic values by randomly sampling the observed data, with optional boot-
strapping to replicate the variability in the original dataset. The syn.ctree function
utilizes Conditional Inference Trees to synthesize data by splitting based on conditional
distributions and predicting terminal nodes for new observations. For survival data,
the syn.survctree method applies Conditional Inference Trees specifically designed for
time-to-event analysis, generating synthetic survival times and events. The syn.rf func-
tion synthesizes data using Random Forests, generating synthetic values from the ter-
minal nodes of multiple decision trees. Similarly, syn.bag employs bagging (bootstrap
aggregation) to fit multiple decision trees to bootstrapped samples and generate synthetic
values based on aggregated predictions. Finally, syn.ipf uses Iterative Proportional Fit-
ting (IPF) to fit a logarithmic linear model to categorical variables, adjust frequencies to
match specified margins, and generate synthetic values that adhere to the distribution
constraints of the original data.

Example 4.2.1. We illustrate the implementation of the package using a specific model.
Assume that we have two random variables, age (X1 = X1,obs) and income (X2 = X2,obs).
The sequence for this example is as follows: first, we generate the age and then generate
income based on the age. Therefore, 1′ = 1 and 2′ = 2. The predictor matrix P is

P =

[
0 0
1 0

]
.

This matrix indicates that income (X2) is predicted using age (X1), but age (X1) is not
predicted using any other variable. In terms of the notation introduced above, here x
and xt are identical, and it is X1, X2.

The basic implementation of the package is as follows.

1. Create X1,syn by bootstrapping X1,obs.

2. Fit the linear model X2,obs = βX1,obs + Z, where Z is N (0, σ2
Z). As a result, we

obtain the estimate β̂. Calculate the residuals to estimate σ2
Z ; denote it by σ̂2

Z .

3. SimulateX2,syn usingX2,syn = β̂X1,syn+Z̃, where Z̃ is centered normal with variance
σ̂2
Z .

Assume that we have a dataset with 10 observations:
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ID age income
1 22 30000
2 25 35000
3 28 40000
4 30 45000
5 35 50000
6 40 60000
7 45 70000
8 50 80000
9 55 85000
10 60 90000

In the first step, we select the initial variable: we randomly sample agesyn with
replacement from the observed age values and obtain:

ID agesyn
1 22
2 25
3 28
4 22
5 35
6 40
7 45
8 50
9 28
10 60

In the next step, we fit the linear model for the next variable f(incomeobs | ageobs).
The fitted model is:

income = 1230.77 + 1500 · age + Z, Z ∼ N(0, σ2).

The sum of squared residuals is 89277885.32, and the estimated σ2 is 11159735.665. In
the final step, we generate synthetic values: we draw synthetic values incomesyn from the
model f(incomesyn | agesyn) using normal noise with estimated σ.

The final synthetic dataset is:
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Observation agesyn incomesyn
1 40 60257.33
2 22 33786.17
3 30 45652.61
4 30 40345.76
5 50 75937.89
6 60 95796.99
7 30 49990.02
8 40 60031.50
9 28 47308.36
10 35 49256.03

□

We illustrate the terminology introduced before using the following example.

Example 4.2.2. Given the variablesX1, X2, X3, X4 and the visiting sequence 1′ = 3, 2′ =
4, 3′ = 2, 4′ = 1, the input predictor matrix P is as follows:

P =


0 1 1 1
0 0 1 1
0 0 0 0
0 0 1 0

 .

The rows and columns correspond to the variables X1, X2, X3, X4, and the matrix
indicates which variables are used as predictors for the others.

In row 1 of the predictor matrix, we have:

P11 = 0, P12 = 1, P13 = 1, P14 = 1,

indicating that X2, X3, and X4 are predictors of X1.
In row 2, we have:

P21 = 0, P22 = 0, P23 = 1, P24 = 1,

indicating that X3 and X4 are predictors of X2.
In row 3, we have:

P31 = 0, P32 = 0, P33 = 0, P34 = 0,

indicating that no variables predict X3, so the package resamples it. Notice that the
variable chosen for resampling should be non-sensitive to prevent privacy disclosure.

In row 4, we have:

P41 = 0, P42 = 0, P43 = 1, P44 = 0,
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indicating that X3 is a predictor of X4.

Combining the predictor matrix with the visiting sequence X3, X4, X2, X1, as intro-
duced before, we have: 1′ = 3, 2′ = 4, 3′ = 2, 4′ = 1, which means that we generate
X3 first, X4 second, X2 third, and X1 last. When synthesizing X3, the predictor ma-
trix indicates that only X4 is used as a predictor (since P34 = 1). When synthesizing
X4, no predictors are used (since P41 = P42 = P43 = P44 = 0), which means that it is
resampled. For X2, both X3 and X4 are used as predictors (since P23 = P24 = 1). Fi-
nally, when synthesizing X1, all variables (X2, X3, and X4) are used as predictors (since
P12 = P13 = P14 = 1).
Thus we have the predictor matrix as follow:

P =


0 1 1 1
0 0 1 1
0 0 0 0
0 0 1 0


Which is same as the input predictor matrix.

In conclusion, the visiting sequence determines the order in which the variables are
synthesized, while the predictor matrix defines the variables used as predictors for each
step of the process. □

Example 4.2.3. We can also apply a different visiting sequence for the same input
predictor matrix as shown in Example 4.2.2. For example, if we define the visiting
sequence asX4, X3, X1, X2, the synthesis process changes accordingly. When synthesizing
X4, no predictors are used, even though P43 = 1 in the input predictor matrix, because
X4 is visited before X3, meaning X3 is resampled. For X3, the input predictor matrix
indicates that no other predictors are used, so X3 is also resampled. When synthesizing
X1, the predictor matrix shows that X2, X3, and X4 are predictors, but since only X3

and X4 have been visited, they are used as predictors. Finally, when synthesizing X2,
the input predictor matrix indicates that X2 and X3 are predictors and both have been
visited. Therefore, the output predictor matrix is as follows:

Pout =


0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

 .

In conclusion, the input predictor matrix and the output predictor matrix may be dif-
ferent. The input predictor matrix reflects the relationships or dependencies between
variables, as defined before data generation. The output predictor matrix represents
the actual model fitting during the synthesis, based on the visiting sequence and the
predictors that have been visited up to that point. Therefore, while the input matrix
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indicates potential predictors, the output matrix shows which predictors were used in
model fitting during the generation of synthetic data. □

4.3 Handling issues with data

In real applications, we have to handle various issues with the data, such as missing
values, multicollinearity, or outliers. For example, to deal with linear dependence, the
package proceeds as follows:

� Compute the correlation matrix R = [Rij]
p
i,j=1 for the data and identify the pairs

of variables with |Rij| ≥ t, where t is the threshold, set to 0.99999 by default.

� Adjust the predictor matrix so that the variables with high correlation are used
only once.

Note that Pearson correlation primarily captures linear relationships between variables
and may not effectively detect non-linear dependencies. Other types of correlation mea-
sures, such as Spearman’s rank correlation or Kendall’s tau, might be more appropriate.
In addition, other methods, such as the variance inflation factor, may also be applied.

The package uses the padMis.syn function to handle missing data for continuous and
padModel.syn function to handle missing data for discrete variable.
For continuous data the approach is as follows:

1. Check for Missing Values: Verify if the variable Xj contains missing values that
are not covered by predefined rules.

2. Create Additional Variables: Create a new variable X
(0)
j by replacing all missing

values in Xj with zeros. Create another new variable X
(NA)
j , which is a factor

variable that indicates whether the original value in Xj was missing (Yes) or not
(No).

