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Abstract

We define the notion of a torsor for an inverse semigroup, which
is based on partial actions of a semigroup, and prove that this is pre-
cisely the structure classified by the topos associated with an inverse
semigroup. Unlike in the group case, not all set-theoretic torsors are
isomorphic: we shall give a complete description of the category of
torsors. We explain how a semigroup homomorphism gives rise to
an adjunction between a restrictions-of-scalars functor and a tensor
product functor, which we relate to the theory of covering spaces and
E-unitary semigroups. We also interpret for semigroups the Lawvere-
product of a sheaf and distribution, and finally, we indicate how the
theory might be extended to general semigroups, by defining a notion
of torsor and a classifying topos for those.
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1 Introduction

1.1 Motivation

Lawson [9] explains that one should regard inverse semigroups as describing
partial symmetries of mathematical structures, in the same way as groups
may be used to describe global symmetries of objects. The inverse semigroup
of partial isomorphisms of, say, a topological space is more informative than
just the automorphism group: two spaces may have the same global auto-
morphisms, but different partial automorphisms.

It has recently become clear that there is an interesting and useful con-
nection between inverse semigroups and topos theory [4, 5, 8]. Explicitly, for
each inverse semigroup S there is a topos B(S), called the classifying topos
of S, defined as the category of equivariant sheaves on the associated induc-
tive groupoid of S. This topos is equivalent to the category of presheaves
on the (total subcategory of) the idempotent splitting of S. It turns out
that many results and in semigroup theory have a natural interpretations
in topos theoretic terms. For instance, it is known that cohomology of an
inverse semigroup (Loganathan-Lausch [11]), Morita equivalence of inverse
semigroups, the maximum group image, E-unitary inverse semigroups, and
even McAlister’s P-theorem have natural and canonical topos interpretations.

The notion of a partial action of a semigroup on an object X (sometimes
called a semigroup action, e.g., Exel [3]) goes back at least to the basic rep-
resentational result in the subject, namely the well-known Wagner-Preston
theorem. In fact, there are several related notions, and in this paper, we
shall consider a mild, but useful generalization, namely prehomomorphisms
S // I(X), where I(X) denotes the symmetric inverse semigroup on X. We
shall refer to the case where S // I(X) is a homomorphism, which is the
notion featured in the Wagner-Preston theorem, as a strict partial action.

The main question we answer is the following: what does the classifying
topos of an inverse semigroup actually classify? Put in different terms: what
is an S-torsor? We shall see that it is a non-empty object equipped with a
partial action of S that is transitive and locally free. The theory of semigroup
torsors generalizes the group case, but as we shall see it is ‘finer’ than that of
group torsors and, even in the set-theoretic setting provides a useful invariant
of semigroups.

On a more general level, the paper aims at unifying three viewpoints of
partial actions by an inverse semigroup: the aforementioned partial actions,
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1 INTRODUCTION 2

covariant Set-valued functors, and finally, one may consider distributions on
the topos B(S) in Lawvere’s sense [2, 10]: thinking of B(S) as a ‘space’
associated with S, the distributions may be thought of as measures on this
space. Our goal is to give a self-contained exposition of the three perspectives,
including how to pass between them and to illustrate this with some key
examples.

1.2 Overview

We now describe the contents of the paper. We have tried to make the paper
accessible to anyone with a basic familiarity with the language of category
theory. At times, some topos-theoretic concepts will be used without def-
inition; in those cases we will provide references. The first section, which
describes partial actions and torsors in elementary terms, does not require
any knowledge of topos theory.

After quickly reviewing some of the basic theory of inverse semigroups, the
goal of § 2 is to give an exposition of the elementary notion of a partial action
of an inverse semigroup in a set. In fact, we identify three related notions
depending on the strictness of the action, as well as two different notions
of morphism, thus giving rise to various categories of representations. We
mention a number of key examples, such as the well-known Wagner-Preston
and Munn representations. Then we introduce the notion of a torsor as a
special kind of representation. We confine ourselves to proving only a couple
of elementary facts here, leaving a more conceptual investigation for the next
section. Finally, we study partial actions and torsors in categories different
from Set, in particular in (pre)sheaf toposes.
§ 3 begins by reviewing the classifying topos B(S) of an inverse semigroup

S. Our main goal is to relate the notions of partial actions by S to certain
classes of functors on L(S). In particular, we will obtain an equivalence of
categories between the category of S-sets and the category of what we term
torsion-free functors on L(S) (valued in Set). This equivalence specializes to
one between strict S-sets and pullback-preserving functors, and ultimately
between torsors and filtering functors. The latter result gives the desired
statement that B(S) indeed classifies S-torsors in our sense. By general
considerations, B(S) must therefore contain a generic torsor ; we shall show
that this is none other than the well-known object of Schutzenberger repre-
sentations. Finally, we give a complete characterization of all set-theoretic
torsors. For the group case, this trivializes, since all torsors are isomorphic,



1 INTRODUCTION 3

but an inverse semigroup may have non-isomorphic torsors. We give an ex-
plicit description of how every S-set, and in particular every torsor, arises as
a colimit of principal torsors.

In § 4 we explore some aspects of change of base, i.e., how the cate-
gories of S-sets and T -sets are related when S and T are connected by a
(pre)homomorphism ρ. We first explain how the usual hom-tensor adjunc-
tion arises; this essentially follows from the fact that S-sets form a cocomplete
category. The only non-evident part here is that, unlike in the group case,
coequalizers are not created by the forgetful functor to sets. After that we
explicitly calculate the tensor product of torsors; this amounts to unraveling
a colimit-extension, but the end result is a bit more complicated than for
groups, since the category over which the colimit is taken has more than
one object. We apply this to the case of the homomorphism S // S/σ,
the maximum group image of S, and obtain a characterization of E-unitary
inverse semigroups: S is E-unitary if and only if its category of torsors is
left-cancellative. Finally, we observe that every S-torsor in Sh(B) (which
one might call a principal S-bundle) may be completed to a principal S/σ-
bundle, in the sense that there is a canonical map from the bundle to its
completion, which is injective when S is E-unitary.
§ 5 is concerned with the third perspective on partial actions, namely as

distributions on the topos B(S). We recall the definition of distribution,
establish a few elementary but useful facts, and establish correspondences
between S-sets and torsion-free distributions, and between strict S-sets and
what we coin S-distributions. Of course, torsors correspond to left exact
distributions, which are the points of B(S). We explicitly describe some of
the leading examples of S-sets in terms of distributions, and also interpret
the so-called Lawvere action of B(S) in its category of distributions.

Finally, § 6 sketches an approach to a generalization of the subject matter.
For a general semigroup T , the topos of presheaves on a category L(T ) is not
necessarily appropriate as its classifying topos mainly because of fact that
general semigroups need not have enough idempotents, or indeed any idem-
potents at all. Instead, we propose a classifying topos for a general semigroup
which plays the same topos-theoretic role as B(S) does in the inverse case:
it classifies torsors. The definition of a semigroup-torsor is straightforward,
and for semigroup-torsor pairs it is geometric. The classifying topos for T is
obtained by pulling back the topos classifier of semigroup-torsor pairs along
the point of the semigroup classifier corresponding to T .
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2 Partial actions: basic theory

In this section we introduce our basic objects of study, namely partial actions
by an inverse semigroup and torsors. We review some basic inverse semigroup
theory in order to establish some terminology and notation, recall the defi-
nition of a partial action by an inverse semigroup, and give some examples.
We also discuss strict and non-strict morphisms between such objects and
establish some elementary results. We define torsors for an inverse semi-
group, give some examples, and make some basic observations about maps
between torsors. Finally, we show how the notion of torsor makes sense in
an arbitrary topos.

2.1 Background on inverse semigroups

A semigroup S is said to be inverse when for every x ∈ S there exists a unique
x∗ for which xx∗x = x and x∗xx∗ = x∗. A canonical example is the inverse
semigroup I(X) of partial injective functions from a set X to itself (this is in
fact an inverse monoid). More generally, for many mathematical structures
it makes sense to consider all partial isomorphisms from that structure to
itself, and the collection of those will form an inverse semigroup.

Elements of the form x∗x and of the form xx∗ are evidently idempotent;
in fact, all idempotents are of this form. (It is helpful to think of x∗x as the
domain of x, and of xx∗ as the range.) The subset of S on the idempotents
will be denoted by E(S), or simply by E, when S is understood. The set
E is in fact endowed with a partial order and binary meets, given by multi-
plication. In general, it has neither a largest nor a smallest element. In the
example S = I(X), the lattice of idempotents is simply the powerset of X
with its usual lattice structure.

