
Bernoulli 27(2), 2021, 1409–1439
https://doi.org/10.3150/20-BEJ1279

Bootstrapping Hill estimator and tail array sums
for regularly varying time series
CARSTEN JENTSCH1 and RAFAŁ KULIK2

1Faculty of Statistics, TU Dortmund University, D-44221 Dortmund, Germany
2Department of Mathematics and Statistics, University of Ottawa. E-mail: rkulik@uottawa.ca

In the extreme value analysis of stationary regularly varying time series, tail array sums form a broad class of statis-
tics suitable to analyze their extremal behavior. This class includes for example, the Hill estimator or estimators
of the extremogram and the tail dependence coefficient.

General asymptotic theory for tail array sums has been developed by Rootzén et al. (Ann. Appl. Probab. 8
(1998) 868–885) under mixing conditions and in Kulik et al. (Stochastic Process. Appl. 129 (2019) 4209–4238) for
functions of geometrically ergodic Markov chains. A more general framework of cluster functionals is presented
in Drees and Rootzén (Ann. Statist. 38 (2010) 2145–2186).

However, the resulting limiting distributions turn out to be very complex and cumbersome to estimate as they
usually depend on the whole extremal dependence structure of the time series. Hence, a suitable bootstrap proce-
dure is desired, but available bootstrap consistency results for tail array sums are scarce. In this paper, following
Drees (Drees (2015)), we consider a multiplier block bootstrap to estimate the limiting distribution of tail array
sums. We prove that, conditionally on the data, an appropriately constructed multiplier block bootstrap statistic
converges to the correct limiting distribution. Interestingly, in contrast, it turns out that an apparently natural, but
naïve application of the multiplier block bootstrap scheme does not yield the correct limit.

In simulations, we provide numerical evidence of our theoretical findings and illustrate the superiority of the
proposed multiplier block bootstrap over some obvious competitors. The proposed bootstrap scheme proves to be
computationally efficient in comparison to other approaches.

Keywords: Heavy tails; Hill estimator; multiplier bootstrap; regular variation; stationary time series; tail
empirical process; tail array sums

1. Introduction

The common framework that allows meaningful asymptotic theory to study the extremal behavior of
stationary time series is based on the concept of regular variation. Throughout this paper, let {Xj , j ∈
Z} be a stationary, regularly varying univariate time series with marginal distribution function F(x) =
P(X0 ≤ x), tail function F̄ (x) = P(X0 > x) = 1 − F(x) and tail index α > 0. This means that for each

integer h ≥ 0, there exists a non-zero Radon measure ν0,h on R
h+1 \{0} such that ν0,h(R

h+1 \Rh+1) =
0 and

lim
x→∞

P((X0, . . . ,Xh) ∈ xA)

P(X0 > x)
= ν0,h(A), (1.1)

for all relatively compact sets A ⊂ R
h+1 \ {0} satisfying ν0,h(∂A) = 0. The measure ν0,h, called

the exponent measure of (X0, . . . ,Xh), is homogeneous with index −α, α > 0, that is, ν0,h(tA) =
t−αν0,h(A). The choice of the denominator P(X0 > x) entails that ν0,h((1,∞) ×R

h) = 1 that is, that
the right tail of the stationary distribution is not trivial and that X0 satisfies the so-called balanced tail
condition.
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1.1. Tail array sums: Random vs. deterministic levels

Tail array sums form a broad class of statistics suitable to analyze the extremal behavior of stationary,
regularly varying time series. This class includes the Hill estimator for the tail index α and estimators of
the tail dependence coefficient. Based on the concept of regular variation, such (population) quantities,
can be represented in a unified manner. For i ≤ j we denote xi,j = (xi, . . . , xj ) and let φ : Rh+1 → R

be such that φ(x0, . . . , xh) = 0 whenever max{|x0|, . . . , |xh|} < ε for some ε > 0. Then, the general
goal is to estimate the quantity

ν0,h(φ) := lim
x→∞

E[φ(X0,h/x)]
F̄ (x)

=
∫
Rh+1

φ(x0,h)ν0,h(dx0,h). (1.2)

The above limit exists and is finite due to regular variation, as long as the appropriate moment condition
holds (cf. the definition of the space Lq below). Let Xn:1 ≤ · · · ≤ Xn:n be the order statistics from the
sample X1, . . . ,Xn and k = kn → ∞ such that k/n → 0 as n → ∞. Then, to estimate the quantity
ν0,h(φ), we use the estimator

M̂n(φ) := 1

k

n−h∑
j=1

φ

(
Xj,j+h

Xn:n−k

)
= 1

k

n−h∑
j=1

φ

(
(Xj , . . . ,Xj+h)

Xn:n−k

)
. (1.3)

We will call M̂n(φ) a tail array sum with random level. Further, let us denote its associated process by

M̂n(φ) = √
k
{
M̂n(φ) − ν0,h(φ)

} = √
k

{
1

k

n−h∑
j=1

φ

(
Xj,j+h

Xn:n−k

)
− ν0,h(φ)

}
. (1.4)

The above representation of M̂n(φ) is very flexible and allows a unified treatment of many practically
relevant statistics from extreme value statistics. By choosing different functions φ, different estimation
problems can be addressed.

Example 1 (Special cases of tail array sums).

(i) Take h = 0 and φ(x0,h) = log(x0)1{x0 > 1}, then ν0,h(φ) = 1/α and M̂n(φ) is the aforemen-
tioned Hill estimator.

(ii) Take h ≥ 1 and φ(x0,h) = 1{x0 > 1, xh > 1}. Then ν0,h(φ) = limx→∞ P(Xh > x | X0 > x),
which is the (upper) tail dependence coefficient between X0 and Xh. In turn, this is a special case of
the extremogram considered in Davis and Mikosch [4], and Drees [9].

(iii) Take φ(x0,h) = xh1{x0 > 1}. Then ν0,h(φ) = limx→∞ E[(Xh/x) | X0 > x]. We note that for
h = 0 the quantity E[X0 | X0 > x] for x = F←(1 − p), where F← is the generalized inverse of F , is
known in the risk management literature as the expected shortfall.

(iv) Take h ≥ 1 and φ(x0,h) = 1{|x0| > 1, xh ≤ y}. Then ν0,h(φ) = p−1 limx→∞ P(Xh ≤ xy |
|X0| > x) = p−1

P(Yh ≤ y), where p = limx→∞ P(X0 > x)/P(|X0| > x) and {Yj , j ∈ Z} is the tail
process.

(v) Take h ≥ 1 and φ(x0,h) = 1{|x0| > 1, xh ≤ y|x0|}. Then ν0,h(φ) = p−1 limx→∞ P(Xh ≤
y|X0| | |X0| > x) = p−1

P(�h ≤ y), where {�j, j ∈ Z} is the tail spectral process. The problem of
estimation of the tail spectral process was tackled in Drees et al. [12], Davis et al. [3].

Limiting theory for tail array sums can be concluded, under some weak dependence conditions, from
Kulik et al. [18], utilizing the general theory from Drees and Rootzén [11]. The particular case of the
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extremogram was considered in Davis and Mikosch [4] and Drees et al. [12]. To be able to derive
asymptotic theory for tail array sums with random levels M̂n(φ) one needs to consider first the related
quantity

M̃n(φ) := 1

nF̄ (un)

n−h∑
j=1

φ

(
Xj,j+h

un

)
, (1.5)

where {un} is a deterministic sequence with un → ∞ as n → ∞ such that nF̄ (un) → ∞. We call
M̃n(φ) a tail array sum with deterministic level. Such tail array sums were considered in Rootzén et al.
[20]. Note that this version of a tail array sum requires the knowledge of F̄ and the choice of the
deterministic sequence {un}, whereas M̂n(φ) only requires the choice of k.

It is crucial to compare the limiting distribution of two versions M̂n(φ) and M̃n(φ). First, we point
out that the limiting distributions for the estimator M̂n(φ) defined in (1.3) with the random level Xn:n−k

and the estimator M̃n(φ) defined in (1.5) with deterministic level un typically differ. Second, the lim-
iting distribution of M̂n(φ) is concluded from that of (1.5) by considering functional convergence of
M̃n(φs), where φs(x0,h) = φ(x0,h/s), 0 < s0 < s < t0 < ∞.

1.2. Bootstrapping for tail array sums: A naïve idea

Although a general asymptotic theory has been established under different weak dependence condi-
tions, such theoretical limiting results for tail array sums M̂n(φ) are not directly applicable for the
construction of confidence intervals. This is because the limiting variances usually have a very compli-
cated form that depends on the whole extremal dependence structure of the time series. To overcome
this issue, a suitable bootstrap procedure is required to estimate the limiting distribution of the tail
array sums. Although, for stationary regularly varying time series, there are some theoretical results on
(multiplier) bootstrapping for infeasible statistics of the form (1.5) (cf. Davis et al. [5], Davis et al. [3]),
to the best of our knowledge there are no results on bootstrapping the feasible and hence practically
more relevant estimators of the form (1.3) except for the sample extremogram Drees [9] and for the
Hill estimator and spectral tail processes Drees and Knezevic [10].

Hence, the main goal of this paper is to propose a suitable bootstrap scheme for the feasible general
tail array sums M̂n(φ) defined in (1.3) and prove its consistency for stationary, regularly varying time
series under mild regularity conditions. As used already by Drees [9] for the extremogram, we employ
a multiplier block bootstrap for the broad class of tail array sums in this paper and derive corresponding
bootstrap consistency results. Precisely, let {ξj , j ∈ Z} be a sequence of i.i.d. centered random variables
with unit variance, independent of the sequence {Xj , j ∈ Z}. Let rn be the block length such that
rn → ∞ and define mn = (n − h)/rn. Without loss of generality, we assume that mn is integer-valued.
Let k = kn be a sequence of integers such that k → ∞, k/n → 0 and define un by k = nF̄ (un). Then
we can rewrite M̂n(φ) as follows

M̂n(φ) = 1

k

mn∑
i=1

irn∑
j=(i−1)rn+1

φ

(
Xj,j+h

Xn:n−k

)
= 1

k

mn∑
i=1

�̂n,i , (1.6)

with an obvious notation for �̂n,i , i = 1, . . . ,mn. Consequently, a natural, but naïve multiplier boot-
strap version of the associated process M̂n(φ) defined in (1.4) is

M̂n,ξ (φ) = √
k

(
1

k

mn∑
i=1

(1 + ξi)�̂n,i − 1

k

mn∑
i=1

�̂n,i

)
= 1√

k

mn∑
i=1

ξi�̂n,i . (1.7)
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However, as we will argue below, such a multiplier bootstrap turns out to be not consistent for the
limiting distribution of the tail array sums M̂n(φ) as it does not lead to the correct limiting distribution.