3. Update data set: Add the newly created variables X
(0)
j and X

(NA)
j as new columns

in the data set.

4. Update Synthesis Methods: assign appropriate synthesis methods, distinguishing
between continuous and categorical data, to newly added variables X

(0)
j and X

(NA)
j .

5. Generate data: Include only newly added variables and exclude original variables
with missing data when generating synthetic data.

Example 4.3.1. In this example, we demonstrate how the package handles missing data.
Consider a dataset with three variables: age (X1 = X1,obs), income (X2 = X2,obs), and
education level (X3 = X3,obs), where some observations on education level are missing.

The original dataset is:
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ID Age (X1) Income (X2) Education (X3)
1 25 30000 Bachelor’s
2 30 40000 NA

3 35 50000 Master’s
4 40 60000 NA

5 45 70000 Bachelor’s
6 50 80000 High School
7 55 90000 NA

8 60 100000 PhD
9 65 110000 Master’s
10 70 120000 NA

The steps to handle missing data using the padMis.syn function are as follows:

1. Check for Missing Values: Identify that 4 of 10 observations for ‘education‘ are
missing.

2. Create Additional Variables:

� Create a new variable X
(0)
3 by replacing all missing values in ‘education‘ (X3)

with zeros.

� Create another variable X
(NA)
3 , which is a factor variable indicating whether

the original value in ‘education‘ was missing (Yes) or not (No).

3. Update the Dataset: Add the newly created variables X
(0)
3 and X

(NA)
3 as new

columns in the dataset. The updated dataset now has five columns: age (X1),

income (X2), education (X3), X
(0)
3 , and X

(NA)
3 .

4. Assign Synthesis Methods:

� Assign an appropriate synthesis method for X
(0)
3 , treating it as a continuous

variable or as appropriate depending on the method.

� Assign a synthesis method for X
(NA)
3 , treating it as a categorical variable.

5. Generate Synthetic Data: During the synthesis process, include only the newly
added variables X

(0)
3 and X

(NA)
3 and exclude the original ‘education‘ variable X3.

This approach ensures that the synthetic dataset reflects the missing data structure
in the original dataset.

The updated dataset is:
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ID Age (X1) Income (X2) Education (X3) X
(0)
3 X

(NA)
3

1 25 30000 Bachelor’s 1 No
2 30 40000 NA 0 Yes
3 35 50000 Master’s 1 No
4 40 60000 NA 0 Yes
5 45 70000 Bachelor’s 1 No
6 50 80000 High School 1 No
7 55 90000 NA 0 Yes
8 60 100000 PhD 1 No
9 65 110000 Master’s 1 No
10 70 120000 NA 0 Yes

□

Discussing missing data is a broad topic and will not be covered in detail here.
However, it’s important to note the following specific limitations related to the handling
of missing data in the current approach.

� Unspecified assumptions on missing data: The package does not explicitly specify
the assumptions regarding the problem setup for the missing data. It handles
missing values by replacing them with zeros and creating indicator variables, which
might imply an assumption of missing completely at random (MCAR). If the data
are actually missing at random (MAR) or not missing at random (NMAR), this
treatment will lead to biased estimates and potentially affect the validity of the
statistical analysis.

� Impact on statistical models: The use of zero-replacement and indicator variables
will affect the performance of certain statistical models, particularly those sensitive
to outliers or non-normal distributions.

4.4 Data utility

Once we generate the synthetic data, we need to assess whether the new data set is
similar in some sense to the original data set. Recall that from the privacy perspective
we do not want the original and the synthetic datasets to be similar, while the opposite
holds for data utility. To assess the utility of the data generated from the statistical
models, we can use two methods: first, we can directly compare the synthetic data with
the original data, for example, we can apply:

� Propensity Score Analysis: This method calculates the probability that a data
point is synthetic, helping to evaluate the indistinguishability of the original and
synthetic data.
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� Contingency tables: This method compares the frequency between groups in both
observed and generated data.

� Comparison of Empirical Distributions: We compare the marginal and multivariate
distributions of the synthetic and original data to evaluate the similarity between
individual variables.

� Contour plots: Contour plots are used to measure the dependence structure be-
tween variables, illustrating how the generated data capture complex multidimen-
sional relationships.

Secondly, we can also evaluate the performance of statistical models fitted to the original
data to generate synthetic data. It can be evaluated using various metrics, depending
on the type of data and model, for example we can apply:

� Mean squared error (MSE) for regression models. MSE is used to quantify the
average squared difference between the estimated values and the actual value.

� Gini index for CART models; the Gini index measures the impurity of a node in the
decision tree. Lower Gini values mean a model with better discriminative ability,
which indicates a better performance.

Note that not all the tools are included in the package.

4.4.1 MSE and coefficient of determination

If the univariate distribution is generated from a statistical model, we can use the same
metrics to measure the goodness of fit of the model to justify the utility of the generated
data. For example, if we are using a regression model fitted by minimizing the mean
squared error, we can use the mean squared error or the coefficient of determination as
a utility measure:

MSEi :=
1

n

n∑
j=1

(Xij,obs −Xij,syn)
2, i = 1, . . . , p

and the coefficient of determination given by

R2
i = 1−

∑n
j=1(Xij,obs −Xij,syn)

2∑n
j=1(Xij,obs − X̄i,obs)2

, i = 1, . . . , p,

where X̄i,obs is the mean of the observed values for the ith variable.
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4.4.2 Comparison of marginal empirical distributions

The first measure that we can think of is the Kolmogorov-Smirnov (KS) distance be-
tween the empirical distribution of the original and the synthetic data sets. If Xi,obs

and Xi,syn represent the ith variable for the original and synthetic data, that is, Xi,obs =
(Xi1,obs, . . . , Xin,obs) and Xi,syn = (Xi1,syn, . . . , Xim,syn), i = 1, . . . , p, then the correspond-
ing empirical distribution functions are as follows:

F̂i,obs(x) =
1

n

n∑
j=1

1{Xij,obs ≤ x} , F̂i,syn(x) =
1

m

m∑
j=1

1{Xij,syn ≤ x} .

The KS distance is
sup
x∈R

|F̂i,syn(x)− F̂i,obs(x)| .

This approach has been used in many papers on data privacy, for example in [37]. How-
ever, note that we can use the KS distance only as a visual ”test of goodness of fit”. The
classical results on the asymptotic behavior of the KS statistics are not applicable here
since the observed and the synthetic data are dependent.

Example 4.4.1. In this example, we illustrate that using the KS-statistics in the context
of synthetic data may not be appropriate due to the dependent structure between the
generated data and the original data.

Suppose that we have the following two random variables, x1 and x2. Let x1 follow
a standard normal distribution N(0, 1), and x2 is generated from x1 using the linear
relationship:

x2 = β0 + β1x1 + ϵ,

where β0 = 0.2, β1 = 0.8, and ϵ is normally distributed with zero mean and a variance
of 0.36, ϵ ∼ N(0, 0.36).

The covariance matrix Σ for [x1, x2] is calculated as follows:

� Variance of x1:
σ2
x1

= 1

� Variance of x2 :
σ2
x2

= β2
1σ

2
x1

+ σ2
ϵ = 0.82 · 1 + 0.36 = 1.0

� Covariance between x1 and x2 :

σx1,x2 = β1σ
2
x1

= 0.8 · 1 = 0.8

The covariance matrix Σ is then:

Σ =

(
1 0.8
0.8 1

)
.
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The null hypothesis is: there is no difference between the distribution functions of the
original and the synthetic data:

H0 : F (x) = G(x) for all x.

