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Abstract

This thesis presents a theory of electron-electron interaction effects and optical prop-
erties of nanostructures of two-dimensional (2D) honeycomb crystals - graphene and
transition metal dichalcogenides (TMDC). Graphene, a semimetallic hexagonal lat-
tice of carbon atoms can be described by a massless Dirac fermion model, with the
conduction band (CB) and valence band (VB) touching in the corners of a hexago-
nal Brillouin zone, valleys K and —K. TMDC crystals sites host either a transition
metal atom or a chalcogen dimer, which opens the energy gap and allows for describ-
ing their low-energy nature with massive Dirac fermion (mDf) model. The metal
atom in TMDC crystals causes strong spin-orbit (SO) coupling, resulting in large SO
splitting in bands at both valleys. For TMDCs it is possible to excite carriers in each
valley with oppositely circularly polarised light, which offers promising prospects for
devices based on electrons valley index, i.e. valleytronic devices. Additionally, the
optical response of TMDCs is enhanced by the presence of secondary CB minima, at
Q-points.

The dimensionality of 2D crystals can be further reduced to form quantum dots
(QDs) - nanostructures confined in all dimensions. This thesis first discusses hexag-
onal graphene QDs, which exhibit energy gap oscillation as a function of size, due to
the edge type: zigzag or armchair. These QDs are divided into concentric rings, anal-
ysed with tight-binding (TB) model. An armchair edged QD is built from a zigzag
edged QD by adding a 1D Lieb lattice of carbon atoms on its edge. The energy gap is
formed differently for both edges: from the outer ring states for zigzag edge and from

the 1D Lieb lattice zero-energy states for armchair edge, which causes the energy gap
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oscillation with QD size.

The remaining portion of the thesis focuses on TMDC materials. First a TB
model is presented for a member of TMDC group, MoSs, using three d orbitals of Mo
atom and three p orbitals of the Sy dimers. The tunneling matrix elements between
nearest-neighbor and next-nearest-neighbour sites are explicitly derived at K and —K
to form a six band TB Hamiltonian. Its solutions are fitted to the bands obtained from
the density functional theory ab initio calculations to obtain the correct behaviour
of bands around +£K and additional minima at ()-points, which explains the role of
d orbitals in TMDCs. Close to £K the TB model is reduced to mDf model, which
is then studied in response to light, yielding the valley-dependent selection rules for
absorption.

The interaction of mDf with light is further studied in the presence of strong exter-
nal magnetic field, which leads to the formation of Landau levels (LLs), asymmetric
between both valleys, and valley Zeeman splitting. These LLs are populated with elec-
trons to form a Hartree-Fock ground state (GS), which can exhibit valley polarisation
due to the LL asymmetry. Quasi-electron-hole excitations out of the GS are then
formed and their self-energy, vertex corrections and scattering energy is calculated.
The effect of electron-electron interactions on valley Zeeman splitting is demonstrated
and the Bethe-Salpeter equation is numerically solved to give magnetoexciton spec-
trum for both valleys. The results include a valley-dependent absorption spectrum
for mDf magnetoexcitons that vary with the valley polarisation.

The final part of this thesis discusses the single particle and interacting effects
in gated MoSy QDs. First, I perform a single electron atomistic calculation for a
million-atom computational box with periodic boundary conditions based on a TB
model developed from ab initio methods for bulk MoS,. Electrons are then confined
with a parabolic electrostatic potential from top metallic gates. They exhibit twofold
degenerate harmonic oscillator energy spectrum with shell spacing w associated with
valleys + K as well as a sixfold degenerate energy spectrum derived from the ()-points.

The degeneracy of electronic shells is broken due to valley contrasting Berry curvature,



which acts as an effective magnetic field splitting opposite angular momentum states
in both valleys. I populate up to five K-derived harmonic oscillator shells with up to
six electrons and turn on the electron-electron interactions. The resulting GS phases
form two regimes dependent on w, which are dominated each by a broken-symmetry
phase, i.e. valley and spin polarised GS for low w and valley and spin unpolarised but
spin intervalley antiferromagnetic GS for higher w. This behaviour is explained as
an effect of the strong SO splitting, weak intervalley exchange interaction and strong
correlations. Means of detecting these effects in experiment based on the spin and
valley blockade are proposed. These results advance the understanding of interaction-
driven breaking of symmetry for valley systems, crucial for designing of valleytronic

devices in the future.
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Chapter 1

Introduction

Last decade marks a new era in the physics of nanomaterials, inaugurated by the No-
bel prize awarded in 2010 to A. Geim and K. Novoselov for groundbreaking research
on graphene, the first two-dimensional (2D) crystal realized in experiment [1-3]. Since
then, the physics of low-dimensional materials on a nanoscale has attracted consid-
erable attention due to the promising prospects for tailor-made 2D-based technology.
The focus of interest has been a group of materials, called van der Waals (vdW)
crystals, built of layers of atoms linked together with weak vdW forces. The atomic
planes of vdW materials can be easily peeled off and stacked together again in custom
combinations or twisted relative to each other, which enables engineering properties
for desired applications [4-8]. This is possible, because vdW crystals host compounds
with a variety of properties, from insulators and metals, through semimetals, semi-
conductors and ferromagnets, to superconductors and topological insulators [5,9,10].
Among these, crystals with honeycomb lattice have revealed particularly exotic prop-
erties and emerging new phenomena [4,10-17].

In this thesis I will focus on graphene, a honeycomb one-atom-thick semimetal, and
on transition metal dichalcogenides (TMDCs), a group of hexagonal nanocrystals with
formula MX5 (M metal, such as Mo and W, X chalcogen, such as S, Se and Te), which
exhibit semiconducting properties [18,19]. Section 1.1 gives an introduction to these
bulk honeycomb 2D crystals, and section 1.2 gives an overview of the applications

and properties of graphene and TMDCs quantum dots.
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1.1 Hexagonal 2D crystals: graphene and TMDCs.

Graphene crystal lattice is made of carbon atoms arranged in a 2D honeycomb lattice,
which stacked and attracted to other graphene layers with vdW forces forms bulk
graphite [20]. A 2D hexagonal monolayer contains two inequivalent atomic sites
with two carbon atoms in a unit cell and produces a hexagonal Brillouin zone with
two inequivalent corners K and —K. The extrema of graphene's energy bands are
located in these points, where conduction and valence bands touch and make graphene
a unique semimetal. The touching energy bands at £ K are called valleys [3,21,22],
which are similar to valleys in silicon [3]. This non-conventional band structure was
first described by Wallace [23] in 1947. The resulting extraordinary electronic and
optical properties include large elasticity, high carrier mobility, high conductivity and
almost complete transparency, a set of features unlike any other material previously
known [3,24-27]. These properties can be understood by employing the massless
Dirac fermion model, which uses an analogy to relativistic Dirac equation [24, 28].
This shows that graphene is an excellent example of how a material stripped to its
2D form can exhibit properties drastically different from its 3D analogue. Another
such example is a TMDC crystal.

TMDCs share the hexagonal shape with graphene, but the atomic composition
creates an important distinction. A site of a TMDC hexagonal lattice hosts a transi-
tion metal atom with valence d orbitals or a chalcogen dimer with valence p orbitals,
with both atoms of the dimer placed out of the metal plane [18,19]. In this way three
atomic layers make a monolayer of TMDC crystal, which is a honeycomb structure if
viewed from the top . The two sites in a unit cell now have different energies, which
breaks the inversion symmetry and opens an energy gap in valleys =K. Interest-
ingly, the 3D TMDC counterpart actually possesses an indirect energy gap, but as
the thickness is reduced to a monolayer, a TMDC crystal becomes a direct gap semi-

conductor, with the bandgap at +K [18,19,29]. The direct gap in TMDCs makes it
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an optically active material, attractive for optoelectronic applications [30, 31].

However, an even more exciting optical feature of these crystals is a valley-
dependent circular dichroism, which means that carriers can be excited in each val-
ley with oppositely circularly polarised light [30,32-35]. This allows for accessing
the valley index with optical measures and creates a possibility of designing val-
leytronic devices operating on electron's valley pseudospin instead of spin [36,37] - a
prospect that has already been explored in silicon [37-39]. Contrary to silicon, the
valley-selective optical properties of TMDCs as well as long valley coherence times
demonstrated by Jones et al. and Wang et al. [40,41] offer practical means of valley
manipulation for valleytronics. In addition, the heavy metal atoms cause large spin-
orbit splitting of the bands at =K, opposite for each valley, which causes spin-valley
locking [35,36]. This often means translating spin polarisation into valley pseudospin
polarisation [35,36] - an added benefit for valleytronic applications.

Another important aspect of the band structure of TMDCs is the massive Dirac
fermion (mDf) description, which applies to the low energy bands at K. It involves
unique topological properties distinct from standard semiconductors with parabolic
bands. The valley pseudospin creates effective topological moments (or orbital mag-
netic moments) opposite in each valley due to their opposite Berry curvature [42-45],
which makes the valleys topologically inequivalent (this is also true for massless Dirac
fermions in graphene [46]). This difference leads to the valley spin Hall effect [35,36],
which can be detected in experiment [47,48]. Topological effects also manifest them-
selves in the splitting of 2p exciton energies for opposite angular momentum states,
unobserved previously in standard semiconductors [44,49]. This thesis discusses the
topological effects in many electron-states in an electrostatic confinement, as described
in section 1.2.

It is important to note that there exists another 2D material, which can be de-
scribed with mDf model, bilayer graphene. It is gapless, like graphene, but the bands
are characterised by nonzero effective masses. An energy gap can be opened in bi-

layer graphene by applying an external electric field. Although this thesis does not
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consider bilayer graphene in detail, important analogies exist between gapped bilayer
graphene and TMDCs, which I will often use to reveal the physics of mDf.

The rich mDf model however does not capture yet another important feature of
TMDC band structure, which has an important effect on its optical properties. It
involves the existence of three additional conduction band minima around each valley,
at Q-points, which cause band nesting [19,50], and contribute to enhanced optical
absorption of TMDCs, e.g. excitons in TMDCs are strongly affected by the presence
of Q-points [49].

A theory providing explanation to all these features in a consistent manner was
needed. Many tight-binding and k - p approaches exist that attempt to reproduce
the experimental and ab initio findings [51-56]. Some tend to disregard the complex
role of d orbitals in the formation of bands and others lack the simplicity needed
in an efficient tool for material property prediction. This thesis focuses on develop-
ing a microscopic understanding of the characteristics of the TMDC band structure
simultaneously with keeping the model as minimal and intuitive as possible. The
approach presented in the thesis allows to build a theory of more complex properties
of TMDC, including external magnetic field effects, electrostatic confinement, and
electron-electron interactions.

The electron-electron interactions are in fact a vital component of the 2D material
theory, as they are pronounced in TMDCs and other 2D materials due to confinement
to a single atomic layer. They manifest themselves in large exciton binding energies in
TMDCs [57-59], spin or valley polarized broken-symmetry states in TMDCs [14, 60]
and strongly correlated systems, e.g. superconducting and Mott-insulating phases
in bilayer graphene [16,17]. This thesis discusses some of the interacting effects in
TMDCs that are particularly of interest, including magnetoexcitons - excitons in
presence of strong magnetic field, and several electron complexes in confined nanos-
tructures.

In fact, strong external magnetic field amplifies the electron-electron interactions

in crystals, which form highly degenerate flat energy bands when exposed to magnetic
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field, which are called Landau levels (LLs) [61]. For a standard semiconductor, LLs are
equally spaced in energy, but hexagonal crystals exhibit unconventional LL structure.
For graphene, the LL spacings decrease with higher LLs as a square root function,
which is linked to the massless Dirac fermion nature of electrons in graphene [11,22].
In TMDCs, the mDf model forms even more complicated structure of LLs, as the Oth
LL is located asymmetrically within valleys at the top of the valence band at K and
at the bottom of the conduction band at —K [62-66]. Additional strong spin-orbit
coupling in TMDCs, opposite for both valleys further increases the LL asymmetry. As
a consequence, the first possible LLs in the conduction band are placed at different
energies in opposite valleys, causing valley Zeeman splitting [63-65,67,68]. These
effects enable selective population of TMDC samples with electrons of specific spin
and valley pseudospin, to achieve spin and valley polarisation [63-68]. Enhanced
interaction effects have been observed in this setting [66,67,69-71], which are a subject

of study in this thesis.

1.2 Graphene and TMDC quantum dots.

Quantum dots (QDs) are structures with all dimensions reduced to a nanoscale. The
quantum confinement produces discrete energy levels, which bears a resemblence to
an atom. This is why QDs are often called artificial atoms [72].

QDs made of conventional 3D materials include self-assembled QDs, i.e. islands
formed in epitaxial layers due to the strain produced by mismatch in lattice con-
stants [73,74], and gated QD, which are electrostatically defined regions that confine
electrons. The first demonstration of a single electron manipulation was reported in a
GaAs/GaAlAs field-effect transistor, where electrons were localized within a QD-like
region by metallic gates [75]. Theoretical predictions for the behaviour of a con-
fined electron in a self-assembled InAs/GaAs QD were confirmed experimentally to
be governed by a 2D harmonic oscillator (HO) spectrum with shell spacing w [74].

Because the energy gap of a QD can be tuned with size, shape, atomic composition

and external potentials, they present a variety of applications in optoelectronics, such
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as solar cells, photodetectors and lasers [76-81]. The discrete energy levels allow also
for manipulation of single electrons, which is used for quantum computing, e.g. in
spin-based qubits - quantum computing units [82-93].

However, localizing electrons in a nanoscale region within a macroscopic volume
involves interactions with nuclear spins and atomic vibrations, which result in spin
decoherence. This is why 2D semiconducting materials offer a possibility of confining
electrons in atomically-thin layers, which could potentially decrease decoherence and
ensure room-temperature operation [91,94].

The exploration of 2D QDs started with graphene quantum dots (GQDs), which
are small pieces of graphene crystal. GQDs allow to take advantage of graphene's
properties, but with an energy gap present, essential for optoelectronics. By tuning
the size of the GQD, the bandgap can be continuously tuned within THz to UV
range [22,95,96]. There are however more factors determining their properties and the
magnitude of the energy gap, namely the shape and type of edge of a QD [12,15,97,98].
Possible edge types in a honeycomb lattice are zigzag and armchair [12,15,96]. For
hexagonally shaped graphene QDs (GQDs) different edge type induces an oscillation
of the energy gap with QD size, which is explained in this thesis.

The analogues of conventional QDs are 2D semiconductor QDs, which exploit
the naturally present energy gap for some 2D materials, such as TMDCs or bilayer
graphene in external electric field. Due to difficult edge control for nanostructures of
TMDC [99-102] (more troublesome than for GQDs [15,103]), a confinement created by
gated TMDC QDs is desirable. TMDC gated QDs have been obtained experimentally
with lateral metal electrodes [104-106] and gated bilayer graphene QDs have also
been realised [107-110]. Coulomb blockade effect has been observed in a transport
experiment [104,111,112], single electron and hole transfer has been reported [112],
as well as optical probing of excitons has been demonstrated in gated TMDC QDs
[104,111-113]. Local tuning of confinement and gate tuning of QD molecules have also
been shown [104,114]. Also, recent progress in the manipulation of valley pseudospin

includes a demonstration of long valley index lifetimes for holes in QDs [113].
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These experimental results have been matched by theoretical efforts to describe
the properties of TMDC QDs. The mDf in TMDCs have been proposed for qubit
applications [90,115-122]. Electronic properties of triangular QDs have been studied
in Ref. [123]. Three-band tight-binding calculations for various sizes of QD in the
presence of magnetic field have been reported by Pavlovic et al. and Chen et al. [124,
125], and other tight-binding studies include Refs. [120, 122, 126]. Effective models
have been used for realistic sizes of QDs in Refs. [90,115,117-119,121]. The means
of valley control with strain, magnetic field and impurity coupling have been also
studied [90,118,121,122]. However, the theory of TMDC QDs presented in this thesis
provides the first comprehensive explanation of the role of valleys, topology and the
Q-points in forming of the single electron QD energy structure.

Furthermore, similarly to atoms, the properties of QDs can change immensely,
when additional electrons are placed inside them [12,74,127]. Together with en-
hanced interactions due to the 2D nature, QD of 2D materials offer a unique chance
for exploring strong electron-electron interactions. Two electron states in a bilayer
graphene QD have been studied theoretically in Refs. [110, 128] and experimental
demonstrations of many-body effects in bilayer graphene and TMDC QDs have also
been reported [94,110]. In this thesis, I present a theory of emerging highly tunable
interacting system of N electrons in a TMDC QD, which reveals broken-symmetry
strongly correlated phases. These results advance our understanding of strongly in-
teracting electrons in valley systems and explain the role of interactions in designing

new nanomaterials and valleytronic devices.

1.3 Thesis Contributions.

This thesis includes a tight-binding model for hexagonal graphene quantum dots
and bulk MoS,, as well as a theory of magnetoexcitons of massive Dirac fermions
and electron-electron interactions in gated MoS,; quantum dots. The content of the
chapters is based on manuscripts in peer-review journals that have been published or

submitted for publication. Below I list all the articles relevant for this thesis:
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1. M. Bieniek, M. Korkusiski, L.. Szulakowska, P. Potasz, 1. Ozfidan, and P. Hawry-
lak, Band nesting, massive Dirac fermions, and valley Land and Zeeman effects
in transition metal dichalcogenides: A tight-binding model, Phys. Rev. B, vol.
97, no. 8, p. 085153, 2018.

2. Y. Saleem, L. Najera Baldo, A. Delgado, L. Szulakowska, and P. Hawrylak,
Oscillations of the bandgap with size in armchair and zigzag graphene quantum

dots, J. Phys.: Condens. Matter, vol. 31, no. 30, p. 305503, 2019.

3. L. Szulakowska, M. Bieniek, and P. Hawrylak, Electronic structure, magnetoez-
citons and valley polarized electron gas in 2D crystals, Solid-State Electronics,

vol. 155, pp. 105110, 2019.

4. M. Bieniek, L. Szulakowska, and P. Hawrylak, Band nesting and exciton spec-

trum in monolayer MoSs, Phys. Rev. B, vol. 101, no. 12, p. 125423, 2020.

5. M. Bieniek, L. Szulakowska, and P. Hawrylak, Effect of valley, spin, and band
nesting on the electronic properties of gated quantum dots in a single layer of
transition metal dichalcogenides, Phys. Rev. B, vol. 101, no. 3, p. 035401,

2020.

6. L. Szulakowska, M. Cygorek, M. Bieniek, and P. Hawrylak, Valley and spin
polarized broken symmetry states of interacting electrons in gated MoSs quan-
tum dots, arXiv:2005.04467 [cond-mat], submitted for publication to Nature

Communications, 2020.

For articles 5. and 6., I have conducted all the mentioned calculations and deriva-
tions in full, in collaboration with the co-authors as listed. Manuscript 3. is a review
article that discusses my results on the magntoexciton spectrum, as well as work
by my collaborators within the Quantum Theory Group lead by prof. P. Hawrylak.
For articles 1. and 4., I was involved in the analytical aspect of the presented the-
ory. Manuscript 2. includes both my colleagues’ DFT results and my tight-binding

calculations, in which junior students listed as co-authors were involved.
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Chapter 3 and 4 are based on manuscript 2. and 1. respectively. Articles 1, 3 and

4. are relevant for chapter 5 and articles 1., 4., 5. and 6. are relevant for chapter 6.

1.4 Thesis Outline.

This thesis is organised as follows. Methodology is described in chapter 2., which
succeeds the introduction in chapter 1. The methods are discussed in three sec-
tions, dedicated to single electron picture, the many-body techniques and numerical
approaches.

Chapter 3. focuses on the tight-binding study of hexagonal graphene quantum
dots (HGQD). By expressing the atomic structure of HGQD in terms of concen-
tric rings, in section 3.1 I show that the energy structure of HGQDs can be under-
stood in terms of analytical solutions of 1D periodic chains coupled together. In
order to demonstrate the difference between the energy structure for zigzag-edged
and armchair-edged HGQDs, I describe the additon of 1D Lieb lattice in section 3.2
to the zigzag-edged HGQD to form an armchair-edged HGQD in section 3.3.