The well-known partial order in S, which contains E as a subordering, is
given by x ≤ y iff x = yx∗x.

We shall consider two notions of morphism between inverse semigroups,
homomorphism and prehomomorphism. The weaker notion prehomomor-
phism is a function ρ : S // T between inverse semigroups which satisfies
ρ(xy) ≤ ρ(x)ρ(y). If for all elements x, y we actually have equality, then
ρ is a homomorphism. It is well-known that a (pre)homomorphism auto-
matically preserves the involution, i.e. that ρ(x∗) = ρ(x)∗. Moreover, any
(pre)homomorphism preserves the natural ordering, and sends idempotents
to idempotents. For more information and explanation concerning these ba-
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sic concepts, we refer the reader to Lawson’s textbook [9].

2.2 Actions of inverse semigroups

We now turn to partial actions by an inverse semigroup.

Definition 2.1 An S-set is a set X and a prehomomorphism S
µ // I(X),

sometimes written (X,µ). For any s ∈ S and x ∈ X, we write s · x, or
sometimes just sx, to mean µ(s)(x) when defined. Then µ(st) ≤ µ(s)µ(t)
reads (st)x = s(tx) for all x, which means that if (st)x is defined then so
are tx and s(tx) and the given equality holds. An S-set (X,µ) is said to be
strict when µ is a homomorphism.

For any e ∈ E, µ(e) is an idempotent of I(X), which amounts to a subset
of X that we denote eX. The expression “x ∈ eX” simply means that ex
is defined (and ex = x). With this notation we may write the partial map
µ(s) : X //__ X as

X

eX

X

� _

��

eX X// s // X

where e = s∗s.
Let us consider some examples of S-sets.

Example 2.2 A canonical example of an S-set is the Munn representation
[9] of an inverse semigroup S. This is a well-supported S-set S // I(E) such
that s · e is defined iff e ≤ s∗s, in which case s · e = ses∗. For any e, we
have eE = {d | d ≤ e}. The Munn representation is closely related to the
Wagner-Preston representation. This is the S-set S // I(S) such that s · t
is defined iff t = s∗st, in which case s · t = st. For any idempotent e, we have
eS = {t | t = et}. The Munn and Wagner-Preston S-sets are strict S-sets in
the sense of Def. 2.1.

Example 2.3 A prehomomorphism of inverse semigroups S
ρ // T may be

construed as an S-set, not strict in general, by restricting the Wagner-Preston
T -set to S. Let Tρ denote this S-set: s · t is defined iff t = ρ(s∗s)t, in which
case s · t = ρ(s)t.
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Example 2.4 Of course, every inverse semigroup S acts in itself by mul-
tiplication; this action is total and as such is an example of a strict S-set.
However, it turns out that when we view this as a right action, it is naturally
related to the so-called Schutzenberger object (1). We shall return to this in
§ 3.1.

In general, there may of course be several different actions of S in a given
set X; we may say, for two such actions µ, ν, that ν extends µ whenever
µ(s) ≤ ν(s) for all s ∈ S. When X = {x} is a singleton, then it is easily
seen that an action µ of S in X is determined by specifying an ideal I ⊆ E,
namely I = {e ∈ E | ex = x}. The terminal S-set is then the singleton set
in which S acts totally.

Definition 2.5 A morphism of S-sets (X,µ) // (Z, σ) is a map ψ : X // Y
such that for all s and x, if sx is defined, then so is sψ(x) and ψ(sx) = sψ(x)
holds. Of course, it may happen that sψ(x) is defined when sx is not. If
indeed this does not occur, then we say that ψ is a strict morphism.

Example 2.6 The Wagner-Preston and Munn representations (Eg. 2.2) are
related by the range map S // E, s 7→ ss∗, which is a strict morphism of
S-sets.

An S-set (X,µ) may also be regarded as a partial map

µ : S ×X //__ X ,

in which case a morphism of S-sets (i.e., an equivariant map) is a map ψ :
X // Y such that the square

S × Z Z
σ //____

S ×X

S × Z

S×ψ

��

S ×X X
µ //____ X

Z

ψ

��

of partial maps commutes on the nose when ψ is strict, and commutes up to
inequality ψµ ≤ σ(S × ψ) otherwise.

When X is an S-set, then we say that an element x ∈ X is supported
by an idempotent e ∈ S, or that e is in the support of x, when x ∈ eX.
Since mostly we are not interested in unsupported elements of an S-set, we
introduce the following terminology.
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Definition 2.7 An S-set (X,µ) is well-supported if X =
⋃
E eX.

In any case, if an S-set X is not well-supported, then we can replace it with
the well-supported S-set

⋃
e∈E eX.

Let S−Set denote the category of well-supported S-sets and their mor-
phisms. Of course this includes, but is not limited to, the strict morphisms.
The full subcategory of S−Set on the strict, well-supported S-sets is denoted
S−Set .

2.3 Torsors

Having defined strict and general S-sets, we now turn to torsors. Recall that
for a group G, a G-torsor X (in Set) is a non-empty G-set for which the
action is free and transitive. We will generalize this in the appropriate way
to the case of an inverse semigroup, and then explore some examples.

Definition 2.8 A well-supported S-set (X,µ) is an S-torsor if:

1. X is non-empty;

2. µ is transitive - for any x, y ∈ X, there are s, t ∈ S and z ∈ X such
that sz = x and tz = y;

3. µ is locally free - for any x and s, t such that sx = tx, there is r ∈ S
and y ∈ X such that ry = x and sr = tr.

We denote the full subcategory of S−Set on the torsors by TOR(S).

1. In the inverse case, transitive is equivalent to the following: for any
x, y ∈ X, there is s ∈ S such that sx = y.

2. In the inverse case, locally free is equivalent to the following: for any x
and s, t such that sx = tx, there is an idempotent d such that x ∈ dX
and sd = td.

Moreover, without loss of generality it can be assumed in the locally
free requirement that d ≤ s∗s, t∗t because otherwise replace d by e =
ds∗st∗t, noting eX = dX ∩ s∗sX ∩ t∗tX.

In the case of a group G, every set-theoretic torsor is isomorphic to the
group G itself. In the inverse semigroup case, this is no longer true, as
illustrated by the following example.
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Example 2.9 If X is a non-empty set, then X is an I(X)-torsor (where
of course I(X) acts in X via f · x = f(x)). It is clear that this action is
transitive; but it is also locally free since if f · x = g · x then f and g agree
on the domain {x}.

At the other end of the spectrum we have the case of meet-semilattices:

Example 2.10 We determine the torsors on an ∧-semilattice D when re-
garded as an inverse semigroup such that ab = a ∧ b and a∗ = a. A strict
S-set D // I(X) amounts to an action of D in X by partial identities, and
such that aX ∩ bX = abX. If such an action is a torsor, then by transitivity,
and since X 6= ∅, X must be a one-element set. On the other hand, an S-set
D // {0 ≤ 1} = I(1) is necessarily a torsor. In turn, these correspond to
ideals of D (up-closed and closed under binary ∧), and whence to points of
the presheaf topos PSh(D). Thus, D-torsors in the sense of Def. 2.8 coincide
with the usual meaning of torsor on an ∧-semilattice (filtering functor on D)
[6].

As a final example, here is a torsor for which the action is total:

Example 2.11 Let S/σ be the maximum group of S. Then S acts in S/σ
via left multiplication. This action is transitive and free, so S/σ is a torsor. In
fact, one may show that if X is an S-torsor for a total action, then X ∼= S/σ.

The last example makes precise the sense in which torsors are a more
general invariant of S than the maximum group. We will give a structure
theorem for general torsors in § 3.4. For now we note a result that is a
straightforward generalization of the group case, namely that morphisms of
torsors are necessarily isomorphisms:

Proposition 2.12

1. An isomorphism of S-sets is strict.

2. A strict morphism of S-torsors is an isomorphism.

3. Any map of torsors is an epimorphism in S−Set.
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Proof. 1. Suppose that X α // Y is an isomorphism of S-sets with inverse
β. If sα(x) is defined, then so is β(sα(x)). Hence sβα(x) = sx is defined, so
α is strict.

2. Suppose that X and Y are torsors, and that α is strict. To see that α
is surjective, let y ∈ Y . Choose any x0 ∈ X, which is possible since torsors
are non-empty. By transitivity of Y , there is s ∈ S such that sα(x0) = y. By
strictness, sx0 is defined, and α(sx0) = y. To see that α is injective, suppose
that α(x) = α(z), x, z ∈ X. By transitivity of X, there is s such that sx = z.
Hence, sα(x) = α(sx) = α(z) = α(x) = s∗sα(x). By the freeness of Y , there
is an idempotent e ≤ s∗s such that se = s∗se = e, and α(x) ∈ eX. By the
strictness of α, x ∈ eX, and hence z = sx = sex = ex = x.