To understand how to construct a suitable multiplier bootstrap procedure for tail array sums M̂n(φ)

that leads to the correct limiting distribution and is asymptotically consistent, it is crucial to consider
its relationship to M̃n(φ) in more detail. In the following, we shed some light on this relationship
for a more simplified special case of tail array sums. Precisely, we consider the Hill estimator from
Example 1(i) to estimate the tail index.

1.3. The Hill estimator - a deep but simple example

Estimation of the tail index α of a regularly varying distribution is one of the most important problems
in statistical extreme value analysis and the Hill estimator is a commonly used method to do so. A
distribution P of a random variable X is said to have (right) tail index α if

ν0,0
(
(u,∞)

) = lim
x→∞

P(X > ux)

P (X > x)
= u−α. (1.8)

Note that (1.8) is obtained from the definition of regular variation in (1.1) by setting A = (u,∞) and
h = 0.

In the literature, two practically relevant variants of the Hill estimator have been defined. Addi-
tionally, we consider another practically useless variant of the Hill estimator for academic reasons to
understand why and how the naïve application of a multiplier block bootstrap in (1.7) fails and how
this can be cured. For the first variant let, as before, un → ∞ and nF̄ (un) → ∞ as n → ∞ be a
deterministic sequence. Then, the Hill estimator for γ := 1/α with deterministic levels and random
normalization is defined by

γ̂un := 1∑n
j=1 1{Xj > un}

n∑
j=1

log

(
Xj

un

)
1{Xj > un}. (1.9)

Alternatively, recalling that k = nF̄ (un), replacing un in (1.9) by the order statistic Xn:n−k , which gives
(assuming for simplicity that there are no ties in the sequence

∑n
j=1 1{Xj > Xn:n−k} = k), leads to the

second variant of the Hill estimator with random levels and deterministic normalization defined by

γ̂k := 1∑n
j=1 1{Xj > Xn:n−k}

n∑
j=1

log

(
Xj

Xn:n−k

)
1{Xj > Xn:n−k} (1.10)

= 1

k

k−1∑
j=0

log

(
Xn:n−j

Xn:n−k

)
. (1.11)

The third variant is the Hill estimator with deterministic levels and deterministic normalization defined
by

γ̃un := 1

nF̄ (un)

n∑
j=1

log

(
Xj

un

)
1{Xj > un}. (1.12)

The latter is a mixture of the other two variants and is defined only for academic reasons. By setting
h = 0 and φ(x0,h) = log(x0)1{x0 > 1}, the second variant γ̂k of the Hill estimator in (1.11) and its third



Bootstrapping tail array sums 1413

variant γ̃un in (1.12) are obtained as special cases from (1.3) and (1.5), respectively. Note again that the
first and the second variants are practically relevant, as they require only the choice of the deterministic
sequence un for γ̂un or the choice of k for γ̂k , whereas the third variant requires not only the choice of
un, but also the knowledge of F̄ .

The asymptotic theory for the Hill estimators is well-known; see, for example, de Haan and Ferreira
[6] in the i.i.d. case or Drees [7] in the weakly dependent case. Under appropriate conditions, the
limiting distribution is centered normal with a variance given by a complicated infinite series that
depends on the whole extremal dependence structure of the time series. To approximate the limiting
distribution by using a suitable resampling scheme, Drees and Rootzén [11], Example 3.4, propose a
block bootstrap procedure for the Hill estimator with deterministic levels and random normalization
(that is, γ̂un ) and prove its consistency.

In the i.i.d. case, the complicated limiting variances of all variants of the Hill estimator simplify and
allow for rather straightforward asymptotic inference. Precisely, under suitable regularity conditions,
we have

√
k(γ̂un − γ )

d→ N
(
0, γ 2) and

√
k(γ̂k − γ )

d→ N
(
0, γ 2), (1.13)

but

√
k(γ̃un − γ )

d→ N
(
0,2γ 2), (1.14)

such that the limiting variances of the first two practically relevant variants of the Hill estimator share
the same limiting distribution, but this differs from the limiting distribution of the third variant by a
factor of 2. A comparison of (1.9) and (1.11) reveals that randomness in (1.11) is contained only in
the summands, but in (1.9) randomness is contained in these summands and in the summands in the
denominator. Nevertheless, for both versions, we get the same limiting distributions in (1.13). This
important observation will help us to construct a proper version of a mulitplier block bootstrap for tail
array sums with random levels in Section 3.

To the best of our knowledge and to our surprise, there are very limited results on bootstrapping the
Hill estimator with random levels γ̂k . In the i.i.d. case we are aware of two results. The first one is
Loukrati [19], Theorem 5.3.1. There, the author establishes convergence of bootstrapped tail empirical
processes and obtains a result for the Hill estimator γ̂k with help of integral functionals. The second
one is Theorem 3.3 in Groen [15], where the author approximates bootstrapped order statistics by
appropriately constructed sequences of Brownian motions and concludes a result for the Hill estimator
γ̂k . Proofs of these results rely on the i.i.d. structure of the underlying sequence. In Drees and Knezevic
[10], Theorem 2.3, the authors consider multiplier bootstrap for the Hill estimator with deterministic
threshold and random normalization, corresponding to (1.9).

As foreshadowed in Section 1.2, a natural, but naïve approach of a multiplier bootstrap (actually
a common wild bootstrap after setting rn = 1 for the i.i.d. case), will generally fail to replicate the
limiting distribution of tail array sums with random levels. Precisely, for the Hill estimator in the
i.i.d. case, the naïve multiplier bootstrap process from (1.7) gives

√
k(γ̂k,ξ − γ̂k) := √

k

(
1

k

k−1∑
j=0

(1 + ξj ) log

(
Xn:n−j

Xn:n−k

)
− 1

k

k−1∑
j=0

log

(
Xn:n−j

Xn:n−k

))
(1.15)

= 1√
k

k−1∑
j=0

ξj log

(
Xn:n−j

Xn:n−k

)
. (1.16)
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As a special case of our general theory for multiplier bootstrapping of tail array sums in Section 2 of
this paper, we will conclude that

√
k(γ̂k,ξ − γ̂k)

d→ N
(
0,2γ 2) in probability.

Two crucial findings are in order. First, the naive multiplier bootstrap does not replicate the distribution
of γ̂k as desired, but that of γ̃un . Second, as the limiting distributions of γ̂un and of γ̂k coincide, the
idea is to construct a suitable multiplier bootstrap that aims at replicating the random structure of γ̂un

to properly replicate the limiting distribution of γ̂k . It turns out that a remedy to cure the bootstrap in-
consistency is to construct a multiplier bootstrap that additionally incorporates a proper randomization
of k in the denominator of (1.11).

1.4. Outline of the paper

The paper is structured as follows. In Section 2, we quote from Kulik et al. [18] and gather all relevant
asymptotic results for M̃n(φ) and M̂n(φ). These results are a benchmark for the multiplier block boot-
strap procedures with and without randomizing k, as considered in this paper. In Section 3, we state our
main result on the multiplier bootstrap consistency in Theorem 3.1. Its proof follows in principle the
lines of Drees [9], with appropriate modifications by incorporating some techniques developed in Kulik
et al. [18]. In Section 4, we perform extensive simulations studies. There, we confirm our theoretical
findings that the randomization of k is indeed necessary. Furthermore, we conclude that the properly
implemented multiplier bootstrap outperforms i.i.d. or block bootstraps, respectively. Additionally, the
multiplier bootstrap is computationally considerably less demanding than i.i.d. or block bootstraps as
it avoids the sorting step for the bootstrap samples.

2. Convergence of the tail array sums

In this section, we gather all relevant limiting results for tail array sums. For simplicity of the presen-
tation, we focus on time series that can be expressed as regularly varying functions of Markov chains
as proposed by Kulik et al. [18]. For this broad class of time series, the conditions for validity of the
central limit theorem for the estimators (1.3) and (1.5) are rather straightforward as proven in Kulik
et al. [18]. However, corresponding limiting results can be established also under different sets of as-
sumptions as for example, those used in Drees and Rootzén [11]. We point out that our results on
the multiplier bootstrap discussed in Section 3 are extendable to a more general class, as long as the
appropriate non-bootstrap functional central limit theorem holds; see Drees and Rootzén [11]. That
functional CLT requires existence of the limiting covariance along with additional moment assump-
tions, among others. As the approach based on Markov chains allows a formulation in terms of simple
and easy to verify conditions, we prefer to use this approach in the following and throughout the paper.

The set-up is as in Kulik et al. [18]. We assume that {Xj , j ∈N} is a function of a stationary Markov
chain {Yj , j ∈ N}, defined on a probability space (
,F,P), with values in a measurable space (E,E).
That is, there exists a measurable real valued function g : E → R such that Xj = g(Yj ).

Assumption 1.

(i) The Markov chain {Yj , j ∈ Z} is strictly stationary under P.
(ii) The sequence {Xj = g(Yj ), j ∈ Z} is regularly varying with tail index α > 0.
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(iii) There exist a measurable function V : E → [1,∞), γ ∈ (0,1) and b > 0 such that for all y ∈ E,

E
[
V (Y1) | Y0 = y

] ≤ γV (y) + b. (2.1)

(iv) There exist an integer m ≥ 1 and x0 ≥ 1 such that for all x ≥ x0, there exists a probability
measure ν on (E,E) and ε > 0 such that, for all y ∈ {V ≤ x} and all measurable sets B ∈ E ,

P(Ym ∈ B | Y0 = y) ≥ εν(B). (2.2)

(v) There exist q0 ∈ (0, α) and a constant c > 0 such that

|g|q0 ≤ cV . (2.3)

(vi) For every s > 0,

lim sup
n→∞

1

u
q0
n F̄ (un)

E
[
V (Y0)1

{∣∣g(Y0)
∣∣ > uns

}]
< ∞. (2.4)

Various important examples of Markov chain time series that fulfill Assumption 1 can be found in
Kulik et al. [18]. These include for example, ARMA(p,q) processes, solutions to stochastic recurrence
equations or different threshold models.