The alternative hypothesis is that there is a difference at least at one point:

Ha : F (x) ̸= G(x) for at least one x.

The null distribution of the KS statistic between two datasets is based on the maximum
difference in their empirical cumulative distribution functions (ECDFs):

K = sup
x

|F̂n(x)− Ĝm(x)|

where F̂n and Ĝm are the ECDFs of the original and synthetic data, respectively.

Under the assumption of independence, the distribution of K under the null hypoth-
esis follows:

K(x) = 1− 2
∞∑
k=1

(−1)k−1e−2k
2x2

.

However, in our case, x2 is directly influenced by x1, creating a dependent structure.
This dependence changes the behavior of the ECDFs, leading to a different distribution
of the KS statistic, as shown in the simulation results below.

The Kolmogorov-Smirnov test assumes independent samples, so applying it to dependent
data can lead to misleading results.
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4.4.3 Contour Plots

An alternative measure of utility could be based on the comparison of contour plots for
dependence structures. Contour plots are a graphical representation used to illustrate
the joint distribution of two continuous random variables X and Y . Mathematically, the
contour plot is constructed by plotting the level curves of the joint PDF:

fX,Y (x, y) = c,

where c is a constant representing a specific probability density value. Each contour line
corresponds to a different value of c.

To calculate contour plots for both original and generated data, we use Kernel Density
Estimation (KDE) to smooth them. KDE is a nonparametric method for estimating the
probability density function of a random variable. For a pair of continuous random
variables X and Y , the KDE of the joint PDF is given by:

f̂X,Y (x, y) =
1

nhXhY

n∑
i=1

K

(
x−Xi

hX

)
K

(
y − Yi

hY

)
,

where n is the number of data points, hX and hY are the bandwidth parameters for X
and Y respectively, and K(·) is the kernel function, typically chosen to be the Gaussian
kernel:

K(u) =
1√
2π

e−
1
2
u2

.

4.4.4 Propensity score

We first introduce a propensity score-based measure. The propensity score is commonly
used in the context of causal inference, where it represents the probability of receiving
a treatment given a set of observed covariates. Similarly, in missing data scenarios, the
propensity score estimates the probability that a particular individual’s data is missing
[24].

In the context of synthetic data generation, the propensity score is a utility measure
to assess the similarity between the original and synthetic data. This is conceptually
similar to the role of the discriminator in generative adversarial networks (GANs), which
differentiate between original and synthetic data. However, unlike GANs, where the dis-
criminator is part of the model training process, the propensity score here is used after
data generation to evaluate the quality of synthetic data.

The propensity score is the conditional probability that a data point is synthetic given
the observed and synthetic datasets. The process involves first combining the synthetic
and original datasets and then adding an indicator variable to each data point to denote
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whether it is synthetic or not. This indicator variable is then used as the response to
fit a model, such as logistic regression (logit) or classification trees (CART), with all
other observed variables predicting the indicator. The fitted model provides predicted
probabilities for each data point of being synthetic or original, which are the propensity
scores. These scores represent the likelihood that each data point is synthetic on the basis
of its characteristics, helping to measure the similarity between synthetic and observed
data. The idea is that if the synthetic data is similar to observed data, it should be
difficult to distinguish between them by propensity score. Several papers discussed the
use of propensity score and its statistical properties, including test statistics, [30].
Here we discuss the propensity score used in the package. In what follows:

� n is the number of observed units;

� m is the number of synthetic units;

� N = n+m is the total number of observations;

� c = m
N

is the proportion of synthetic units;

� t is an indicator variable that distinguishes between synthetic and observed data.
It is added to the combined dataset to indicate which records are synthetic (t = 1)
and which are observed (t = 0).

– Logistic regression (Logit): Uses the glm function to fit a logistic regression
model t = f(x). The function f(x) represents the logistic regression model,
where X is the vector of features and f(x) gives the probability that an
observation is synthetic.

– Classification and Regression Trees (CART): Uses either the rpart or ctree
function to fit a classification tree t = f(x). The function f(x) represents the
classification tree, where X is the vector of characteristics, and f(x) gives the
probability that an observation is synthetic.

� p̂j is the propensity score for the jth observation, which is the predicted probability
using model f(x) introduced above. If propensity scores are close to c, then the
assignment of these scores is essentially random. Then it indicates that it is difficult
to distinguish between synthetic and original data. In turn, it means good data
utility.

The package provides the following measure based on the propensity score p̂(xj).

� pMSE (Propensity Mean Squared Error)

– pMSE measures the mean squared error of propensity scores, lower pMSE
indicates better similarity between synthetic and observed data. The package
does not use a test statistic that returns a p-value for pMSE.
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– Formula:

pMSE =
1

N

N∑
j=1

(p̂j − c)2.

– A lower pMSE value indicates that the propensity scores are very close to
c, suggesting that it is difficult to distinguish between synthetic and original
data.

� SPECKS (Kolmogorov-Smirnov Statistic)

– The Kolmogorov-Smirnov (KS) statistic measures the maximum difference be-
tween the empirical cumulative distribution functions of the propensity scores
for observed and synthetic data. It is a statistics designed to test if two inde-
pendent samples come from the same distribution. The package uses the KS
test, which returns a p-value.

– Formula: Denote p̂(xj ,obs) and p̂(xj ,syn) the propensity score for data point from
observed and synthetic dataset respectively, Fobs(x) and Fsyn(x) are the empir-
ical cumulative distribution functions of the propensity scores for the observed
and synthetic data, where

Fobs(x) =
1

n

∑
j

1{p̂(xj ,obs) ≤ x} and Fsyn(x) =
1

m

∑
j

1{p̂(xj ,syn) ≤ x},

for x ∈ (0, 1). We have

SPECKS = sup
x

|Fobs(x)− Fsyn(x)|.

– p-Value: The package uses the KS test, which returns a p-value:

KSt<-ks.test(score[df.prop$t == 1], score[df.prop$t == 0])

SPECKS<-KSt$statistic

As mentioned above, the classical KS test is for independent random samples.
Here the propensity scores are for synthetic and observed data, hence the
produced p-values are likely incorrect.

� Wilcoxon Statistic

– The Wilcoxon rank-sum test is a nonparametric equivalent of the paired t-test.
It makes no assumption about the distributions of the original population
themselves, but it does assume that the distributions of the differences are at
least symmetric.

109



– Formula:

U =
∑
j

Rank(p̂obsj )− n(n+ 1)

2
.

where p̂obsj are the propensity scores for the observed data, and n is the number
of observed units.

– p-Value: The package uses the Wilcoxon test, which returns a p-value:

U<-wilcox.test(score[df.prop$t == 1], score[df.prop$t == 0])$statistic

The package uses the Wilcoxon rank-sum test which is designed for indepen-
dent samples. As discussed before, since the propensity scores come from both
synthetic and observed data, the resulting p-values may not be accurate.

Example 4.4.2. Based on Example 4.2.1 now assume that we have 3 random variables:
age (X1,obs), income (X2,obs), and sex (X3,obs). The visit sequence for this example
involves first generating age, then generating income based on age, and finally generating
gender based on age and income. The basic implementation of the package is as follows.

1. Create X1,syn by bootstrapping X1,obs.

2. Fit the linear model X2,obs = βX1,obs + Z. As a result, obtain the estimate β̂.

3. Simulate X2,syn using X2,syn = β̂X1,syn + Z̃, where Z̃ is another random noise.

4. Centering the data involves subtracting the mean of each predictor variable from
the observed and synthetic values. The centered predictor variables are defined as
follows:

X1,obs, centered = X1,obs − X̄1,obs,

X2,obs, centered = X2,obs − X̄2,obs,

X1,syn, centered = X1,syn − X̄1,syn,

X2,syn, centered = X2,syn − X̄2,syn.