3. It is easily verified that if two maps α, β : X // Y of S-sets, where
X is transitive, agree on an element of X, then α = β. The result follows
immediately. 2

Corollary 2.13 TOR(S) is an essentially small right-cancellative category.

Proof. TOR(S) is essentially small because every torsor X admits a sur-
jection S // // X, s 7→ sx, where x is a fixed element of X. TOR(S) is
right-cancellative by 2.12, 3. 2

2.4 Internal partial actions

So far we have been working in the category of sets. But as we know from the
group case, the theory of torsors becomes much more potent and applicable
when we consider it in other categories, such as categories of sheaves. In this
section we briefly indicate how to define torsors diagrammatically, and give
some examples of torsors in categories other than Set.

First of all, it is clear that the notion of a partial action makes sense in
any category with finite limits. Then the definition of an internal torsor is
easily obtained:

Definition 2.14 If S is a semigroup in a topos E , then a well-supported
(meaning p below is an epimorphism) S-set (X,µ) in E

S ×X

U

S ×X

� _

��

U X
µ // X

X

U

X

p

����

U S
q // S
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is an S-torsor if:

1. X // 1 is an epimorphism;

2. µ is transitive - consider the kernel pair of p (pullback).

U X
p // //

H

U

π2

����

H U
π1 // // U

X

p

����

Then µ is transitive if the map 〈µπ1, µπ2〉 : H // X ×X is an epimor-
phism;

3. µ is locally free - consider the following two pullbacks and equalizer.

U X ×X〈µ,p〉 //

K

U

π2

��

K U
π1 // U

X ×X

〈µ,p〉

��
K X

pπ1=pπ2 //

M

K

g

��

M U
f // U

X

µ

��

N // // M S

qπ1k·qu
%%

qπ2k·qu

88

K
"" ""EE

EE
EE

EE
EE

EE

K

g

��

In the equalizer, (k, u) is an element of M . Then by definition µ is
locally free if the restriction of g(k, u) = k to the equalizer N is an
epimorphism.

If S is a semigroup in the topos E = Set, then Defs. 2.8 and 2.14 are
equivalent. For instance, when interpreted as a sentence in first order logic,
the locally free requirement in Def. 2.14 states

∀s, t ∈ S, x ∈ X (sx = tx) +3 (∃r ∈ S, y ∈ X(ry = x ∧ sr = tr)) .

This is precisely the locally free axiom as stated in Def. 2.8. Moreover, this
axiom is geometric in the sense of geometric logic ([12], page 537).

Because the notion of torsor is geometric, it is evident that inverse image
functors of geometric morphisms preserve torsors.

We will be mostly concerned with the case where E is a Grothendieck
topos; in that case we can consider any set-theoretic inverse semigroup S
as an internal inverse semigroup ∆S, where ∆ : Set // E is the constant
objects functor.

For example, when E = PSh(C), the category of presheaves on a small
category C, ∆S-torsors are characterized as follows:
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Proposition 2.15 Let S be a semigroup in Set, and C a small category.
Suppose that a presheaf X is a ∆S-set in PSh(C). Then X is a ∆S-torsor
iff for every object c of C, X(c) is an S-torsor.

Proof. Suppose that X is a ∆S-torsor. The inverse image functor c∗ of the

point Set c // PSh(C) associated with an object c satisfies c∗(X) = X(c).
Now use the fact that c∗ preserves torsors.

On the other hand, if every X(c) is an S-torsor, then the torsor conditions
are satisfied for X in PSh(C) because finite limits and epimorphisms are
determined pointwise in PSh(C). 2

When E = Sh(B), where B is a space, then a ∆S-set in Sh(B) is an étale

space X
p // B and a continuous associative partial action

µ : S ×X //__ X

over B: p(sx) = p(x), where µ(s, x) = sx. The domain of definition of
µ is an open subset of S × X, which simply means that for any s ∈ S,
{x | sx is defined} is an open subset of X.

The torsor requirements interpreted in Sh(B) are as follows:

1. X
p // B is onto;

2. the partial action is fiberwise transitive - for any x, y ∈ X such that
p(x) = p(y) there are s, t ∈ S and u ∈ X such that su = x and tu = y.
Note that p(u) = p(su) = p(x) = p(y), i.e., u necessarily lies in the
fiber of b = p(x) = p(y).

3. the action is locally free - for any s, t ∈ S and x ∈ X such that sx = tx,
there are r ∈ S and u ∈ X such that ru = x and sr = tr. Again, u
necessarily lies in the fiber of x since p(u) = p(ru) = p(x).

We may call such an étale space a principal S-bundle. We will briefly
return to these structures and their connections with principal G-bundles in
§ 4.4.

3 Torsors and the classifying topos

We have given an elementary definition of S-torsor, but have not motivated
this definition, aside from the observation that it indeed generalizes both the
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group case and the meet-semilattice case. One of the purposes of this section
is to show that the classifying topos of S does indeed classifies S-torsors,
thus justifying the notion at least from the topos point of view. We shall also
interpret the notions of strict, and well-supported S-sets in more categorical
terms, namely as certain functors. Finally, we shall prove a structural result
which characterizes all set-theoretic torsors.

3.1 The classifying topos of an inverse semigroup

As mentioned in the Introduction the classifying topos of an inverse semi-
group S, denoted B(S), is defined as the category of equivariant sheaves on
the inductive groupoid of S. This formulation simplifies to the following:
the objects of B(S) are sets X equipped with a total action by S, which we

write on the right, together with a map X
p // E to the idempotent subset

E of S satisfying xp(x) = x and p(xs) = s∗xs. Morphisms are S-equivariant
maps between such sets over E.

One may think loosely of B(S) as the ‘space’ associated with S; techni-
cally, the topos B(S) is an étendue [7].

Let L(S) denote the category whose object set is E, the collection of

idempotents of S, and whose morphisms d s // e are pairs (s, e) ∈ S × E
such that d = s∗s and s = es. We may think of L(S) as the total map
category of the idempotent splitting of S. From another point of view, L(S)
is the result of amalgamating the horizontal and vertical compositions of
the inductive groupoid of S, regarding it as a double category. It is easily
proved that L(S) is left-cancellative in the sense that its morphisms are
monomorphisms. Moreover, L(S) has pullbacks: in fact any pullback is built
from the following three basic kinds: an isomorphism square, a restriction
square, and an inequality square.

t∗t ss∗ = tt∗t //

e

t∗t
��

e s∗s// s∗s

ss∗ = tt∗

s
��

tt∗ ss∗

t∗t

tt∗

t

��

t∗t s∗ss∗s

ss∗

s

��≤

≤

c d
≤ //

b ∧ c

c

≤
��

b ∧ c b
≤ // b

d

≤
��

The first two are pullbacks iff they commute, and they are preserved by any
functor.

The following result is due to Lawson and Steinberg [8].
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Proposition 3.1 B(S) is equivalent to the category of presheaves on L(S)
by an equivalence that associates with a representable presheaf of an idempo-
tent e the étale map eS // E, t 7→ t∗t.

The assignments S 7→ L(S) 7→ B(S) are functorial: a prehomomorphism
morphism ρ : S // T defines a functor

ρ : L(S) // L(T ).

whence an (essential) geometric morphism

ρ! a ρ∗ a ρ∗ : B(S) // B(T )

of classifying toposes.
The topos B(S) has a canonical “torsion-free generator” S, called the

Schutzenberger object. As a presheaf on L(S), S is given as follows:

S(e) = {t | t∗t = e} S(s)(t) = ts , (1)

where s : d // e is a morphism of L(S).
Thus the presheaf action of S is given by precomposition. In terms of

étale maps over E, the Schutzenberger object is simply the domain map
S // E, which sends s to s ∗ s. On this object, S acts totally on the right
by multiplication.

However, S carries more structure: the operation of postcomposition gives
a partial action of S, defined pointwise by

S × S(e) //__ S(e) ; (r, t) 7→
{

rt if t = r∗rt
undefined otherwise.

This agrees with the restriction maps, so that S is an internal ∆S-action in
B(S). Even better, it is a torsor:

Proposition 3.2 S together with its canonical ∆S-action is a torsor.