Chapter 4. presents the tight-binding model for bulk MoS,. Several contributions
to the model are included in sections 4.1-4.3, i.e. the nearest-neighbour, next-nearest-
neighbour hopping and the spin-orbit coupling. Section 4.4 describes the massive
Dirac fermion (mDf) model for electrons in MoS,, and the interaction of mDf with
light is explained in section 4.5. The theory presented in this chapter is then used in
chapter 5. to build on the mDf Hamiltonian and in chapter 6. to highlight the valley
and @Q-point effects in finite structures.

Chapter 5. includes the theory of magnetoexciton absorption for mDf model.
The description starts with a single particle approach in section 5.1, which includes a
discussion of a modification of Landau level (LLs) energy spectrum for mDf in com-
parison to free electron LL spectrum. Section 5.1 also includes a description of the
effects of spin-orbit coupling on the spectrum and finally discusses the interaction
of mDf in LLs with light. Section 5.2 introduces interaction between mDf in LLs

with a detailed description of the Coulomb scattering terms and the exciton Hamil-
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tonian, followed by the discussion of the results on valley Zeeman splitting and the
magnetoexciton absorption spectrum.

A theory of electronic properties of gated MoSs QDs is presented in chapter 6. It
is divided in four sections. The first two sections describe the tight-binding model for
a QD and the resulting single particle energy spectrum associated with valleys and
(Q—points. Sections 6.3 and 6.4 discuss the interacting effects in MoSy QDs, starting
with a detailed description of scattering Coulomb matrix elements, which include the
distinction between intervalley and intravalley contributions. Section 6.4 discusses
the interplay of different single particle and interacting energy scales contributing
to valley and spin polarised states for two interacting electrons as well as strongly-
correlated broken-symmetry ground states of up to six electrons in gated MoS, QDs.

Possible verification of the signatures of these states in experiment is also discussed.



Chapter 2

Methodology

This chapter focuses on all methodology used in this thesis. Section 2.1 discusses
treatment of a single electron in a solid and it follows with section 2.2, which is

dedicated to solving the many-body Hamiltonian for crystals.

2.1 Single particle picture.

Solids contain many atoms closely packed together in a geometrical lattice, building
a structure of large complexity. These atoms, containing many electrons, make it
impossible to solve exactly for properties of a solid. An approximation is therefore
needed. It is useful to start with a single atom solution and then, account for the
change in these electronic levels as other atoms are placed close to the original atom.
A practical assumption about the wavefunction of a few-atom molecule is to treat
it as a linear combination of atomic orbitals (LCAO), which has been described in
section 2.1.1. This approximation is then used to form band theory of solids using

the tight-binding method, as described in 2.1.2.

2.1.1 Linear combination of atomic orbitals wavefunction.

To solve for electronic states of a molecule, we can use the eigenstates of a single atom
potential and account for a modified energy potential of several atoms placed close

together, as shown in Fig. 2.1 a)-b). What follows is an example of the approach for

11
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a diatomic molecule. Let us assume that the single atom solutions are:

[A{at¢n(r) = en¢n(7’)a (2'1)

where n labels energy levels e, of an isolated atom with eigenstates ¢,, such as
1s,2s,2p, etc. (an example of a spectrum shown in Fig. 2.1 a)) and H, = —%VQ +
Vat(r) is a single atom Hamiltonian. Now, we consider two ideantical atoms a, b placed
close together to form a molecular potential shown in Fig. 2.1 b). The Hamiltonian
for a single electron in the molecule reads

. B2 . .

H=——V*+V,(r)+ Vy(r), (2.2)

2m

where Va/b(r) = Aat('r — Ra/b) for a potential centred on R,;. To search for the
solutions of the Hamiltonian in Eq. 2.2 we assume a trial LCAO wavefunction made
of the atomic orbitals n for atom a, identical to orbitals on atom b. I will assume one

orbital per atom for simplicity. The LCAO wavefunction in bracket notation reads

() = ca lda() + s lon(m)) = | ] (2.3)

Cp

where ¢, (¢) is a single atomic orbital on atom a (b) and ¢, (¢;) are coefficients of
the LCAO molecular wavefunction on atom a (b) and the LCAO wavefunction is a
two component vector in the basis of the atomic orbitals a, b.

We now look for the form of the Hamiltonian in Eq. 2.2 in the basis of the atomic

orbitals. Let us consider a diagonal term

X 72 L
(0l £ 100) = {00l (=5 4 Va3 [0
(2.4)

= €4+ <¢a| ‘A/E) ‘¢a> =e,+ 6&)
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1s 1s

Figure 2.1: a) Potential of a single atom. Horizontal lines denote energy levels. b)
Total potential formed by two atoms placed close together. The energy levels of a
single atom are modified by the presence of the second potential. ¢) Close up view of
the lowest molecular energy levels . The 1s orbitals from both atoms split and form
bonding and antibonding states (o and o* respectively) given by Eq. 2.7 and Eq. 2.8.

where Vj, shifts the energy of the atom a by d,. The off-diagonal term reads

A~ 2 A~ A~
(0 160 = (0] (=55 + Va1 ) o)
(2.5)

= ey(Paldp) + (Pal v, |0b) = €pSap + tap = T,

where sq, = (@a|p) is the overlap of the basis atomic wavefunctions and ¢, is called

a hopping integral. The eigenvalue problem for H reads

. e T 1 su
Hy = v=F = ESvy, (2.6)

T e Sap 1

where S is the the overlap matrix and e, + d, = e, + 0, = e. The solutions of the
generalised eigenvalue problem in Eq. 2.6 are
_e+T

N 1+3ab’

€e—T
Eo‘*:

[

(2.7)

1 _Sab’

where E, (E,«) is the bonding (anti-bonding) energy shown in Fig. 2.1 ¢). The
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corresponding wavefunctions are

1 1
wa = )
2(1 + Sab) 1
(2.8)
1 1
Yoo = —— ,
2(1 + Sab) —1

shown schematically in Fig. 2.1. It is apparent that single atom solutions are different

from the two-atom case.

2.1.2 Tight-binding approximation.

The LCAO wavefunction can be used to solve for properties of a variety of materials,
made of many atoms. Often, a tight-binding (TB) approximation can be employed.
It is well suited to materials with negligible overlap between atoms, so that S ~ 1 in
Eq. 2.6. This means that electrons are tightly bound to atoms and are less likely to
localise in the space between sites than on sites. An example of a TB calculation for
a finite crystalline structure has been shown in section 2.1.7 for a graphene quantum
dot.

Periodic structures can be treated with the TB model as well. For an infinite
crystal, the potential created by many atoms is periodic, V() = V(r + R), where R
defines the periodicity of the lattice. The TB wavefunction for a crystal is written as
a LCAO wavefunction and it reads

Y = Z e*Bo(r — R)

R

— oikr Z 6—ik(r—R)¢(,,,, _ R) (29)
R

k

= ¢! Tug(r),

where wuy, is the periodic part of the wavefunction and ¢(r — R) is an orbital in unit

cel R. The TB wavefunction in Eq. 2.9 obeys Bloch’s theorem [129], which states
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that electron’s wavefunctions in a periodic potential can be expressed as a plane wave
modulated by a periodic function ug. The eigenvalues of a periodic crystal will carry
the index k, the wavevector, which creates energy bands with dispersion in k. An
example of a TB treatment for an infinite crystal has been shown in section 2.1.3 for

a monolayer graphene.

2.1.3 Example of a tight-binding calculation: bulk graphene.

Graphene is a single layer of carbon atoms arranged in a honeycomb pattern.
Each carbon atom has 6 electrons, two of which are 1s electrons, strongly confined
to the carbon nucleus. They are referred to as core electrons and do not contribute
to the properties of graphene as much as valence electrons. Three of these valence
electrons occupy 2s,2p, and 2p, orbitals, which form hybridised sp? bonds, connecting
a carbon atom to its three nearest neighbours (NN). These o bonds are strong and
are responsible for unusual mechanical properties of graphene. The last electron
occupies a p, orbital, which extends out of the crystal plane. These electrons from
all the carbon atoms form 7 bonds of highly mobile electrons, which determine the
electronic properties of graphene.

I will show here how to build a TB model of monolayer graphene with one valence
electron on the p, orbital of a carbon atom. Graphene lattice is a honeycomb lattice,
which is not a Bravais lattice, since two lattice sites need to be translated together
to form the structure. Instead, graphene can be treated as two interpenetrating tri-
angular sublattices with one-atom basis, which are Bravais lattices. Both sublattices,

shifted with respect to each other by b = \%(0, 1), are built with vectors:

L3,
2" 27 (2.10)

),

a1 = af

P

2

N —

UQZCL(

where a is the sublattice constant a = 2.46A (all vectors shown in Fig. 2.2). For
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integer n & m, vectors Ra & Rp represent lattice sites in sublattices A & B

R, = naq + mas,. (2.11)

Vector R4 gives atom positions in sublattice A, while vector Rg = R4+ b = na; +

masg + b. gives the positions of atoms in B (Fig. 2.2.).

/‘ \'/‘\r/.\s)\\/
@

Figure 2.2: Vectors ay, ay & b, building sublattices A & B.

Translational symmetry imposes the commutation of the Hamiltonian with the
operator of translation by R 4. Thus, the eigenvectors of electrons in sublattices A &

B must be the eigenvectors of the translation operator

Tr,05(r) = ¥5(r — Ry)

TRA’QDE(T) = ¢§(r - RA)7

(2.12)

where k is wave vector. The wavefunctions must then obey the Bloch theorem, i.e.

Wi — Ra) = ™ yfi(r),

V(r — Ra) = ™y (r).

(2.13)
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Therefore, we may express the wavefunctions as LCAO Bloch wavefunctions

V() = <= 3 (e = Ra) = ()
fia (2.14)
Vh(r) = —= > e*rB(r — Rp) = e ugl(r)

where ¢4(r — R,) is wavefunction of a p. electron localised on the atom of the
cell identified by R4 for sublattice A (and analogously for sublattice B), N is the
number of unit cells in the sublattice and uﬁ/ B(r) is a periodic function of the Bloch
wavefunction. The wavefunction of the whole system is a linear combination of the

sublattice wavefunctions
VF(r) = Apthi(r) + Brbh(r), (2.15)
where 1% & 1% are given in Eq. 2.14, which gives
1 . 1 .
UR(r) = Ag—=Y "o (r — Ry) + Be— Y _e*56"(r — Rp),  (2.16)
VN & VN &
and I will search for a wavefunction solution in a spinor form

Ak

Yk = : (2.17)
B,
The single-particle Hamiltonian reads
)
gy P A B
H= %+RZ[V (r—RA)]+RZ[v (r — Rg)], (2.18)
A B

where % is a single electron’s kinetic energy, VA(r — R4) & VB(r — Rp) are po-

tentials on the lattice sites given by R4 & Rp. The diagonal matrix element of the
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Hamiltonian H given in Eq. 2.18 in the basis of ¢%(r) and ¢%(r) is then

(WAL B [08) = (W] o+ S vAr — Ra) |uh)
R (2.19)
+ (W5 Y VE(r — Rp) |vh)
Rp

and analogously for the 1% diagonal element. The first term in the expression in Eq.
2.19 gives energy of sublattice A E 4, because 1% is an eigenstate of % +>° R VA(r—
R,). The last term in Eq. 2.19 describes an electron’s hopping from A to A sites.
As the NN of A sites are always B sites (as shown in Fig. 2.3), this term accounts
for next-nearest neighbour (NNN) and further neighbour hopping and is smaller than
NN terms, so I will neglect it for now.

I now calculate the expressions for the off-diagonal terms of the Hamiltonian.
The first part is (¢%| % +> R, VA(r — Ry) [v5) = Ea(Wk|wk), which vanishes if T

assume zero overlap. The remaining part is

WY VP — Ry ) =
<

B

=& 3 MR SN (G5 Ry)| VO (r — RY) |6 (r — Ra))
Ry,

R4,Rp
= % : Z R RA=RE) (B (p — Rp)| VP (r — Rp) ¢ (r — Ra))
RA,Rp
= b Y MBI (8(r — Ry)| VP (r — Rp) [0~ Ra))
<Rs,Rp>

1 . ) ) . ) )
=5V t(e*RBany 4 okRapy y oikRaby) — ¢ . otkb(] 4 gmikar 4 omikazy = (9 o)

where the three-body integrals (Rp # R);) were neglected and the last summation is
approximately restricted to only the B sites that are NN of sites A. In the expression
in Eq. 2.20

t = (¢P(r — Ra— Rap)| VE(r — Ry — Rap) |6 (r — R.)) (2.21)
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is the NN hopping-term for R4 — Rp. In Eq. 2.20 I used

RABl = ba

Ryp2 = b — ay, (2.22)

R,p3 =b—ay,

Figure 2.3: Red (blue) atoms depict the sublattice A (B). Three NN vectors Rap;
defined in Eq. 2.22 are shown here.

Finally, for £4 = Ep = 0, the eigenvalue problem for the system in the matrix

form reads
0 t- eikb(l + e—ikal + e—z‘kaz) Ak: Ak:
= FE}
t-emRO(1 4 ethar  ethaz) 0 By By
(2.23)
After diagonalising we obtain
By = £[t||f (k). (2.24)

where f(k) = e*®(1 4 eta1 4 ¢=ikaz) and

|f (k)| = \/3 + 2cos(kay) + 2 cos(kay) + 2 cos(k(ay — ay)). (2.25)
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The spinor eigenvectors corresponding to E,f read

A |
"l = (2.26)

Bk :t€ie’c
The obtained energy dispersion has been shown in Fig. 2.24. In the 7 band, which
we considered, there exists one electron per atom. Because of the possible double
occupancy for each orbital 7 the band is half-filled. As a consequence, the Fermi level
is located exactly in the point shared by valence band (VB) and conduction band

(CB), for E' = 0, which are called K & —K and are the corners of graphene’s hexag-

onal Brillouin zone (BZ) (discussed further in section 2.1.4). This makes graphene a

semi-metal.
d b 8
15 ) . o ( 1.5 ) ®) d o) | (
| 6
1 1 ) k .
0.5 0.5 9
>
ky Oe o Oe | o 0 %
-0.5 0.5 2
- 1 “
) [ NS =allN
15 . . 1.5 ) °) |
. -8

-15 1 05 0 05 1 15 15 1 05 0 05 1 15
k. ke

Figure 2.4: Energy dispersion of the 7 band for graphene in the NN approximation
for a) VB and b) CB. Colors encode the energy. Blue dots mark the corners of the
BZ K & — K. Mirror symmetry of both bands is apparent.

Importantly, the energy dispersion given in Eq. 2.41 is symmetric w.r.t. £ =0
plane. This is due to the NN approximation. The NNN hopping introduces an
additional term which breakes this symmetry, which is explained in what follows.

Considering NNN means including the last term in the diagonal element of the
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Hamiltonian in Eq. 2.19. The term reads

% Y. SRRV — R VP (r - Rp) |6 (r — Ra))

R,,R,#R4,Rp

1 . o
=~ 2. RN — Ry VE(r— Rp)[¢"(r — Ra))
<<Rs,R/>> Rp
— % . N . tQ(e’ikRAAl + eikRAA2 _|_ eikRAAg, + eikRAA4 + eikRAA5 + e’ik:RAAG>

— t2(€ika2 + eikal + e—ik(ag—a1) 4 e—ikag + e—ikal + eik(ag—aﬂ)j (227)

and analogously for sublattice B. In the expression in Eq. 2.27 only the NNN terms

were included and further neighbours were neglected. In Eq. 2.27

ty=(¢*(r — Ra— Ram)| > _Vs(r — Rp) |¢*(r — Ra)) (2.28)

is the NNN hopping integral and the NNN vectors are
Raa1 = ag,

Rape = ay,

Raa3 = a1 — ao,

(2.29)
Rang = —ag,
Raas = —ay,
Rise = as — ay.
Therefore, the Hamiltonian in the matrix form reads
ta-gk) t-f(k A A
2 9(k) B g [ (2.30)
where
f(k) — eik:b<1 4 efika,l + 671'1602)7 (231>

g(k) = 2cos(kay) + 2 cos(kas) + 2 cos (k(ag - al)). (2.32)
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Figure 2.5: Energy dispersion for the NNN approximation for a) VB and b) CB.
Colors have the same meaning as in Fig. 2.4 The mirror symmetry of CB and VB
has been broken.

After diagonalising we obtain

BE = tag(k) =t (k)| = tag(k) + /3 + g(k). (2.33)

The energy dispersion has been shown in Fig. 2.5.

2.1.4 Massless Dirac fermions: low energy spectrum of graphene.

In order to describe low energy dispersion for graphene we need to determine the
location in the k-space where the energy gap closes. These points, K & —K (shown
in Fig. 2.6), mark the two nonequivalent corners of the hexagonal Brillouin zone of
the honeycomb lattice. Because the gap closes at K & — K, we can write

f(K) -1 + e—iKal + e—iKaz — 0’
(2.34)

f*(K) -1 + eiKal + eiKaz _ 0’
which gives

e—ZKaQ -1 4 G_ZKal,

(2.35)
eiKal -1 + eiKGQ'
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Multiplying both equations above by their conjugates we get

2
Ka;, = :l:—7T + 2mm,
2?; (2.36)
Ka, = ZF? + 27n.

Taking into account the choice of basis vectors given in Eq. 2.10 and solving the

equations Eq. 2.36, we obtain

(2.37)

For any (m,n) we get

_ (42 1 VB
K =(£3,0) or K = (45, ") (2.38)

in the units of 27 /a. It is important to state that two of these K points are inequiv-
alent and the rest can be obtained by translating these two points by the reciprocal

space vectors G & G5 (shown in Fig. 2.6).

Figure 2.6: 1st BZ for graphene. K and —K mark two inequivalent corners, and I’
is the centre of the BZ. Vectors G, and G4 are the reciprocal lattice vectors.

Let us now consider the energy dispersion in the proximity of K & —K for small

q, so that k = K + q. We then expand expression in Eq. 2.34 as a Taylor series with
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only linear terms. Using Eq. 2.36 we obtain

F0) = (K + g) = 1+ eFKargmines y (Fikoaines _

= —iqa,eT K" _jqa,cTHE® (2.39)

V3 .
= TCL(:FQI' + iqy)

and e = 1 to the first order in g because K - b = 0. Note that for a lattice rotated
by 90°, the final expression in Eq. 2.39 would be f(k) = %ga(iqx + g,) due to rotated
unit vectors a;/,. The linear expansion of the expression given by Eq. 2.32 produces
a constant in both diagonal elements, shifting the spectrum only. I therefore neglect
them. The expression given by Eq. 2.30 for small g around K point reads

f(K +q) 0 Ba(q, — igy)
1t = |t| —vyq - o,

(K +q) 0 %ga(qz +iqy) 0
(2.40)

where UT{ is Fermi’s velocity for graphene and stgma is Pauli matrix vector. Eq.
2.40 has a form of the Dirac equation for massless particles (zero on diagonal), which
shows the relativistic nature of the carriers close to K and for low energies. We get
the solutions

E = t[|f(K + q)| = £uvylq]. (2.41)

This linear dispersion is characteristic for massless Dirac particles and has been shown
in Fig. 2.7. This is the reason the corners of BZ are called the Dirac points and the
shape of the energy dispersion - a Dirac cone. This expansion is true only close to
the K points and only for low energies. High-energy parts of the bands significantly

differ from this behaviour.