5. Fit a logistic model X3,obs = f(β1X1,obs,centered+β2X2,obs,centered). As a result, obtain

the estimates β̂1 and β̂2.

6. GenerateX3,syn using the logistic modelX3,syn = f(β̃1X1,syn,centered+β̃2X2,syn,centered),

where β̃1 and β̃2 are drawn from the distribution N (β̂1, V (β̂1)) and N (β̂2, V (β̂2)),
respectively, using a Bayesian method.

We already have the model for income as calculated from the previous example:

incomecentered = 1230.77 + 1500 · agecentered + Z, Z ∼ N(0, σ2).
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ID Age Income Gender
1 22 30000 M
2 25 35000 F
3 28 40000 M
4 30 45000 F
5 35 50000 M
6 40 60000 F
7 45 70000 M
8 50 80000 F
9 55 85000 M
10 60 90000 F

Table 4.1: Demographic Data of Individuals

Now we center the data and fit a logistic regression model

f(genderobs | ageobs,centered, incomeobs,centered).

The model is:

log

(
P(gender = 1 | X1,obs, centered, X2,obs, centered)

P(gender = 0 | X1,obs, centered, X2,obs, centered)

)
= β0+β1X1,obs, centered+β2X2,obs, centered,

and fitted model is

log

(
P(gender = 1 | agecentered, incomecentered)

P(gender = 0 | agecentered, incomecentered)

)
= −1.5+0.3·agecentered+0.5·incomecentered.

The variances for the coefficients are calculated as follows:

Var(β̂0) = 0.749956,

Var(β̂1) = 0.040000,

Var(β̂2) = 0.090000.

The coefficients are assumed to follow normal distributions as follows:

β̂0 ∼ N (−1.5, 0.749956),

β̂1 ∼ N (0.3, 0.040000),

β̂2 ∼ N (0.5, 0.090000).

Using these distributions, we draw one sample for each β:

Sample for β̂0 : −1.583315,

Sample for β̂1 : 0.4983624,

Sample for β̂2 : 0.1630316.
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Table 4.2: Synthetic Dataset
Observation Age Syn Income Syn Generated Gender

1 40 60257.33 F
2 22 33786.17 M
3 30 45652.61 M
4 30 40345.76 M
5 50 75937.89 F
6 60 95796.99 F
7 30 49990.02 M
8 40 60031.50 F
9 28 47308.36 M
10 35 49256.03 M

Table 4.3: Combined Original and Synthetic Dataset with Indicator
ID Age Income Gender Indicator (t)
1 40 60257.33 F 1
2 22 33786.17 M 1
3 30 45652.61 M 1
4 30 40345.76 M 1
5 50 75937.89 F 1
6 60 95796.99 F 1
7 30 49990.02 M 1
8 40 60031.50 F 1
9 28 47308.36 M 1
10 35 49256.03 M 1
11 22 30000 M 0
12 25 35000 F 0
13 28 40000 M 0
14 30 45000 F 0
15 35 50000 M 0
16 40 60000 F 0
17 45 70000 M 0
18 50 80000 F 0
19 55 85000 M 0
20 60 90000 F 0

112



The generated data set is then
Then we fit a logistic regression model for t. The logistic regression model for the

propensity score is:

log

(
P(t = 1 | age, income, gender)

P(t = 0 | age, income, gender)

)
= γ0 + γ1 · age + γ2 · income + γ3 · gender,

where
γ̂0 = −0.8473, γ̂1 = 0.0147, γ̂2 = 0.0001, γ̂3 = 0.6981 .

The calculated propensity scores are:

Table 4.4: Dataset with Propensity Scores
ID Age Income Gender Indicator Propensity Score
1 40 60257.33 F 1 0.4384
2 22 33786.17 M 1 0.6838
3 30 45652.61 M 1 0.6064
4 30 40345.76 M 1 0.3405
5 50 75937.89 F 1 0.3782
6 60 95796.99 F 1 0.5286
7 30 49990.02 M 1 0.7902
8 40 60031.50 F 1 0.4270
9 28 47308.36 M 1 0.8130
10 35 49256.03 M 1 0.3623
11 22 30000.00 M 0 0.4978
12 25 35000.00 F 0 0.4424
13 28 40000.00 M 0 0.4909
14 30 45000.00 F 0 0.5222
15 35 50000.00 M 0 0.3984
16 40 60000.00 F 0 0.4254
17 45 70000.00 M 0 0.5569
18 50 80000.00 F 0 0.5842
19 55 85000.00 M 0 0.4598
20 60 90000.00 F 0 0.2535

Given N = 20 and c = 10
20

= 0.5, the Propensity Mean Squared Error (pMSE) is
calculated as:

pMSE =
1

20

20∑
j=1

(p̂j − 0.5)2 = 0.0194. (4.1)

Example 4.4.3. In this example we illustrate potential issues with propensity scores.
We start with the same original data set as above. The synhetic data set is the same
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Table 4.5: Combined Dataset with Indicator
ID Age Income Gender Indicator (t)
1 22 30000 M 1
2 25 35000 F 1
3 28 40000 M 1
4 30 45000 F 1
5 35 50000 M 1
6 40 60000 F 1
7 45 70000 M 1
8 50 80000 F 1
9 55 85000 M 1
10 60 90000 F 0
11 22 30000 M 0
12 25 35000 F 0
13 28 40000 M 0
14 30 45000 F 0
15 35 50000 M 0
16 40 60000 F 0
17 45 70000 M 0
18 50 80000 F 0
19 55 85000 M 0
20 60 90000 F 0
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as the original data set. We fit another logistic regression model for t. The logistic
regression model for the propensity score is:

log

(
P(t = 1 | age, income, gender)

P(t = 0 | age, income, gender)

)
= γ′0 + γ′1 · age + γ′2 · income + γ′3 · gender,

where
γ̂′0 = 0.219, γ̂′1 = −0.243, γ̂′2 = 0.00015, γ̂′3 = 0.312 .

The calculated propensity scores are: Given N = 20 and c = 10
20

= 0.5, the Propensity

Table 4.6: Dataset with Propensity Scores
ID Age Income Gender Indicator Propensity Score
1 22 30000 M 1 0.5906
2 25 35000 F 1 0.4523
3 28 40000 M 1 0.5546
4 30 45000 F 1 0.5346
5 35 50000 M 1 0.4002
6 40 60000 F 1 0.3638
7 45 70000 M 1 0.5634
8 50 80000 F 1 0.5252
9 55 85000 M 1 0.3911
10 60 90000 F 0 0.1241
11 22 30000 M 0 0.5906
12 25 35000 F 0 0.4523
13 28 40000 M 0 0.5546
14 30 45000 F 0 0.5346
15 35 50000 M 0 0.4002
16 40 60000 F 0 0.3638
17 45 70000 M 0 0.5634
18 50 80000 F 0 0.5252
19 55 85000 M 0 0.3911
20 60 90000 F 0 0.1241

Mean Squared Error (pMSE) is calculated as:

pMSE =
1

20

20∑
j=1

(p̂j − 0.5)2 = 0.02009.