Proof. We may, by Proposition 2.15, test this pointwise. Clearly each S(e)
is non-empty, as e ∈ S(e). Moreover, given s, t ∈ S(e), we have (ts∗)s =
t(s∗s) = te = t, so that the action is transitive. Finally, if st = st′ for
t, t′ ∈ S(e), then t = t′ follows because L(S) is left-cancellative. 2

We shall later see that the internal partial action S is the generic torsor.
Unlike in the group case, the generic torsor S may not be a representable
presheaf. In fact, it is representable iff S is an inverse monoid.
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3.2 Partial actions as functors

We relate S-sets, strict S-sets, and S-torsors to three classes of functors on
L(S). It should be emphasized that these functors are covariant, whereas
the objects of B(S) are contravariant functors on L(S).

The passage from S-sets to functors is given as follows. Given an S-set
(X,µ), define a functor

Φµ : L(S) // Set

such that

Φµ(e) = eX = {x ∈ X|ex = x} ; Φµ(s)(x) = sx for e s // d in L(S) . (2)

The action of Φµ on morphisms is well-defined: the map s : e // d satisfies
s∗s = e and s = ds. Thus for x ∈ X with ex = x we have that s∗sx is
defined, whence sx is defined, so that ss∗(sx) = sx and also d(sx) = sx.

The assignment (X,µ) 7→ Φµ is the object part of a functor

Φ : S−Set // Func[L(S), Set] .

Explicitly, a morphism of S-sets ρ : (X,µ) // (Y, ν) gives a natural trans-
formation Φρ : Φµ

// Φν , whose component at e is the function

ρe : eX // eY ; ex = x 7→ eρ(x) = ρ(ex) = ρ(x) .

Now we consider a construction in the other direction. Start with a
functor F : L(S) // Set, and define

Ψ(F ) = lim // E // L(S) F // Set =
∐
E

F (e)/ ∼ (3)

where the equivalence relation is generated by (e, x) ∼ (e′, F (e ≤ e′)(x)).
The set Ψ(F ) is in general not an S-set, but the following is a necessary

and sufficient condition.

Definition 3.3 A functor F : L(S) // Set is torsion-free if for every idem-
potent e, F (e) // Ψ(F ) is injective. TF(L(S), Set) denotes the category of
all such torsion-free functors.

One may regard torsion-freeness of F as expressing that all transition
morphisms F (s) are monic (recall that all maps in L(S) are monic):
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Proposition 3.4 A torsion-free functor L(S) // Set has the property that
its transition maps are injective (said to be transition-injective). The con-
verse holds if S is an inverse monoid.

Proof. If F is torsion-free, then clearly for any idempotents d, e, F (d ≤ e) is
injective. It follows that F is transition-injective because every map in L(S) is
the composite of an isomorphism and an inequality. For the converse, if S has
a global idempotent 1, then Ψ(F ) ∼= F (1) identifying the map F (e) // Ψ(F )
with F (e ≤ 1), which is injective if F is transition-injective. 2

We may now prove that any torsion-free functor F gives rise to an S-set
structure on Ψ(F ):

Proposition 3.5 The assignment F 7→ Ψ(F ) restricts to form the object
part of a functor Ψ : TF(L(S), Set) // S−Set.

Proof. The partial action by S in Ψ(F ) is defined as follows. If s ∈ S and
α ∈ Ψ(F ), then

sα =

{
[ses∗, F (se)(x)] if ∃ (e, x) ∈ α, e ≤ s∗s
undefined otherwise.

This action is well-defined because the maps F (e) // Ψ(F ) are injective.
The action of Ψ on morphisms is also straightforward and left to the reader. 2

Moreover, it is easily verified that all functors of the form Φµ are torsion-
free: given any idempotent e, the map eX // Ψ(Φµ) is injective because the
cocone of subsets eX ⊆ X induces a map Ψ(Φµ) // X. We may now prove:

Proposition 3.6 The functor Ψ : TF[L(S), Set] // S−Set is left adjoint
to Φ : S−Set // TF[L(S), Set]. Moreover, for any torsion-free F , Ψ(F ) is
well-supported, and the unit

F // ΦΨ(F )

is an isomorphism. For any well-supported S-set (X,µ), the counit

ΨΦ(X,µ) // (X,µ)

is an isomorphism. Thus, Φ and Ψ establish an equivalence

S−Set ' TF(L(S), Set) .
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Proof. For any idempotent e, the map

F (e) // eX, x 7→ [e, x],

is an isomorphism, for X = Ψ(F ). Indeed, if (e, x) ∼ (e, y), then clearly
x = y, so the map is injective. It is onto because if eα is defined, then by
definition there are d ≤ e and y ∈ F (d) such that α = [d, y]. But then
α = [e, Fd≤e(y)]. This isomorphism of sets is natural so that F ∼= ΦΨ(F ).
On the other hand, it is not hard to see that a well-supported S-set (X,µ)
is recovered from its functor Φµ as the colimit Ψ(Φµ). We omit further
details. 2

3.3 B(S) classifies torsors

We will now specialize the correspondence between S-sets and torsion-free
functors to strict S-sets and torsors, respectively.

Recall that an S-set (X,µ) is called strict when µ is in fact a homomor-
phism (rather than a prehomomorphism). For the proof of the following,
recall from § 3.1 that L(S) has pullbacks, and that a functor L(S) // Set
preserves all pullbacks if and only if it preserves inequality pullbacks.

Proposition 3.7 An S-set (X,µ) is strict iff Φµ preserves pullbacks.

Proof. It is readily checked that the functor Φµ preserves the inequality
pullbacks iff µ is a homomorphism. 2

Let PB(C, Set) denote the category of functors on a small category C that
preserve any existing pullbacks. The proof of the following is now evident:

Proposition 3.8 The equivalence of Prop. 3.6 restricts to one

S−Set ' PB(L(S), Set) .

In order to describe torsors as functors we shall say that F : L(S) // Set
is filtering if its category of elements is a filtered category [12]. The following
proposition is then a straightforward generalization of the group case:

Proposition 3.9 TOR(S) is equivalent to the category Filt(L(S), Set) of
filtering functors on L(S), which is equivalent to the category of finite limit
preserving distributions on B(S) (these are the inverse image functors of the
points of B(S)).



3 TORSORS AND THE CLASSIFYING TOPOS 17

Proof. It is relatively straightforward to verify that an S-set (X,µ) satisfies
the torsor conditions iff the functor Φµ is filtering. 2

Note that a torsor is necessarily a strict S-set because a filtering functor must
preserve pullbacks.

In the above result one may replace the category of sets by an arbitrary
topos E . In § 3.1 we already showed that the Schutzenberger object S is
a torsor in B(S). By the above result, it corresponds to a filtering functor
L(S) // B(S), which is easily seen to be the Yoneda embedding. Because
of the well-known correspondence between filtering functors L(S) // E and
geometric morphisms E // B(S), this proves:

Theorem 3.10 The functor that associates with a point Set
p // B(S) the

torsor p∗S is an equivalence

Top(Set,B(S)) ' TOR(S) .

Thus B(S) classifies S-torsors in the sense that for any Grothendieck topos
E , we have

Top(E ,B(S)) ' TOR(E ; ∆S) .

Another way to interpret the above equivalence of torsors with geometric
morphisms is as follows. If X is an S-torsor (in Set) with corresponding
point p, then we have the following topos pullback.

B(S)/S B(S)// //

Set/X

B(S)/S

δ

��

Set/X Set// // Set

B(S)

p

��
(4)

The geometric morphism δ is the support of X, described as a locale mor-
phism in § 3.4.

The covariant representables correspond to torsors (in Set) that we call
principal.

Example 3.11 Principal torsors. The covariant representable functor

e : L(S) // Set ; e(d) = L(S)(e, d) = {s | s∗s = e, s = ds} = dS(e)
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associated with an idempotent e is filtering. The usual colimit extension
e∗ : B(S) // Set of e is a finite limit-preserving distribution such that
e∗(P ) = P (e). As such e∗ is the inverse image functor of a point of B(S).
The torsor associated with this point is easily seen to be is e∗(S) = S(e).
The Yoneda lemma asserts in this case that for any S-set X, S-set maps
S(e) // X are in bijective correspondence with the set eX. We thus have a
full and faithful functor

L(S)op // TOR(S) ; e 7→ S(e) .

A torsor that is isomorphic to S(e), for some e, is said to be a principal torsor.
Incidentally, L(S)op is isomorphic to the category R(S), whose object set is

E, and a morphism d s // e is an s ∈ S such that ss∗ = e and s = sd. Thus,
the full subcategory of TOR(S) on the principal torsors is equivalent to R(S).

We summarize the correspondences explained so far in the following dia-
gram (we treat distributions in § 5):

prin. torsors TOR(S)

rep. functors

prin. torsors

'
��

rep. functors Filt(L(S), Set)Filt(L(S), Set)

TOR(S)

'
��

S−Set S−Set

PB(L(S), Set)

S−Set

'
��

PB(L(S), Set) TF(L(S), Set)TF(L(S), Set)

S−Set

'
��

rep. points

'
��

rep. points pointspoints

'
��

S−distributions

'

��

S−distributions tor. free dist.tor. free dist.