2.1.5 Massive Dirac fermions: gapped graphene.

I will now show how to enable gap opening in graphene at K. If the atoms on the

sublattices A and B have different energies (e.g. from a hBN substrate material), one
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Figure 2.7: Low-energy dispersion given in Eq. 2.41 around the Dirac point K.

has to take into account the diagonal energy terms E4 and Ep that are in general

different. The gapped graphene NN TB Hamiltonian reads

Ea - 7R)) [ A — B, A ) (2.42)

t*- f*(k) Egp By, By

After diagonalising we obtain

+ A2
Ef = £\ (k) + (2.43)

where A = |E4 — Ep| is the magnitude of the gap that opens at K (and I choose
(Es+ EB)/2=0).
The linear expansion of bands near K gives a massive Dirac Hamiltonian with

the bands separated by a gap A, a mass term which enters expression in Eq. 2.40 on
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a diagonal

2 t-f(K+aq)|
t- (K +q) -2 -
3 Lat(q, — igy) A
=vrq -0+ JZE.
\/Tgat(% + iqy) _%

The solutions are now

+ A? A2
Eg =2\ 2K +a)+ — =+ vjlaf + - (2.45)

where A opens the gap, as visible in Fig. 2.8 a).
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Figure 2.8: a) Low-energy dispersion obtained by linear expansion of the expression in
Eq. 2.45 around the Dirac point K for A=0.1eV. Energy gap appears. b) Eigenvector
components given by Eq. 2.46 for ¢, = 0.

The eigenvectors of the Hamiltonian in Eq. 2.44 are

= |
9 iﬂ(—]i-ezl:wq
(2.46)
|—+K) = Qg
a - e*ita ’
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where 4 stands for K and —K and where

A
ot = EqjE 3
q Nq:l: ’
+ _ vrlq|
By = Nex' (2.47)

A
Ngs = \/QE;: (E;: + 5).

The components of the eigenvectors given in Eq. 2.47 were plotted in Fig. 2.8 b).

2.1.6 Second quantisation.

I will now introduce the second quantisation formalism, which focuses on occupa-
tion numbers, in anticipation of many-electron systems described in later parts of
this thesis. In order to rewrite the TB model introduced in 2.1.3 using the second

quantisation, we start with field operators

e (r) = Z Cak¥a(T)

a=A,B

V)= Y (),

a=A,B

(2.48)

which describe destroying/ creating an electron on sublattice A or B at position r
and at k and cay (cpg) and cTA k (CL ) are annihilation and creation operators of an

electron at k and on sublattice A (B) with fermionic anticommutation relations

{ci,ei} = {CI,C}} =0

{ei C;} = dij,

(2.49)

where indices 7,7 include both the k and the sublattice index. The creation and

annihilation operators act on vacuum and a filled state respectively to create new
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occupation states

CL,k ‘O> = ‘¢IIZ> )

car |U5) =10).

(2.50)

We can use the field operators defined in Eq. 2.48 to obtain the matrix elements of

the Hamiltonian in second quantisation

/ drU* (r) HUR(r / dr Y el wk(r) Hegptf(r)

a,f=A,B

- Z (Y |HW)B >akc/3,

a,f=A,B

Z 5ca xCak, (2.51)

a,f=A,B

which rewrites the Hamiltonian in Eq. 2.42 in second quantisation form.

2.1.7 Finite structure tight-binding model: graphene quan-

tum dots.

[ will now show the TB model for graphene quantum dots (GQDs), which confine elec-
trons within a small flake of graphene lattice. The Hamiltonian in second quantised

form reads

Hrp =Y €ioll cio+ Y (tycl cj0 + hoc), (2.52)

io <ij>,0
where i, j denote atomic sites within the quantum dot and cj}a (¢ir) creates (anni-
hilates) an electron on a p, orbital on a site i with spin o. The second summation
in Eq. 2.52 is over the NN pairs of sites and ¢;; is the hopping integral for the bond
between neighbouring i and j sites; €;, denotes the onsite energy of atom i and for
spin 0. Note that as shown in section 2.1.3, the NN of sites within sublattice A are
always in sublattice B, and vice versa.

The Hamiltonian in Eq. 2.52 is represented as a matrix in the basis of N sites

within a QD and diagonalised to obtain the single electron energy states. The con-
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Figure 2.9: Energy gap depdendence on size of graphene quantum dots. Blue (red)
points denote energy gap of structures with zigzag (armchair) edge type (smallest
examples pictures in insets).

finement opens the gap in the graphene layer, which decreases with size and in a limit
of an infinite structure will converge to the gapless spectrum of bulk graphene. The
energy gap dependence on the size of the flake is shown in Fig. 2.9 for armchair-
edged and zigzag-edged hexagonal GQDs (smallest examples shown in the inset).
The energy gap is calculated in the units of the hopping element ¢;; = ¢ in Eq. 2.52.
Despite the same shape of the QDs, different edge termination induces an energy gap

oscillation as a function of size.

2.2 Many electron picture.

So far T have considered a single particle (SP) picture, which means that electrons
in the system are not interacting and each behaves in the same way. However, elec-
tronic, optical or magnetic properties of 2D materials are largely determined by the
interactions between the particles in the system, which will be considered in this

section.
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2.2.1 Many-body Hamiltonian.

The interaction beyond the SP picture is introduced in the N-electron Hamiltonian

through the Coulomb potential V., between all pairs of electrons:

H= ZhSPJr > Veelri —1y), (2.53)

wl#y

where ¢, 7 count electrons and fzfp is a SP Hamiltonian for electron ¢. The wave-
function of the N-electron system is now an antisymmetrised product of the single
electron wavefunctions, described with a Slater determinant (or as I later show, as a

combination of Slater determinants)

¢1(r1) a(ry) - on(ri)

B(ry, 19, ) 1 ¢1(:’l“2) ¢2(:7'2) (bNETQ) | (2.54)

¢1(r1) ¢a(ry) - on(ri)

where ¢(r) denote orbitals of the SP solution. A single Slater determinant can be

written in short as

\I/(’rl,’l”g,...’l"N) = <T|¢1,¢2,...¢N>, (255)

which takes the form of
U(ry, 79, ..7y) = (r|cleh...cl 0), (2.56)

in the second quantised notation. The interacting part of the Hamiltonian in Eq.

2.53 expressed in second quantisation reads

A 1
Hee = 5 Z <Z]| 4 ’kl> Cig Ja’ckff’clm (2'57)

ijklo,o’

where

(i5| V |kl) = / / drdr' 7,7, | |¢,w¢l(, (2.58)
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e2

are the two-body Coulomb scattering matrix elements for V., = The matrix

Ir b
elements (ij|V |kl) depend on the specific form of the SP wavefunctions 1, j, k, [,
which will differ for problems considered in this thesis. The following subsections
will introduce different ways to treat H..: mean-field approaches within Hartree-Fock

(HF) method and density functional theory as well as configuration interaction (CI)

method.

2.2.2 Mean-field methods.

The many body Hamiltonian in Eq. 2.53 becomes quickly too complex to solve for
a large number of interacting electrons. It is therefore useful to introduce approx-
imations to the form of electron-electron interaction term in Eq. 2.57. Mean-field
methods take the interactions into account in a mean-field manner, which involves
solving the problem for a single electron (quasiparticle) placed in an effective poten-
tial originating from the interactions with all the other electrons [130]. This effective

term is calculated using the electron density

pr) = D |ao(r), (2.59)

A<Ap,0

where A runs over occupied SP orbitals ¢, ,. We can define a creation operator by,
that creates an electron on a SP mean-field orbital [¢3%) = bl |0), which can be then

expanded in terms of the creation operators in the TB basis as

‘w = bio‘ |0 Z AZ>\0' Cio

Z Az/\o bia

(2.60)
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The electron density operator in second quantisation becomes

p= > blby

A<Ap,0

= Z ZAMJ zUZAAJUCJU

A<Ap, 0 @

= Z ( Z AMUA)\]U) CigCjo

©,7,0 A<Ap

_ T
= E PijoCisCios

?’7.770'

(2.61)

where p;j, are matrix elements of the density operator, and Ar is the index of the

highest occupied orbital.

2.2.3 Hartree-Fock approximation.

This section is based on Ref. [130,131]. The HF method involves the following mean-

field approximation to the interacting term in Eq. 2.57:

7T ~ Al ot T T
Cw.CJU/CkJ/CZU ~ Cicr<cjo’ck0'>010 + <Cio'cll7>cjo’ck0/

- C;Lack’ﬁ' <C}L‘gfclc>5aa’ - <C;Lgckra’>cj‘glcla§aa’ (262)

= 2( <CT 1Co! >CZU - C;‘rgcka’<c;r'glcla>6aa’)7

where (C;U,C]m/> = pjrer and the expectation values are calculated for the HF GS
wavefunction (c}g,ck0/> = (c§g,ck0/> ur. The assumption of the HF method is that the

HF ground state (GS) wavefunction can be described by a single Slater determinant

(HF) = ] .5, 10). (2.63)
A<
which involves N electrons placed with opposite spins on lowest N/2 levels A (with
no spin splitting of levels).

Following the approximation in Eq. 2.62, the interacting Hamiltonian in Eq. 2.53
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becomes the HF Hamiltonian

Hyp = Z EiCl Cio + Z ( (ij| V |kl) — (ig| V |lk) (500/),0]-;60/010010, (2.64)

ijkloo’

where the 1/2 from Eq. 2.57 cancels the factor of 2 in Eq. 2.62 and I replaced
ko' <> lo in the second term. The matrix elements (ij| V' |kl) and (ij| V' |lk) in the
second term of Eq. 2.64 are direct and exchange terms respectively. The Hamiltonian
in Eq. 2.64 contains the density pj,, which itself is obtained from the eigensolutions
of the same Hamiltonian. It therefore needs to be diagonalised in a self-consistent
manner. To start, a trial density matrix p;.; is used, which allows for diagonalising
the problem to obtain the eigenvectors, which are then again used to obtain the new
density matrix p. The solutions eventually converge after several steps.

The search for the GS HF energy in this self-consistent process is possible because
of the variational principle. It states that the exact GS energy is always lower or
equal to the GS energy obtained from a trial wavefunction:

(V| 1)

B ="y

> B, (2.65)

where the exact GS energy FEj is reached for the exact GS wavefunction ¥,. A
converged energy solution will overestimate the true GS energy.

The converged solutions of the HF Hamiltonian in Eq. 2.64 give the quasiparticle
states 1y, which include the interactions from the other electrons in the VB in the

form of a self energy

S= 3 (20 V ) = OV 1) ) (2:66)

I

where the factor of 2 comes from 2 electrons occupying each quasiparticle level in
the GS and they both interact through direct term, but only same spin electrons can

interact via exchange.
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2.2.4 Density functional theory.

I will now describe the density functional theory (DFT) used widely to perform real-
istic calculations of systems with many electronic degrees of freedom. This section is
based on Ref. [132].

DFT uses two Hohenberg-Kohn (HK) theorems. The first HK theorem states that
the external potential V,,,(7) of an electronic system is uniquely determined by the
GS density po(r) up to a constant. This implies that the many-body wavefunction
and all properties of an interacting system are also fully determined by po(r). It is an
important improvement on the assumptions of the many-body problem, because for
N electrons the many-body wavefunction W({r;}) is 3N-dimensional and the density
is only 3-dimensional.

The second HK theorem defines an energy functional F [p(r)] for any external
potential V.. (7). It states that for any V.. (r) the exact GS of the many-body
system is determined by the global minimum of the energy functional Ey[p(r)] =
min (V| H |¥) = min £ [p(r)]. From the interacting Hamiltonian given in Eq. 2.53

the explicit form of the functional is constructed as

Elp(r)] = / Vet (T)p(r)dr + = / - drdr +Eml[ (r)]. (2.67)
Klnetlc Nonclassical
energy External Hartree term interaction
potential

Out of the four terms in the functional in Eq. 2.67 only the external potential is
system-dependent, while the rest is universal for any system. The external potential
is also known exactly and as is the classical Coulomb interaction in the form of a
Hartree term Fp | =3[ (|: rﬂ 2p(™) gpdp’. The other terms are a priori unknown.

This is where we need the Kohn-Sham (KS) ansatz. It assumes that the GS
density of the interacting system p(r) is equal to the GS density of some fictitious

non-interacting system, which could be solved exactly. To solve the fictitious problem

an approximate density functional is needed to replace unknown functionals in Eq.
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2.67. This allows for constructing the KS functional

Exs[p(r)] = Tsp [p(r)] + / Vear(r)p(r)dr + Ey [p(r)] +  Exclp(r)] ,  (2.68)
—— J y N—— ——
Kinetic ~~ Hartree term  Exchange-correlation
energy Extter?'all functional
potentia.

where Ex¢ [p(7)] is the exchange correlation (XC) potential, which includes the non-
classical interaction: exchange and correlations, as well as the difference T [p(r)] —
Tsp [p(r)] between the kinetic energy for the interacting system and the kinetic energy
for the fictitious SP system.

The introduction of the KS functional Fxg allows now for formulating the problem

for the fictitious non-interacting system:

2m

( Py vmm) WS(r) = K9S ), (2.69)

where the effective KS potential is the functional derivative of Exg given in Eq. 2.68,

Vis [p(T)] = %{E”(T‘)], and it reads

Vics [p(r)] = Vear(r) + Vi [p(7)] + Ve [p(r)] - (2.70)

The solutions of the fictitious problem in Eq. 2.69 are KS orbitals, similar in

nature to the HF orbitals. The KS orbitals allow for the calculation of the density

pr) = 25 [l

KS equation in 2.69 is solved self-consistently until the solutions converge and yield

2, which is then used to calculate the KS potential in Eq. 2.70. The

a GS density p(r) of the interacting system. Importantly, only the density can be
directly taken as a proper solution of the interacting problem, while the KS eigenvalues
and KS orbitals do not have a true physical meaning. However the KS eigenvalues are
widely used to describe the electronic properties of materials as they often produce
results comparable with experiment. Despite this, they should be treated with caution
as the energy gaps are often underestimated in the DFT calculations. This is a

consequence of the main assumption of DFT: the GS density. It is only the GS
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properties that are described well by DFT.

Also, the results of a DFT calculation largely depend on the approximations
made to produce the exchange correlation functional Exq [p(r)]. If the exact form of
Exc [p(r)] was known, a DFT calculation would yield the exact GS. Out of all the
complex choices for the approximation of Ex¢, the simplest in form and the most
popular ones are functionals constructed within a local density approximation (LDA)

and generalised gradient approximation (GGA):

ELDA (p(r)) = / o) Ve (p(r)) di.

(2.71)
B (o] = [ ol Ve ), Volr')) .

with the GGA approximation depending not only on the density at a point r, but also
on its gradient at . Other approximations in DF'T involve numerical approximations
in solving of the KS equation in Eq. 2.69. This requires skill in choice of basis
sets, Brillouin k-point meshgrids and convergence criteria for the self-consistent loop

procedure, which I will briefly discuss in section 2.2.5.

2.2.5 Example of a DFT calculation: bulk MoS,.

I will now describe a DFT calculation for bulk monolayer within the TMDC group.
The members of TMDCs have a chemical formula of MX,, where M is a transition
metal atom, such as W or Mo and X is a chalcogen dimer, such as Sy, Ses or Te,.
Here, I will consider one member of TMDCs - MoSs.

The crystal structure of MoSs looks like a graphene lattice from the top view, but
is composed of three layers of atoms, when viewed from the side - the plane of Mo
atoms makes up one triangular sublattice and two identical planes of sulphur atoms
placed below and above the metal plane build the second sublattice (Fig. 2.10). The
analogy with graphene is visible if one consideres a unit cell made of Mo atom (blue)
on one site and a Sy dimer (yellow) on the second site. As these sites hold distinct

atoms, the onsite energies on A and B sites will be different, just like in gapped
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Figure 2.10: Crystal lattice of MoSy. The top panel shows the view from the top.
Blue (yellow) atoms denote Mo and S, sites. A green parallelogram marks the unit
cell, which contains 3 stoms (right). Bottom panel shows the plane of MoS, from the
side view.

graphene (section 2.1.5). We should therefore expect MoSs to have an energy gap at
K.

There are many available packages to conduct a DF'T calculation, which all use the
theory outlined in section 2.2.4, but they differ in practical numerical approaches used
in the calculation. I have used the Abinit code [133] to obtain the results presented
in this section. Below I present a short description of the performed calculation.

Abinit uses a plane wave basis to formulate the KS problem given by Eq. 2.69 and
is intended to study 3D periodic systems. However, any low dimensional materials
can be studied as well if the supercell approach is taken. To fulfill the periodic
boundary condition in 3D, the low dimensional object is repeated in all the “missing”
dimensions with sufficient spacing that makes the copies independent. A single copy
of the system is called a supercell. This is needed because a linear combination of
plane waves poorly describes a localised object, but performs much better if it is
periodically repeated. Fig. 2.11 depicts examples of a supercell for a 2D system, 1D

system and a 0D system, all build from a square lattice. For a standard 3D system
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the supercell is the same as a unit cell of the material.

For calculation of bulk MoS,, I will use the supercell for a 2D system, shown in
Fig. 2.11 a). The supercell will contain two neighbouring sites A and B, just like in
graphene, which has been shown for MoS, in Fig. 2.10 with a green parallelogram.
However, the supercell will now have a length in the z direction, which will be chosen
to ensure no tunneling between the planes repeated along z, just like it is pictured in

Fig. 2.11 a). The value set in practice was 28.3459 Bohr.

Figure 2.11: DFT supercell for a) 2D, b) 1D and c¢) 0D systems. Black dots are
atoms, green blocks show the 3D supercell and its dimensions are labelled with blue
symbols.

I will now explain the choice of the number of plane waves in the basis. According

to Bloch’s theorem

U,k(r+dj) = e*NW, 4 (r), (2.72)

where n labels bands and d; is the supercell vector, for j = x,y, 2z, as shown in Fig.

2.11. The wavefunction VU, in Eq. 2.72 reads

1 .
0, = ———c®u,(r), 2.73
,k(r> \/WSCe u 7k(/r) ( )

where w,, , is the periodic part of the Bloch wavefunction, N is the number of super-

cells and Qg¢ is the volume of the supercell. The function w,j is expanded in the
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basis of plane waves as

Unge(r) =t 1 (G)e", (2.74)
G

where G are reciprocal superlattice vectors, such that e/¢% = 1, and u, x(G) is the

Fourier transform of w, x(r), u,x(G) = g [q. . € "% unk(r)dr. The wavefunction
in Eq. 2.73 becomes
1 ,
U k(1) = == tn k(G T, (2.75)
VO &

The energy of the a plane wave in the basis is then —%267;(’”@7“ = @ei(’”@’ﬂ

As the coefficients u, (G) decrease with kinetic energy @, the set of the plane

waves taken in the calculation can be chosen based on a cut-off energy E.,;, such that
(k+G)?

5~ < Ecu. The energy E.,; is a parameter of the calculation and needs to be
chosen based on the convergence of total energy of the system with varying E.,;. The
results of such convergence calculation are shown in Fig. 2.12 a). The total energy

Eio; converges at E.,, = 30 Ha with 0.00006 Hax 1.7 meV precision sufficient for a

calculation of the bulk MoS, band structure.
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Figure 2.12: Total energy convergence with varying a) E., and b) k-point mesh
density.

Another important parameter is linked to calculating all the expectation values

in the DFT procedure: the choice of the grid of k-points. E.g. the electronic density
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(in case of a periodic system) is calculated as

occ

o) =3 am)P =Y QL / F(Er — Bug) lthus(r) ] dk, (2.76)

where (257 is the volume of the BZ and f is the Fermi distribution. The choice of the
mesh of k-points in Eq. 2.76 follows the Monkhorst-Pack grid in the I** BZ [134]. An
example of a denser and coarser mesh is shown in Fig. 2.13. a). A mesh can also be
shifted from the origin (shown in Fig. 2.13. b)) or it can combine both shifted and
unshifted meshes (Fig. 2.13. ¢)). The optimal choices for different lattices are well
known [134]. However, the mesh density is always a parameter of the calculation.
The denser the mesh, the more costly the calculation becomes. Fig 2.12 b). shows
the results of a convergence study with respect to the number of k-points n; in one
direction for an optimal shift (0,0, 1/2) for a hexagonal lattice. The total energy Eyy

is well converged already for n; = 8 within 0.00004 Ha~ 1.1meV.