Now, we compare this expression with (4.1). Notice that the pMSE values for two
different synthetic datasets are similar, even though the synthetic data sets are produced
in a completely different way. Furthermore, if we consider another situation where the
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synthetic and original are the same, we will get a different value of pMSE. It suggests
that pMSE may not reflect the true utility of the data. One possible reason for this could
be that the small size of the dataset leads to poor fitting of the propensity score model.
□

Example 4.4.4. We now demonstrate the influence of different synthetic datasets on
the calculation of propensity scores mean square error (pMSE). We consider two types
of datasets generated from a multivariate normal distribution with a covariance matrix

Σ =

[
1 0.5
0.5 1

]
,

but with different means, where each dataset contains 100 data points:

� Xobs contains variables X1, X2 with mean

µ = (0, 0),

representing the observed data.

� Xsyn also contains variables X1, X2, where the mean

µ = (a, a)

varies as a changes from 0 to 20, representing synthetic data.

The idea is that as a gets bigger, the synthetic data set will be more different from the
original data, hence more private. For each value of a, the two data sets are combined
and an indicator variable (0 for observed data, 1 for synthetic data) is added. A logistic
regression model is fitted to this combined dataset, using the formula:

logit(P(Indicator = 1)) = β0 + β1X1 + β2X2,

and the propensity score, p̂j, is computed for each observation.
We then calculate the Propensity Mean Squared Error (pMSE) for each dataset by

averaging the squared differences between the propensity scores and 0.5:

pMSE(a) =
1

200

200∑
j=1

(p̂j − 0.5)2.

The resulting pMSE values illustrate how the similarity or dissimilarity between the
observed and synthetic data affects the propensity score’s accuracy and the model’s util-
ity. The pMSE values for each a are plotted against a to visually show this relationship.
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The experiment shows that as a increases, the mean squared error (MSE) of the
propensity scores rises from 0, reflecting greater detectability of synthetic data. In the
worst-case scenario, the MSE converges to 0.25, since the propensity score would ran-
domly assign data according to the proportion of synthetic data, leading to an error of
0.5× 0.5 = 0.25. □

Proper test statistics for the propensity score The package does not provide the
proper test statistics for the propensity score. [30] proposed a test statistics using the
propensity score when using logistic regression to fit the score. We have

� Null hypothesis: original data and synthetic data cannot be distinguished by logis-
tic regression model.

� Alternative hypothesis: original data and synthetic data can be distinguished by a
logistic regression model.

The test statistics used is the propensity score mean squared error:

pMSE =
1

N

N∑
j=1

(p̂j − c)2.
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Under null hypothesis its follows a chi-squared distribution with (k − 1) degrees of
freedom, where k is the number of predictors used in the logistic regression fitting the
propensity score, the means and variance are given as follows:

E[pMSE] = (k − 1)
(n1

N

)2 (n2

N

) 1

N
= (k − 1)(1− c)2c

1

N
,

StDev(pMSE) =

√
2(k − 1)

(n1

N

)2 (n2

N

) 1

N
=

√
2(k − 1)(1− c)2c

1

N
.

4.4.5 Contingency Table

A contingency table is a type of table that displays the frequency distribution of mul-
tivariate observations. Each cell in the table represents the count of observations for a
specific combination of categories. If the variables are continuous, they are grouped into
categories before building the table; by default in the package, they are grouped into five
groups. In what follows,

� Let C be the set of all possible combinations of categorical and grouped continuous
variables.

� For each c ∈ C:

– td(c) is the count of data points in c from the original data. That is

td(c) =
n∑

j=1

1((X1j,obs, . . . , Xpj,obs) ∈ c).

– ts(c) is the count of data points in c from the synthetic data. That is

ts(c) =
m∑
j=1

1((X1j,syn, . . . , Xpj,syn) ∈ c).

The package provides the following measures based on the contingency table.

� VW (Variance-Weighted Measure)

– Variance-Weighted Measure assesses the difference between observed and syn-
thetic counts. It calculates the sum of squared differences between observed
and expected counts, weighted by the expected counts.

– Formula:

VW =
∑
c∈C

(
(td(c)− ts(c))2

ts(c)

)
.

� JSD (Jensen-Shannon Divergence)
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– JSD is a symmetrized version of the Kullback-Leibler divergence that mea-
sures the similarity between two probability distributions. A JSD of 0 means
that the two distributions are identical, while a JSD of 1 indicates maximum
divergence.

– Formula:

1

2

∑
c∈C

p(c) log2

(
2p(c)

p(c) + q(c)

)
+

1

2

∑
c∈C

q(c) log2

(
2q(c)

p(c) + q(c)

)
,

where p(c) = td(c)∑
c∈C td(c)

and q(c) = ts(c)∑
c∈C ts(c)

.

� SPECKS (Kolmogorov-Smirnov Statistic)

– This statistic measures the maximum difference between the cumulative dis-
tributions of observed and synthetic data. It assesses how well the synthetic
data’s distribution matches the real data’s distribution.

– Formula:

max
c∈C

∣∣∣∣ ∑i∈c td(i)∑
i∈C td(i)

−
∑

i∈c ts(i)∑
i∈C ts(i)

∣∣∣∣ .
– p-value: Provided by ks.test. Again, the p-value seems to be incorrect given

the dependence between the observed and synthetic data.

The closer the value to zero indicates better utility.

Example 4.4.5. We use the same data from Example 4.4.2. Given the continuous
nature of the data, we categorize it into two groups (unlike the package does): Group 1
includes income with values that are less than or equal to $60,000, and Group 2 includes
values that are greater than $60,000.

Variance-Weighted Measure (VW):

VW =
(6− 5)2

5
+

(4− 5)2

5
= 0.4.

Jensen-Shannon Divergence (JSD): Using p(c) = td(c)
10

and q(c) = ts(c)
10

,

1

2

[
6

10
log2

(
12

11

)
+

5

10
log2

(
10

11

)]
+

1

2

[
4

10
log2

(
8

9

)
+

5

10
log2

(
10

9

)]
.

SPECKS (Kolmogorov-Smirnov Statistic):

max

(∣∣∣∣ 610 − 5

10

∣∣∣∣ , ∣∣∣∣1010 − 10

10

∣∣∣∣) = 0.1.

A measure closer to zero indicates better utility; however, these numbers lack precise in-
terpretations as they are just measures of distance. No proper test statistics are provided.
□
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Table 4.7: Dataset with Grouping
ID Age Income Gender Group (c)
1 40 60257.33 F 2
2 22 33786.17 M 1
3 30 45652.61 M 1
4 30 40345.76 M 1
5 50 75937.89 F 2
6 60 95796.99 F 2
7 30 49990.02 M 1
8 40 60031.50 F 2
9 28 47308.36 M 1
10 35 49256.03 M 2
11 22 30000 M 1
12 25 35000 F 1
13 28 40000 M 1
14 30 45000 F 1
15 35 50000 M 1
16 40 60000 F 1
17 45 70000 M 2
18 50 80000 F 2
19 55 85000 M 2
20 60 90000 F 2

Table 4.8: Synthetic and Observed Counts for Groups
Group (c) Synthetic Count (ts(c)) Observed Count (td(c))

1 5 6
2 5 4

Table 4.9: Synthetic and Observed Counts for Groups
Group Synthetic Count (ts(c)) Observed Count (td(c))

1 6 6
2 4 4
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Example 4.4.6. Continuing from the previous example, now suppose original data is
released as synthetic data, we have the following:

Variance-Weighted Measure (VW):

VW =
(6− 6)2

6
+

(4− 4)2

4
= 0.

Jensen-Shannon Divergence (JSD):

JSD =
1

2

[
6

10
log2(1) +

4

10
log2(1)

]
+

1

2

[
6

10
log2(1) +

4

10
log2(1)

]
= 0.