Let | · | be an arbitrary norm on R
h+1. Throughout the paper, we will write xa,b for (xa, . . . , xb),

a ≤ b ∈ Z, for any sequence x = {xj , j ∈ Z}. For q ≥ 0, let Lq be the space of measurable real-valued
functions φ defined on R

h+1 such that

(i) there exists a constant ε > 0 such that |φ(x)| ≤ ε−1(|x|q ∨ 1)1{|x| > ε} for x ∈R
h+1;

(ii) for all j ≥ 0, the function x0,j+h �→ φ(xj,j+h) is almost surely continuous with respect to
ν0,j+h.

Clearly, the case q = 0 corresponds to bounded functions. The purpose of the bound in (i) is two-fold.
First, it will guarantee existence of moments, second, it implies that the function vanishes around zero.

If Assumption 1 holds and φ,φ′ ∈ Lq0/2 for q0 ∈ (0, α), then by Kulik et al. [18], Lemma 2.2, the
following quantities are well-defined:

σ 2(φ) =
∫
Rh+1

φ2(x)ν0,h(dx) + 2
∞∑

j=1

∫
Rj+h+1

φ(x0,h)φ(xj,j+h)ν0,j+h(dx), (2.5)

C
(
φ,φ′) = 1

2

{
σ 2(φ + φ′)− σ 2(φ) − σ 2(φ′)}. (2.6)

Define

Mn(φ) =
√

nF̄ (un)
{
M̃n(φ) −E

[
M̃n(φ)

]}
. (2.7)

Let M be a Gaussian process indexed by Lq with covariance function C. We quote the following result
that establishes finite dimensional convergence of Mn on Lq with q < q0/2. Note that the result in
Theorem 2.1 corresponds to the convergence of finite dimensional distributions of tail array sums with
deterministic levels defined in (1.5).
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Theorem 2.1 (Kulik et al. [18], Theorem 2.3). Let Assumption 1 hold and let {un} be an increasing
sequence such that

lim
n→∞un = lim

n→∞nF̄ (un) = +∞. (2.8)

Assume there exists η > 0 such that

lim
n→∞ log1+η(n)F̄ (un) = 0. (2.9)

Assume moreover that either φ is bounded or there exists δ > 0 such that q(2 + δ) ≤ q0 and

lim
n→∞

log1+η(n)

{nF̄ (un)}δ/2
= 0. (2.10)

Then Mn
fi.di.−→ M on Lq .

For statistical purposes, we need to consider the process Mn indexed by a subclass G ⊂ Lq of func-
tions and convergence of Mn to M must be strengthened to weak convergence in �∞(G), in particular
in order to replace the deterministic threshold un by an appropriate sequence of order statistics. The
general theory of weak convergence in �∞(G) is developed in van der Vaart and Wellner [21] and
Giné and Nickl [14] and was adapted in full generality in the context of cluster statistics in Drees and
Rootzén [11], while in the present context it was considered in Kulik et al. [18]. We quote the following
result from Kulik et al. [18], Theorem 2.4, to which we also refer for some notions related to empirical
processes and classes of functions. To proceed, let ρh be the pseudometric defined on Lq by

ρ2
h(φ,ψ) = ν0,h

(
(φ − ψ)2).

Note that ρh is well defined under the assumptions of Theorem 2.1 which imply q < q0/2. Choose
rn = log1+η(n) such that (2.9) and (2.10) hold. Set mn = (n − h)/rn and assume for simplicity that
mn is an integer. Then, as rn → ∞, we have also mn → ∞. Consider mn non-overlapping blocks
{j = (i − 1)rn + 1, . . . , irn}, i = 1, . . . ,mn. Define the random pseudometric dn on G by

d2
n

(
φ,φ′) = 1

nF̄ (un)

mn∑
i=1

{
irn∑

j=(i−1)rn+1

(
φ

(
Xj,j+h

Xn:n−k

)
− φ′

(
Xj,j+h

Xn:n−k

))}2

, φ,φ′ ∈ G.

Let N(ε,G, dn) be the minimum number of balls in the pseudometric dn needed to cover G.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and let G ⊂ Lq . Assume moreover that

(i) G is pointwise separable and linearly ordered;
(ii) the envelope function �G = supφ∈G |φ| is in Lq ;

(iii) (G, ρh) is totally bounded;
(iv) for every sequence {δn} which decreases to zero,

lim sup
n→∞

sup
φ,ψ∈G

ρh(φ,ψ)≤δn

E[{φ(u−1
n X0,h) − ψ(u−1

n X0,h)}2]
F̄ (un)

= 0; (2.11)

Then Mn ⇒M in �∞(G).
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Now, we turn to the practically more relevant tail array sums with random levels defined in (1.3).
We set k = nF̄ (un) and define the processes M̂n and M̂ on Lq by

M̂n(φ) = √
k

{
1

k

n∑
j=1

φ

(
Xj,j+h

Xn:n−k

)
− ν0,h(φ)

}
,

M̂(φ) =M(φ) − ν0,h(φ)M
(
1(1,∞)×Rh

)
.

Remark 2.3. For each φ, M̂(φ) has variance σ 2(φ − ν0,h(φ)1(1,∞)×Rh) in contrast to M(φ) which
has variance σ 2(φ). Hence, the distributions of M̂(φ) and M(φ) differ.

The following results establish central limit theorems for the estimator M̂n(φ) of ν0,h(φ). Recall
that for φ :Rh+1 →R and s > 0 the function φs is defined by φs(x) = φ(x/s).

Corollary 2.4 (Kulik et al. [18], Corollary 2.6). Let the assumptions of Theorem 2.1 hold. Let 0 <

s0 < 1 < t0 < ∞ and let G∗
0 ⊂ Lq . Define G∗ = {φs,φ ∈ G∗

0 , s ∈ [s0, t0]}. If G∗ satisfies the assumptions
(i)–(iv) of Theorem 2.2 and

lim
n→∞

√
k sup

s0≤s≤t0

∣∣∣∣ F̄ (uns)

F̄ (un)
− s−α

∣∣∣∣ = 0, (2.12)

lim
n→∞

√
k sup

s0≤s≤t0

sup
φ∈G∗

0

∣∣∣∣E[φ(X0,h/(uns))]
F̄ (un)

− s−αν0,h(φ)

∣∣∣∣ = 0 (2.13)

hold, then M̂n ⇒ M̂ on �∞(G∗
0 ).

We note that (2.12), (2.13) are the bias conditions that cannot be dispensed of. They hold for some
sequences k and un. The first one can be handled by the classical univariate second order assumption
applied to F ; see de Haan and Ferreira [6]. The second one, in the context of time series, has to be
treated on case-by-case basis, by considering specific functions φ and particular time series models.
We do not pursue this direction here. Indeed, as we will see below, the bootstrap procedures are valid
without any additional bias conditions.

In Kulik et al. [18] the authors applied the above result to different functions φ to obtain central limit
theorems for quantities related to extremal behaviour of time series such as conditional tail expectation
or distribution of the spectral tail process. Another classical application is estimation of the tail index
of F . In all these applications, the limiting variance is given by a complicated, infinite sum. Therefore,
we want to employ resampling techniques to conduct statistical inference for tail array sums. In the
following section, we propose a multiplier block bootstrap that is in particular appealing in terms of
low computational burden and high theoretical tractability.

3. Convergence of multiplier tail array sums

In this section, we consider a multiplier bootstrap procedure for tail array sums with random levels
M̂n(φ). Recall that the latter can be represented in two ways:

M̂n(φ) = √
k

(∑n−h
j=1 φ(

Xj,j+h

Xn:n−k
)

k
− ν0,h(φ)

)
(3.1)
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= √
k

( ∑n−h
j=1 φ(

Xj,j+h

Xn:n−k
)∑n

j=1 1{Xj >Xn:n−k}
− ν0,h(φ)

)
. (3.2)

The goal is to create a multiplier bootstrap analogue to M̂n(φ) that mimics the limiting distribution of
the latter. Let {ξi, i ≥ 1} be a sequence of i.i.d. random variables such that E[ξ0] = 0 and E[ξ2

0 ] = 1. In
view of the two representations (3.1) and (3.2), two options appear to be natural to apply a multiplier
(block) bootstrap for M̂n(φ):

(i) Consider the first representation of M̂n(φ) in (3.1), split the sum
∑n−h

j=1 φ(
Xj,j+h

Xn:n−k
) into mn blocks

of size rn, apply the multipliers ξi to each of the blocks, while keeping k in the denominator.
(ii) Consider the second representation of M̂n(φ) in (3.2), split both sums

∑n−h
j=1 φ(

Xj,j+h

Xn:n−k
) and∑n

j=1 1{Xj >Xn:n−k} into mn blocks of size rn, align the corresponding blocks and apply the multipliers
ξi to each of the joint, i.e. two-dimensional, blocks.