'

��
⊆ ⊆ ⊆

⊆ ⊆ ⊆

⊆ ⊆ ⊆

3.4 The structure of torsors

We now return to set-theoretic torsors and their structure. From what we
have shown so far, we may conclude the following:

Proposition 3.12 Any S-set, and in particular any S-torsor, is a colimit
of principal S-torsors.

Proof. A (filtering) functor L(S) // Set is a colimit of representable func-
tors. 2
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Although we cannot expect that an arbitrary colimit of (principal) torsors
is a torsor, a filtered colimit of torsors is a torsor. We turn now to a closer
examination of this aspect, and a more informative version of Prop. 3.12.

An ideal of a meet-semilattice is an upclosed subset that is closed under
binary meets.

Proposition 3.13 Let J ⊆ E be an ideal. Then the colimit of the functor

Jop ⊆ Eop // L(S)op // SetL(S) ; d 7→ d ,

is a filtering functor. In particular, the colimit preserves pullbacks, and its
corresponding S-set, which we denote S(J), is a torsor.

Proof. A filtered colimit of filtering functors is filtering. Jop is filtered since
J is an ideal, and any representable d is filtering. 2

The torsor associated with an ideal J ⊆ E given by Prop. 3.13 is

S(J) =
∐
d∈J

S(d)/ ∼ ,

where the equivalence relation is defined as follows: s ∼ t if there is f ∈ J
such that sf = tf (without loss of generality we can assume f ≤ s∗s, t∗t).
The partial action of S in S(J) is given as follows:

s · [t] =

{
[st] if there is r ∼ t such that r∗r ∈ J and r = s∗sr
undefined otherwise.

Clearly, this is well-defined. Note: if say rd = td, d ∈ J , d ≤ r∗r, t∗t, then
the domain of std = srd is d. We have std ≤ st, so d ≤ (st)∗st, whence
(st)∗st ∈ J since J is upclosed.

Thus, S(J) is a colimit of a diagram of principal torsors S(d), where d
ranges over J and the morphisms are the ones coming from the inequalities
d ≤ e. In general, the maps S(d) // S(J) are not strict, and are neither
injective nor surjective.

Lemma 3.14 Suppose that t∗t ∈ J . Then for any s ∈ S, s[t] is defined and
equals [st] iff (st)∗st ∈ J .
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Proof. We have already seen above that if s[t] is defined, then (st)∗st ∈ J .
For the converse, we must produce an r ∼ t such that r∗r ∈ J and r = s∗sr.
Let r = s∗st. Then r∗r = (st)∗st ∈ J and r = s∗sr. Also note

r(r∗r) = r = s∗st = s∗stt∗t = tt∗s∗st = t(st)∗st = t(r∗r) ,

so that r ∼ t. 2

Example 3.15 We have the following examples of S(J).

1. J = E: S(J) = S/σ, where σ is the minimum group congruence on S.

2. J = the principal ideal on e = {d ∈ E | e ≤ d}: S(J) = S(e).

3. If S has a zero element 0 (s0 = 0s = 0), then 1 is a torsor. In this case,
S(0) = S(E) = S/σ = 1.

In the case of a group G, it is well-known that every G-set decomposes
uniquely as a disjoint sum of transitive G-sets, each of which is in turn a
quotient of the representable G-set. We now explain how this statement
generalizes to the case of an inverse semigroup.

Let X be a non-empty strict S-set, and let x ∈ X be an arbitrary element.
We may consider the set

Supp(x) = {e ∈ E | ex = x} ,

called the support of x. Supp(x) is easily seen to be an ideal of the meet-
semilattice of idempotents E. (The strictness of X is needed for closure under
binary infima.) If X is a torsor, then there is a locale morphism δ : X // E,
occurring in the topos pullback (4), such that if x is regarded as a point

1 x // X of the discrete locale X, then the point δ · x : 1 // X // E of
the locale E corresponds to the support ideal Supp(x). Indeed, the frame

morphism O(E) δ∗ // 2X associated with δ is given by δ∗(e) = eX. Thus, δ is
the support of the torsor X.

Returning to the case of an arbitrary strict S-set X, and x ∈ X, define
the S-torsor

Tx = S(Supp(x)) = lim //
Supp(x)

S(e) .

A typical element of Tx is an equivalence class of elements t such that t∗t ∈
Supp(x), where two such s and t are equivalent when there exists an f ∈
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Supp(x) for which sf = tf . As before, [t] denotes an equivalence class of
such t. The partial action of S in Tx is defined by

s · [t] =

{
[st] if (st)∗st ∈ Supp(x) (Lemma 3.14)
undefined otherwise.

There is a canonical map νx : Tx // X: νx[t] = tx. Note that tx is defined
since (t∗t)x = x is, and that this is independent of the choice of repre-
sentative. νx is the map from the colimit induced by the cocone of maps

S(e) x // X, where e ∈ Supp(x) (corresponding by Yoneda to x ∈ eX).

Lemma 3.16 For any strict S-set X, νx is a strict map of S-sets.

Proof. Let s ∈ S, and [t] ∈ Tx. If s[t] = [st] is defined, then

νx(s[t]) = νx[st] = (st)x

is defined. Therefore, tx and s(tx) = sνx[t] are defined, and the latter equals
the above. On the other hand, if sνx[t] = s(tx) is defined, then since X is
strict (st)x = νx[st] is also defined. But this says that (st)∗st ∈ Supp(x), so
that by Lemma 3.14 s[t] is defined and equals [st]. 2

By the orbit of x we mean the S-set

Ox = {y ∈ X | ∃s ∈ S, sx = y} .

Lemma 3.17 The image of νx : Tx // X is precisely the orbit Ox. The map
νx is surjective precisely when the action of S in X is transitive.

Proof. If y = sx ∈ Ox, then s∗s ∈ Supp(x), and νx[s] = sx = y. Conversely,
elements of the image are clearly in the orbit. For the other statement note
that the action is transitive iff there is precisely one orbit, which equals the
whole of X. 2

Any strict S-set X can be written as the coproduct (disjoint sum) of its
orbits. (If X is not strict, then the orbits may not be disjoint.) Let I be an
indexing set for this decomposition, so that we have

X ∼=
∐
i∈I

Oxi
.
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Then the maps νxi
: Txi

// Oxi
assemble to form a covering of X:∐

i∈I

Txi
// //
∐
i∈I

Oxi
∼= X .

In particular, this shows how X is canonically a colimit of S-torsors, and
ultimately a colimit of principal S-torsors.

Corollary 3.18 If x is an element of an S-torsor X, then the map Tx
νx // X

is an isomorphism of S-sets. I.e., Tx ∼= Ox = X in this case.

Proof. νx is strict (Lemma 3.16), whence an isomorphism (Prop. 2.12). 2

The above results were stated for strict S-sets, but it is equally true that
an arbitrary S-set admits a decomposition as a colimit of principal torsors
(Prop. 3.12). We do not give an explicit description, which would be more
involved since in general Supp(x) may not be an ideal.

4 Change of base

So far we have been working with a fixed inverse semigroup S; in this section
we examine what happens when we vary S. We begin by showing that a pre-
homomorphism S // T induces an adjunction between the categories S−Set
and T−Set; the right adjoint is restriction of scalars, and the left adjoint is
a tensor product with T . In general, the right adjoint does not restrict to
the subcategories of torsors (just as in the group case), but when X is an
S-torsor, then T ⊗SX is a T -torsor, and thus TOR(−) is a covariant functor.
We give an explicit description of the tensor product T ⊗S X, which is more
involved than for groups. We apply this to the homomorphism S // S/σ,
obtaining a torsor characterization of E-unitary semigroups. Finally, we re-
late principal S-bundles on a space to principal bundles for the maximum
group of S.

4.1 The hom-tensor adjunction

We fix a prehomomorphism ρ : S // T . If T // I(Z) is a T -set, then the
composite prehomomorphism

S
ρ // T // I(Z)
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is an S-set (with the same underlying set Z) that we denote Zρ. This gives
a functor

T−Set // S−Set Z 7→ Zρ ,

which we call restriction of scalars.
Clearly, if we wish to restrict this functor to a functor from strict S-sets

to strict T -sets, we need to require that ρ is in fact a homomorphism.
Restriction of scalars has a left adjoint because categories of the form

S−Set are cocomplete. We first prove this fact:

Lemma 4.1 The category S−Set is cocomplete.