SPECKS (Kolmogorov-Smirnov Statistic):

max

(∣∣∣∣ 610 − 6

10

∣∣∣∣ , ∣∣∣∣1010 − 10

10

∣∣∣∣) = 0.

Note that all the measures are equal to zero, the synthetic data and the original data
are identical. Thus, a measure closer to zero indicates better utility. □

Example 4.4.7. Given the same dataset as before, we now categorize the income data
into three different groups to see how this affects the calculation of our statistical mea-
sures (VW, JSD, and SPECKS).

� Variance-Weighted Measure (VW):

VW =
(4− 8)2

8
+

(10− 10)2

10
+

(4− 2)2

2
= 2 + 0 + 4 = 6.

� Jensen-Shannon Divergence (JSD):

1

2

[
4

18
log2

(
2× 4

18
4
18

+ 8
18

)
+

8

18
log2

(
2× 8

18
4
18

+ 8
18

)]
+ ...

+
1

2

[
10

18
log2

(
2× 10

18
10
18

+ 10
18

)
+

10

18
log2

(
2× 10

18
10
18

+ 10
18

)]
+ ...

+
1

2

[
4

18
log2

(
2× 4

18
4
18

+ 2
18

)
+

2

18
log2

(
2× 2

18
4
18

+ 2
18

)]
.

� SPECKS (Kolmogorov-Smirnov Statistic):

max

(∣∣∣∣ 418 − 8

18

∣∣∣∣ , ∣∣∣∣1018 − 10

18

∣∣∣∣ , ∣∣∣∣ 418 − 2

18

∣∣∣∣) = max

(
4

18
, 0,

2

18

)
=

4

18
.

These calculations illustrate how distance measures fluctuate based on the method used
to group data. Specifically, when a single group is selected, the distance measure will
always be zero, regardless of how the data are generated, indicating perfect data utility.
When multiple groups are used, even a single difference will lead to a large distance, thus
underestimating the utility of the data. □
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Table 4.10: Income Grouping
ID Income Group by $60,000 New Grouping
1 60257.33 2 2
2 33786.17 1 1
3 45652.61 1 2
4 40345.76 1 2
5 75937.89 2 2
6 95796.99 2 3
7 49990.02 1 2
8 60031.50 2 2
9 47308.36 1 2
10 49256.03 2 2
11 30000 1 1
12 35000 1 1
13 40000 1 1
14 45000 1 2
15 50000 1 2
16 60000 1 2
17 70000 2 2
18 80000 2 2
19 85000 2 3
20 90000 2 3
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4.4.6 Permutation test

A permutation test is a non-parametric method used to test null hypotheses of equality
between two distributions by simulating a distribution of the test statistic. The process
can be described as follows:

� Choose an appropriate test statistic.

� The test statistic is then computed for the original labeling of the observations.

� Then permute the labels of the data and recompute the test statistic for each
permutation.

� The above step is repeated many times to generate a distribution of the test statistic
under the null hypothesis. The null hypothesis in the permutation test is usually
stated because there is no effect or no difference between the groups (labels) being
compared.

� Finally, the observed test statistic is compared to this permutation distribution to
decide whether to accept or reject the null hypothesis.

If the observed statistic is significantly different from the permutation distribution, the
null hypothesis is rejected, indicating a statistically significant effect. Both propensity-
based and contingency table-based scores can be evaluated using the permutation test
with the code resamp.method == "perm", the package set original number of permuta-
tion as 30.

Example 4.4.8. In this experiment we generate data from a multivariate normal dis-
tribution with mean µ = (50, 55) and covariance matrix

Σ =

(
100 50
50 100

)
.

We apply a permutation test by randomly permuting the group labels of the dataset.
For each permutation, we calculate the KS statistic, K, based on the permuted data.
The distribution of the KS statistics, K, is shown below. Additionally, we repeat this
process to calculate K under the assumption of independence, as well as under the true
dependency structure of the data (as described in Example 4.4.1). This allows us to
compare the distribution of K between these different assumptions.
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We notice that the permutation test is still only valid under the assumption of indepen-
dence, and thus may not be appropriate for testing contingency tables as it was used in
the package. However, it can be applied to the propensity score when fitting the CART
model, as shown in [30]. □

4.4.7 Gini index

Gini index is a special data utility measure that applies to data with a tree-like structure.
Assume we have T nodes and Kt classes in node t. A class is a category or a label in
which instances are classified, and a node is a point in the classification tree where
data are split based on certain features. In a classification tree, the Gini index is the
measure of impurity in a node, reflecting the probability that a randomly chosen instance
would be incorrectly classified if it were randomly labeled according to the proportions
of classes in the node. Let pk,t denote the proportion of instances of class k in node t,
this proportion also represents the probability of randomly choosing an instance of class
k in node t. Therefore, p2k,t represents the probability that a randomly chosen instance
is of class k and is also correctly classified as class k. The probability that a randomly
chosen instance is assigned to incorrect classes (i.e., misclassified) is the complement of
the probability that they are of the same class. This relationship is captured by the Gini
index as follows:

Gini(t) = 1−
K∑
k=1

p2k,t.

Purity in decision trees refers to how homogeneous or uniform the instances in a node
are regarding their class labels. A node is considered pure if all instances belong to a

125



single class, ex. Gini(t) = 0.
A lower gini index indicates a better classification because it indicates a purer node.
Conversely, a higher Gini index indicates a more mixed node, with a greater diversity of
classes present, leading to a higher likelihood of misclassification.

Example 4.4.9. Assume we have the following data:

Table 4.11: Demographic Data
ID Age Income Gender
1 22 30000 M
2 25 35000 F
3 28 40000 M
4 30 40000 F
5 40 50000 M
6 40 60000 M
7 45 80000 M
8 50 80000 F
9 55 85000 F
10 60 90000 F

We have the model as follows:

� Goal: Predict the gender (M/F) based on age and income.

� Tree Model:

Age < 40

M

Yes

Income < 75000

M

Yes

F

No

No

� Root Node (all data):

– Total instances: 10

– Males (M): 5, Females (F): 5

– pM,root =
5
10

= 0.5, pF,root =
5
10

= 0.5
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–
Giniroot = 1− (p2M,root + p2F,root) = 1− (0.52 + 0.52)

= 1− 0.5 = 0.5.

� Child Node 1: Age < 40 (Yes):

– Total instances: 4

– Males (M): 2, Females (F): 2

– pM,child1 =
2
4
= 0.5, pF,child1 =

2
4
= 0.5

–

Ginichild1 = 1− (p2M,child1 + p2F,child1) = 1− (0.52 + 0.52) = 0.5.

Child Node 2.1: age ≥ 40 Income < 75000

– Total instances: 2

– Males (M): 2

– pM,child2.1 = 1, pF,child2.2 = 0

–

Ginichild2.2 = 1− (p2M,child2.2 + p2F,child2.2) = 1− 12 = 0.

Child Node 2.2: age ≥, 40 Income ≥ 75000

– Total instances: 4

– Males (M): 1, Females (F): 3

– pM,child2.2 =
1
4
= 0.25, pF,child2.2 =

3
4
= 0.75

–
Ginichild2.2 = 1− (p2M,child2.2 + p2F,child2.2)

= 1− (0.252 + 0.752) = 0.375.

The overall Gini index is calculated as the weighted average of the Gini indices from each
child node, based on the number of instances in each node. We have

Overall Gini =

(
4

10
× 0.5

)
+

(
2

10
× 0

)
+

(
4

10
× 0.375

)
= 0.35.