Figure 2.13: Monkhorst-Pack k-point grid for a) varying density, b) different shift and
c) for a mixture of shifted and unshifted meshes. G; are reciprocal lattice vectors.

It is important to also mention a further step of the DFT calculation, which
involves optimisation of the supercell shape during the self-consistent procedure. The
KS problem for electrons, given by Eq. 2.69, is solved self-consistently, each time for a
varied position of ions, to yield the lowest-total-energy arrangement. This procedure
needs to be conducted in two steps: first considering a rigid supercell with ions
displaced within the cell, and then allowing the supercell to expand and contract to

produce an optimal supercell spacing |d,|, |d,|, |d.|.
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Figure 2.14: DFT band structure of MoS,. (left) Chosen path in the BZ. (right) Band
energies for the path shown on the left. Energies are marked with black lines, while
the colorful overlapping patterns depict the orbital content of bands. The thickness
of the pattern encodes the amount of orbital content. Colors label Mo orbitals for
mg = 0 (red) and my = £2 (blue). The energy band gap is shown at K with a green
symbol.

After this optimisation, the electronic density obtained in the self-consistent cal-
culation is correct and can be used to calculate the band structure, as a last step.
This step does not involve any self-consistent procedure, but performs a set of expec-
tation value calculations for a chosen k-point path in the BZ. Fig. 2.14. shows the
resulting band structure and the path in BZ used to obtain it. Additional run-time
parameters allow for extracting the orbital content of the bands, shown in Fig. 2.14
with colors for the Mo atoms. These results were obtained with the following values

of the most important parameters mentioned above:

(Idal, |dy|, |d=]) = (5.9077,5.9077, 28.3459) Bohr,
E.t = 30.0Ha,
(2.77)
E,u(PAW) = 55.0Ha,

ng = 10,

and the XC functional and has been chosen as the Perdew-Burke-Ernzerhof (PBE)
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XC functional [135], and the projected augmented wave (PAW) method has been
used [136,137]. It is a standard choice to treat the core electrons on atoms. The
simplest method is the norm-conserving method, which “freezes” the core electrons
and only does the self-consistent calculation for valence electrons. The PAW method
incorporates in it both the valence and the core electrons. It is more costly and
requires an additional plane wave parameter, listed here as E.,(PAW), which has
been chosen in a similar convergence study as FE.,;. In the above calculation the
spin-orbit (SO) coupling has been enabled, which produced the SO splitting of the
bands.

As shown in Fig. 2.14., the direct energy gap E, for bulk MoS; is located at K,
where the VB is made primarily of m, = £2 orbitals and the CB is made mainly
of m, = 0 orbital. This composition is reversed at I'. The VB and CB have an
additional contribution of the p orbitals from the sulphur dimer. This orbital content
motivates the choice of orbitals in the TB presented in section 4.1. The CB includes
also an additonal minimum at @, which has a distinct orbital composition from K.
This shape of the CB around @ and K causes band nesting and the optical effects

described also in section 4.1.

2.2.6 Configuration interaction method.

Methods more accurate than the mean-field approach are often needed, e.g. for
studies of strongly-correlated systems or describing optical properties and excitations
in the system. Configuration interaction (CI) treats the full interacting Hamiltonian,
with the interacting part given by Eq. 2.57. We seek for a solution of the form of a
linear combination of all possible configurations of N electrons on M SP orbitals (e.g.
obtained from TB model). An example of a CI wavefunction for N = 3 electrons

reads

V(N =3) =) Apgclehc 0) = Apgr Ipar) | (2.78)

pgr par
where p # q # r label SP states, including spin, and |pgr) is a single configuration of

N = 3 electrons, which is a short notation for a single Slater determinant given in Eq.
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2.54-2.56. Contrary to mean-field methods, which produced single Slater determinant
solutions, CI eigenvectors are linear combinations of many Slater determinants. A,
in Eq. 2.78 needs to be determined through diagonalising the CI Hamiltonian.

The CI basis consists of all possible configurations of N electrons in M SP en-
ergy levels. These configurations can be categorised into blocks of different S, =
(Ny — Ny)/2 for Ny (N)) electrons with spin up (down). This allows for splitting
the Hamiltonian into blocks to speed up the diagonalisation. The speed-up is needed
as the number of configurations in the basis grows quickly with N = N; + N, and
M = My + My, as a price for accuracy in CI. The number of configurations can be

calculated as

VANES
NCOnf = (279)
N\,

and the S, subblock of the Hamiltonian is a Neops X Neons matrix.

I will now present examples of calculatng the matrix elements of the CI Hamil-
tonian, starting with the diagonal matrix element for an example N = 3 electron
configuration |a | b ] ¢ 1) (with electron spin explicitly stated), shown in Fig. 2.15

(most left). The SP part of the diagonal CI Hamiltonian matrix element reads

<a¢b¢cT|]:I5p|a¢b¢cT>:Z€p<a¢bicﬂc}ocpﬂaibicﬂ

- Z ep (0] Ca¢0b¢CCTC;,gcpc,(:(‘T:T(:Zlcli |0) (2.80)
po

=c,+ep + e

The interacting part of the diagonal matrix element reads

. 1
(alblct|Helalblet) = 5 Z (pq| V'|rt) {abc]| c;rwcgo,cm/cw |abc)

pqrtoo’

1
=3 D (pal V [rt) (0] cayesycorchoClyrorcioclicl cly 10)
pqrtoo’

= (ab| V' |ba) — (ab| V |ab) + (ac| V |ca) + (bc| V |cb) .

(2.81)
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Figure 2.15: Example configurations of 3 electrons. Each panel depicts a single
configuration mentioned in this section. Red (blue) arrows depict electrons with

spin up (down), and black lines represent spin-degenerate energy levels (labelled with
letters a-e).
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The interacting term H.. also produces off-diagonal elements, but a Coulomb
operator cannot mix configurations different by more than two electron occupation,
so many off-diagonal terms vanish and the matrix becomes sparse. We can categorise
the off-diagonal terms into involving configurations different by 1 or 2 electrons. I

will give two examples of both (bold symbols highlight the scattering electrons):

. 1
<CL \l/ b ic T’ Hee |0J i b \Ld T> - 5 Z <pQ‘ Vv |Tt> <0‘ CalCpCet C La ZU/CTU/CthIlT CZJ,C:LL ‘O>

pqrtoo’

= (ac|V |da) + (bc| V |db) ,

A 1
<Cl b lc ﬂ Hee ‘a ld | c T> - 5 Z <pQ‘ Vv ‘Tt> <0‘ Ca|Cb)CctC ;r?a Zglcro’ctaCiTCLLC;u ’0>

pqrtoo’
= (ab| V' |da) — (ab| V |ad) + (cb| V |dc) ,

(2.82)

N 1
(alblct|Helaldlet) =7 > pal VIrt) (0] capeoeer chyclpcrocinety elyych 10)

pqrtoo’

= (cb| V' |de)

N 1
<G, J, b J/ C /H Hee |d J/ e \L c T> = 5 Z <pQ| 4 |Tt> <O| ca¢cb¢CCTC;r;oczgfCTU’CtaCZTCZ¢CL¢ |0>

pqrtoo’
= (ab|V |ed) — (ab|V |de) ,
(2.83)

where all the configurations involved have been shown in Fig. 2.15 with spin down
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(up) electrons marked with blue (red).

2.2.7 Exciton in configuration interaction method.

In order to study optical properties of materials, I will also consider excitations of
electrons from a GS of a filled VB, induced by optical fields. Because the VB contains
many electrons and the excitations involve only a few particles, I will consider a basis
of excitation configurations. An example of a configuration for one excitation in the

basis of SP states reads

limo) = ¢! ¢, |GS) = ¢! _cis H CLTCLi |0) . (2.84)
pinV B
An eigenstate of the CI Hamiltonian for basis of such configurations is a single exciton

wavefunction

1X) =) Ao |lmo) (2.85)

where the exciton wavefunction coefficients A;,, are obtained from the eigenvalue

problem in the form of a Bethe Salpeter equation [59]

( (Emo + Lmo) — (€16 + Zio) >Alma + Z (Vijim — Vijmi) Aijor = EApme (2.86)

ijo!
where I will now derive the contributions from self energy ¥ and the form of scatter-
ing matrix elements Vijim, Vijmi. 1 will start with the derivation of diagonal matrix
elements of the CI Hamiltonian, which is diagonalised to give the solutions of Eq.
2.86. The energies of configurations in this case will be measured with respect to the

energy of the GS, which for the example shown in Fig. 2.16 (left) can be calculated
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as
Egs = (GS| Hep |GS) = Z e, (0] c(l¢c;,¢cCLTCg)Tc]J[f,(,cpgc,T)Tc(Tch(Lcli |0)
po

1
+ 3 Z Vogrt (0] Cayco icaTCbTCLacjza’CTU'CtGCZTCLTCI];icl 1 10)
pqrtoo’

= 2, + 2¢p + (aa| V |aa) + (bb| V' |bb)
+ 4 (ab| V |ba) — 2 (ab| V |ab) ,

(2.87)

where Vi = (pg| V' |rt). An example excitation configuration (shown in Fig. 2.16 in

the middle) then has the energy

Ejpery = (be M Horlbe 1) = £, (0] cayehyCatCorchycpoclyclich el 10)
po

1
+ 3 Z Vogrt (0] Cayco icaTCCTCLoCZa’CW/CtUCZTClTCZJ,CL 1 10)
pqrtoo’

=2e,+ &b+ €
+ (aa| V |aa) + 2 (ab| V' |ba) — (ab| V' |ab)

+ 2 (ac| V' |ca) — (ac| V |ac) + (be| V' |cb) .

(2.88)
The energy difference between the GS and configuration |bc 1) then reads
E\bcT) - EGS = — <bb’ \%4 |bb> -2 <6Lb| \% |bCL> + (ab| \%4 |6Lb>
+ 2 (ac| V' |ca) — (ac| V |ac) + (bc| V' |cb) + €. — &4
(2.89)

R S (<bc|V|cb>—<bc|V|bc>),

= (50 + Ec) - (gb + 2(;) - ‘/vertem(ba C),

where Y stands for self-energy as in Eq. 2.66 and Vi e4ee = Vp — Vx is a vertex
correction, which prevents overcounting while using self energy terms, and it consists
of the direct term Vp = (bc| V' |cb) and the exchange term Vx = (bc| V' |bc). Eq. 2.89

can be regarded as the difference of the interaction of the excited electron and the
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left-over hole with the filled VB, corrected by the interaction of the electron with the
hole itself. This situation is pictured in Fig. 2.16, using filled (empty) symbols for
electrons (holes) with spin up (down) in red (blue), and with the Fermi level marked
with a green dashed line. In configuration |bc 1) an electron with spin up has been
promoted above the Fermi level and it no longer occupies the level b (only an electron
with spin down is still present), which creates a hole below the Fermi level with an
opposite spin to the spin of the missing electron (hole spin-down marked with an
empty blue arrow). The indices labelling the configurations can be regarded as the

indices of levels hosting an electron-hole pair.

" b b — N
\4 v
A
d d — d
\4 v
Electron picture Electron picture Electron-hole picture

|GS) |bc T)

Figure 2.16: (left) GS configuration, with all levels filled with electrons (solid arrows)
below the Fermi level Er. (right) An excitation schematically drawn in the electron
and electron-hole picture. In the electron picture, when an electron is promoted above
the Fermi energy, an empty level is left behind. The electron-hole picture regards the
empty level as a positive charge - a hole (empty arrow), which has an opposite spin
to the missing electron.

The matrix element I considered so far in Eq. 2.88 enter the CI Hamiltonian on a
diagonal. I will now demonstrate the construction of an off-diagonal matrix element
between the excitation configurations. Let us consider a scattering of an arbitrary

configuration |ad 1) or |ad ) into configuration |bc 1) (all shown in Fig. 2.17), given
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by

(be Y| Hee lad 1) = Z Vogrt (GS]| chccT pa (T]U,cm/ctchTcw |GS)

pqrtaa’

= <ac| V|bd) — (ac|V |db) = Vp — Vi,

(2.90)
(be 1| H., lad |) = Z Vogrt (GS]| chccT c:rm,cm/cwcgicw |GS)
pqrtocr
= (ac| V |bd) = Vp,

where the positive and negative terms are the direct Vp = (ac| V' |bd) and exchange
Vx = (ac| V' |db) terms respectively. The scattering processes for both cases have been
shown in Fig. 2.17 in green arrows, with solid (dashed) lines correspinding to direct
Vp (exchange Vx) terms. Vy is only present in the case of the same spin scattering,
and the nature of the Coulomb operator V.. does not allow for it in case of an opposite

spin scattering.

|bc T) lad T) |bc T) |adl)

Figure 2.17: Example off-diagonal matrix elements for configurations. (left) Same
spin configurations. (right) Opposite spin configurations. When the spin of scattering
configurations differs, only the direct element (Vp) is possible. For the same spin
configurations also an exchange term is allowed (Vy).

It is important to notice that the SP level indices labelling the configurations
do not enter the final matrix elements in the same order as they are written for
configurations. This is because the configurations here are labelled with electron
and hole indices and the Coulomb scattering matrix elements are defined here solely
for electrons. The green arrows in Fig. 2.17 demonstrate this fact by showing that

electrons in levels b and d will finally occupy levels a and d.
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2.3 Numerical methods.

In this section I will present the numerical methods and reference available software
that I have used to obtain the results included in this thesis.

I have written my own Fortran90 programs that create the TB Hamiltonians
described in section 2.1, the HF Hamiltonian given in section 2.2.3 as well as the CI
Hamiltonian given in section 2.2.6 and 2.2.7. The most complex CI calculations were
done using the )Nano code developped in the C++ language at the University of
Ottawa [138], which offered better efficiency than my own procedures. My own TB
results were used as an input to Q)Nano.

For diagonalisation of the Hamiltonian matrices I used several available packages,
described in section 2.3.1, which were chosen dependent on the size of the matrices,
number of sought eigenvalues and available resources on my own computer, on the
Quantum Theory Group cluster at the University of Ottawa and within the Compute
Canada clusters.

Often, for time and memory efficiency, I turned to multi-threading options for my
calculations. The interfaces that I used have been described in section 2.3.2. Section
2.3.3 includes the description of numerical integration methods needed to solve the
many-body Hamiltonians given in 2.2.6 and 2.2.7. The results from a DF'T calculation

are included only in section 2.2.5 and they have all been performed with Abinit.

2.3.1 DMatrix diagonalisation.

I will describe here three methods that I used commonly to diagonalise matrices.
If the whole eigenvalue spectrum was needed, or in case of small matrices which
can be quickly fully diagonalised, T used LAPACK routines [139]. It is an open-
source Fortran90 library of routines dedicated to linear algebra, which allows to solve
systems of linear equations and eigenvalue problems. It uses Basic Linear Algebra
Subprograms (BLAS) available in most programming languages.

The most often used LAPACK routines are DSYEV and ZHEEV, for a symmetrix

matrix of type double and hermitian matrix of type complex double respectively. These
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routines are based on reducing the matrix into a tridiagonal form to perform the QR
algorithm [140].

Some of the TB calculations produced Hamiltonian matrices too large for full
diagonalisation. I have considered MoSs nanoflakes of up to 800 x 400 (as defined in
section 6.1.1), which corresponds to ~ 1.3 - 10° atoms and results in matrices of up
to 3.8 - 10% in dimension. Similarly, the largest CI calculation that I have performed
involved all configurations for Ny = 3, N| = 3 electrons (N = 6 electrons with S, = 0)
on My = 30, M, = 30 states (M = 60 states in total), which gives Ny ~ 1.6 - 107
and a Hamiltonian matrix Nepns X Neons (as defined in section 2.2.6), taking up to
350G' B of memory.

In case of these large matrices I used two methods: FFEAST algorithm within
the Math Kernel Library (MKL) by Intel [141] and Scalable Library for Eigenvalue
Problem Computations (SLEPc) routines within the Portable, Extensible Toolkit for
Scientific Computation (PETSc) [142].

The FEAST algorithm, as a part of MKL, providing efficient math processing rou-
tines, is a high performance routine for eigenvalue problems, insipred by the density-
matrix representation and contour integration techniques [141]. It takes a sparse
matrix as an input and delivers eigenvalues within a chosen energy range. It however
requires an initial guess of the number of eigenvalues within that range. I found it
useful for finding eigenvalues of the TB Hamiltonian, which can be scaled from small
to large systems and makes it easy to provide expectations for the energy spectrum
needed to input a guess. It is not well suited for the CI calculations unless a mean-field
approach is used to provide a guess of the energy spectrum.

PETSc is a toolkit for creating data structures and scalable scientific compu-
tations, which includes SLEPc, offering projection-based diagonalisaton techniques,
such as Krylov-Schur and Jacobi-Davidson methods [143,144]. SLEPc routines have
been implemented within the ()Nano code, which made it easy to use together with
the large scale CI calculations done with QNano as well. The benefit of SLEPc meth-

ods for CI is that a variety of input parameters allow to search for eigenvalues within
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a desired range of energies as well as to input a number of eigenvalues closest to a

chosen energy.

2.3.2 High performance parallel computing.

In interest of time and memory efficiency, I have used two open source parallel com-
puting interfaces, available in many programming languages, Open Multi Processing
(OpenMP) [145] and Message Passing Interface (MPI) [146]. They allow for exploit-
ing the many nodes and cores available through Compute Canada platform.

OpenMP is a multi-thread method, which uses a parent thread to divide tasks
between worker threads. They run their tasks concurrently, thus saving considerable
amount of time. OpenMP uses multiple threads with shared memory, which means
that all the threads access the same variables to read inputs and write outputs, unless
they are specified as private for a thread. This requires care when handling variables
to avoid overwriting memory and memory access conflicts between threads. I have
made use of the OpenMP in my own codes in order to enable parallel computing of
the scattering Coulomb matrix elements for CI.

The MPI protocol creates multiple processes, which do not share memory. The
program invoking MPI is responsible for distributing the memory between the pro-
cesses, for combining their results as well as for provoking the communication between
processes, when needed. I have used MPI, when utilising the SLEPc and FEAST di-
agonalisation routines.

Additionally, for evaluation of numerically demanding Coulomb scattering ma-
trix elements implemented in my own Python code, I have used the multiprocessing

package, similar in operation to OpenMP.

2.3.3 Numerical integration of scattering Coulomb matrix

elements.

I explain here the two approaches I have taken to obtain the scattering Coulomb

matrix elements given in Eq. 2.58 for two different projects: magnetoexcitons of
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massive Dirac fermions (mDf) described in chapter 5 and many electron properties
of MoS, parabolic QDs described in chapter 6.

The energy spectrum of mDf in strong magnetic field exhibits the Landau level
(LL) structure, which can be expressed as 2D harmonic oscillator (HO) states (as
explained in detail in chapter 5.). The HO basis is then used to calculate the scatter-
ing Coulomb matrix elements between the electrons in LLs, which can be obtained

analytically as [147,148]

<n/1m/1> nl2m/2| V |ngma, nymy) =

1 5LL LR(_l)n’2+m’2+n2+m2
1

Vi mi ng ima Inblmb ngtms!

min(nyi,n}) nll ny min(my,m}) m,l my
> »! > »!
p1=0 n b p2=0 D2 D2
min(ng,nj) nll ng min(mse,m}) m/2 Mo
p3! Z 4!
p3=0 2! p3 pa=0 yZ! 2!
1\? 1
_2\r -
(2.91)

where Lr = (my +mg) — (n1 +ng) and Ly = (m} +mb) — (n} +nb) are total an-
gular momenta for the electron pair before and after scattering (L, = Lg) , and
p = n} +nb+my+mg—p; —pa —p3 — ps. The expression in Eq. 2.91 involves multi-
plications and divisions by large numbers, which leads to accumulation of numerical
error. Such expression can only be evaluated using variables with large precision,
not available in every programming language. In order to evaluate this expression
I have written my own Python code using the mpmath package, which allows for
arbitrarily large precision numbers. Because increasing the precision order increases
the computation time, I treated it as a parameter adjusted by comparing the result
of a single integral to a result obtained from my own code in another computing
software, Mathematica. This is because Mathematica evaluates expressions based on
analytical transformations, which allows for reducing the numerical error. The price

for accuracy in Mathematica is long computation time, which motivated me to use
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a Python code with the multiprocessing interface and with routinely checks against
results from Mathematica. 1t allowed for better efficiency, while keeping the accuracy
level on a par with the accuracy in Mathematica.

