Practice problems: Maclaurin series

For each of the following functions, express it as a powerseries.

1. \(f(x) = \frac{3}{1-2x} \)

 Solution. Use \(\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n \). Replace \(x \) by \(2x \) and multiply by 3:
 \[
 \frac{3}{1-2x} = \sum_{n=0}^{\infty} 3(2x)^n = \sum_{n=0}^{\infty} 3 \cdot 2^n x^n.
 \]

2. \(f(x) = \frac{1}{2-x} \)

 Solution. Use \(\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n \). Divide by two:
 \[
 \frac{1}{2-x} = \frac{1}{1-x/2} = \sum_{n=0}^{\infty} \frac{1}{2} (x/2)^n = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} x^n
 \]

3. \(f(x) = \frac{1}{(1-2x)^2} \)

 Solution. Note first that \(f(x) \) is the derivative of the function \(g(x) = \frac{1}{2(1-2x)} \), which has Maclaurin series \(g(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} x^n \). We differentiate this series and get
 \[
 f(x) = \sum_{n=1}^{\infty} n \cdot \frac{1}{2^n} x^{n-1}.
 \]

4. \(f(x) = \frac{1}{(1-2x)^3} \)

 Solution. This function is the derivative of \(h(x) = \frac{1}{4(1-2x)^2} \), which (by the previous problem) has Maclaurin series \(h(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} x^{n-1} \). We differentiate this series and get
 \[
 f(x) = \sum_{n=2}^{\infty} n \cdot \frac{1}{4} 2^n x^{n-2}.
 \]

5. \(f(x) = \ln |1-x| \)

 Solution. This is the antiderivative of \(\frac{1}{1-x} \). Thus we integrate the series \(\sum_{n=1}^{\infty} x^n \) and get
 \[
 \ln |1-x| = \sum_{n=0}^{\infty} \frac{x^{n+1}}{x+1}.
 \]

6. \(f(x) = 3e^2x \)

 Solution. This is a polynomial so already is a powerseries (the only nonzero coefficient is \(c_1 = 3e^2 \)).
7. \(f(x) = e^{x^2} \)

Solution. Use \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \). Replace \(x \) by \(x^2 \) to get

\[
e^{x^2} = \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}.
\]

8. \(f(x) = xe^{x^2} \)

Solution. This is the derivative of \(g(x) = \frac{1}{2} e^{x^2} \), which has series \(\sum_{n=0}^{\infty} \frac{x^{2n}}{2n!} \). Differentiating gives

\[
x e^{x^2} = \sum_{n=1}^{\infty} \frac{2n}{2n!} x^{2n-1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{2n-1}.
\]

9. \(f(x) = -3x^2e^{x^3} \)

Solution. The Maclaurin series for \(e^{x^3} \) is \(\sum_{n=0}^{\infty} \frac{x^{3n}}{n!} \). Differentiate this and multiply by \(-1\):

\[-3x^2e^{x^3} = \sum_{n=1}^{\infty} \frac{3n}{n!} x^{3n-1}.
\]

10. \(f(x) = \int e^{x^2} \, dx \)

Solution. Integrate \(\sum_{n=0}^{\infty} \frac{x^{2n}}{n!} \) to get

\[
\int e^{x^2} \, dx = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)n!}.
\]

11. \(f(x) = x^2e^{x^3} \)

Solution. As for \(f(x) = -3x^2e^{x^3} \).