Proof. Coproducts of S-sets are set-theoretic. Concretely, for a family
(Xi, µi) of S-sets, form the set

∐
iXi, and define a partial action via

s · (x, i) = (sx, i)

where this is defined if and only if sx is defined. It is readily checked that this
has the correct property. This same construction is valid for strict S-sets.

Coequalizers are not set-theoretic. Consider two maps α, β : X // Y of
S-sets (where α, β need not be strict). Define an equivalence relation ∼ on
Y generated by the following two clauses:

y ∼ y′ if ∃x ∈ X. α(x) = y and β(x) = y′

sy ∼ sy′ if y ∼ y′ (and sy, sy′ are defined).

Now define an action in Y/∼ by putting

t[y] = [ty′] for some y′ ∼ y with ty′ defined.

This is well-defined on representatives, and gives a partial action of S in Y/∼.
Clearly the quotient function Y // Y/∼ is equivariant. The verification of
the coequalizer property is left to the reader. 2

Proposition 4.2 The restriction-of-scalars functor T−Set // S−Set along
a prehomomorphism ρ : S // T has a left adjoint.

Proof. We have proved in § 3.4 that every S-set is canonically a colimit
of principal torsors (where the diagram generally contains non-strict maps).
Since S-torsors are the same as points of the topos B(S), it is easy to see
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how to pass forward an S-torsor X along a prehomomorphism S
ρ // T : if

p is the point of B(S) corresponding to X, then the composite geometric
morphism

Set
p // B(S)

ρ // B(T )

is a point of B(T ) whose corresponding T -torsor we denote T ⊗S X. In the
special case of a principal torsorX = S(e), one easily verifies that T⊗SS(e) ∼=
T(ρ(e)), where T is the Schutzenberger object of T . Putting this together,
the left adjoint to (−)ρ may be taken to be the following: if X ∼= lim //

e
S(e),

then

T ⊗S X ∼= T ⊗S ( lim //
e

S(e)) ∼= lim //
e

(T ⊗S S(e)) ∼= lim //
e

T(ρ(e)) .

The last colimit is taken in T−Set. 2

4.2 Tensor product of torsors

We have described the functor X 7→ T ⊗S X in an abstract way. In this
section we calculate an explicit description for the case where X is a torsor.

Consider the subset of

L(T )× E(S)×X

consisting of those 4-tuples (t, d, e, x) such that t = dt, t∗t = ρ(e), and

x ∈ eX. In other words, ρ(e) t // d is a morphism of L(T ), and x is an
element of eX. Let T ⊗S X denote the quotient of this subset given by the
equivalence relation generated by equating

(t, c, e, x) ∼ (t, d, e, x)

whenever c ≤ d, and

(tρ(s), d, f, x) ∼ (t, d, e, sx)

whenever f s // e is a morphism of L(S). Let [t, d, e, x] denote the equivalence
class of an element (t, d, e, x). A partial action by T is defined in T ⊗S X as
follows: if r ∈ T and α ∈ T ⊗S X, then

rα =

{
[rt, rr∗, e, x] ∃(t, d, e, x) ∈ α such that d ≤ r∗r
undefined otherwise.
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From yet another point of view, if X is an S-torsor, with corresponding
point p, we may regard T ⊗S X and the connecting map X // T ⊗S X as
arising from the following diagram of topos pullbacks.

B(S)/S B(S)/ρ∗T//

Set/X

B(S)/S

δ

��

Set/X Set/T ⊗S X// Set/T ⊗S X

B(S)/ρ∗T
��

B(S)//

Set// Set

B(S)

p

��

The Schutzenberger object T is the generic ∆T -torsor in B(T ). The con-
necting map commutes with support.

E(S) E(T )
ρ //

X

E(S)

δ

��

X T ⊗S X// T ⊗S X

E(T )

δ

��

4.3 E-unitary semigroups

We now apply some of the topos machinery to characterize some well-known
concepts from semigroup theory.

First recall that a prehomomorphism of inverse semigroups is said to be
idempotent-pure if it reflects idempotents [9].

Proposition 4.3 If ρ is idempotent-pure, then for any S-torsor X, the con-
necting map X // T ⊗S X is a monomorphism.

Proof. A semigroup prehomomorphism ρ is idempotent-pure iff the con-
necting map of generic torsors S // ρ∗T is a monomorphism. 2

As previously mentioned, if ρ is a homomorphism, then restriction of
scalars T−Set // S−Set preserves strictness. For example, the map

S // S/σ = G

to the maximum group is a homomorphism.

Corollary 4.4 If S is E-unitary with maximum group image G (so that the
homomorphism S // G is idempotent-pure), then every S-torsor is isomor-
phic to an S-subset of the S-torsor G.
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Proof. If X is an S-torsor, then G⊗S X is a G-torsor, whence isomorphic
to G. Therefore, by Prop. 4.3, X is isomorphic to an S-subset of G regarded
as an S-set. 2

Example 4.5 In the E-unitary case a principal torsor S(e) is isomorphic to
the S-subset {s | s∗s = e} of G, where the partial action by S is given by:

ts =

{
ts if s = t∗ts
undefined otherwise.

Generally, if J ⊆ E is an ideal, then the S-subset {s | s∗s ∈ J} of G
is a torsor, where the partial action by S is given in just the same way.
This describes, in the E-unitary case, every torsor up to isomorphism. It
simultaneously generalizes the ∧-semilattice (Eg. 2.10) and group cases.

Corollary 4.6 The following are equivalent for an inverse semigroup S:

1. S is E-unitary;

2. for every Grothendieck topos E , TOR(E ; ∆S) is left-cancellative and
the forgetful functor

TOR(E ; ∆S) // E

preserves monomorphisms;

3. TOR(S) is left-cancellative and the forgetful functor

TOR(S) // Set

preserves monomorphisms.

Proof. 1 +3 2. A map X
m // Y of torsors in E corresponds to a natural

transformation τ : p∗ // q∗ of their classifying points p, q : E // B(S).
If η : S // S is the canonical morphism in B(S) (as in § 4.4), then the
following square in E commutes.

q∗S ∼= Y q∗S
q∗η //

p∗S ∼= X

q∗S ∼= Y

τS=m

��

p∗S ∼= X p∗S
p∗η // p∗S

q∗S

τS

��
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If S is E-unitary, then η is a monomorphism, whence so are p∗η and q∗η. τS
is an isomorphism because it is a map of ∆G-torsors, G = S/σ. Therefore,
m is a monomorphism in E .

2 +3 3. This is trivial.
3 +3 1. If TOR(S) is left-cancellative, then in particular for any idem-

potent e, the map of torsors S(e) // G is a monomorphism in TOR(S).
If TOR(S) // Set preserves monomorphisms, then this map is injective,
which says that S is E-unitary. 2

4.4 Principal Bundles

We return to the topos Sh(B) of sheaves on a space B. We regard sheaves as
étale spaces over B; as explained in § 2.4, an étale space X // B equipped
with a partial action of ∆S is a torsor when (i) every fibre is nonempty, (ii)
the action is fibrewise transitive and (iii) the action is fibrewise locally free.

Let S // G = S/σ denote again the maximum group image of S, and

consider a ∆S-torsor X
ψ // B over B. We may now use the tensor product

to form a ∆G-torsor G⊗SX = Y
ϕ // B, which is a locally constant covering

of B. It may be interesting to examine the connecting map X // G ⊗S X
over B. To this end, let p : Sh(B) // B(S) denote the geometric morphism

associated with a ∆S-torsor X
ψ // B, so that p∗(S) = ψ.

We will need the (essentially unique) connected universal locally constant
object S of B(S) - universal in the sense that it splits all locally constant
objects [5]. (The notation is meant to suggest that this object is a kind of
closure of S, which we do not need to discuss here.) Explicitly, the presheaf S

may be given as S(e) = G, and transition along a morphism d
s // e of L(S)

is given by g 7→ gs. There is a canonical natural transformation η : S // S.
The geometric morphism B(S)/S // B(S) is the universal locally constant
covering of B(S).
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Now consider the following diagram of topos pullbacks.

B(S)/S B(S)/S
η //

Sh(X)

B(S)/S
��

Sh(X) Sh(Y )// Sh(Y )

B(S)/S
��

B(S)//

Sh(B)
ϕ // Sh(B)

B(S)

p

��

Set B(G)
γ //Set

��
B(G)

��

ψ

**

Then Y
ϕ // B is a ∆G-torsor. It is also a locally constant covering because

it is a pullback of the universal covering γ (which is the unique point of
B(G)). Thus, G⊗S maps the category of ∆S-torsors over B to the category
of ∆G-torsors over B, which in turn maps to the category of locally constant
coverings of B. Moreover, the two torsors are related by a map over B.