I needed to perform another type of integral to calculate the Coulomb scattering
matrix elements for electrons in an MoSy parabolic QD. The SP energy levels of an
QD are expressed in the site TB basis, so the interaction between the SP states can
be expressed using the site basis (as explained in detail in section 6.3). Coulomb
scattering matrix elements in the orbital basis are therefore needed:

1V k) = [ 61(r)o5r)— S ontryonr)drar

| -l (2.92)

/ GG N" VPN Ry

where 14, 7, k,[ label atomic orbitals and ¥ = r/ag and g is the Bohr radius. To
evaluate this expression I used the Slater-type orbital (STO) form of the wavefunctions
¢(r) [149]:

6575 (1, €) = Y™ (9. 0)Ru(r. ), (2.93)

where R, (r, () is the radial part of the wavefunction given by

Ry (r,¢) = Noopmt™ e ™", (2.94)

where r is in units of Bohr radius ag, constant ¢ depends on the chemical element and
Noorm = (20)" \/7 [149]. ¢ for Mo and S atoms are Cy, = 3.111 and (g = 1.827
[149,150].

The 6 dimensional integral in Eq. 2.92 is difficult to calculate accurately with
a straight-forward implementation. For correct results, an adapted point mesh is
needed, which is computationally demanding. To tackle this problem, I have used
an existing routine for numerical integration fgsl_monte_vegas, which uses the Vegas
algorithm, implemented within the GNU Scientific Library (GSL) [151] with a For-

tran90 interface (FGSL). This routine performs a multidimensional integral using a
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Monte-Carlo method, which involves large number of integrand function calls for ran-
domly chosen points from a defined mesh. The Vegas algorithm optimises the choice
of the mesh and is based on importance sampling. The points are selected from the
probability distribution of the integrand to ensure that the highest concentration of
points is located in regions making the largest contribution to the value of the in-
tegral. Within the Vegas steps, a preliminary result is obtained for a coarse mesh,
which allows for producing a histogram of the integrand and redefining a new denser

adapted mesh.



Chapter 3

Energy gap of hexagonal graphene

quantum dots

In this chapter I will show how the spectrum of hexagonal graphene quantum dots
(HGQDs) can be calculated efficiently after decomposing them into 1D rings [152].
Electronic properties of 1D rings can be solved for exactly.

Because of the distinct edge termination of zigzag-edged HGQDs (ZHGQDs) and
armchair-edged HGQDs (AHGQDs), the energy gap has different origin for these
QDs and it causes the gap oscillation with size shown in Fig. 2.9 [152]. The following
sections explain the formation of the energy gap in ZHGQDs and AHGQDs based on
the edge termination contribution.

To describe the electronic properties of HGQDs, a NN one-orbital TB model of
p- electrons in carbon atoms in graphene will be used. This model implicitly assumes
passivation of p,, p, dangling bond orbitals by hydrogen atoms, leaving p. orbitals
unaffected [153]. This choice is justified by the excellent agreement of the TB model
with energy gaps obtained within DFT (Fig. 3.1) [152]. The hopping integral ¢ for
the NN TB model has been fit by matching the energy gaps obtained within DFT
the TB model for benzene (first data point). The rest of the data points has been
obtained independently with these two methods and with the use of the previously

fitted value of t. The results of both methods agree extremely well, which validates

95
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Figure 3.1: Comparison of the energy gap of GQDs obtained from NN TB model and
DFT methods. The hopping element ¢ has been fot for the first data point (benzene)

and used to obtain remaining TB energy gaps.

the simple NN TB model that excludes the edge passivation.

3.1

Zigzag-edged graphene quantum dot: coronene.

Any ZHGQD can be decomposed into concentric 1D rings of carbon atoms, which are

linked together, as shown in Fig. 3.2 a). Fig. 3.2 b) shows how a 24-atom ZHGQD

(Z24), called coronene, can be regarded as two concentric rings of 6 and 18 atoms

each. Let us call them ring I and ring II, for the inner and outer ring respectively

(shown in Fig. 3.2 b)).

The SP TB Hamiltonian for coronene reads

Hyoy =1 Z c;‘rg—cja7

<i,j>0
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Figure 3.2: a) Decomposition of a HGQD into concentric rings (red). b) Coronene
regarded as two concentric rings (I and II).

where 7, 7 labels sites and it can be decomposed into three terms:
Hyon = Hr+ Hyp + Vg, (3.2)

where H 7 and H 71 are Hamiltonians for 1D periodic rings of atoms:

Ny
ﬁ] =t Z (CZUC,H_lo— + hC) )

i=1,0

Nir

I:I][ =t Z (Cy];gci—l-lcr + hC) s

i=1,0

(3.3)

and Ny = 6 (N;; = 18) for ring I (II), ¢ is the hopping integral and the definition
of ‘71_ 17 needs to be determined (the strength of coupling is controlled with 7). The

eigensolutions of the Hamiltonians in Eq. 3.3 are Bloch functions

1 Nr—1
\Ijk — eikald}l;
VN l;,cr

Nrr—1

(3.4)
1 iqgam
T 2

m=0,0

[
\IJII_
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where 1); are p, orbitals on sites, a is lattice constant and

2 2
k, = N = —Wn,nGZ,
Nra 6a
(3.5)
2T, 2 oo ez
n' — n =_-—s--n, .
™= N,a" " 18a
2 /
/
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by \ /
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Figure 3.3: Energy spectrum (in the units of t) of ring a) I and b) II. The size of
the ring determines the number of states n,n’. Energy gap of each ring Eé , Eg” is
marked. Fermi level is marked with Ef. c¢) Coupling rule for both rings (see text for

details).

The eigenenergies for ring I and II are analytical:

E;(k) = —2tcos ka,

(3.6)

Ei1(q) = —2t cos qa,

which has been shown in Fig. 3.3 a)-b) for both rings. At half filling, the Fermi level

E; is at 0 and the conduction and valence band edge energies are

E{™(N) = 2t cos

E{™(N) = 2t cos <

/N
¥ =

[\
)
w2
|
—_

|2
+ B
—

=
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for a ring of N sites. For large N the energy gap becomes

. : , 4t 1 1 1 1 1
Ering — E”ng _ E”ng ~ i < - ) ~N — ~ — ~Y 3.8
9 C % N S\ 7™ (2 N) N R Ndot ) ( )

where the gap E;‘ing is inversely proportional to the radius of the ring R, which

depends on the number of atoms enclosed within the dot marked by that ring as

1
\/Ndot )

3 ra '3 b 3
. _iig’f—*”/
2 m=-ggCca 2 ?
X k+
+2
1 [Ji=-22 1 =1
<)
o
> 0 0 % 0rq4a 1
- m=—4,4CD 5 —  VB|
(8 4]
! 11 1 g4z
m=-22CD —
2 -2 -2
3 -3 3

0 02040608 1
Tunnelling strength 7

Figure 3.4: a) Levels from both rings (marked with boxes, red and blue for ring I and
IT) given in Eq. 3.10e couple. b) Resulting energy levels of the coupled block as the
tunneling is turned on with 7. Blue energy becomes the VB of Z24.

I will now determine the coupling term f/[, 11 using the form of the Bloch wave-

functions given in Eq. 3.4. The coupling becomes

5 17
t

(UH Viear 1) = == D > ™™™ (] Vs [hn)
=0 m=0

(3.9)

5
t - t
. —i(k=3q)al _ 5
- Z € - k{3q,3q+2%}>
V618 = V3

where the tunneling matrix element (v Vi |thm) is only nonzero for NN pairs of
atoms (07,057), (17,371), ete. (as shown in Fig. 3.3 ¢)), s0 (01| Vi_rs [tm) = Gm.ar.

The selection rule k = {3¢,3q + %’T} in Eq. 3.9 enables block diagonal form of the
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724 Hamiltonian in Eq. 3.1 in the basis of plane waves labelled by k, ¢, because only

some k,, and ¢, couple. Using Eq. 3.9, the groups of coupled k, and ¢,/ (eq. 3.5) are

[ k) = |1, q-s) |11, q-2), |11, q4), (3.10a)
(L k—1) = 1, q-7), |11, q-1), |11, qs5) , (3.10b)
[, ko) = |11, q-6),|11,q0),[11,q6) , (3.10¢c)
(L k) = 1, q-5) |11, q1) |11, q7) (3.10d)
1, k2) = [11,q-4) , |11, q2) , |11, qs) , (3.10e)
11, ks) = |I1,q-3),|11,q5),[11,q9), (3.10f)

where the boxed groups produce unique subblocks in the Hamiltonian.

3 a 3 b3
2 . e _gscn 2 zé
m=—7,7 G -
1 [Ji=-22 e 11 1 —
I
- m=—55CD 0 cs
\ 0 70 + <4
a m=—44CD — VB
-1 (Ji=-11 e 11 -1 —_—
m=-2,2C3 —]
2 - mEThES -2§

-3 -3

-3 e
0 02040608 1
Tunnelling strength 7

Figure 3.5: a)Energy of states within both rings. Chosen sets of states from both
rings couple. b) Resulting energy levels of Z24 as the tunneling is turned on with 7.
Blue levels mark VB and CB of Z24.

The eigenvalues of the original 24 x 24 Hamiltonian can therefore be obtained by
diagonalising four 4 x 4 blocks. Each block includes the diagonal energies E;(k) and

Er1(q) and the offdiagonal terms <\IJ’}| Vi |U%,), e.g. the block in the basis of states
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given in Eq. 3.10e (shown in Fig. 3.4) reads

e

—7 03472 0 0
t] V3 : (3.11)
- 0 -1532 0

= 0 0  1.879

where 7 is the coupling strength between the rings. Fig. 3.4 a) and b) shows the
evolution of the eigenvalues of the block given in Eq. 3.11 as a function of 7. As the
bottom of the CB state of ring I couples to the top of the VB state of ring II, the
energies evolve to give a subset of the coronene’s energy levels. The level marked in
blue in Fig. 3.4 b) originates in the top of the VB of the ring II and becomes the top
of the VB of coronene. Fig. 3.5 shows the formation of both the VB and the CB for

coronene from states given in Eq. 3.10d and 3.10e.

3.2 1D Lieb lattice.

In order to develop the same approach for an AHGQD, we need to consider the atoms
that appear on the edges and surround the inner ZHGQD made of rings I and II. I
will consider here the smallest AHGQD, A42. The atoms making the armchair edge
are grouped into six three-atom clusters, one of which has been circled with a dashed
green ellipse in Fig. 3.6. These clusters make up a periodic lattice with a three-atom
basis - the 1D Lieb lattice [154], marked in Fig. 3.6 b) as a green circle, constituting
the ring IIT of A42.

I start with considering a single cluster and its TB solution. Only tunneling
between the centre atom and its NN is present, which generates an energy spectrum

E, ={-1,0,1} in the units of ¢. The presence of a zero-energy state is typical of a



CHAPTER 3. ENERGY GAP OF GRAPHENE QUANTUM DOTS 62

Figure 3.6: 1D Lieb lattice on the edge of an armchair-edged graphene quantum dot.
a) Single cluster and b) ring of clusters.

Lieb lattice and plays an important role for this problem. All eigenvectors are:

1
|
u= = = N 3.12a
U NG +1 ( )
1
7
1
Yoo = — | 0 (3.12b)
1

Interestingly, the wavefunction of the state at zero energy given in Eq. 3.12b is
localised on the tips of the cluster, i.e. ¥,—¢ = \/Li (—o + ¢2).
I now consider all clusters made into a periodic 1D lattice. The Bloch wavefunction

of ring III reads
5
1 ) .
Ui =—F= Z eI, (3.13)

where j labels clusters and the periodicity is present over a 5a distance (distance
along the lattice bonds), present in the exponential factor. The wavevector in Eq.
3.13 is given by p = %.

In order to couple ring III to the inner rings, we need to determine the coupling

between them. Let us start with the coupling ‘7[1, 717 between the most outer rings



CHAPTER 3. ENERGY GAP OF GRAPHENE QUANTUM DOTS 63

shown in Fig. 3.7 a) (18 ring II states and 6 cluster states):

17 5
ZZ 5p] pma ¢m|VYII III|¢u]> (314)

m=0 j=0

(U Vi [Whp) = NG
The matrix element (¢,,| Viroin |9y;) needs to be determined. Tunneling is allowed
only between NN as shown in Fig. 3.7 b). The atoms on the tip of the cluster
numbered 0 and 2 are coupled to specific atoms on ring II, numbered 35 — 1 and

37 + 1 for a given cluster j. We obtain the tunneling matrix elements

N t
(Dm| Vir—ir1 |Yo,5) = _E (—0m,3j-1 + Om3j+1)

t

(| VUJH [V115) = 5

(3.15)
(Om,3j—1 + Om.3j+1) -

Cluster j
b

Outer Ring Il

Figure 3.7: a) Ring II and III are coupled. j labels clusters. b) Rule for tunneling
between rings II, ITI. Only the outside atoms of the cluster exhibit tunneling to ring
II.

The final matrix elements of VI I_JI] are

9 t —iqa iqa
R G LA

L. .
— %22 sin (qa)55p,{3q’3qi27w},
t (3.16)
(Wi Vir-nm “I’m ) = _E (e7 + ) 55p,{3q,3qi%”}

t
= _ﬁ2 cos (qa)55p7{3q73qiz%r}.
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The sets of coupled states are

[[1,q-8),|11,q_o),|I1,qs) = |I1],p_o,u=0,%£1), (3.17a)
[[1,q-7),|11,q-1),|I1,q5) = |I1I,p_1,u=0,£1), (3.17b)
\IT,q-6),|11,q0),|I1,q6) — |III,po,u=0,=+1), (3.17¢)
\I1,q_5),|I1,q),|I1,q;) — |I1I,py,u=0,£1), (3.17d)
|[I1,q_4),|I1,q2),|I1,q3) — |I1I,ps,u=0,£1), (3.17e)
\I1,q-3),|11,q3),|I1,q9) — |11, p3,u=0,%1), (3.17f)

where only four blocks are unique again and the block size is now 7 x 7 (the groups

of ¢, couple to one more k, state as given in Eq. 3.10).

a S

Figure 3.8: Clusters for AHGQDs with increasing size (a-e). Blue lines mark the
inner ZHGQDs, and red lines identify clusters.

Before I combine all rings to form an AHGQD in section 3.3, it is important to
point out that the 1D Lieb lattice in not unique to the smallest QD example considered
here. Larger ZHGQDs are the base to form larger AHGQDs with a 1D Lieb lattice
consisting of different clusters, as shown in Fig. 3.8 for several sizes. Blue line marks
the inner ZHGQD and red lines highlight the clusters. All these clusters exhibit zero-

energy states with the wavefunction localised only on one sublattice, similarly to Eq.
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3.12b. The amplitude of the zero-energy states on atoms has been shown for two

example clusters in Fig. 3.9 with red circles.

a © © b- e e
OO0 OO oo 00

Figure 3.9: Zero-energy state wavefunction amplitude (top) for two (a,b) clusters in
AHGQDs (bottom). Size of a circle (top) denotes the magnitude of the wavefunction.
Only one sublattice hosts the cluster zero-energy wavefunction.

3.3 Armchair-edged graphene quantum dot: A42.

For ZHGQDs, the energy gap is formed by the states from the outer ring II located
on the edge of the QD, as explained in section 3.1. It is important to understand how
this picture is changed for AHGQDs, whose edge is built of the 1D Lieb lattice. I will
demonstrate this process on the example of A42 shown in Fig. 3.10 (right), which is
composed of a smaller ZHGQD (Z24) with the 1D Lieb lattice on the edge (as shown
in the left and middle of Fig. 3.10).

We want to add the tunneling from 724 to ring III, as shown in Fig. 3.11, using
the matrix elements derived in Eq. 3.16. Let us start with the eigenstates of the

entire coronene QD given as

5
Q,=> Ak +Y B, (3.18)
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Figure 3.10: Forming of an AHGQD by adding clusters outside of a ZHGQD.

where W} and WY, are given in Eq. 3.4 and coefficients A}, B are obtained through

diagonalising the four 4 x 4 TB Hamiltonian blocks, like in Eq. 3.11.

Figure 3.11: Components making the AHGQD are: an inner ZHGQD (yellow, left)
made of rings I and II (red and blue on the right), and an outer ring IIT of clusters
(green on the left).

We now couple the eigenstates €2, given in Eq. 3.18 to the states from ring III

U, given in Eq. 3.13 and obtain

5
(| Vaaarr [9757) = > AL (Wi Vs | W)

17
T Z By (V9| Vzoa—rrr W), (3.19)

q=0

where the crossed out term vanishes because of no tunneling between the inner ring
I and the cluster ring IIT and (¥?,| Vyou 111 U = (P Vir 1 |U¥7,) given by Eq.
3.16. The second term in Eq. 3.19 can be evaluated numerically using the numerical
form of the eigenvector of the inner 724 QD.

Fig. 3.12 shows how the energy spectrum of a HGQD evolves as the rings are
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E/t

Figure 3.12: Energy spectrum evolution (left to right) from a ZHGQD to an AHGQD.
Energy levels of ring I and II (red and blue, far left) evolve when coupled to form
ZHGQD energy levels (yellow), and when coupled to the cluster levels (green) they
evolve into the AHGQD levels (far right).

coupled together. The left part of Fig. 3.12 (shown in red and blue for ring I and II)
contains a summary of the spectrum change shown in Fig. 3.5, due to the coupling of
ring I and ring II. In the centre of Fig. 3.12 a complete Z24 QD is shown in orange,
and the orange energy levels correspond to eigenvectors {2, given in Eq. 3.18. The
green levels which overlap the Z24 spectrum originate in ring III and make up the
six-fold degenerate spectrum £, = {—1,0,1} of the clusters. The right part of Fig.
3.12 shows how the 724 energies evolve into the energies of A42 as the tunneling
between ring II and ring III is turned on. It is apparent that the energy gap of A42
is formed from the cluster zero-energy state shell of the ring III.

The difference between the mechanisms responsible for forming of the energy gap
in ZHGQDs and AHGQDs explains the oscillation in the gap magnitude as a function
of GQD size, shown in Fig. 2.9. For ZHGQDs the gap is formed from the states of

the outer ring of atoms (ring II for Z24) shown in section 3.1, while for AHGQDs the
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gap forms between split zero-energy shell of a 1D Lieb lattice on the edge. This also
produces the difference in level degeneracies close to the gap: two-fold for ZHGQDs
and a single state followed by a close pair of states for AHGQDs.

An analysis like the one performed in this chapter can be perfomed for any size of
a HGQD, using coupled rings of carbon atoms. This method, based on analytical so-
lutions in 1D, could allow for more efficient calculation of the energy spectrum of very
large QDs. It could be particularly useful as a first step of many-body calculations

based on density matrix renormalisation group (DMRG) techniques [155].



Chapter 4

Tight binding model for monolayer
M082

Final chapters of this thesis present studies of valley physics in MoS,2 in the presence
of magnetic field and for large finite nanostructures. As magnetic field effects (chapter
5) or large computation boxes (chapter 6) cannot be considered in DFT, a TB model
that can efficiently incorporate these effects is needed and will be presented in this
chapter. The electronic structure obtained within DFT (section 2.2.5) will serve as
guide for the choice of the TB basis, to include the orbitals that mostly build the
low-energy bands, as shown in Fig. 2.14. The derivation presented in the following
sections is conducted in a similar way to the graphene TB model derivation presented

in section 2.1.3., but with a larger basis of d and p orbitals.