It measures the model’s impurity and indicates that there is a 35% chance of incorrectly
classifying an instance if it were randomly placed according to the distribution and splits
defined in the decision tree model. □
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4.5 Issues using synthpop

As indicated in the preceding section, some of the tools incorporated in the synthpop

package are not appropriate. For example, the Kolmogorov-Smirnov test is designed to
test the null hypothesis of tho distributions coming from independent populations. Here,
in the package, it is applied to compare original and synthetic data, which are obviously
dependent.

In this section we discuss further issues with the package. In particular, the package
applies a sequential procedure to generate the (i + 1)st synthetic variable based on the
previously generated i variables. This brings serious questions on how to choose this
visiting sequence in the appropriate way. The package does not provide a solution to
this problem. To be more specific:

� The selection of the initial variable, the visiting sequence in which variables are
chosen, and the design of the predictor matrix usually have a huge influence on the
utility of the synthetic data generated, impacting both the marginal distributions
and the dependency structures. Before modeling the data set, it is important to
analyze the data to verify that the model assumptions are valid. For example, we
need to identify which random variables Xi’s affect Xj and how to model their
dependence.

� In the synthpop implementation, it is assumed that there is a sequential depen-
dency, that is, there exists an ordered subset i1 < · · · < ik of {1, . . . , n} such that
for all i ∈ {1, . . . , n} the variable Xi is a function of all the variables X1i , . . . , Xik .
First, this sequence has to be chosen by the user. The package does not provide
any tools to choose the sequence. Furthermore, the existence of such a sequential
dependence structure is not guaranteed. In this case, the package may model the
relationship inaccurately.

� Compared to other data generation, Machine Learning-type models, such as varia-
tional autoencoders (VAEs), generative adversarial networks (GANs), and diffusion
models, statistical data generation methods such as those in synthpop usually pro-
vide statistical inference tools like confidence intervals, hypothesis testing etc. The
synthpop provides a very limited number of inferential tools and those that are pro-
vided do not seem to be implemented correctly; see our discussion on Kolmogorov-
Smirnov test. This lack can be a significant drawback when the goal is not only to
generate synthetic data, but also to derive statistically robust inferences from the
data, which are important for understanding the variability and reliability of the
data generated by the model.

In the following examples we illustrate some of the issues mentioned above.
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Example 4.5.1. In this example we show an influence of the choice of the sequence in
which variables are selected. We generate three variables which are treated as observed
data:

� X1: Generate 1000 observations from an exponential distribution with mean 5.

� X2: Define X2 as a linear function of X1, specifically X2 =
1
2
X1+ ϵ, where ϵ follows

a normal distribution with mean 0 and standard deviation 0.1.

� Define X3 as a linear function of X1 and X2, specifically X3 = 2X1+3X2+ϵ, where
ϵ follows a normal distribution with mean 0 and standard deviation 0.1.

Using the proposed algorithm, the correct order selected is (X1, X2, X3). Additionally, we
consider an incorrect order (X3, X2, X1). We then use the Synthpop package to generate
data based on both orders. Notice that if the sequence is wrong, the marginal distribution
and the contour plot do not match the original data. But if the sequence is correct,
they match pretty well. Recall again that we cannot do a formal hypothesis testing
of equality between the marginal distributions, due to dependence. Furthermore, we
produce contour plots that indicate that the dependence structure between the variables
is not preserved, if the sequence is not chosen in the correct order. We recall that this
issue is not addressed in the package at all.

Figure 4.1: Marginal distributions: comparison between the correct and the incorrect
sequence
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Figure 4.2: Contour plots: comparison between the correct and the incorrect sequence
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This experiment shows the importance of choosing variables in the right order when using
the synthpop package to generate synthetic data. If the order is chosen correctly, the
synthetic data look very similar to the original data, both in the marginal distribution
and in their dependence structure. This indicates that the relationship between the
variables is well maintained. However, when we tried the wrong order (X3, X2, X1), the
synthetic data did not match the original well. There are differences in both marginal
and dependence structures, which shows that the generated data may not be valid. □

4.5.1 Selecting the sequence

In this section we propose some solutions to the issue of choosing a proper sequence. In
what follow, the p-value for the model refers to to the null hypothesis that all parame-
ters in the model are equal to zero, versus the alternative hypothesis that at least one
parameter is not equal to zero. That is for paremeters βi:

H0 : β1 = β2 = · · · = βk = 0

H1 : ∃ βi ̸= 0

Algorithm 1. In the first algorithm, we choose the proper sequence based on the
highest coefficients of determination calculated for potential linear regression models.

� Build regression models fi for each variableXi as a function of all other variables
Xk, where k ̸= i. Compute for each i:

Xi = fi({Xk for all k ̸= i}).

Choose the model fi∗ with the lowest p-value, set the corresponding Xi∗ aside
as the last variable to generate.

� Begin the process to order the remaining variables Xi, i ̸= i∗:

– For each remaining variables Xi, model it as a function of all other vari-
ables that have not yet been set aside.

– Continue with the remaining variables:

* Build regression models:

Xi = fi({Xk for all k ̸= i and Xk has not been set aside yet}).

* Evaluate each model based on its p value. Select the model with the
lowest p value and set the corresponding variable aside.

– Once the sequence of variables (X1, X2, . . . , Xn) is established, use
synthpop to generate data reflecting this sequence.
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The correct correlation between the variables will be maintained if there is an existing
a sequential correlation.
The above procedure is described specifically for the linear regression. However, at each
step we can choose any other parametric regression model, possibly with penalization.
We illustrate the above algorithm in the following example.

Example 4.5.2. In this experiment, we generate data from a linear model with three
variables: X1, X2, and X3. The relationships are defined as follows: X2 is linearly de-
pendent on X1, and X3 is dependent on both X1 and X2. Specifically, we simulate the
data with X1 ∼ Exp(2), X2 = 2X1 + ϵ (with ϵ ∼ N(0, 1)), and X3 = 3X1 + 5X2 + η
(with η ∼ N(0, 1)).

We apply Section 4.5.1, which iteratively fits linear models and selects the variable
with the lowest p-value, stopping when one variable remains. The final sequence is re-
versed to correctly preserve the dependencies for synthetic data generation. This process
assumes a linear model. First, we fit the model for X1 as a function of X2 and X3:

X1 = β0 + β1X2 + β2X3.

The p-value for this model is pX1 = 4.0446411 ∗ 0.1−32.
Next, we fit the model for X2 as a function of X1 and X3:

X2 = β0 + β1X1 + β2X3.

The p-value for this model is pX2 = 1.472311 ∗ 0.187.
Finally, we fit the model for X3 as a function of X1 and X2:

X3 = β0 + β1X1 + β2X2.

The p-value for this model is pX3 = 4.693397 ∗ 0.1−93.

Since X3 had the lowest p-value, we selected it as the last variable to fit. We then
proceeded by fitting X1 as a function of X2 and vice versa. Both had the same p-value
of 4.09595 ∗ 0.1−17, indicating that the order of the last two variables does not matter.
In linear regression, the sequence of selecting the final two variables is irrelevant. The
resulting sequence is X3, X1, X2, which is the correct sequence for the data. □

The next example illustrates issues when there is no sequential order.

Example 4.5.3. The data is generated as follows:

� X1: Generate 1000 observations from an exponential distribution with a rate of
0.5.

� X2: Define X2 as a linear function of X1, specifically X2 = 2X1+ ϵ, where ϵ follows
a normal distribution with mean 0 and standard deviation 0.1.

132



Figure 4.3: Comparison of original and empirical ECDF when there is no sequential
relationship

� X3: Generate independently from a beta distribution with α = β = 0.5.