X Y//X

B

ψ
""EE

EE
EE

EE
EE

EE
Y

B

ϕ=loc. constant

��

For example, if S is E-unitary, which is characterized by the condition that η
is a monomorphism, then the connecting map X // Y is an (open) inclusion.

5 Distributions

We now complete the picture of S-sets and S-torsors by introducing the third
viewpoint, namely as distributions on the topos B(S).

5.1 Distributions on a topos

We rehearse some standard definitions concerning topos distributions [2], and
characterize the category of pullback-preserving functors on C in these terms.
This in turn yields a description of the category of strict S-sets in terms of
distributions (Prop. 5.7).
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Definition 5.1 (Lawvere) A distribution on a Grothendieck topos E (with
values in Set) is a colimit-preserving functor E // Set. If C is a small
category and PSh(C) denotes the category of presheaves on C, then we shall
refer to a distribution on PSh(C) simply as a distribution on C.

The inverse image functor of a point of E , i.e. of a geometric morphism
Set // E , is a distribution. A distribution has a right adjoint, but in general
it need not be the inverse image functor of a point of the topos since it need
not preserve finite limits. Thus, we may think of distributions as generalized
points.

It is well-known that the category of distributions on C (with natu-
ral transformations) is equivalent to the category of (covariant) functors
C // Set. The equivalence is given on the one hand by composing with
the Yoneda functor C // PSh(C), and on the other by a colimit extension
formula along the same Yoneda functor: if F is a functor on C, then

λ(P ) = lim // P // C F // Set

is a distribution, where P // C is the discrete fibration corresponding to a
presheaf P . For any object c of C, we have λ(c) = F (c), where typically
we use the same symbol c to denote an object of C and the corresponding
representable presheaf.

The following probably well-known fact will help us in our study of S-sets.
PB(C, Set) denotes the category of pullback-preserving functors on C.

Proposition 5.2 If C has pullbacks, then PB(C, Set) is equivalent to the
full subcategory of distributions on C that preserve pullbacks of the form

c d
m //

P

c
��

P Q// Q

d
��

in PSh(C), where m is a morphism of C.

Proof. Let λ denote the colimit extension of a functor F : C // Set. We
have two functors:

PSh(C/d) ' PSh(C)/d // Set/F (c) .
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One functor carries Q // d first to its pullback P // c along m and then to
λ(P ) // F (c), and the other carries Q // d first to λ(Q) // F (d) and then
to the pullback along F (m). Since F preserves pullbacks (by assumption),
we see that the two functors are isomorphic when composed with Yoneda
C/d // PSh(C/d). But both functors preserve colimits, so they must be
isomorphic, which says that λ preserves pullbacks of the specified form. 2

5.2 Torsion-free distributions

We wish to interpret general S-sets as distributions on B(S). According
to Def. 5.1 and Prop. 3.1, this is equivalent to what we call a distribution
on L(S), but in some cases (such as the Wagner-Preston and Munn) it is
beneficial to regard B(S) as the category of étale maps X // E.

Definition 5.3 A distribution λ : B(S) // Set is torsion-free if for every
s ∈ S(e), λ(s) : λ(e) // λ(S) is injective.

This definition is in agreement with Def. 3.3 in the following sense.

Proposition 5.4 A functor L(S) // Set is torsion-free iff its colimit ex-
tension B(S) // Set is torsion-free.

Proof. A distribution λ on B(S) is torsion-free iff for every idempotent e,

the map λ(e) : λ(e) // λ(S) is injective because an arbitrary element e s // S

factors as e s // ss∗ // S, where e s // ss∗ is an isomorphism. If λ = F on
L(S), then λ(e) is the canonical map F (e) // Ψ(F ). Note that λ(S) is
isomorphic to

lim // S // L(S) F // Set ,

where S // L(S) is the discrete fibration corresponding to S. This discrete
fibration is equivalent to E // L(S) [4], so the above colimit is isomorphic
to Ψ(F ). 2

Prop. 5.5, which is a distribution version of Prop. 3.6, requires what we
call the generic singleton of a set. Let X be a set and consider I(X), the
symmetric inverse semigroup on X. Write L(X) for L(I(X)); explicitly, the
objects of this category are the subsets of X and the morphisms are the
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injective maps between them. Also, let B(X) denote B(I(X)). Consider
the functor

x∗ : L(X) // Set ; x∗(A) = A .

If X is non-empty, then x∗ is filtering, so that it corresponds to a geometric
morphism

x : Set // B(X) ,

which we call the generic singleton of X. If an element a ∈ X is regarded as a
singleton subset {a} ⊆ X, whence an object of L(X), then its corresponding
(representable) point of B(X) is isomorphic to the generic singleton x, by a
unique isomorphism. If X = ∅, then B(X) = Set and x∗ : Set // Set is the
0-distribution: x∗(A) = ∅. In this case, x∗ is not (the inverse image functor
of) a point.

For any S-set (X,µ), the composite functor

L(S) // B(S)
µ! // B(X) x∗ // Set

is precisely Φµ, where x is the generic singleton of X.

Proposition 5.5 For any S-set (X,µ), the distribution x∗ ·µ! is torsion-free
(by Props. 3.6 and 5.4, or by Prop. 5.6). The category S−Set is equivalent
to the full subcategory of torsion-free distributions on B(S). The equivalence
associates with an S-set (X,µ) the torsion-free distribution x∗ · µ!, and with
a torsion-free distribution λ the S-set λ(S).

The restriction-of-scalars functor has a distribution interpretation be-
cause if a T -set Z corresponds to torsion-free distribution λ, then Zρ cor-
responds to λ · ρ!. Thus, λ · ρ! is torsion-free. A direct proof of this fact is
probably noteworthy.

Proposition 5.6 If λ : B(T ) // Set is a torsion-free distribution, then so
is

B(S)
ρ! // B(T ) λ // Set .

Proof. ρ!(e // S) equals ρ(e) // ρ!(S). But the composite of this with the
transpose ρ!(S) // T of S // ρ∗(T) is the monomorphism ρ(e) // T, which
is taken by λ to an injective map, where T denotes the Schutzenberger object
of B(T ). Therefore, λ carries ρ(e) // ρ!(S) to an injective map. Hence, λ ·ρ!

is torsion-free. 2
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We should point out that the left adjoint to restriction-of-scalars (as de-
scribed in § 4.1) is in general not obtained by taking a colimit in the category
of distributions on B(T ): if X is an S-set with associated (torsion-free) dis-
tribution λ, then the distribution associated with T ⊗S X is different from
λ · ρ∗.

5.3 S-distributions

We may apply Prop. 5.2 to the category L(S). S−Set denotes the category
of strict, well-supported S-sets and equivariant maps.

Proposition 5.7 S−Set is equivalent to the full subcategory of distributions
B(S) // Set (which we shall call S-distributions) that preserve pullbacks
of the form

d e

P

d
��

P Q� � // Q

e

m

��≤

where d ≤ e in E, and P (c) = {x ∈ Q(c) | dmc(x) = mc(x)}. The equiv-
alence associates with an S-set (X,µ) the distribution x∗ · µ!, which is an
S-distribution, and with an S-distribution λ the S-set λ(S).

Proof. Prop. 5.2 says that the statement holds for pullbacks of the form

d e// s //

P

d
��

P Q// // Q

e
��

where d s // e is a morphism of L(S). But the isomorphism factor d s // ss∗

of this morphism is irrelevant. 2

5.4 Examples

We give explicit descriptions of the distributions associated with some of the
key examples of S-sets.
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Example 5.8 Consider the terminal S-set 1, where every s ∈ S acts as the
unique total function 1 // 1. The pullback-preserving functor L(S) // Set
associated with this S-set is identically 1. Its S-distribution is the connected
components functor π0 : B(S) // Set. Incidentally, π0 is terminal amongst
all distributions on B(S), not just the S-distributions.

Example 5.9 The Wagner-Preston distribution. Consider again the Wagner-
Preston representation of S (Eg. 2.2): the corresponding pullback-preserving
functor on L(S) is

W (e) = eS = {t | t = et} .

Transition in W along e s // f is given by t 7→ st. The S-distribution associ-
ated with the Wagner-Preston S-set is

W (X // E) = X ,

where X // E is an étale right S-set. For instance, if G = (G0, G1) = (S,E)

is the inductive groupoid associated with S, then W (E 1 // E) = E = G0,
the set of objects of G.

Example 5.10 The Munn distribution. The pullback-preserving functor on
L(S) associated with the Munn S-set is

M(e) = eE = {d | d ≤ e} .