4.1 Many-orbital nearest neighbour tight-binding
model for MoS,.

I start with a NN TB model of MoS; based on ab initio work described in section
2.2.5. Even though the Mo atoms exhibit strong spin-orbit coupling (SOC) due to
presence of heavy metal atoms, I will first consider spinless Hamiltonian for simplicity

and return to including the SOC effects at the end of this chapter. The hexagonal

69
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crystal lattice of MoSs has been shown in Fig. 2.10.

We start with considering valence orbitals on Mo and S atoms. Motivated by the
DFT results for MoS, presented in section 2.2.5, we select only the orbitals even with
respect to the Mo plane with [ = 2,mq = 0,£2 for Mo atom and with [ = 1,m, =
0,£1 for the sulphur dimer, with even combinations of the top (T) and bottom (B)

atom of the dimer [156]:

—_

Prmp=+1(T) = —=( szl,mp:il(T) + SDZB:me:ﬂ(T))
V2
(4.1)
Prpt(T) = (P myolT) — EFt o))
mp= \/5 I=1,mp=0 I=1,mp=0 )
where the m, = 0 orbital is taken with a minus sign due to the odd nature of

the p, orbital. With these orbitals we construct Bloch wavefunctions for sublattices

(A: MO,B = 52)

1 "
Vi, (1) = > ek Rag, (r—Ra), (4.2)

1
Uy, (r)=
By vV Nuc

We will look for a solution of the form

> e*Fep, (r— Rp). (4.3)
Rp

WA () = ST AR () - DB (r) (4.4
my mp

where n is the band index and Aﬁ: and BX" are the coefficients we solve for.
P

The single electron Hamiltonian reads
~2
g _ P A B
H = %+RZ[V (T—RA)]+RZ[V (r — R3], (4.5)
A B

where VA(r) is the potential from A atoms (and analogously for B atoms).
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Figure 4.1: Nearest neighbours (yellow) of an Mo atom (blue).

We now construct the off-diagonal elements of Eq. 4.5 in the NN approximation:

(W, | H W)

1 .
=N Z ck(Rp—Ra) <90md(r _ RA)| VA(T ~ R, |90mp(?“ B RB)>
vuc

<Rs,Rp>
= ¢*5 (g (r— Ry)|VA(r — Ra) [pm, (r — Ra—6;)), (4.6)
9;
where 8, are the NN vectors (Fig. 4.1). The NN integral in Eq. 4.6 can be evaluated
using the Slater-Koster rules [129]. However we first need to express the orbitals in

the angular momentum basis in terms of the spatial orbitals:

Somdzo - d3227

1 .
Pm, =42 = E(dﬂ,yz + /Lda:y)’

SOmP:O = ©p,

1
i1 = —(p, £ ip, ).
P, =+1 \/5@ p,)

Slater-Koster rules involve directional cosines (L,M,N) (i.e. angles that the bond
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makes with all axes) of the nearest neighbour sulphur atoms (as shown in Fig. 4.1)

d d

Si: (L,M,N)= (d”()i;)
dy v3dy d

SZ: (L7M’N>:(_E”7§E7j:i), (48)
dy  V3d, d

St (LMN) = (9P LT

where &+ in Eq. 4.8 refers to top (bottom) sulphur atoms and d, and dj are shown in
Fig. 4.2. Expressions in Eq. 4.9 list the Slater-Koster matrix elements V,4(L, M, N)

for all the orbitals involved [129].

(@l V 11.) = =52 ( (BN = DV — 2V3NViye ).

(d | VIp,) %M( (3N? — 1)Vapo — 2\/§N2vdp,r>,

(d ,|Vip.) = %N<3N2—1vdpg—2f( —1)vdp,r>,
(d. 21V Ip.) %L(\/g — M*)Vape +2(2M> + N2)vd,,7r>,
(ol VIp,) = —5M (ﬁ@ = M*)Vipr — 2(2L° +N2>vdm), (4.9)
(A V1) = =N = M)(VBVigo — Vi),

|V p.) = —M(LQ(ﬁvdpg W) + v)
<d:cy‘ vV |py> =-L (M2(\/§Vdpo - 2Vdp7r> + Vdpﬂ');

<dzy‘ V |pz> = _LMN(\/gvdpo - 2Vdp7r)-

From Eq. 4.8, 4.7 and 4.9 we calculate

<§Dmd:0| V |90mp::tl>
1 .
= 5( (d |V Ipl) £ild IV Ipl) +(d |V Ipl) £ (d IV IpT))

1, 4} d]
= 5@ i) (3% — 1) Vi — 2V3L Vi), (4.10)

where T' (B) subscripts stand for top (bottom) sulphur atoms. By performing anal-
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¢ e

Figure 4.2: Lattice parameters of monolayer MoS,;. The bond length between Mo
(blue) and S (yellow) atoms is labelled with d. Parameters dj,d are used in Slater
Koster rules.

ogous calculation for remaining matrix elements we obtain

(P =0l V om, —41) = (L £ iM)Vin,—0,m, —1 = (L + M) (( — 1) Vipo — 2V/3 LVdp,r)
(Pm, =0l V [om_ =0) = Vin,=0,m_ =0 = —%% ((3% — 1) Vigpo — 2\/5(66% ~1)Vapr ),
(P, =2V [om —s1) = (LF iM)Vip s 1 = (\[ i _ 1) Vo — (i% +1) Vagr )
(bm, =22V [om, =51) = (LFiM)*Viyy —i0m =51 = —%(L FiM)? (?de - Vdm)7

. 1 ) d
<<pmd:i2| Vv |(Pmp:O> = (L + ZM)Qde:iZmp:O = _§<L + ZM)le (\/gvdpa - 2Vdp7r) .

(4.11)

We now insert Eq. 4.11 into the NN hopping matrix element in Eq. 4.6 to obtain

<‘Iji,md20’ H ‘\Ijg,mp:1>

_ Z ok, <<Pmd=o(7‘ _ RA)‘ VA(r — Ry) ‘@mpzl(’r — Ry — 5j)>

d;
. d . ,
ikd ; . I ik, +if;
= dezo,mp:ﬂ Z e (Lj + @Mj) = dezo,mp::tlg Z e e
3; .
d ; T
— dezo,mp::l:lg”(ezmd” + e—zkz 5 esz + e~k Z\fky 3 ol :l:gl )7 (412)

and analogously for the remaining integrals. In Eq. 4.12 6; are phases generated by
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tunneling to different nearest neighbours arising from L; £ iM; (Fig. 4.1):

A d

Si: LM =~ =]
-27rd

S : L+z’M:ez?E” (4.13)
e d

Sy : L+1M:el%g”.

We can evaluate the NN integrals as in Eq. 4.12 at K = (0, 3\7321”) (here the lattice

and Brillouin zone are defined as rotated by 90° w.r.t. graphene lattice in Eq. 2.1.3)

to obtain a general expression
k=K | 1] k=K\ __ i(1—m ,+m, )27/3 i(1-=m +m, )4n/3
(WKWK ) = (14 eiltmmatm)2nls  i(omarm )ity L (a14)

where Vi, . have been defined in Eq. 4.11. The expression in Eq. 4.14 includes the
phases dependent on the angular momentum of the neighbouring orbitals. Analogous
phase factors in graphene vanish for p, orbitals on all sites, which closes the gap. In
TMDCs these factors are responsible for removing the degeneracy of d orbitals at
K, which build VB and CB (in accordance with Fig. 2.14) and therefore must be
nonzero. For the nonvanishing tunneling matrix elements in Eq. 4.14, the orbitals
satisfy a selection rule 1 +m, —m_, = 0,+£3. This restricts the pairs of orbitals that

build the bands at high symmetry points:

K [m =0,m :—1} , [md:—i—Q,mp:—i—l} , [md:—Q,mp:O] )

d P
—K : [m,=0,m =+1] , [m,=—2,m =—1], [m,=+2,m =0] (4.15)

I [md:o’mp:O] ) [md: +2,m :_1} ) [md:_Qamp:+1] )

P

which makes the Hamiltonian block diagonal at these k-points.

We now collect all the NN Hamiltonian matrix elements in the basis of ¥ Am,, and
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IS VE - N q——

Figure 4.3: (left) TB band structure of MoS, obtained by diagonalising the Hamil-
tonian in Eq. 4.16 with only NN terms included. (right) Comparison of the TB NN
band structure (black) to the DFT bands (white). The band masses are incorrect
and a closing of the gap around M is visible.

1

\IJB,mp
Ep =2 0 0 Vifoi(k) —Vafo(k)  Vafi(k)
B =0 0 ~Vafo(k) —Vsfi(k) —Vif-1(k)
AN () — Ep =2 —Va3fi(k) —Vaf-i(k) Vifo(k) (416)
Emp:—l 0 0
h.c. EmPZU 0
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where Vi_5 and fo 41(k) are

Vi= de::tQ,mp::I:IE = E [7 <¥ - 1) Vipe — (ﬁ + 1) Vapr

> 1 dy (d)\°
‘/2 = de:iQ,mpzo (_|> = 5 |:\/§Vdpa - 2Vdp7r:| = <_”) )

d d \d
d\* _ 1 |V3 d\®
V‘% - de:i27mp:$1 (E”) - E 7‘/61;00' - Vdpﬂ- (E) , (417)
dy _1[(.d & d
Vi = deZO’mp:ilg - 5 |:< d_J2- - 1> Vdpd - 2\/§d_J2_V;lp7r:| EHa
1 d? d? d
‘/5 dezo,mp=o == E |:< d_JQ_ — 1> Vdpcr - 2\/§ (d—é_ — 1> Vdpﬂ} i,

fo(k) — otke e—ikz/Zei\/gky/Qe—i%r/S + e—ikz/Ze—i\/gk:y/2€i27r/37
f—1(’<3) — ke + e—ikz/Zei\/gky/2ei27r/3 + e—ikz/Qe—i\/gky/2e—i27r/37 (4.18)

f+1(k:) — ¢ika + e—ik:z/2ei\/§ky/2 + e—ikz/Qe—i\/gky/g.

The Hamiltonian in Eq. 4.16 and expressions in Eq. 4.17 and Eq. 4.18 contain
Slater-Koster parameters which can be found if one fits the TB band structure to
the band structure obtained within the DFT methods (see section 2.2.4 and 2.2.5).
Fig. 4.3 shows such fitting for the NN Hamiltonian done with a genetic algorithm
using weights setting the priority of fitting for the VB and CB edges between K and
I'. It is clear that, even though the simple NN Hamiltonian predicts correct gap at
K, it results in the gap closing around the M-point, incorrect for a semiconductor.
This is due to the role of the m, = 0 orbital which builds the CB at K and a VB at
I' (Fig. 2.14) [156]. Without any hopping between the d orbitals, which could only
come from the NNN terms, the correct orbital composition throughout the BZ can
therefore only be achieved if the bands cross. This means that this artifact should
be corrected if one included the NNN terms in the TB Hamiltonian in Eq. 4.16, as

described in section 4.2.
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4.2 Next nearest neighbour tight-binding model

for MoS,.

I will now consider the NNN TB terms, which come from tunnelling between a pair
of nearest Mo atoms or between a pair of nearest sulphur dimers (Fig. 4.4). These

terms are calculated analogously to NN terms:

<‘I”fx,md:0| H |‘I’Ifl,md=+2> = Z e <<Pmd=0(7’ - RA)’ VA(T — Ry) ‘@md=+2(7’ —Ra— ‘)’j)> )
i
(4.19)
where «; are the NNN vectors (Fig. 4.4) and the NNN hopping integral requires the

Slater-Koster matrix elements [129]:

1 1 2 3
(d, |V, _,) = <2L2 + 5M2 - N2) Vido + 3N?(1 = N Vaar + Z(N2 — 1)*Vaas,
V3
(d1VId, .)= T(L2 — M?) ((3N2 — DWWVago — AN*Vagr + (N + 1)Vaas |,

V3
<d322 | 1% |dwy> = TLM ((3N2 - 1>Vdda — 4N2Vdd7r + (N2 + 1)Vdd6 ,

(d,,

z2—y

1
VId,y ) = (L = M?PVago + (L4 M2 = (L2 = M) | Vagr + (L7 = M) 4+ N?),
2 zl—y 4 4

1
(do | VId,,) = SLM(L? = M*)(3Vado — AVaar + Vaas),

(d,,|V|d,,)=3L*M*Vago + (L* + M> — AL* M*)Vyar + (L*M? + N*)Vyas,

(4.20)
<pz’ 4 |pz> = LQVppa + (1 - L2>Vpp7rv
(p,|V ‘py> = LM(VppU - V;apﬂ)v
<pz‘ Vv pz> = LN(VppU - V;Jpﬂ)

(4.21)

(0, 1V Ip,) = M*Vppo + (1 = M*)Vipr,

(p,|V

pz> = MN(Vppcr - Vpp7r>7

vV pz> = NQV;DPU + (1 - N2)anr'

(p.
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Using N = 0 and L? + M? = 1 for NNN atoms, and using Eq. 4.7 we get

1 3
<<pmd:0<r)| v |(pmd:0<7ﬂ + ’7)> = Vn];{i]ij(\)[’md:o = indU + EVddtg,

1
(Pm,=22()|V |, =s2(r +9)) = Vi W 1, s = S (8Viaao + AVaaar + Vddd),

. V3 .
{m,=0(r)|V |om,=s2(r + 7)) = (LEM)>?VIEG L 1y = 4\7@@ +iM)*(=Vddo + Vaas),

. . 1
(pm,=2(P)| V om =z (r + V)L F M) VI, o= (LF ZM)4§(3Vddo — 4Vadr + Vaas).
(4.22)

Figure 4.4: Six NNN of an Mo atom are also Mo atoms (blue). The NNN vectors
(red) are the same for NNN of an S, site (yellow).

To obtain the NNN hopping integrals between sulphur dimers we need to include
the hopping between sulphur atoms within the same plane but we neglect the cross

terms between the planes:

(@m,=o(T)| V| om,=o(r +))
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where we used N = 0 for NNN terms. We collect all the NNN hopping integrals:

<90mp:0(r)| 14 |‘Pmp:0(r +7)) = leypj\g(\),,mpzo = Vopr,

1
=it PV [ —sa (7)) = VNN, = L, 4,0,
o 2 (4.24)

<<Pmp=0(r)‘ Vv |<Pmp=i1(r + 7)> = Vrfz\;i%’,mpzil =0,

. 1 ;
(P, =1 (M) V |pm, =41 (r + 7)) = (L+aMPPVIE, = S (L +iM)* (Vo = Vopr).

I4

We now insert Eq. 4.22 and Eq. 4.24 into Eq. 4.19 to obtain

<\Ili,md20’ H ‘\Ij’z,md:+2>

— Z e*V (m —o(r — Ra)| VA (r — Ra) |om,—42(r — Ra — ;)

RE;
= V#Lﬁi)v,mdzu Z ™3 (Ly £ iM;)* = Vri\;]ijg,md =+2 Z e 203
‘Y] ‘Yj
kad) kyd) \ iz
= V#Xiﬁ%{mdzw (2008 (37 +\/§y7 e's

k.d k,d x
+ 2 cos (37” - \/gyT”) e 's —2cos (\/gk:yd”)>. (4.25)

In Eq. 4.25 ¢, are phases generated by tunneling to different NNN arising from

Moy : L+iM =¢€'s, Moy : L—i—iM:e_i%ﬂ,
Moy : L+iM =e'2, Mos: L+iM =e'2 (4.26)

Mos : L+iM:ei%ﬁ, Mos - L+iM =e's.

Parameter | Best fit (in eV) | Parameter | Best fit (in eV)
B 042 -0.03 Vado 110
B, =11 -3.36 Vidr 0.76
B0 478 Vaas 0.27
Vipo 73.39 Voo 1.19
Vipn 1.10 Vopr 0.83

Table 4.1: Slater-Koster parameters obtained by fitting to DF'T band structure.
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Figure 4.5: (left) TB band structure of MoSy obtained by diagonalising the Hamilto-
nian in Eq. 4.27 with NNN terms included. (right) Comparison between TB (black)
and DFT (white) bands. The agreement on the path K — T is excellent.

We now collect all the matrix elements in a NNN Hamiltonian matrix

B~
+Wdlgo(2k) Wsga(k) Waga(k) Vif-i(k) —Vafo(k) — Vifi(k)
Em =0 L
Wk Wag2(k)  —Vifo(k) —Vsfi(k) —Vif-1(k)
E?n =2
ﬁNNN(k): +Wdlgo(k) ;V3i1_(lk) —Vaf-1(k) Vifo(k) . (427)
+Wigo(k) 0 Wrg2(k)
E'mp=0
h.c. +Wogo(k) 0

+Wsgo (k)
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where

Wi =
Wy =
W3 =
Wy =
Ws =

We =

W

and

VNNﬂ mg=£2 = 3 (3Vdda + Vaar + Vias)

VN]XJ(\)IW —0 = % (Vado + 3Vaas) ,
VN]XJSZm g2 = 4\/\/3— (Vado — Vaas) ;
Vn]’:[N]:\l:/vQ my=F2 = Elg (3Vado — Vaar + Vaas) ,
VAN i1 = 5 (Voo + Vi),
Vi Som, =0 = Vopr:

VN 1= 5 (Vi = Vi),

go(k) = 4 cos (3k/2) cos (\/gky/2> + 2cos (\/gk‘y>,

81

(4.28)

go(k) = —2cos (\/gky) + 2cos (31%/2 + \/gky/2> e™/3 4+ 2 cos (3/%/2 — \/gky/2) e~ /3 (4.29)

ga(k) = 2 cos (\/5]4@) + 2 cos (3kx/2 + \/§ky/2> ¢27/3 4 9 cos (3]%/2 _ \/gky/2> o—i27/3

B 1B model JDOS [T |

Nesting transistion
cnergy

Joint optical density of states (a.u.)

-1
K

Q T 1.6 20 24 28 32
Transition energy (eV)

Figure 4.6: (left) The bands around the Q-point are approximately parallel, which
causes band nesting. The nesting transition energy (blue arrow) around @Q is the
most common through BZ, which causes the joint optical density of states to peak
in the right panel. (right) Joint optical density of states in MoS,. Peak at ~ 2.8 eV
corresponds to the nesting transition energy in the left panel.
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The Hamiltonian in Eq. 4.27 and expressions in Eq. 4.28 contain Slater-Koster
parameters which are obtained again by fitting the TB band structure to the band
structure obtained within DF'T. This is again conducted using a genetic algorithm
with a weighted path in the Brillouin zone. The values of parameters obtained through
this fitting have been collected in Table 4.1. Fig. 4.5 shows the comparison of TB
and DFT bands. We now see that the gap has opened throughout the BZ due to the
interaction between d orbitals. There is excellent agreement between the methods for
CB and VB around points K, Q, T [156].

An important feature of these bands is the existence of a secondary CB minimum
at Q-point, which is built of m, = —2 orbital, contrary to CB minimum at K,
composed of m, = 0 orbital. Around @ CB and VB are nested, i.e. parallel. This
band nesting causes the CB-VB transition energy at @ to be common across a large

area in the BZ, which maximises the joint optical density of states (Fig. 4.6) [156].

4.3 Spin orbit-splitting in MoS..

So far I have considered a spinless Hamiltonian, but it is important to include the
SOC effects due to the presence of heavy atoms. As a consequence of the choice of
our basis, the SO term L - S does not couple the states and enters our Hamiltonian

only on a diagonal. This can be proven if one considers an explicit form of L - S:

1
L . S - 5 (L+Sf + L,S+) + LZSZ,

L. |lm) = hm |lm), (4.30)

Lillm) =h/I1(l+1) —m(m=£1)[Ilm+1).

Then, I consider possible non-zero off-diagonal matrix elements of L - S for angular

momentum eigenstates as

1 h
(mp =0 4] 5 (L4 S- + LoS4) + LaS. fmy = =11) = V2, s

1 hi
(my =01 3 (LyS_+ L_Sy)+L.S.|m,=+1]) = 5\/5,
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where all the other elements for m, vanish and the raising and lowering operators
cannot couple states with Am = 2, so the matrix elements for my also vanish. Using
Eq. 4.31, I calculate the couping terms for the elements of the 6-band Hamiltonian

basis as

1 1
5(<mp =0l = (my =04/ )5 (L+S_+L-S4) + LS.