To proceed, set

�̂n,i :=
irn∑

j=(i−1)rn+1

φ

(
Xj,j+h

Xn:n−k

)
, ϒ̂n,i =

irn∑
j=(i−1)rn+1

1{Xj > Xn:n−k}. (3.3)

Define the multiplier bootstrap version of M̂n(φ) corresponding to option (i) by

M̂n,ξ (φ) = √
k

(∑mn

i=1(1 + ξi)�̂n,i

k
−

∑mn

i=1 �̂n,i

k

)
=

∑mn

i=1 ξi�̂n,i√
k

(3.4)

and to option (ii) by

̂̂
Mn,ξ (φ) = √

k

(∑mn

i=1(1 + ξi)�̂n,i∑mn

i=1(1 + ξi)ϒ̂n,i

−
∑mn

i=1 �̂n,i∑mn

i=1 ϒ̂n,i

)
. (3.5)

For a metric space (X , ρX ) we denote

BL(X ) =
{
� : X →R : sup

x∈X

∣∣�(x)
∣∣ ≤ 1,

∣∣�(x) − �(y)
∣∣ ≤ ρX (x, y), x, y ∈X

}
. (3.6)

This space metrizes weak convergence in X ; see van der Vaart and Wellner [21], p. 73. The main result

of this section is the following theorem which shows (conditional) weak convergence of ̂̂
Mn,ξ and

M̂n,ξ as processes indexed by the class from Corollary 2.4 In what follows, Eξ denotes the conditional
expectation (given X1, . . . ,Xn).

Theorem 3.1. Let the assumptions of Theorem 2.1 hold and that either

• φ is bounded and

lim
n→∞

r2
n

nF̄ (un)
= 0 (3.7)

holds; or
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• φ ∈ Lq , q < q0/4, and

lim
n→∞

r3
n

nF̄ (un)
= 0 (3.8)

holds.

Let 0 < s0 < 1 < t0 < ∞ and let G∗
0 ⊂ Lq . Define G∗ = {φs,φ ∈ G∗

0 , s ∈ [s0, t0]}. If G∗ satisfies the
assumptions (i)–(iv) of Theorem 2.2 and (2.12)–(2.13) hold, then

sup
�∈BL(�∞(G∗

0 ))

∣∣Eξ

[
�(̂̂Mn,ξ )

]−E
[
�(M̂)

]∣∣ → 0

and

sup
�∈BL(�∞(G∗

0 ))

∣∣Eξ

[
�(M̂n,ξ )

]−E
[
�(M)

]∣∣ → 0,

in probability.

Remark 3.2. The corresponding results for the functions ψs,y(x0, . . . , xh) = 1{|x0| > s,xh ≤ y|x0|}
and the class {ψs,y, s ∈ [s0, t0], y ∈R} were obtained in Drees and Knezevic [10], Theorem 2.3.

Remark 3.3. We note that the limiting distributions for the multiplier statistics ̂̂
Mn,ξ (φ) and M̂n(φ)

coincide. On the other hand, M̂n,ξ (φ) does not recover the desired limit M̂n(φ).

Remark 3.4. In the i.i.d. case the Hill estimator γ̂k in (1.11) has the limiting variance α−2, while the
bootstrapped Hill estimator γ̂k,ξ in (1.15) is approximated by a normal random variable with variance
2α−2. Note that the latter limiting variance is that of the Hill estimator with deterministic level and
deterministic normalization defined in (1.12). Hence, γ̂k,ξ obviously fails to mimic the randomness in

M̂n(φ) induced from random levels, whereas ̂̂γ k,ξ (defined analogously to ̂̂
Mn,ξ (φ)) succeeds in mim-

icking the randomness induced from random normalization leading to the correct limiting distribution.
The phenomenon that a multiplier bootstrap may lead to a wrong limiting distribution has already
been observed in Bücher and Dette [2], where it is applied to tail copulas. The problem is due to a
replacement of marginal cumulative distribution functions by empirical distribution functions, which
is comparable to the issue of replacing deterministic levels by random levels.

Remark 3.5. Let Is(x0, . . . , xh) = 1{x0 > s} and define the class G′ = {Is , s ∈ [s0, t0]}. Note that G′
satisfies the assumptions of Theorem 2.2 (cf. Kulik et al. [18]). This will have implications for a joint
convergence below; see, for example, (3.13). In turn the joint convergence is needed to replace the
deterministic threshold with the order statistics.

3.1. Two examples of tail array sums

For the general estimator introduced in (1.3), that is,

M̂n(φ) := 1

k

n−h∑
j=1

φ

(
Xj,j+h

Xn:n−k

)
,
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where Xn:1 ≤ · · · ≤ Xn:n are the order statistics from the sample X1, . . . ,Xn and k = kn → ∞ is such
that k/n → 0, we choose two specifications; compare Example 1 in Section 1.

3.1.1. Hill estimator

First, with h = 0 and φ(x0,h) = log(x0)1{x0 > 1}, we get the well-known Hill estimator

γ̂k := 1

k

n∑
j=1

log

(
Xj

Xn:n−k

)
1

{
Xj

Xn:n−k

> 1

}
= 1

k

k−1∑
j=0

log

(
Xn:n−j

Xn:n−k

)
, (3.9)

as an estimator for M(φ) = 1/α =: γ . Clearly, the class {φs, s ∈ [s0, t0]} is linearly ordered. Under the
appropriate conditions (as those in Theorem 2.1) the limiting distribution of the appropriately scaled
Hill estimator is normal with the variance given by an infinite series; see, for example, the stochastic
recurrence example in Drees [7] or the linear process in Drees [8]. In the language of the so-called tail
process {Yj , j ∈ Z} (see Example 1(iv)), the distributional limit of the sequence {Xj , j ∈ Z} given that
|X0| is large (see, e.g., Basrak and Segers [1] for the precise statement), the limiting variance is given
by (cf. Theorem 9.5.2 in Kulik and Soulier [17])

α−2
∑
j∈Z

P(Yj > 1 | Y0 > 1).

In the easy case of an AR(1) process {Xj , j ∈ Z} with coefficient ρ ∈ (0,1), the limiting variance of
the Hill estimator of α−1 given in (3.9) can be stated explicitly (cf. Drees [8]) and is given by

α−2
(

1 + ρα

1 − ρα

)
.

3.1.2. Extremogram

Second, with h ≥ 1 and φ(x0,h) = 1{x0 > 1, xh > 1}, we obtain the extremogram at lag h as con-
sidered in Davis and Mikosch [4]. Again, the class {φs, s ∈ [s0, t0]} is linearly ordered. The sample
extremogram is

M̂n(φ) := 1

k

n−h∑
j=1

1

{
Xj

Xn:n−k

> 1,
Xj+h

Xn:n−k

> 1

}
.

It is an estimator for M(φ) = limx→∞ P(Xh > x | X0 > x) which is known as the (upper) tail depen-
dence coefficient between X0 and Xh.

To the best of our knowledge, there is no explicit formula available in the literature for the limit-
ing distribution of an appropriately normalized estimator of the extremogram, but we can argue that
the limiting variance can be again represented as an infinite series in terms of the tail process (note
that Davis and Mikosch [4] consider the estimator with deterministic levels, hence different limiting
distribution).

3.2. Proof of Theorem 3.1

We proceed in three steps. We consider a multiplier process with deterministic levels (Proposition 3.6),
multiplier process with random normalization (Proposition 3.12) and finally multiplier process with
random levels that concludes the proof of Theorem 3.1.
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3.2.1. Multiplier process with deterministic levels

Recall that φs(·) = φ(·/s). Similarly to (3.3), let

�n,i(s) =
irn∑

j=(i−1)rn+1

φs

(
Xj,j+h

un

)
, �n,i(s;y) =

irn∑
j=(i−1)rn+1

ψs,y

(
Xj,j+h

un

)
,

ϒn,i(s) =
irn∑

j=(i−1)rn+1

1{Xj > uns}.

Recall that mn = (n − h)/rn is assumed to be an integer, and define the multiplier process by

Mn,ξ (φs) = 1√
nF̄ (un)

(∑mn

i=1 ξi{�n,i(s) −E[�n,i(s)]}
nF̄ (un)

)
. (3.10)

The analogous expression holds for Mn,ξ (ψs,y). For the special case of function φ(x0,h) = 1{x0 > 1}
and Is(x0,h) = 1{x0 > s} we consider

Mn,ξ (Is) =
√

nF̄ (un)

(∑mn

i=1 ξi{ϒn,i(s) −E[ϒn,i(s)]}
nF̄ (un)

)
. (3.11)

We note that for all φ ∈ Lq ,

E[�n,1(s)]
rnF̄ (un)

→ ν0,h(φs),
E[ϒn,1(s)]
rnF̄ (un)

→ s−α. (3.12)

By Theorem 2.2, Remark 3.5 and the bias conditions (2.13), we have (joint) weak convergence in
�∞(G∗) of the processes√

nF̄ (un)

{∑mn

i=1 �n,i(s)

nF̄ (un)
− ν0,h(φs)

}
,

√
nF̄ (un)

{∑mn

i=1 �n,i(s;y)

nF̄ (un)
− ν0,h(ψs,y)

}
(3.13)

and √
nF̄ (un)

{∑mn

i=1 ϒn,i(s)

nF̄ (un)
− s−α

}
. (3.14)

Vervaat lemma implies, in particular, that Xn:n−k/un
p→ 1.

The first result is about weak convergence of the multiplier process Mn,ξ , indexed by the class
G = G∗.

Proposition 3.6. Let G∗ be as in Theorem 3.1. Then

sup
�∈BL(�∞(G∗))

∣∣Eξ

[
�(Mn,ξ )

]−E
[
�(M)

]∣∣ → 0,

as n → ∞ in probability.

Remark 3.7. We point out that in Theorem 3.1 the sup is taken over BL(�∞(G∗
0 )), while here over a

larger class BL(�∞(G∗)). The smaller class G∗
0 will show up when substituting un with order statistics.
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Proof. As usual, we proceed by proving finite dimensional convergence and tightness.
Let In,i = {(i − 1)rn + 1, . . . , irn}. Let {X†

j , j ∈ Z} be a sequence such that the blocks {X†
i , i ∈

In,i}, i = 1, . . . ,mn, are independent, but have the same distribution as the blocks {Xi, i ∈ In,i}, i =
1, . . . ,mn of the original sequence. Let �

†
n,i(s) be the statistics defined in the same way as �n,i(s), but

based on the i.i.d. blocks. Clearly, E[�†
n,i(s)] = E[�n,i(s)]. Set

M
†
n,ξ (φs) =

√
nF̄ (un)

(∑mn

i=1 ξi{�†
n,i(s) −E[�n,i(s)]}
nF̄ (un)

)
. (3.15)

With help of beta-mixing, arguing as in Drees and Rootzén [11] and Kulik et al. [18], in order to
prove finite dimensional convergence of Mn,ξ , it suffices to consider the process M

†
n,ξ . With help

of Assumption 1 we obtain some convergence results in Lemma 3.8. These are used to prove fidi
convergence (conditional) in Lemma 3.10 and tightness (unconditional) in Lemma 3.11. The proof is
concluded by showing the conditional weak convergence. �

3.2.2. Fidi convergence (conditional)

Here, we provide calculations for �n,i(s) only. Computations for �n,i(s, y) are analogous.