� X4: Define X4 = 5X3 + ϵ, where ϵ follows a normal distribution with mean 0 and
standard deviation 0.1.

We apply the proposed algorithm Section 4.5.1, which identifies the ”correct sequence”
as X2, X4, X3, and X1. Then

� We generate X2,syn by applying bootstrap to X2 without replacement.

� Fit a regression model X4 = β0+β1X2, estimate parameters βi, denoted as β̂i, and
calculate X4,syn = β̂0 + β̂1X2syn.

� Fit another regression model where X3 is a function of X4 and X2: estimate the
parameters βi, denoted as β̂i, and calculate X3,syn = β̂0 + β̂1X4,syn + β̂2X2,syn.

� Fit another regression model where X1 is a function of X4, X3, and X2: estimate
parameters βi, denoted as β̂i, and calculate X1,syn = β̂0 + β̂1X4,syn + β̂2X3,syn +

β̂3X2,syn.

Notice that the model assumptions for the generated dataset do not align with the correct
assumptions. This mismatch suggests that adjustments or different modeling approaches
might be needed to adequately capture the underlying relationships in the data.

Both the marginal distributions and empirical relationships in the synthetic data
show clear distortions compared to the original data. These discrepancies suggest that
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Figure 4.4: Comparison of contour plot when there is no sequential relationship

the synthetic data does not fully capture the original data’s structure, impacting its
reliability. □

4.5.2 No sequential relationship

� Build a model for each variable Xi as a function of all other variables Xj using
observed value, where j ̸= i. Then we have for each i, we have:

Xi = fi,temp({Xk,obs, for all k ̸= i}).

� Apply variable selection methods such as Lasso, ridge . . . to identify and select
the most significant variables, denoted by the set K.

� Re-fit the model using only the selected variables from set K. The final model
is then:

Xi = fi({Xk,obs | k ∈ K}).

� Generate synthetic values Xi+1,syn from the model fi(Xk,obs) using frequentist
or Bayesian methods to add random noise. This process creates synthetic data
for Xk based on observed data from all previously selected variables.
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� Repeat the process for all variables in the dataset for each fitted model fi and
we will have Xi,syn.

� (Optional) We can then use the generated data to generate another set of
synthetic data, denote Xi,syn,2 where Xi,syn,2 = fi({Xk,syn | k ∈ K}).

Algorithm 2. The proposed solution addresses the sequence selection problem by re-
moving the need to fit models in an order, preventing errors from one variable affecting
the next. The optional step is to ensure that all released data are generated based on
synthetic data to prevent information leakage.

Example 4.5.4. We continue with Example 4.5.3 and apply the proposed algorithm
2 using lasso with parameter 0.01 as a variable selection method, We addressed the
problem of assuming sequential dependency among variables and successfully identified
the correct model: X1 = β0 + β1X2, X2 = β0 + β1X1, X3 = β0 + β1X4, X4 = β0 + β1X3.
We then proceed as follow,

� Fit a regression model where X2 is a function of X1: estimate parameters βi,
denoted as β̂i, and compute X2,syn = β̂0 + β̂1X1.

� Fit a regression model where X1 is a function of X2: estimate parameters βi,
denoted as β̂i, and compute X1,syn = β̂0 + β̂1X2.

� Fit a regression model where X3 is a function of X4: estimate parameters βi,
denoted as β̂i, and compute X3,syn = β̂0 + β̂1X4.

� Fit a regression model where X4 is a function of X3: estimate parameters βi,
denoted as β̂i, and compute X4,syn = β̂0 + β̂1X3.

With the proposed algorithm, the distortions from the original methods are removed, and
the generated data follows the same empirical and dependence structure as the original
data, returning better accuracy and reliability generated data. □

4.6 Data privacy

In this section, we discuss the privacy of the synthetic data. As introduced in Section 2.5,
differential privacy is a measure of privacy protection that guarantees that the inclusion
or exclusion of a single individual in the dataset does not significantly affect the out-
come of any analysis. We develop an algorithm for differentially private data generation
method when fitting regression models. The goal is to generate synthetic data that are
differentially private, in the sense of Definition 2.5.3 or Definition 2.5.5.
Recall that our dataset comprises of n observations. The observed data point for the
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Figure 4.5: Comparison of original and empirical ECDF when there is no sequential
relationship

Figure 4.6: Comparison of original and empirical ECDF when there is no sequential
relationship
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jth individual is denoted by Xij,obs, where the index i represents the ith variable in a
multivariate dataset.

To satisfy ϵ differential privacy, the proposed algorithm is as follows:

� We first fit the linear regression model using the selected variables k for each
variable i. The fitted model fi(X1, . . . , Xk) is then:

X̂i = β̂0 + β̂1X1 + . . .+ β̂kXk.

Therefore, the predicted value for each individual j is

X̂ij = β̂0 + β̂1X1j,obs + . . .+ β̂kXkj,obs.

� We calculate the residuals for the variable i:

Xij,obs − X̂ij , j = 1, . . . , n .

� We calculate the sample variance σ̂2
i for the residuals of the fitted model.

� For each individual j, we generate a random number Ej from a normal distri-
bution with mean 0 and variance σ̂2

i . Note that we omitted subscript i in the
noise variables, since i is fixed.

� For each individual j, we also generate an independent Laplace random noise
Lj with mean 0 and scale parameter λ = ∆

ϵ
, where ∆ is the sensitivity of the

identity query applied to the ith variable.

� When generating data Xi,syn, we use the fitted model to introduce random
noise. That is

Xi,syn = β̂0 + β̂1X1,obs + . . . β̂kXk,obs + Ej.

For jth observed data, we will have:

Xij,syn = β̂0 + β̂1X1j,obs + . . . β̂kXkj,obs + Ej = Xij,pre + Ej.

� We then we calculate dj = |Xij,syn − Xij,obs| which is the difference between
original data and generated data.

� If dj ≥ Lj, we keep the generated value Xij,syn, otherwise if dj ≤ Lj we generate
Xij,syn = Xij,obs + Lj.

� So, either we use the fitted regression model with Ej noise added, or the original
values with the Laplace noise added.
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Figure 4.7: Comparison of original and empirical ECDF when there is no sequential
relationship

We believe that this proposed algorithm fulfills a vesrion of differential privacy. How-
ever, the proof is beyond the scope of the thesis and is a subject of a further research.

Example 4.6.1. We continuous from Example 4.5.4 and apply the algorithm presented
above with the level of privacy ϵ = 10. We have:
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Figure 4.8: Comparison of original and empirical ECDF when there is no sequential
relationship
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Appendix

Probability distribution

Laplace Distribution. The Laplace distribution, is defined by its probability density
function (PDF):

f(x | µ, b) = 1

2b
exp

(
−|x− µ|

b

)
,

where µ denotes the location parameter, representing both the mean and the median,
and b is the scale parameter that determines the distribution’s spread.

Distances

Euclidean Distance. The Euclidean distance between two points x and y in Rn is:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2.

Kullback-Leibler Divergence. The Kullback-Leibler divergence from a probability
distribution Q to a probability distribution P measures the information gained by tran-
sitioning from the prior distribution Q to the posterior distribution P . It is quantified
by:

DKL(P ∥ Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx,

where p(x) and q(x) are the PDFs of distributions P and Q, respectively. This measure
is asymmetric, i.e., DKL(P ∥ Q) ̸= DKL(Q ∥ P ).

Hamming Distance. The Hamming distance is a metric used to measure the differ-
ence between two strings of equal length. It is defined as:

DH(a, b) =
n∑

i=1

1[ai ̸= bi],

where a = (a1, . . . , an) and b = (b1, . . . , bn).
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