(= =1ty 4y = =11 )

1 1 1
=3 (T (mp=01| §L+S_ imp = —=11)p — B (mp =01] §L+S_ Impy =—11),

1 1
7 {my = 0 U 5L 8- [y = 1) = (my = 0 1l 514 S [y = —11), ) =0 (432)

and analogously in the second term in Eq. 4.31. This proves that S, is still a good

quantum number in our basis.

2/\/
ov

K r

Figure 4.7: VB and CB of MoS, with spin-orbit coupling included as in Eq. 4.34.
The SO splitting in the CB is not visible on this scale, but the large SO splitting in
the VB at K is apparent.

Our spin Hamiltonian reads

HYNN (k) = HNVN (k) ® + , (4.33)
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where

_U)\Mo

~ O')\MO

Hgo(O') = (434)

and fitting to DFT band structure gives Ay, = 0.067eV and Ag, = 0.02eV. Fig. 4.7
shows the band structure of MoS, with SO splitting included. The large spin splitting
in VB at K AYE = 135meV is due to the m, = +2 orbital building the VB. The spin
splitting in CB is smaller, ASE = 4meV, as it is composed of the m, = 0 orbital. It

is however still resolvable in an experiment [157].

4.4 Massive Dirac fermion model for MoS,.

I will now show how the 6 x 6 NNN Hamiltonian in Eq. 4.27 can be approximated
as an effective two-band massive Dirac Hamiltonian at K, by analogy to gapped
graphene. At K some terms in the NNN Hamiltonian vanish because only 3 pairs of

orbitals remain coupled (given in Eq. 4.15)

Emd:—2

—3Wigo 0 0 0 —-3Va fo 0
Emd:()
—3Wago 0 —3Vifo 0 0
E'm =2
FINNN (K) = *3‘7‘/190 0 0 3Vifo (4.35)
- Prat g o | '
—3Wsg0
Emp:() 0
—3Wego
Emp:1
—3Wsg0

which is block diagonal if viewed in the basis of the pairs of orbitals

[m,=0,m,=-1], [m,=2,m =1], [m,=—2,m, =0], (4.36)

=
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where the first two pairs build the CB and VB at K and the last pair builds lower and
higher bands, so I will disregard it in this model. We can therefore rewrite the original
NNN Hamiltonian matrix in Eq. 4.27 as a reduced 4 x 4 Hamiltonian including only

the orbitals building the low-energy bands at K

-
mdfo

gy Wag2(k) —Vifo(k) —Vif-i(k)
e Vafi(k)  Vifo(k)

F]4><4 (k) _ +Wigo(k) o (437)
+ngo(k) Wgs(k)
Empzl
+Wsgo(k)

Similarly to the way we expanded the off-diagonal expression for the 2 x 2 Hamil-
tonian for graphene in Eq. 2.39, we can now expand the k-dependent functions as a

function of g around K and retain only up to the second order terms in q:

Emd:() 9 3
o 0 -3V 0 Wo 0 3V 0
" Praz 3N oy 0 —Ew |
oY (K +q) = B, + . lql°d),
5t 0 SWs 0
Em =1
—3Ws %Wt?
0 —igW;),q_d” 0 _i%‘/élq_d”
. 0 —i3V3q4d) 0
0 —igWﬂ]_d”
0
0 §Wsqid] 0 sVagidj
. 0 SVaq’ dj 0
0 Ywhgd? |
g "VTd+4|
0

(4.38)

where ¢+ = ¢, £ ig,. Since we are interested in an effective two-band Hamiltonian,

from each pair of coupled orbitals at K we need to select the states that form the
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edges of the bands. We therefore define a new basis

\I]gB = CV\Ijmd:O + qump:—lv
\DE’B = ﬁ\DdeO - Og\Ifmp:,h
(4.39)
\DﬁB = /L‘Ijmd=2 + qump=+17
\P\;B = V\IjdeQ - ,u\pmp:Jrl
and rotate Hamiltonian in Eq. 4.38 to this basis, while retaining only the block of
Ul p and U, (corresponding to the edges of CB and VB):

Bt .
H>(K + q) = +3d? (3a2Wa+2aBVa+352Ws)|q|?
. B
+%dﬁ(3/,LQW1+2;J,I/V1+3Z/2W5)|(]|2
3 0 —ig- (4.40)
+ idH(Sa,uW;g — BuVs + av + 30vWr) :
iq+ 0
3 0 ¢?
+ S d3(BapWs + BuVs + av + 36uWr) g
8 ¢ 0
which has the form of a Hamiltonian given in [158]
Tq- Al
HQband(q) = at + E
an —1
(4.41)
2 2
ugq q
+ +w i
vg? q

We then fit the eigenvalues of the Hamiltonian in Eq. 4.41 to the ab initio TB
model given in Eq. 4.1 and obtain the bands shown in Fig. 4.8. For u = w = 0 we
retrieve the massive Dirac fermion (mDf) Hamiltonian with the best-fit values of its
parameters a = 3.1934, ¢t = 1.4677eV and A = 1.6848¢V. The fitted bands have

been shown in Fig. 4.8 in red over the TB band structure shown in black.
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Figure 4.8: Bands obtained through a massive Dirac fermion approximation for MoS,
at K (red) in comparison to the TB bands for MoS, throughout the BZ (black).

4.5 Massive Dirac fermions interacting with light.

I will now derive the optical response of massive Dirac fermions for both valleys when
excited with circularly polarised light. From Eq. 2.44 (and from the first term of Eq.

4.41), the unperturbed Hamiltonian for both valleys reads:

A

A
ji B

o TPz — Zp
i ( y) (4.42)
F(Tps +ipy) _%’

where 7 is the valley index and p = hq. I now take circularly polarised light of the

form

of  +E, = & sinwt,
(4.43)

&y = & coswt,

where & is the strength of the electric field and w is the frequency of light. We

integrate A = — [ Edt to obtain the vector potential as

A, = $—0 cos wt,
w (4.44)
A, = — D gin wt,
w
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which can be now inserted in the mDf Hamiltonian at K given in Eq. 4.41 for

u = w = 0, with a substitution p — p — eA. We obtain

i— % vﬁf ( (pe — €Ay) — i (py 6Ay> >
UT{ ( (pe — €Ay) + 1 (py eAy) > _%
— % v_{ (Pe — ipy) _y 0 Fetit
v_hf (pm + ipy) _% j:ejFM 0

= Ame + ﬁ,(gi)a (4.45)

where g = % The stationary solutions of the unperturbed part H,p¢, |—4) , |+q)

have been given in Eq. 2.46. The perturbation for both valleys takes the form:

N 0 Fretrivt
H'(c™)=—g : (4.46)
LreFriet

With the perturbation H added, we seek a time dependent wavefunction of the
form

i

(T(t)) = (e i Pat =) + (e i Pat | 4g), (4.47)

where c_ and ¢, are coefficients of the wavefunction components wirtten in the basis
of the unperturbed problem with eigenstates |4) ,Eqi. We insert the wavefunction

in Eq. 4.47 into the time-dependent Schrodinger’s equation (TDSE)

. 8 2 rl
i W(T) = (Hps + ') @ (4.48)
to obtain
— t i - t 4 i p—y A i A~
T O R e G T e A O L) Iy

ot ot

(4.49)

where the index g has been dropped for simplicity. We then project on |—) and |+)
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to obtain a system of equations

ihee(t) = - (t) Ho—e? P! + ¢ (1) H o,
(4.50)

ihe_(t) = c_(t)H__ + ey (t) H_ e 72

where AE = ET — E~ and H,_ etc. denote matrix elements of the perturbation in

the basis of the unperturbed states calculated for valley K as

. AN A »
H., — H(ct) =) = — gvf‘q‘ E+= i(wt+0) _E+ = —i(wt+0)
=+ H(e7)]=) NN +5)e + t5)e

= 2g0<— %cos(wt—i—ﬁ) —iEsin(wt—l—H)),

. AR N A ,
H . = (— H/ Y\ — _M E—-= i(wt—0) _E_-= —i(wt—0)
+=(=|H(cT)]-) NN 5 )¢ + 5 )€

A
= 2¢gp <§ cos (wt — 6) — iE'sin (wt — 9))

(4.51)
and similarly for other matrix elements. In Eq. 4.51, g9 = g%, gy = gQEq()gi‘ 5y
E = |Ef1t| and g = |q|e, where 6 is the wavevector’s angle. For both valleys we
obtain

. A\ A ,
(+|H'(c%) |-) = _go< <TE + 5) el | <—7’E + 5) e"(“ti9)>

= 2go<$ %cos (wt +£60) —iTEsin (wt + 9)),

A (4.52)
(—| H'(6%) =) = +2g_ (E - 5) cos (wt £ 6),
7+ A
(+| H'(0™) |+) = F2¢94+ (E + 5) cos (wt £ 0).
We now transform Eq. 4.50 using
cy(t) = e R Hes I ()
(4.53)

c_(t) = e o H--W)d's_(p),
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and obtain

ih@; (t)=c_ (t)H+,elﬁ SUAE+Hy i (') —H__(¢'))dt!

Y

| (4.54)
ihE_(t) = T (t) H_y et o AEHH 1 ()= Ho(¢)d’

We now use the explicit form of the matrix elements given in Eq. 4.52 and to the

first order in the electric field strength & and for c_(t = 0) = 1 we get

ot K : ’5;(t)=%go<<E+§> piwtr 8 0) | —E+é _iewt=SE 1 19) |

o K: C.(t)= %go <W+ <_E N %) e_z-(wt_ggft_e))
ot —K : E;L(t) = %90 <W+ <E—|— %) e—i(wt—AhEtJre)),
ik 0= gl (8- ) et (5o S} )

non—resonant resonant

(4.55)

where terms with w — AE/h are resonant absorption terms and w + AFE/h are non-
resonant. The crossed out terms in Eq. 4.55 vanish because at K and — K, F = %.

We use the rotating wave approximation and keep only the resonant terms to obtain

~ ) A )
o, K : C+(t) = —%90 (E + 3) e—l(wt—A—hEt—Q),

(4.56)

. ) A .
O'+7 —K : 5+(t> — ;_ngO (E’ + 5) G_Z(Wt_AhEt+0).

Eq. 4.56 shows that the valleys can be selectively excited using oppositely circularly

polarised light, as shown schematically in Fig. 4.9.
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Figure 4.9: Valley-dependent circularly polarised light absorption.

I will now solve Eq. 4.56 to obtain the rate of transition. We calculate

_ j AN [t ,
E(t)=—Tgo (E+ 2 )™ / P o S L
h 2 ;
' AY 1 i
= —Tlgo E+4+ = e — (e’ﬁ“’t — 1)
h 2 —w

170 ) ) X
=g (B4 5 ) Soemtt (ks et ¥)
2) w

N

A i w, —208in 5+t ¢
— E+= it —f 5t 2h° 7
Tgo( * 2) ‘ ©; o

A iw, SN 53t ¢
o E = 17'9 -+t _ 4.57
where w = w — AE. I now calculate the transition rate v¢; as
& 1, A\? o my 2sin® 2¢ /¢ ?
L ANV (z)* \A
2
(E é) piro—i e *TO(W) (3)
¢
2 o h
A ’L w 27Tt
E = 279 5t 2005
( + 2) - (w)
AN 2
J(E+3) 2n
=g ———=—0(w—AF 4.
where % — mo(x) ast — oo, w=w — AF and g = % For A = 0 we retrieve

2h

the graphene case. The Eq. 4.58 yields the Fermi Golden rule for mDf, which will be

used in chapter 5.



Chapter 5

Magnetoexcitons of massive Dirac

fermions

In this chapter I develop a theory of excitons of mDf in the presence of external
magnetic field [159]. The SP Hamiltonian used in this chapter is based on the results
presented in chapter 4, while the interacting picture solves a single exciton problem

using the CI method described in section 2.2.7.

5.1 Non-interacting Massive Dirac fermions in ex-
ternal magnetic field.

Before I study the exciton spectrum of mDf in magnetic field, I will solve this problem
for free electrons (section 5.1.1). I will build on this description to treat mDf in
sections 5.1.2 and 5.1.3. Section 5.1.4 contains a derivation of the optical selection

rules used in the interacting problem.

5.1.1 Free electrons in external magnetic field.

I will first consider a free electron in 2D in the presence of strong external magnetic
field and show the emergence of degenerate energy levels, called Landau levels (LL)

[160).

92
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I start with a magnetic field in the z direction as B = (0,0, B). I substitute
H(p) — H(IT) = H(p + eAEr)) [160] in order to introduce the magnetic field in the
free electron Hamiltonian, where A(r) is vector potential given by V x A(r) = B.

Throughout the thesis I will choose the symmetric gauge, where

(5.1)

o
I

B B -
—+— k= B).

®
8

(N m|g3 Qe M‘
Flo

x>

The free electron Hamiltonian in the presence of external magnetic field then reads

- 1
Hp =

2 1 /. A\ 2
IT + gupBo = — <p + eA(r)) + gupBo, (5.2)
2m* 2m*

eh

where e is electron charge, g is the Lande factor, up = 5 -

is the Bohr magneton
and o denotes spin. The second term in Eq. 5.2 is the Zeeman term, that splits the
energy levels of spin up and spin down and I will neglect it in the following discussion.

Because of the spatial dependence of A in Eq. 5.2, the Hamiltonian Hp is no
longer translationally invariant H(p + eA) = H(p, 7).

After introducing A in Eq. 5.2, the components of the new momentum IT also no

longer commute

(1L, IL)] = [ps + €Ay, py, + €A, = 6( P2y Ay — [Py, Adl )

B B | .-
= (5 ol = 5 gy ) = —iheB = —ifm'w,, (53)

where w, = £ is a cyclotron frequency. Now, because the components of momentum

= _m*

IT do not commute, the Hamiltonian in Eq. 5.2 cannot be solved separately for  and
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y components. I therefore have to introduce ladder operators

lg . lp .

a=——_ll, +1L,), aT:——zHI—i—H),
(11, o (il + T, -
1 h h '

== —al I, =
’ Z'\/513(a a), Y Vg

(a + aT)

where [ = ,/mfwc is magnetic length and the commutator of the ladder operators
a,al is [a, aq = 1, as required. The Hamiltonian in Eq. 5.2 written in terms of ladder

operators in Eq. 5.4 (without the Zeeman term) reads

R 1 /. . 1 A2 2 2
HB:Qm*<H72”+H12’>:2m*%<_(a_aT) +(a+aT) )

The Hamiltonian in Eq. 5.5 is in fact a harmonic oscillator (HO) Hamiltonian and

the solutions are

(5.6)

where the energy eigenstates |n) are called Landau levels (LL). However, the solutions
in Eq. 5.6 are described by one quantum number only. This is not complete, as
the Hamiltonian in Eq. 5.2 contains two dimensions. We must therefore search for
another pair of operators, which will determine the degeneracy of levels E,. Let us
use ﬁ =p-— eA so that we get

b= 2 (i, ~11,). b= (ifl, - 11,).

NG V2h
- 1 h h
i

o iy/2ly N V2l

(5.7)

(b—o1), I, (=b—01)

and the commutator of the ladder operators b,b' is [b, bT] = 1 and also [a,b] =

[aT,bT} = 0, as required. This proves that a,b correspond to two independent HO
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with eigenstates written in a standard way as

aln)=Viln -1y, aln)=Vatin+1),

(5.8)
blm) = vm|m—1), b |m)=vm+1|m+1).
The Hamiltonian in Eq. 5.5 can be also written as
ngﬁmxaa+§)+o-®b+§% (5.9)

where the additonal HO has a vanishing spacing, which makes the energy levels E,,

degenerate. The full 2D HO solutions are

(5.10)

where m gives the degeneracy of E,,.

In order to discuss this degeneracy, I will turn to a semiclassical interpretation
of the cyclotron motion governed by Eq. 5.5. Because the Hamiltonian Hp depends
only on fI, but not ﬁ, then ﬁ is a constant of motion. Let me express variables ,y

in terms of I, II. We use

B 1 ~
A="(—y2) = (m-T) 11
to obtain
~ 1 1
=1L— - 1l,— =Y +n,,
y €B eB * ny (5 12)
~ 1 1 '
rthep g = A e

2
where momentum IT determines the relative cyclotron variable of motion 7 = %B(Hy, —I1,)
2 ~ ~
and R = (X,Y) = %‘(—Hy, I1,) is the position of the centre of motion, which is a

constant, as one would expect. The electron position is described as 7 = R + n, as
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shown in Fig. 5.1.

Figure 5.1: Relative cyclotron motion i (blue circle) of an electron about the centre
R with uncertainty of the position (grey circle).

It is instructive to consider a commutator

Br o~ ~1 LR -1 ,
XY =5 [—Hy,nm} - 5@7( [b,b] — [, 0] ) = il2, (5.13)

This means that there is uncertainty regarding the centre postion (X,Y") so the min-
imal surface it takes is AXAY = 2xl%. This allows us to define the number of

quantum states per unit area

1 1 B
p— pr— pr— .14
AXAY ~ 273 hfe’ (5.14)

np

which is the magnetic field measured in the units of flux quantum % The number

of flux quanta npg penetrating a surface is therefore equal to the degeneracy of a LL.

Eq. 5.14 shows that the degeneracy of a LL increases with magnetic field B.

5.1.2 Landau levels for massive Dirac fermions.

I will now describe the LL structure for mDf and highlight the differences from the
free electron case given in section 5.1.1.

I start with a mDf Hamiltonian for valley K with vector potential, just as in Eq.
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4.45, to obtain

qn S vf(—iam—ay—%(y—kix))
mDf = , B , A ’
vp( =i+ 0, + £ (~y+iz) ) _2
(5.15)
where ? = g = —i8. In order to diagonalise the Hamiltonian in Eq. 5.15 I introduce
ladder operators, identical to those given in Eq. 5.4, written explicitly as
. Ip . 1 . 1/ ¢ .
o= —2(096 — i, + %(aﬁ—zy)) _ 5(E + \/iac),
. (5.16)
aT:l—(—a — 10, +L(:c+z’y)> :1<< —\/§8>
vayooon o 2 2\V2 A
where I introduced dimensionless variables
T — 1y . THwy
C = l ) C = l Y
B B (5.17)

84 =g (890 +i8y), (92‘ =g (ar — Zay)

The Hamiltonian in Eq. 5.15 can be expressed with the ladder operators given in Eq.

5.16 as
A . A
. = —jva
HYp (K)=| ° , (5.18)
ival —%

where v = \/52)—; The Hamiltonian in Eq. 5.18 is written in the basis of CB and VB
states at K, as explained in section 4.4.

Following the section 5.1.1, we expect a 2D HO wavefunction solution of the
Hamiltonian in Eq. 5.18. We postulate a solution of the form

VE) = @t , (5.19)

Bln,m)

where |n,m) are LLs for a free electron, given in Eq. 5.10. It is important to em-
phasize the form of the postulated wavefunction here. The magnetic field modifies its

envelope, from the wavefunction in the absence of magnetic field (given by Eq. 2.46)
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to the wavefunction in the presence of magnetic field, as:

K = o e Erul (r) _ CH(K)
q ﬁqieieq eiKru‘I/{ (,r) ti(K)
I B (5.20)
v ey [ (ce)
. sruy Syt r) |\ Vi () )

where

wg’m’K> = |n —1,m) and ‘w@’m’K> = |n, m) are LL envelopes at K and ué{/v
are periodic parts of the wavefunction, and + corresponds to positive and negative

energy solutions. To solve for , 8 and E,, I substitute ¥& from Eq. 5.19 in the TISE

and obtain
A . A
S —va an—1m an—1m
2 | A EF | ) : (5.21)
wat =2 |\ ln,m) 8, m)
I evaluate

%a|n—1>—ivﬂ\/ﬁ|n—1>:Eoz]n—1>,

A (5.22)
ivay/n |n) — Pk In) = Fa|n),
where T used a |n) = y/n|n — 1) and I obtain
A .
2 —wwyn| |« «
2 v = EF . (5.23)

ivy/n  —% 5 B
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The solutions to Eq. 5.23 are then

A 2
Ef::i: U2?7/+ (5) y

at|n—1,m) (5.24)

W5 (K)) =
By I, m)

nm
= 0‘: In—1, m>c,K + 6: n, m>V,K’

where the energies E7' DI follow a square root dependence on n for large n, unlike
the free electron LL energy levels given in Eq. 5.10, which are linear in n. More
importantly, the mDf LL wavefunction for positive and negative energies is a mixture

of VB and CB LLs at K with the number of LL different by 1. The coefficients «, 3

are given by

4 1w/Nn
o, = — NE
Ef &
+_n 2

and have been plotted in Fig. 5.2 for the lowest LLs for a strong magnetic field of
B = 60T, close to the highest fields obtained in experiment [161]. For small n it is
apparent that the admixture of VB LLs in positive energy solutions and CB LLs in
negative energy solutions is low.