Lemma 3.8. Let Assumption 1 hold. Then for all φ ∈ Lq , q < q0/2 and s, t ∈ [s0, t0],

lim
n→∞

1

rnF̄ (un)
cov

(
�n,1(s),�n,1(t)

) = lim
n→∞

1

rnF̄ (un)
E
[
�n,1(s)�n,1(t)

] = C(φs,φt ) (3.16)

and for all η > 0

lim
n→∞

mn

nF̄ (un)
E
[{

�n,1(s) −E
[
�n,1(s)

]}21
{∣∣�n,1(s) −E

[
�n,1(s)

]∣∣ > η

√
nF̄ (un)

}]
= lim

n→∞
mn

nF̄ (un)
E
[{

�n,1(s)
}2

1
{∣∣�n,1(s)

∣∣ > η

√
nF̄ (un)

}] = 0. (3.17)

Proof. The first and the second statements are proven in Kulik et al. [18] (Lemmas 3.3, 3.6 and 3.7). �

Lemma 3.9. Let Assumption 1 hold. If either

• φ is bounded and (3.7) holds; or
• φ ∈ Lq , q < q0/4, and (3.8) holds,

then

1

nF̄ (un)

mn∑
i=1

�
†
n,i(s)�

†
n,i (t)

p→ C(φs,φt ). (3.18)

Proof. We note first that (cf. Kulik et al. [18])

1

nF̄ (un)

mn∑
i=1

E
[
�

†
n,i(s)�

†
n,i (t)

] = mn

nF̄ (un)
E
[
�

†
n,1(s)�

†
n,1(t)

]
= 1

rnF̄ (un)
cov

(
�n,1(s),�n,1(t)

)+ o(1) → C(φs,φt )
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by (3.16). Thanks to independence between the blocks,

var

(
1

nF̄ (un)

mn∑
i=1

�
†
n,i(s)�

†
n,i (t)

)

= mn

n2F̄ 2(un)
var

(
�

†
n,1(s)�

†
n,1(t)

)
= mn

n2F̄ 2(un)
E
[(

�
†
n,1(s)�

†
n,1(t)

)2]− mn

n2F̄ 2(un)
E
[(

�
†
n,1(s)

)2]
E
[(

�
†
n,1(t)

)2]
.

Lemma 3.3 in Kulik et al. [18] yields E[(�†
n,1(s))

2] = O(rnF̄ (un)) and hence the last term in the
display above is of order

mn

n2F̄ 2(un)
r2
nF̄ 2(un) = n

rnn2
r2
n = rn/n = o(1).

Now, if φ is bounded, then

E
[(

�
†
n,1(s)�

†
n,1(t)

)2] ≤ ‖φ‖∞r2
nE

[(
rn∑

j=1

φt

(
Xj,j+h

un

))2]

and therefore the first term in the display for the variance is of order

mn

n2F̄ 2(un)
r2
nO

(
rnF̄ (un)

) = O(r2
n)

nF̄ (un)
= o(1).

In case of unbounded functions, we proceed as follows:

E

[(
rn∑

j=1

φs

(
Xj,j+h

un

))2( rn∑
j=1

φt

(
Xj,j+h

un

))2]

=: E
[(

rn∑
j=1

φs,j

)2( rn∑
j=1

φt,j

)2]
= E

[(
rn∑

j=1

φ2
s,j +

rn∑
j,j ′=1
j �=j ′

φs,jφs,j ′

)(
rn∑

j=1

φ2
t,j +

rn∑
j,j ′=1
j �=j ′

φt,jφt,j ′

)]

= E

[(
rn∑

j=1

φ2
s,j

)(
rn∑

i=1

φ2
t,i

)]
+E

[(
rn∑

j,j ′=1
j �=j ′

φs,jφs,j ′

)(
rn∑

j,j ′=1
j �=j ′

φt,jφt,j ′

)]

+E

[(
rn∑

j=1

φ2
s,j

)(
rn∑

j,j ′=1
j �=j ′

φt,jφt,j ′

)]
+E

[(
rn∑

i=1

φ2
t,i

)(
rn∑

j,j ′=1
j �=j ′

φs,jφs,j ′

)]
=: I1 + I2 + I3 + I4.

For I1 we have

mn

n2F̄ 2(un)
I1 = o(1)

1

rnF̄ (un)
I1.
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Application of (3.16) gives I1 = O(rnF̄ (un)). Therefore, the term that corresponds to I1 vanishes. For
I2 we have

mn

n2F̄ 2(un)
I2 ≤ mn

n2F̄ 2(un)

rn∑
i,i′=1
i �=i′

rn∑
j,j ′=1
j �=j ′

E[φs,iφs,i′φt,jφt,j ′ ].

Considering the case of distinct indices only we have

mn

n2F̄ 2(un)
I2 ≤ mn

n2F̄ 2(un)
r4
nE

1/2[φ4
s,1

]
E

1/2[φ4
t,1

] = n

rnn2F̄ 2(un)
r4
nO

(
F̄ (un)

) = O

(
r3
n

nF̄ (un)

)
.

The terms I3 and I4 are treated in analogous way. �

The next result shows that the finite dimensional distributions of the multiplier process M
†
n,ξ con-

verge to the same limit as those of Mn. The lemma below is a modified version of the result from
Kosorok [16], since we believe that the original result has a gap in its proof. We state it just in a one
dimensional case, but extension to a vector (s1, . . . , sd) is straightforward.

Lemma 3.10. Assume that (3.18) and (3.17) hold. Then for each φ ∈ Lq and s ∈ [s0, t0],
sup

�∈BL(R)

∣∣Eξ

[
�
(
M

†
n,ξ (φs)

)]−E
[
�
(
M(φs)

)]∣∣ → 0

as n → ∞ in probability.

Proof. Note that (3.17) and the Markov inequality imply that

1

nF̄ (un)

mn∑
i=1

{
�

†
n,i(s) −E

[
�n,1(s)

]}21
{∣∣�†

n,i(s) −E
[
�n,1(s)

]∣∣ > ε

√
nF̄ (un)

} → 0, (3.19)

in probability. If we assume for simplicity that ξi ’s are bounded, then this automatically implies that

1

nF̄ (un)

mn∑
i=1

ξ2
i

{
�

†
n,i(s) −E

[
�n,1(s)

]}21
{|ξi |

∣∣�†
n,i(s) −E

[
�n,1(s)

]∣∣ > ε

√
nF̄ (un)

}
→ 0, (3.20)

in probability. In case of unbounded ξi ’s one needs to apply a truncation argument. For arbitrary A > 0,
we have

1

nF̄ (un)
Eξ

[
mn∑
i=1

ξ2
i

{
�

†
n,i(s) −E

[
�n,1(s)

]}21
{|ξi |

∣∣�†
n,i(s) −E

[
�n,1(s)

]∣∣ > ε

√
nF̄ (un)

}]

≤ A2

nF̄ (un)

mn∑
i=1

{
�

†
n,i(s) −E

[
�n,1(s)

]}21
{∣∣�†

n,i(s) −E
[
�n,1(s)

]∣∣ > ε

√
nF̄ (un)/A

}
+E

[
ξ2

1 1
{|ξ1| > A

}] 1

nF̄ (un)

mn∑
i=1

{
�

†
n,i(s) −E

[
�n,1(s)

]}2
.
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The first expression in the last line converges in probability to zero as n → ∞ by (3.19). By (3.18), the
second part is bounded in probability in n and vanishes by letting A → ∞.

Furthermore, again by (3.18),

1

nF̄ (un)
Eξ

[
mn∑
i=1

ξ2
i

{
�

†
n,i(s) −E

[
�

†
n,i(s)

]}2

]

= E
[
ξ2

1

] 1

nF̄ (un)

mn∑
i=1

{
�

†
n,i(s) −E

[
�

†
n,i(s)

]}2 p→ C(φs,φs). (3.21)

Thus, for each subsequence n′ there exists a further subsequence n′′ such that the convergence
in (3.20)–(3.21) holds almost surely on subsequences n′′. Therefore, we can use the Lindeberg cen-
tral limit theorem to conclude the result. �

3.2.3. Tightness (unconditional)

Consider the process

Z
†
n,ξ (φs) = 1√

nF̄ (un)

mn∑
i=1

ξi�
†
n,i(s), φ ∈ G∗

0 , s ∈ [s0, t0].

Note that

1√
nF̄ (un)

mn∑
i=1

ξiE
[
�n,i(s)

] = E[�n,1(s)]
rnF̄ (un)

√
mnrn√

n

√
rnF̄ (un)

1√
mn

mn∑
i=1

ξi︸ ︷︷ ︸
=:an

p→ 0

by the central limit theorem applied to ξi ’s, (2.9) and (3.12). Thus, the processes M†
n,ξ and Z

†
n,ξ have

the same limiting finite dimensional distributions. Furthermore,

sup
�∈BL(�∞(G∗))

∣∣Eξ

[
�
(
M

†
n,ξ

)]−Eξ

[
�
(
Z

†
n,ξ

)]∣∣ ≤ |an| sup
φ∈G∗

0

sup
s∈[s0,t0]

E[�n,1(s)]
rnF̄ (un)

p→ 0,

by (3.12) and since we assumed that the envelope function belongs to Lq . Therefore, the processes

M
†
n,ξ and Z

†
n,ξ have the same weak limits. Thus, it suffices to prove tightness of Z†

n,ξ .

Lemma 3.11. Let G∗ be as in Theorem 3.1. Then the process Z†
n,ξ is tight.