Transition in M along a morphism e s // f of L(S) sends d ≤ e to sds∗ ≤
ss∗ ≤ f . Its S-distribution sends an étale right S-set p : X // E to its set
of ‘Munn-orbits:’

M(p) = OM(X) = X/ ∼ ,

where ∼ is the equivalence relation generated by relating x ∼ xs whenever
p(x) ≤ ss∗ (without loss of generality, by replacing s with p(x)s we can insist
that p(x) = ss∗, for then xs = xp(x)s and p(x) = p(x)s(p(x)s)∗). Note that
p(xs) = s∗p(x)s ≤ s∗ss∗s = s∗s (with equality if p(x) = ss∗). One easily sees

that M(E 1 // E) = π0(G), the set of connected components of G.
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5.5 B(S) acts in S−Set

Lawvere observes that a topos E acts in its category of distributions by the
formula:

P · λ(E) = λ(P × E) , or

∫
E d(P · λ) =

∫
P · E dλ ,

where P and E are objects of E , and λ is a distribution on E . The presheaf
case E = PSh(C) of this formula yields

P · F (c) = lim // X(c) // C F // Set ,

where

P C//

X(c)

P
��

X(c) C/c// C/c

C
��

is a pullback of discrete fibrations.

Proposition 5.11 Suppose that C has pullbacks. If a functor F on C pre-
serves pullbacks, then for any presheaf P on C, P ·F also preserves pullbacks.

Proof. We must show that the distribution corresponding to F preserves
pullbacks of the following form.

P × c P × d//

P × a

P × c
��

P × a P × b// P × b

P × d
��

This is a consequence of Prop. 5.2. 2

Corollary 5.12 If λ is an S-distribution, then so is P ·λ , for any object P
of B(S).

Consequently, B(S) acts in S−Set. If a strict S-set X corresponds to
S-distribution λ, then let us write P ⊗X for the strict S-set corresponding
to the S-distribution P · λ : we have

P ⊗X ∼= P · λ(S) = λ(P × S) .
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Furthermore, if P is interpreted as an étale map F
p // E, then

P ⊗X ∼= λ(P × S) = λ(S ×E F // E) , (5)

where

S Es 7→s∗s //

S ×E F

S
��

S ×E F F// F

E

p

��

is a pullback of étale maps.
A description of the S-set P ⊗X may be given that is similar to the one

given for the tensor product T ⊗S X. Again regarding P as an étale map

Y
p // E, we may construct P ⊗ X as a quotient of the following subset of

Y × L(S)×X:

A = {(y, t, d, x) | p(y) t // d and tx is defined } .

Any two 4-tuples in A

(ys, ts, d, x) ∼ (y, t, d, sx)

are identified whenever s = t∗ts, and sx is defined. Note: if (y, t, d, sx) ∈ A,
then (ys, ts, d, x) ∈ A because we have p(ys) = s∗p(y)s = s∗t∗ts = (ts)∗ts
(which equals s∗s), and implicitly (ts)x = t(sx) is defined. In addition, two
4-tuples

(y, t, c, x) ∼ (y, t, d, x)

are identified whenever c ≤ d. Then P ⊗ X is isomorphic to the set of
equivalence classes so obtained.

Example 5.13 Let 1 denote the terminal S-set, which corresponds to the
S-distribution π0. Then by (5) we have

S⊗ 1 ∼= π0(S× S) = π0(S ×E S // E) ∼= S/σ .

In other words, the S-sets S⊗ 1 and S/σ are isomorphic.

Example 5.14 Consider again the S-sets S and E, the Wagner-Preston and
Munn representations (Eg. 2.2). By (5)

S⊗ S ∼= W (S× S) = W (S ×E S // E) ∼= S ×E S ,
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and
S⊗ E ∼= M(S× S) = M(S ×E S // E) ∼= OM(S ×E S) .

A Munn-orbit of S×E S is given by relating a pair (r, t), such that r∗r = t∗t,
with (r, t)s = (rs, ts) whenever ss∗ = r∗r (= t∗t). Let [r, t] denote the
Munn-orbit of (r, t). We have the following commutative triangle of S-set
morphisms.

S ×E S S
(r,t) 7→tr∗ //S ×E S

OM(S ×E S)

(r,t)7→[r,t]

��

S

OM(S ×E S)

;;

[r,t]7→tr∗
vv

vv
vv

vv
vv

vv

The morphism (r, t) 7→ tr∗ factors through the S-set of Munn-orbits by a
(well-defined) isomorphism of S-sets. This shows that the ‘Lawvere-product’
of the Schutzenberger object and the Munn S-set equals the Wagner-Preston
S-set: S⊗ E ∼= S . The same equation in terms of S-distributions,

S ·M ∼= W ,

or even its ‘integral’ form∫
S× P dM =

∫
P dW ,

may appeal to the reader.

6 Classifying topos of an arbitrary semigroup

In this section, we define a topos B(T ) associated with an arbitrary semi-
group T . We make no assumptions on T , although if T is inverse, then the
topos B(T ) obtained is equivalent to the usual one. Instead of defining first a
category L(T ) and then taking for B(T ) the category of presheaves on that
category, what seems like a reasonable and viable alternative is to define
B(T ) as the topos classifier of T -torsors. In any case, while it is unclear to
us that the “presheaves on L(T )” approach does not degenerate (because a
general semigroup may not have ‘enough’ idempotents), or that B(T ) should
even be a presheaf topos in general, we also cannot be sure that reasonable
and viable generalizations of L(T ), or of the inductive groupoid, do not exist.
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6.1 Semigroup torsors

Let M(X) denote the set of partial maps X //__ X. M(X) is an ordered
semigroup (not inverse). More generally, if X is an object of a topos, then

let M(X) = X̃X , where X̃ denotes the classifier of partial maps into X.
In the case of a general semigroup, we must upgrade Def. 2.1 by replacing

the inverse semigroup I(X) with the ordered semigroup M(X): a T -set
(X,µ) of T is thus a semigroup prehomomorphism

µ : T // M(X) ; µ(s)(x) = sx .

If T is inverse, then a T -set T // M(X) necessarily factors through I(X) ⊆
M(X).

We may now observe that Defs. 2.8 and 2.14 make sense for an arbitrary
semigroup, not just inverse ones. This gives us a category TOR(T ) of torsors
and equivariant maps for T .

6.2 Construction of B(T )

The well-known topos classifier of semigroups, which we shall denote S , can
be constructed as the topos of functors on the category of finitely presented
semigroups. The generic semigroup in S is the underlying set functor, which
we denote R . A sketch approach for semigroups is also known [1].

We next construct the topos classifier T of pairs (S,X), where S is a
semigroup and X is an S-torsor, using the syntactic site associated with a
geometric theory. This theory has two sorts X and S, a binary associative
operation symbol on S, and also a relation symbol

R ⊆ S ×X ×X

that is functional (but not total) in the first two arguments:

∀s, x, y, z;R(s, x, y) ∧R(s, x, z) +3 y = z ,

and well-supported
∀x;∃s, y, R(s, x, y) .

We require that R is (strictly) associative:

∀s, t, x, y;R(st, x, y) +3 ∃z, R(t, x, z) ∧R(s, z, y) ,
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∀s, t, x, y;∃z, R(t, x, z) ∧R(s, z, y) +3 R(st, x, y) .

We require that X is non-empty:

∃x, x = x ,

that the partial action is transitive:

∀x, y;∃s, t, z, R(s, z, x) ∧R(t, z, y) ,

and locally free:

∀s, t, x, y; ∃y,R(s, x, y) ∧R(t, x, y) +3 ∃r, y(R(r, y, x) ∧ sr = tr) .

If (S,X) denotes the generic semigroup-torsor pair of T , then since S
(together with R) classifies semigroups there is a geometric morphism γ :
T // S corresponding to S, where γ∗(R) = S. If T is a semigroup in Set,

with corresponding point Set
p // S , so that p∗(R) = T , then the topos

pullback of γ and p classifies T -torsors.

Set S
p //

B(T )

Set

∆aΓ

��

B(T ) T
ρ // T

S

γ

��

Moreover, we have

ρ∗(S) = ρ∗γ∗(R) ∼= ∆p∗(R) = ∆T ,

and the generic ∆T -torsor in B(T ) is ρ∗(X). We call B(T ) the classifying
topos of T , just as in the inverse case. We have thus proved the following.

Theorem 6.1 An arbitrary semigroup T has a topos, denoted B(T ), which
classifies T -torsors. If T is inverse, then B(T ) is equivalent to the usual
classifying topos of T .

We must admit that outside the inverse case we know very little about
B(T ). A closer examination of γ may be revealing.
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