Proof. We mimic the proof of Theorem 2.4 in Kulik et al. [18], with the appropriate modifications to
accommodate the multipliers.

Let �0(R
h+1) be the set of R

h+1-valued sequences x = {xj , j ∈ Z} such that lim|j |→∞ |xj | = 0.
Let Hq be the set of functions f defined on �0(R

h+1) for which there exists φ ∈ Lq such that

f (x) =
∑
j∈Z

φ(xj ), x ∈ �0
(
R

h+1). (3.22)
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Since functions in Lq vanish in a neighborhood of zero, the series has finitely many non zero terms
and the function φ is uniquely determined by f and will be denoted φf . We define a pseudometric ρ

on Hq by

ρ2(f, g) = ρ2
h

(
φf ,φg

) = ν0,h

({
φf − φg

}2)
. (3.23)

Recall that G∗
0 ⊂ Lq , G∗ = {φs,φ ∈ G∗

0 , s ∈ [s0, t0]} ⊂ Lq . Define the subclass F of Hq which cor-
responds to the subclass G∗ of Lq , that is F = {f : f (x) = ∑

j∈Z φs(xj ), φ ∈ G∗
0 , s ∈ [s0, t0]}. For

f ∈ F define Tf : R× �0(R
h+1) → R by Tf (t,x) = tf (x). Set X†

n,i = (X
†
(i−1)rn+1, . . . ,X

†
irn+h)/un,

i = 1, . . . ,mn and let Xn,1 has the same distribution as X†
n,1. Define the process

Z
†
n(Tf ) = 1√

nF̄ (un)

mn∑
i=1

Tf
(
ξi,X

†
n,i

)
, f ∈F .

We note that

Z
†
n,ξ

(
φ

f
s

) = Z
†
n(Tfs), fs(x) =

∑
j∈Z

φs(xj ).

We apply Theorem A.2 to the process Z
†
n indexed by TF = {Tf : f ∈ F}, equipped with the semi-

metric ρT (Tf,T g) = E[ξ2
1 ]ρ(f,g) = ρ(f,g).

• The pointwise separability of G∗ implies that F and hence TF are also pointwise separable.
• (F, ρ) is totally bounded since (G∗, ρh) is totally bounded by assumption. This implies that

(TF, ρT ) is totally bounded.

Next:

(i) For the envelope |TF | of TF we have

mn

nF̄ (un)
E
[|TF |2(ξ1,Xn,1)1

{|TF |(ξ1,Xn,1) > ε

√
rnF̄ (un)

}]
≤ A2

1
1

rnF̄ (un)
E
[
�2
G∗(Xn,1)1

{∣∣�G∗(Xn,1)
∣∣ > ε

√
rnF̄ (un)/A

}]
+E

[
ξ2

1 1
{|ξ1| > A

}]E[�2
G∗(Xn,1)]

rnF̄ (un)
. (3.24)

We assumed that �G∗ = supφ∈G∗ |φ| is in Lq . Therefore, the term in the second last line converges to
zero as n → ∞ for each A by (3.17). Also,

1

rnF̄ (un)
E
[
�2
G∗(Xn,1)

] = 1

rnF̄ (un)
E

[
sup
φ∈G∗

0

sup
s∈[s0,t0]

�2
n,1(s)

]
.

Again, since we assumed that the envelope function is in Lq , (3.16) and E[ξ2
1 ] < ∞ imply that the

term in (3.24) vanishes by letting n → ∞ and then A → ∞. Therefore, the Lindeberg condition (A.2)
holds.

(ii) Condition (A.3) follows directly from Kulik et al. [18].
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(iii) Define (Tf )+ : R+ × �0(R
h+1) → R by (Tf )+(t,x) = tf (x) and analogously (Tf )− : R− ×

�0(R
h+1) → R. Then TF = T+F ∪T−F , where T+F = {(Tf )+ : f ∈ F} and analogously T−F . Both

T+F and T−F are linearly ordered and hence are VC-subgraph classes. Thus, TF is a finite union of
VC-subgraph classes and Lemma A.3 applies. �

3.2.4. Weak convergence (conditional)

To conclude the proof of Proposition 3.6, we need to justify that the conditional fidi convergence of
Lemma 3.10 and the unconditional tightness of Lemma 3.11 yield the conditional weak convergence.
The argument is rather standard, but we provide it for completeness in Appendix B.

3.2.5. Multiplier process with random normalization

Next, we consider

M̃n,ξ (φs) =
√

nF̄ (un)

{∑mn

i=1(1 + ξi)�n,i(s)∑mn

i=1(1 + ξi)ϒn,i(s)
−

∑mn

i=1 �n,i(s)∑mn

i=1 ϒn,i(s)

}
.

Proposition 3.12. Let G∗ be as in Theorem 3.1. Then

M̃n,ξ (φs) ⇒ sα
M(φs) − sαν0,h(φ)M

(
1(s,∞)×Rh

)
in �∞(G∗) in probability.

Proof. It suffices to consider the independent blocks process M̃†
n,ξ (φs) that we write as

√
nF̄ (un)

∑mn

i=1 ξi�
†
n,i(s)∑mn

i=1(1 + ξi)ϒ
†
n,i(s)

−
√

nF̄ (un)

∑mn

i=1 ξiϒ
†
n,i(s)∑mn

i=1(1 + ξi)ϒ
†
n,i(s)

∑mn

i=1 �
†
n,i(s)∑mn

i=1 ϒ
†
n,i(s)

. (3.25)

Now, we consider both parts in (3.25) separately and want to write them in terms of Mn,ξ (φs) defined
in (3.10).

The first term in (3.25) is

nF̄ (un)∑mn

i=1(1 + ξi)ϒ
†
n,i(s)

Z
†
n,ξ (φs).

We have Z†
n,ξ (φs) ⇒ M(φs) in �∞(G∗) in probability by Proposition 3.6. Writing (cf. (3.11) and (3.12))∑mn

i=1(1 + ξi)ϒ
†
n,i(s)

nF̄ (un)
= 1√

nF̄ (un)
Z

†
n,ξ (Is) +

∑mn

i=1 ϒ
†
n,i(s)

nF̄ (un)

and noting that
∑mn

i=1 ϒ
†
n,i(s)/(nF̄ (un))

p→ s−α yields that the first term in (3.25) converges to
sα
M(φs) in �∞(G∗) in probability.
For the second term in (3.25), by (3.13) and (3.14) and since ν0,h(φs) = s−αν0,h(φ), the ratio∑mn

i=1 �
†
n,i(s)/

∑mn

i=1 ϒ
†
n,i(s) converges in probability to ν0,h(φ). We recognize

√
nF̄ (un)

∑mn

i=1 ξiϒ
†
n,i(s)∑mn

i=1(1 + ξi)ϒ
†
n,i(s)

as the one in (3.25), with � replaced with ϒ .
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Bearing in mind that all convergences hold jointly (cf. Remark 3.5), combination of the convergence
of the first and the second term yields the first result. �

3.2.6. Multiplier process with random levels - conclusion of the proof of Theorem 3.1

Proof. Set ζn = Xn:n−k/un and recall that k = nF̄ (un). For the first statement note that ̂̂
Mn,ξ (φ) =

M̃n,ξ (φζn) and ̂̂
Mn,ξ (ψ1,y) = M̃n,ξ (ψζn,y). The result follows from Proposition 3.12 and ζn

p→ 1.
For the second statement note that �̂n,i = �n,i(ζn) and write

M̂n,ξ (φ) = 1√
k

(
mn∑
i=1

ξi

{
�n,i(ζn) −Eζn

[
�n,i(ζn)

]})+Eζn

[
�n,1(ζn)

] 1√
k

mn∑
i=1

ξi, (3.26)

where Eζn[�n,1(ζn)] denotes a random quantity obtained by evaluating the function s �→ E[�n,1(s)]
at s = ζn. Thus, using (3.12),

M̂n,ξ (φ) =Mn,ξ (φζn) + Eζn[�n,1(ζn)]
rnF̄ (un)︸ ︷︷ ︸
=OP (1)

rnF̄ (un)
√

mn√
nF̄ (un)

∑mn

i=1 ξi√
mn︸ ︷︷ ︸

=OP (1)

=Mn,ξ (φζn) + OP (1)

√
rnF̄ (un).

Proposition 3.6 and the assumption rnF̄ (un) → 0 finish the proof for the class G∗
0 . �

4. Simulation setup

In this section, we illustrate the performance of different bootstrap procedures and asymptotic ap-
proaches to construct 95%-confidence intervals for tail array sums by means of coverage rates. We
consider bootstrap strategies that appear to be more or less natural for the purpose of conducting sta-
tistical inference for tail array sums. If available, we also use asymptotic approaches based on central
limit theorems. Precisely, we apply

(i) a multiplier (block) bootstrap without randomizing k corresponding to M̂n,ξ (φ) in (3.4);

(ii) a multiplier (block) bootstrap with randomizing k corresponding to ̂̂
Mn,ξ (φ) in (3.5);

(iii) an i.i.d. (or moving block) bootstrap.

We note that the latter bootstrap approach is included for numerical comparison, but it has not been
justified theoretically.

To compare the performance of these bootstrap approaches, we consider two prominent members
of the family of tail array sums. Precisely, we address the Hill estimator and the extremogram; see
Section 3.1. We consider several data generating procedures. First, we will use i.i.d. data as a bench-
mark for our simulation studies, before we consider time series data. We will consider the realization
X1, . . . ,Xn of one of the following models:

(I) {Xj } i.i.d. with Pareto distribution with index α = 4;
(II) {Xj } i.i.d. with t -distribution with α = 4 degrees of freedom;

(III) AR(1) model {Xj } with Xj = ρXj−1 + εj , where εj are i.i.d. t -distributed with α = 4 degrees
of freedom and AR coefficient ρ = 0.8;

(IV) ARCH(1) model {Xj } with Xj =
√

β + λX2
j−1εj , where εj are i.i.d. standard normal, β =

1.9 ∗ 10−5 and λ = 0.7.
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In models (I)–(III), we used α = 4 leading to tail index also equal to 4. In the latter case of model (IV),
we used parameters that lead to tail index α = 3.18; see Embrechts et al. [13], Table 8.4.8.

For each data generating process, we conducted Monte Carlo studies for two different sample sizes
n ∈ {500,1000}. In the time series case, where either a multiplier block bootstrap or a moving block
bootstrap is required to capture the dependence structure, we used block lengths L = 20 for n = 500
and L = 30 for n = 1000, respectively. Further simulation results (not reported in this paper) indicate
that a too small block length does not capture the dependence structure sufficiently well leading to a
performance loss, which is also observed for block length chosen too large due to less variation in the
bootstrap sample. In each setting, we used M = 1000 Monte Carlo samples and B = 1000 bootstrap
replications.

In general, the purpose of the following simulation studies is two-fold. First, we want to illustrate
our theoretical findings of the previous sections. In particular, these include (a) consistency for the
multiplier (block) bootstrap with randomizing k and (b) inconsistency for the multiplier (block) boot-
strap without randomizing k. Second, we want to study (c) the potential of finite sample performance
of the multiplier bootstrap in comparison to a naïve application of an i.i.d. or moving block bootstrap.
Additionally, in cases where feasible (i.e., Hill estimator for i.i.d. and for AR(1) model), we compare
these results also with asymptotic confidence intervals based on normal approximation from central
limit theorems.

The main findings of our simulation studies are as follows:

• As suggested by the theory, the multiplier bootstrap without randomization of k does not yield
proper confidence intervals. More precisely, the confidence intervals turn out to be systematically
too wide.

• The multiplier bootstrap with randomization of k performs at least as good as the i.i.d. or moving
block bootstrap and outperforms the latter in most of the cases.

• The computational burden of i.i.d. and moving block bootstraps is considerably higher than of a
multiplier bootstrap. This is explained by the computationally demanding sorting routine that has
to be applied only once for the original sample for the multiplier bootstraps, but additionally also
for each bootstrap sample for i.i.d. and moving block bootstrap.

In view of the findings raised above, we recommend using the multiplier bootstraps with randomiz-
ing k for statistical inference of tail array sums with random levels.

4.1. Bootstrap performance: Hill estimator

We recall that in the i.i.d. case, the asymptotic distribution of the Hill estimator (3.9) of γ = 1/α is
normal with variance α−2. In the AR(1) case with the positive coefficient, the limiting variance is
α−2(

1+ρα

1−ρα ).
In the left panels of Figures 1 and 2, we show realizations of Hill plots for the Hill estimator of

γ = 1/α with different bootstrap confidence intervals for models (I) and (II), respectively. Further,
based on Monte Carlo simulations, coverage rates (center panels) and the resulting mean lengths of
confidence intervals (right panels) are reported.

Starting with a discussion of Figure 1 showing the results for i.i.d. Pareto-distributed data, it is
clearly visible that the Hill estimator γ̂ of γ = 1/α is doing a good job in estimating the target
γ = 0.25 for a broad range of k’s. All kinds of confidence intervals appear to be plausible. All of
them are rather near to each other, but a closer look reveals that in particular the multiplier bootstrap
without randomizing k leads to systematically wider confidence intervals than the other approaches.
This observation is supported by the corresponding coverage rates and the mean lengths of the con-
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Figure 1. Model (I), i.i.d., Pareto(4): Typical realizations of Hill plots for the Hill estimator with different boot-
strap confidence intervals (left panels) and coverage rates (center panels) and the resulting mean lengths of con-
fidence intervals (right panels) from Monte Carlo studies for k ≤ 0.1 ∗ n and with n = 500 (upper panels) and
n = 1000 (lower panels). Results for multiplier bootstrap with randomizing k, multiplier bootstrap without ran-
domizing k, i.i.d. bootstrap and asymptotic confidence intervals are reported. The targets γ = 1/α = 0.25 and
95%, respectively, are marked with red horizontal lines.

fidence intervals. Whereas all other procedures tend to slightly understate the desired coverage rate
of 95% which improves for larger k’s, the multiplier bootstrap without randomizing k systematically
overstates the 95% coverage rate for all sufficiently large k’s. This behavior nicely supports the boot-
strap inconsistency as argued in Section 3. A pairwise comparison of multiplier bootstraps with and
without randomizing k leads to the conclusion that randomizing k indeed cures this issue leading to
(asymptotically) valid results. Interestingly, the confidence intervals produced by a naïve application
of an i.i.d. bootstrap, which is computationally a lot more demanding than the multiplier bootstrap
which can be efficiently implemented, tend to be systematically too small over the whole range of
the k’s. Increasing the sample size from n = 500 to n = 1000 clearly shows an expected and desired
pattern. For larger sample size the confidence intervals tend to be narrower and the understatement of
the 95% coverage rate is improved as well. This includes also the i.i.d. bootstrap, which, however, is
still outperformed by the other valid approaches. Note that for a direct comparison of top and bottom
panels on each figure one has to take into account that the range of k’s is {1, . . . ,50} for n = 500
and {1, . . . ,100} for n = 1000. The asymptotic confidence intervals essentially coincide with the valid
bootstrap confidence intervals (i.i.d. bootstrap and multiplier bootstrap with randomized k) and show
a good performance.
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Figure 2. Model (II), i.i.d., t(4): Typical realizations of Hill plots for the Hill estimator with different bootstrap
confidence intervals (left panels) and coverage rates (center panels) and the resulting mean lengths of confidence
intervals (right panels) from Monte Carlo studies for k ≤ 0.1 ∗ n and with n = 500 (upper panels) and n = 1000
(lower panels). Results for multiplier bootstrap with randomizing k, multiplier bootstrap without randomizing k,
i.i.d. bootstrap and asymptotic confidence intervals are reported. The targets γ = 1/α = 0.25 and 95%, respec-
tively, are marked with red horizontal lines.

The picture for Figure 2 showing the results for t -distributed data becomes different as the Hill esti-
mator is now doing a good job in estimating the target γ = 0.25 only for a considerably narrower range
of k’s. Apparently, the Hill estimators show a pronounced bias for larger k’s. Comparing the Hill plots
for samples sizes n = 500 and n = 1000, it seems that the range of k’s leading to satisfactory estimation
results becomes somewhat larger which is surely plausible. Considering the coverage rates in Figure 2,
similar to the plots in Figure 1, the multiplier bootstrap without randomizing k overstates the desired
coverage rate of 95% for a broad range of k’s, whereas the multiplier bootstrap with randomizing k

is close to 95% for some range of k’s without overstating it. In contrast to the results for the Pareto
distribution shown in Figure 1, the performance of the asymptotic confidence intervals considerably
decreases. These intervals tend to be too wide for a broad range of k’s. This phenomenon could be
explained by the bias when estimating the tail index (which is the main ingredient for the asymptotic
confidence interval) from data following a t -distribution. The pattern for the i.i.d. bootstrap is similar to
that one observed already in Figure 1. It shows a systematic understatement of the desired coverage rate
of 95% which improves with increasing sample size, but it is clearly outperformed by the multiplier
bootstrap with randomizing k. In particular, due to the bad performance and the large computational
demand in comparison to the multiplier bootstrap with randomizing k, the i.i.d. bootstrap turns out to
be not advisable.
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Figure 3. Model (III), AR(1) Xj = 0.8Xj−1 + εj , εj ∼ t (4). Typical realization of Hill-plots for the Hill estima-
tor with different bootstrap confidence intervals (left panels) and coverage rates (center panels) and the resulting
mean lengths of confidence intervals (right panels) from Monte Carlo studies for k ≤ 0.1 ∗ n and with L = 20 for
n = 500 (upper panels) and with L = 30 for n = 1000 (lower panels). Results for multiplier block bootstrap with
randomizing k, multiplier block bootstrap without randomizing k, moving block bootstrap and asymptotic confi-
dence intervals are reported. The targets γ = 1/α = 0.25 and 95%, respectively, are marked with red horizontal
lines.

The general picture for the AR(1) model with t -innovations shown in Figure 3 is similar to the
pattern described above. Again the multiplier bootstrap without randomizing k overstates the desired
coverage rate of 95% for a broad range of k’s, whereas the multiplier bootstrap with randomizing k is
close to 95% for some range of k’s without overstating it. The results improve for increasing sample
size. Also, the intervals from an asymptotic approximation tend to be too wide for a broad range of k’s.
We used L = 20 for n = 500 and L = 30 for n = 1000. We conducted simulations for a broader range
of block length, where the results were actually quite stable. We observed a loss in performance for too
small block lengths that did not allow to capture the serial dependence in the data. We did not observe
a big difference of the results for example, between L = 20 and L = 30.

For the ARCH(1) case in Figure 4, again the picture is the same as before. Here, it might be advisable
to actually use larger block lengths as we observed somewhat better performance when using L = 30
for n = 500 (not shown here) instead of L = 20. We note that for the ARCH(1) model the formula
for the asymptotic variance of the Hill estimator is given by a complicated infinite sum and hence the
confidence intervals are not displayed here.
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Figure 4. Model (IV), ARCH(1) Xj =
√

1.9 ∗ 10−5 + 0.7X2
j−1εj , εj ∼ N (0,1). Typical realization of Hill–

plots for the Hill estimator with different bootstrap confidence intervals (left panels) and coverage rates (cen-
ter panels) and the resulting mean lengths of confidence intervals (right panels) from Monte Carlo studies for
k ≤ 0.1 ∗ n and with L = 20 for n = 500 (upper panels) and with L = 30 for n = 1000 (lower panels). Results
for multiplier block bootstrap with randomizing k, multiplier block bootstrap without randomizing k and block
bootstrap confidence intervals are reported. The targets γ = 1/α = 0.31 and 95%, respectively, are marked with
red horizontal lines.

4.2. Bootstrap performance: Extremogram

In the left panels of Figures 5 and 6, we show typical realization of Hill-plots for the extremogram at
lags h = 1,2,3 with different bootstrap confidence intervals for sample sizes n = 500 and n = 1000,
respectively. Based on Monte Carlo simulations, coverage rates (center panels) and the resulting mean
lengths of confidence intervals (right panels) are reported.

The general pattern in Figures 5 and 6 is comparable to those observed already above. The inconsis-
tent dependent multiplier bootstrap without randomizing k produces too large intervals and the actual
coverage rate overstates systematically the target of 95%. The consistent dependent multiplier boot-
strap with randomizing k performs quite well and gets close to the target for a broad range of k’s.
However, the performance decreases when increasing the lag of the extremogram. This phenomenon
was expected as, due to the rather small sample sizes considered here, quite few summands actually
do not vanish. The block bootstrap suffers from the same problem observed already above for the Hill
estimator. It produces confidence intervals that are far too small leading to considerable understatement
of the coverage rates.
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Figure 5. Model (III), AR(1) Xj = 0.8Xj−1 + εj , εj ∼ t (4). Typical realization of Hill-plots for extremograms
with different bootstrap confidence intervals (left panels) and coverage rates (center panels) and the resulting
mean lengths of confidence intervals (right panels) from Monte Carlo studies for k ≤ 0.1 ∗ n and n = 500 at lags
h ∈ {1,2,3} (from top to bottom). Results for multiplier block bootstrap with randomizing k, multiplier block
bootstrap without randomizing k and block bootstrap are reported. The targets γ = 0.84∗h, h = 1,2,3 (from top
to bottom) and 95%, respectively, are marked with red horizontal lines.

5. Conclusion

In this paper, we studied validity of the multiplier block bootstrap for tail array sums based on regularly
varying time series. We showed that the natural, but naïve block-multiplier procedure does not yield a
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Figure 6. Model (III), AR(1) Xj = 0.8Xj−1 + εj , εj ∼ t (4). Typical realization of Hill-plots for extremograms
with different bootstrap confidence intervals (left panels) and coverage rates (center panels) and the resulting
mean lengths of confidence intervals (right panels) from Monte Carlo studies for k ≤ 0.1 ∗ n and n = 1000 at
lags h = 1,2,3 (from top to bottom). Results for multiplier block bootstrap with randomizing k, multiplier block
bootstrap without randomizing k and block bootstrap are reported. The targets γ = 0.84∗h, h = 1,2,3 (from top
to bottom) and 95%, respectively, are marked with red horizontal lines.

valid asymptotic distribution. This is fixed by the proper randomization of the number of order statistics
k. We also justified the use of the multiplier block bootstrap numerically.

A validity of the moving block bootstrap for tail array sums with random levels remains open.
We also do not discuss the issue of choosing k and rn. For geometrically ergodic Markov chains the

blocks can be chosen as rn = log(n).



1436 C. Jentsch and R. Kulik

Appendix A: Convergence in �∞
Theorem A.1 (Giné and Nickl [14], Theorem 3.7.23). Let {Zn, n ∈ N}, be a sequence of processes
with values in �∞(F). Then the following statements are equivalent.

(i) The finite dimensional distributions of the processes Zn converge in law and there exists a pseu-
dometric ρ on F such that (F, ρ) is totally bounded and for all ε > 0,

lim
δ→0

lim sup
n→∞

P
∗( sup

ρ(f,g)<δ

∣∣Zn(f ) −Zn(g)
∣∣ > ε

)
= 0. (A.1)

(ii) There exists a process Z whose law is a tight Borel probability measure on �∞(F) and such that
Zn ⇒ Z in �∞(F).

Moreover, if (i) holds, then the process Z in (ii) has a version with bounded uniformly continuous paths
for ρ.

The following result provides a sufficient condition for (A.1) above. Let {Xn,i,1 ≤ i ≤ mn}, n ≥ 1,
be an array of row-wise ı.i.d. random elements in a measurable space (X,X ) and define Zn,i(f ) =
f (Xn,i), f ∈ F . Let an be a non decreasing sequence and F be a set of measurable functions defined
on X. Define the random pseudometric dn on F by

d2
n(f, g) = 1

a2
n

mn∑
i=1

{
f (Xn,i) − g(Xn,i)

}2
, f, g ∈F .

Let N(ε,F, dn) be the minimum number of balls in the pseudometric dn needed to cover F . Let Zn be
the empirical process defined by

Zn(f ) = 1

an

mn∑
i=1

{
f (Xn,i) −E

[
f (Xn,i)

]}
, f ∈ F .

Define finally the sup-norm ‖H‖F = supf ∈F |H(f )| for any functional H on F . If F is a pseudomet-
ric space and H is measurable on F then the separability of F implies that ‖H‖F is measurable.

Theorem A.2 (Adapted from van der Vaart and Wellner [21], Theorem 2.11.1). Assume that the
pseudometric space F is totally bounded and pointwise separable.

(i) For all η > 0,

lim
n→∞a−2

n mnE
[‖Zn,1‖2

F1
{‖Zn,1‖F > ηan

}] = 0. (A.2)

(ii) For every sequence {δn} which decreases to zero,

lim
n→∞ sup

f,g∈F
ρ(f,g)≤δn

E
[
d2
n(f, g)

] = 0, (A.3)

∫ δn

0

√
logN(ε,F, dn)dε

P−→ 0. (A.4)

Then Zn is asymptotically ρ-equicontinuous, that is, (A.1) holds.
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A sufficient condition for (A.4) is provided by Giné and Nickl [14], Theorem 3.7.37.

Lemma A.3. If F is linearly ordered or if F is a VC-subgraph class of functions or a union of such
classes, then (A.4) holds.

Appendix B: Conditional weak convergence

Let μ be the law of the limiting process {M(φs), s ∈ [s0, t0]} considered as a random element in
�∞(G∗), where G∗ = {φs,φ ∈ G∗

0 , s ∈ [s0, t0]} is introduced in Theorem 3.1. Let FX
n be the sigma-

field generated by (X1, . . . ,Xn) and let μn be the conditional law of {M†
n,ξ (φs), s ∈ [s0, t0]} given FX

n

(see Equation (3.15) for the definition of M†
n,ξ ). We will prove that

dBL(μn,μ)
p→ 0, (B.1)

where dBL is the uniform distance on BL(�∞(G∗)). For this, we will use a triangular argument.
Recall that each function φs from G∗ induces the summation functional fs ∈ F ; cf. (3.22). For

fs(x) = ∑
j φs(xj ) ∈ F we recall the metric ρ from (3.23): ρ2(fs, ft ) = ν0,h({φs − φt }2).

Next, for δ > 0, let

N(δ) = inf
{
j ∈ N : s0 + jδ/

(
ν0,h

(
φ2)αs−α−1

0

)
> t0

}
.

Define

tj = s0 + jδ/
(
ν0,h

(
φ2)αs−α−1

0

)
, j = 0, . . . ,N(δ) − 1, tN(δ) = t0.

The α-homogeneity of ν0,h yields for s ≥ s0 such that s + δ ≤ t0

ρ2(fs, fs+δ) = ν0,h

({φs − φs+δ}2) ≤ ∣∣ν0,h

(
φ2

s

)− ν0,h

(
φ2

s+δ

)∣∣
= ν0,h

(
φ2){s−α − (s + δ)−α

} ≤ ν0,h

(
φ2)αs−α−1

0 δ.

Thus,

sup
s,t∈[tj ,tj+1]

ρ2(fs, fs+δ) ≤ δ. (B.2)

We define the process Mδ
n,ξ indexed by G∗ by

M
δ
n,ξ (φs) =M

†
n,ξ (φtj ), s ∈ [tj , tj+1), j = 0, . . . ,N(δ) − 1,

and M
δ
n,ξ (φt0) =M

†
n,ξ (φt0). Similarly, we define

M
δ(φs) =M(φtj ), s ∈ [tj , tj+1), j = 0, . . . ,N(δ) − 1,

and M
δ(φt0) = M(φt0). These processes are random elements in �∞(G∗). Let μδ

n be the conditional
law of Mδ

n,ξ given FX
n and μδ be the (unconditional) law of Mδ .
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We prove that for all ε > 0,

lim
δ→0

P
(
dBL

(
μδ,μ

)
> ε

) = 0, (B.3a)

lim
n→∞P

(
dBL

(
μδ

n,μ
δ
)
> ε

) = 0, (B.3b)

lim
δ→0

P

(
lim sup
n→∞

dBL
(
μδ

n,μn

)
> ε

)
= 0. (B.3c)

(i) The process M(φs), s ∈ [s0, t0] is almost surely uniformly continuous, thus (B.3a) holds.
(ii) For a fixed δ > 0, the processes M

δ
n,ξ and M

δ are random step functions defined on the same

fixed grid. Thus, (B.3b) is equivalent to the joint weak convergence of M
δ
n,ξ (φti ) to M

δ(φti ), i =
0, . . . ,N(δ). The latter in turn follows from Lemma 3.10 along with the comment before it.

(iii) By the definition of the distance dBL and Markov inequality it suffices to prove that

lim
n→∞E

[
sup

�∈BL(�∞(G∗))

∣∣Eξ

[
�
(
M

δ
n,ξ

)]−Eξ

[
�
(
M

†
n,ξ

)]∣∣] = 0.

The expression on the last-hand side is bounded by

E

[
sup

s0≤s≤t0

∣∣Mδ
n,ξ (φs) −Mn,ξ (φs)

∣∣∧ 2
]

≤ E

[
sup

s0≤s,t≤t0
ν0,h(φs ,φt )≤δ

∣∣M†
n,ξ (φs) −M

†
n,ξ (φt )

∣∣∧ 2
]
.

By Lemma 3.11, we have

lim
δ→0

lim sup
n→∞

P

(
sup

s,t∈[s0,t0]
ν0,h(φs ,φt )<δ

∣∣M†
n,ξ (φs) −M

†
n,ξ (φt )

∣∣ > ε
)

= 0,

which implies

lim
δ→0

lim sup
n→∞

E

[
sup

s,t∈[s0,t0]
ν0,h(φs ,φt )<δ

∣∣M†
n,ξ (φs) −M

†
n,ξ (φt )

∣∣∧ 2
]

= 0.

This proves (B.3c).

Thus, we have proved (B.3a), (B.3b) and (B.3c). By the triangular argument, this concludes the proof.
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