In particular, let us consider the wavefunction |UE ) for n = 0:

0
"I’Em(K» = = [0,m)y g
10, m) (5.26)

|V (K)) =0,

which shows that the zeroth LL is the only level that is not a mixture and is built of

the VB states entirely. It is also absent in the positive energies. The missing positive
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Figure 5.2: Eigenvector components for mDf LLs for (left) positive and (right) nega-
tive energies. Red (blue) lines label a,,, (/3,) components given by Eq. 5.25.

energy zero LL comes from the —K valley. By substituting the vector potential in
Eq. 5.1 into the massive Dirac Hamiltonian around —K given in Eq. 4.42, I obtain

the Hamiltonian

ok, (-K) = (5.27)

and the solutions are analogously obtained to give

A 2
Ef =+ v2n+(5> :

a |n,m) (5.28)

|V (—K)) =
@f |TL - 17m>

nm

= af* ‘”am>c,71< + By In — 17m>V,—K7

where o, 5+ are given with the same expressions as in Eq. 5.25, but ;" is conjugated.

As expected, I obtain the zeroth LL at —K as

10, m) (5.29)



CHAPTER 5. MAGNETOEXCITONS OF MASSIVE DIRAC FERMIONS 101

which reveals a zeroth LL only for positive energies in valley — K.

The LL energy structure for both valleys has been shown in Fig. 5.3, including
the asymmetric Oth LL, given by Eq. 5.26 and 5.29. The black lines represent LLs
for both valleys, and blue lines show energy dispersion for B = 0. Red thick lines
denote the Oth LL, with negative energy E, (K) = —% at K and positive energy
Ef(—K) =% at —K. This places the Oth LL at the top of the VB at K and at the
bottom of the CB at — K.

It is important to emphasize the emerging asymmetry of the energy structure in
both valleys which results in energy splitting between the first available CB state at
K and — K, called the valley Zeeman splitting (VZS) Ay, (shown in green in Fig.

5.3). Ayy is given by
2
Avz = Bf (K) - Ef (~K) =~ A (F) A, (5.30)

which increases with magnetic field strength B through w.. The presence of the
splitting Ay enables selective populating of the valleys with charges [63], as will

become apparent later in this chapter.

5.1.3 The effect of spin-orbit coupling.

I will now include the SO coupling in the LL spectrum for mDf by accounting for

SO splitting in CB and VB at K and —K, AS, and A}, respectively. The SO mDf
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K -K

AVZ

Energy [a.u]

Figure 5.3: Scheamtic asymmetric LL structure for mDf in both valleys (numbers
label energy levels). Blue (black and red) lines show energy bands for B =0 (B > 0).
Red lines denote the Oth LL, which is located at the top of VB (bottom of CB) at
K (—K). Valley Zeeman splitting Ay originating in the asymmetrical placement
of the Oth LL is shown in green.

Hamiltonian for both valleys in the basis {CB |,V B |,CB 1,V B 1} reads

A A C oA
5 — —=5° —a 0 0
1 _A Ao
a 0 0
B 2 2
HSO(K> = AC
0 0 S+55e —ia
A A AY
0 0 ival -3+ =52
. (5.31)
S+ %ﬂ ival 0 0
. A A AY,
—jva  —2 + =5e 0 0
B 2 2
HSO<_K> = AC )
0 0 S -0 val
A¥o
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where the SO splitting is opposite in both valleys. The solutions for spin s are

Afo | 9

AG,—

+
el |n —1,m)
Brs I, m)
:l:*
a’ﬂ —S8 |n7 m>
|\Ij7fms(_K)> = "
n,—s |n - 17 m>
and
L ivyn
Ops = — Nni,s )
AvsdS0-2%0
) O e i S—
+ _ Tns 2
n,s - Ngfs 9 (533)
C —AV
A+3Aso S0
Nr:LI; - 2E7;Lts (Eg:s - 9 2 )
K -K
+21 +2
+2 +2
# +2l +2T #
+11 +14
s +1 + S
+1] +11 \
=)
‘25‘ +018&1
5 0t
2 0
L
-0l
N\ _ -
A\ o’ g 7
\ - -1 /
\ 2! 2! 7/
21 21

ASp=0, Alp# 0

Figure 5.4: Asymmetrical LL structure for mDf with SO splitting AY, > 0, AS, = 0.
Red (blue) denotes spin up (down), and grey lines show the LLs for AY, = 0. Black
thick line marks the Oth LL at —K, which is not split by A%, > 0. Other LLs
for positive energies are split by AY%, > 0 because of the nature of the mDf LL
wavefunction given by Eq. 5.32.
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The LL structure with SO splitting has been shown in Fig. 5.4 for A%, = 0 and
A%, > 0 (AY, and A are not to scale) to emphasise the effect of strong SO splitting
for MoS, at K and —K. Colors show spin-split LLs (red and blue for 1 and |), while
grey shows the LL with no SO. Strong SO splitting in the VB causes large splitting of
LLs for negative energies, but also creates a smaller splitting of positive energy LLs,
according to Eq. 5.32. This is a consequence of the mixture of LLs from VB and CB
for mDf [156]. The only level, which does not exhibit splitting caused by AY%, > 0
is the Oth LL at —K, due to the cancellation of the SO term in Ej, in Eq. 5.32. Tt
is apparent that the resulting LL structure is highly assymetric, and additionally, it

produces different Ay z(s) for opposite spins s [159].

5.1.4 Coupling to light.

This section describes how mDf in LLs couple to light. I will use the results of section
4.5 to arrive at the transition probability from VB to CB state. We start with the
same Hamiltonian of coupling to light H (0%) as given in Eq. 4.46 and calculate the
matrix elements of I:I’(ai) in the basis of unperturbed LL states given in Eq. 5.24
and 5.28, in a similar fashion to Eq. 4.52. SO splitting does not change the derivation
procedure and will be accounted for in the end result. Let us start with the matrix

elements of H’ (o%) for valley K, which read

<‘I’:fm(K)‘ I:I,(UJF) \Il'r:’m’(K)> =9 (af (n — 17m|C,K B;* <n,m\V’K> ’

0 e [ap|n —1,m)ek

e~ iwt 0 ﬁ;/ ‘nlam/>V7K (534)
= —g<e_w,6’2'*a;,v71< (n,m| ‘n’ -1, m/>C,K

+ei“’taf[3;,qK (n—1,m| ‘n’,m’>wK>,
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and analogously for opposite polarisation ~. The matrix elements for both oF in

valley K read

(+|H | |-) = —g(e_mﬁ;[*a_,(n,m]n' —1,m') +e“'at B (n — 1,m\n’,m'>) ,
7 ! ! V' (5.35)

(H Hy - =) = g (e By (n — Lol m') + '8 ar (nompn’ = 1,m'))

where |+) = |UF (K)) and C,V indices are written as C'V for brevity. The reamining
matrix elements of H' are calculated analogously.

Then, analogously to Eq. 4.47, I can express the time dependent wavefunction as
U(t, K)) = " (e #5 |0,, (K) + et (e 50wk (K)) (5.36)

which is then inserted into the TDSE and the final equations, analogous to Eq. 4.54,

read
ihe, (t) = ¢ (t)HJr_e% f(f(AEJrH++(t’)—Hﬁ(t’))dt’7
. (5.37)
ihe_(t) = T (t) H_per Jo(ABHH () —H ()t
where H,_ = (+] H |—) and we can calculate the analogous expressions for valley

— K. To the first order in the electric field strength Ey and for c¢_(t = 0) = 1 we get

the expressions for both polarisations and both valleys:

ot K: ¢.(t)= —% (efi(“’f AﬁE)tﬁ:*a; (n,m|n' —1,m') + ei(“”“%)tafﬁ; (n — 1,m|n’,m'>)
o, K: ¢(t)= % (e_i(“_AﬁE)ta:*B;, (n—1,mln/,m’) + ei(w+%)tﬁ;*a;, (n,m|n' — 1,m’))
ot —K: ¢.(t) = % (e_i(“’_%)toz:{ﬁ;/ (n,mln’ —1,m’) + ei(“’+¥)tﬁ:{*a; (n — 1,m|n’,m’>)
o ,—K: ¢(t)= —%(efi(”f%)tﬂ;*a;f (n—1,m|n',m") +ei(“’+%)ta:{5;, (n,mln’ — 1,m’>),

resonant non—resonant

(5.38)

where terms with w — AFE are resonant absorption terms and w + AFE are non-

resonant. We use the rotating wave approximation and keep only the resonant terms
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to obtain
0’+, K : E—i—(t) - %ge_i(w_%)tﬁ;—*a;’ <n7 m‘n, - 17 m/>7 (539&)
oK &) = —ge T B n = Lmln! oy (5.39b)
ot —K: ¢.(t) = —%geii(wf%)ta:{ﬁ;(n, mln' —1,m") ey, (5.39¢)

ok

0-77 -K: 5+(t) = %ge_i(w_%)tﬁ:*a / <n - 17 m’nla m/>77 (539d)

similarly to Eq. 4.56. We obtain one dominant transition (boxed) and one much
weaker. This is because the terms with a prefactor «;, 5 in Eq. 5.39a and Eq.
5.39d are much smaller for low n than the ones with 8, o in Eq. 5.39b and Eq.
5.39¢, because a,, ;7 < B, a;f for low n, as shown in Fig. 5.2. Later on I will focus
only on the dominant transitions. In order to determine the allowed transitions, we

notice that for the expressions in Eq. 5.39a-5.39d to be non-zero, we require that

otV K: n'—1=n, m=m' — An=-1, Am=0 (5.40a)
o, K: n"=n—-1, m=m' — An=+1, Am=0 (5.40b)
ot,-K: n'—1=n, m=m' — An=-1, Am=0, (5.40c)
o, -K: n'=n-1, m=m' — An=+1, Am=0, (5.40d)

so the dominant (boxed) LL absorption selection rules are in short An = +1, Am = 0
for £K [62], which has been pictured in Fig. 5.5 by red solid (dashed) arrows for o~
(07) polarisation. The selection rules corresponding to weaker transitions have been
marked with grey arrows. The arrows link only the LLs allowed by Eq. 5.40 and by
the assumption of a filled VB and empty CB.
We can now obtain the transition rate for the dominant absorption (boxed in Eq.
5.39b and Eq. 5.39¢) from Fermi Golden rule, analogously to Eq. 4.58. It reads
An==£1,+K: v =

2 _
=g Oéjl_ﬁn’

22
%5(% N (5.41)
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Figure 5.5: Schematical representation of the optical selection rules for mdF LLs.
Thick red (thin grey) lines mark the dominant (weak) transitions allowed by Eq.
5.40. The dominant selection rules at £ K are An = +1, Am = 0 for oF (shown with
solid and dashed lines respectively) and opposite polarisation for the weak transitions.

where

Win—w = g* |t B (5.42)

is the dipole moment used in later sections, corresponding to o~ (o) polarisation at

K (-K).

5.2 Interacting massive Dirac fermions.

This section describes the interaction of mDf in LLs and derives a magnetoexciton
spectrum for mDf. T first discuss the form of scattering Coulomb matrix elements in
section 5.2.1 and consider valley polarisation due to the asymmetric LL structure in
section 5.2.2. Detailed expressions for the interacting Hamiltonian matrix elements
needed to solve the exciton problem are derived in section 5.2.3. My results on the
effect of interactions on VZS is discussed in section 5.2.4 and the magnetoexciton

absorption spectrum results are presented in section 5.2.5.
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5.2.1 Scattering Coulomb matrix elements.

I begin by considering the interaction of mDf in LLs, which are described by a wave-
function in Eq. 5.20. To explain the form of scattering Coulomb matrix elements I
will use the envelope function approximation, which separates two scales of the wave-
fucntion. The envelope of the wavefunction is assumed to be constant on the scale of
one unit cell, that is the scale of the oscillation of the periodic part u. For mDf LLs,
the C and V parts of the spinor wavefunction are given by Eq. 5.20. Let us consider

a Coulomb matrix element betwen different spinor components at K, e.g.

(Vi K Co K|V |G KV ) = [ [ v, 05,00
e? 1

c* Vv
47T6r€0 7 —7| ”3’”3( ) n4m4( T)

/ drdr ™ ()l (g (el (r):

47r57»50

T (Yl (R ()l () (5.43)

where I separated ¥ = (r, z) and I dropped the «, 8 factors in front which are indepen-
dent of r (they will be explicitly accounted for in the expressions for CI Hamiltonian
matrix elements in section 5.2.3).

I now distinguish between two length scales: within and outside of a single unit cell
of the crystal. I replace an integral [ d7F in Eq. 5.43 by a summation over unit cells
and an integral over a single unit cell ) p fUc dr, where R labels unit cells. Assuming
that the LL envelopes and the Coulomb potential changes slowly on the scale of a

unit cell, I can integrate out the unit cell space and again replace Y p ~ Q [ dR, to

obtain
* * 1
. deR/ n1,m1,K R 7"L27’l’77/27 R/ ng,m,j, R/ n4,m47K R
4WO// i Rl R (R o (R ()

= Vyceov (n1, mi;na, mo| V|ng, ms;ng, ma), (5.44)
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where
afut$) = [ ardS @l i) =1,
ve (5.45)
uéug) = / druds (Fud (7) = 1
ige;
and
Vweev = <u‘1/<‘ Elul) ‘Uv> = (uf |uf ) (uE |uf) = 1. (5.46)

The components V/C,, ., decide on the nature of the matrix element and on the

products (uf [uf), which in case of a matrix element VOV C' are
Weve = <Ux1/{| (ugs [ugs) |Uc> = (ug [uf) (uf |ugd) ~ 0. (5.47)
Analogously the other possible factors are

Weev = Vevve = Vwvvy = Vecee = 1,
(5.48)

Weve = Vevey = 0.

However, because we made a significant approximation by separating the length scales
in Eq. 5.44, the relations in Eq. 5.46 and Eq. 5.47 do not hold exactly, which is why a
sign = is placed in Eq. 5.48. In practice, I will consider two cases: Viycve = Vover =
0 and Vyove = Vovey = 0.1,

The matrix elements in Eq. 5.44 involve also the Coulomb scattering matrix
elements between LL states, which can be obtained using an analytical formula, given
in Eq. 2.91. The computational details of evaluation of these matrix elements have
been described in the same section, 2.3.3.

Additionally, I have to consider the overall strength of the matrix element in Eq.
5.44. The expression in Eq. 2.91 is given in the units of Rydberg Ry, and it consists of
a unitless magnetic length [ = lag. I need to account for the effective units Ry*, ap,
which can be obtained by extracting the effective mass m* from the energy bands,

given by solutions of the Hamiltonian in Eq. 4.27. 1 obtain m* = 0.34m, where my
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is the free electron mass. For a dielectric constant e, = 2.5 [162], this gives

h? e?
Ry* = 2 * o2 = ’

m*ay  2-4rmegoap

Arre,eoh? , .
ag = Wi 5(1 . moao = 3.94,
e2m
4
o (5.49)

Ry* = —; = 740meV,

Mo

1
Vay = Ry'; = Ry*C;—B — 2.88¢V - VB.
B

The scattering Coulomb matrix elements described in this section make up the CI

Hamiltonian matrix elements derived in section 5.2.3.

5.2.2 Valley polarisation.

I will now populate the negative energy LLs derived in section 5.1.2 with N electrons,

to form a HF GS
68y =TT ()" T (5x)"10) (5.50)

A<y A<Af

where A = (n, m, s) corresponds to a collective LL index and the superscript — stands
for LLs for negative energy (in the VB). A schematic picture of the HF GS has been
shown in Fig. 5.6. Due to large SO splitting in the VB, the VB LLs are split into red

(spin up) and blue (spin down).

K

Figure 5.6: HF GS for mDf. Red (blue) dots depict electrons with spin up (down)
populating levels below the Fermi level Ey. Spin splitting in the VB and the energy
gap are labelled with Agp and A respectively.
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The HF GS involves many filled LLs, so to reach convergence of absorption spectra
in section 5.2.5, I will use a fixed number of electrons N and an energy cut-off E, in
the VB, which restricts the number of filled LLs counted from the top of the VB and
allows for finite number of available SP states in my computations. This procedure

of choosing N and E, is shown in Fig. 5.7 (left) for mDf LLs.

eee O '
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2
3
0.8r
eo0e O Ef
S P
E¢ 2
-3
eee O Er
1 S ee—
E¢ 2
3
eoe O Ef
L 1 eee
B Ec 2
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oee

0
0 3 6 9 12 15 18 21 24
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NS S

Figure 5.7: (left) Choice of E¢, which determines the number of electron N in the
VB for a fixed degeneracy of a L M = 3. Cases A and C contain more electrons at
K than — K, which causes a valley polarisation p. (right) p for mDf LLs oscillates
as a function of N. Cases A-C are marked with red dots.

The mDf LL energy structure, asymmteric in opposite valleys, creates a possibility
of filling the levels with unequal number of electrons in opposite valleys as E,. increases.

This produces a finite valley polarisation

_ Nk —N_g

N (5.51)

p

where N and N_g counts the electrons in each valley. The choice of N, E. and
strength of magnetic field B determines the value of p, which has been plotted in Fig.
5.7 (right) for the degeneracy of a LL M = 3. For case A, E,. < E;, and for cases B

and C E. < E]. As N grows, p oscillates between 0 (unpolarised) and a finite value,
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which is maximised for p(N < M) = 1. This is due to the unpaired states within the

Oth LL, which bring smaller contribution to p as N increases.

5.2.3 Single magneto-exciton Hamiltonian.

With the GS defined, I will now create excitations from this GS, as shown in Fig. 5.8,
where filled (empty) circles represent an electron (hole). Due to large SO splitting
in the VB, the energies of transitions A and B will be significantly different. I now
express the magnetoexciton wavefunction as a linear combination of all possible single

excitations as

X k) = Awp|ab, k), (5.52)
ab

according to the definition in Eq. 2.85, where k = £ K labels valleys and |ab, k) is a

mDf LL excitation configuration for valley k, given as

lab, k) = |V} (k) |V, (k)), (5.53)

and the collective index a = (n, m, s) carries LL indices n, m and spin s and ‘\Il;r(k;)>,
|, (k)) have been defined in Eq. 5.32. In analogy to Eq. 2.86, the wavefunction
coefficients Ay, are obtained by solving the Bethe Salpeter equation (BSE)

( (El;kk + Eljrk) - (E;k + Z;k) - V'uerte:c<aa ba k))Aab,k + Z (Vajib - Vajbi) Aij,k; = EAab,k- (554)
ij

[ will now construct the CI Hamiltonian in the basis of configurations |ab, k),
which needs to be diagonalised to solve Eq. 5.54. I will use the definitions introduced
in section 2.2.7. I start with a diagonal element, as in Eq. 2.89, which for mDf in LLs

reads

(ab, k| Hep lab, k) = (f, +53) — (60 + Zan) — Viertea (a, b, k), (5.55)
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+2

K

Figure 5.8: Single electron-hole excitations between mDf LLs. Red (blue) filled dots
depict electrons with spin up (down), empty dots denote holes (missing electrons).
Black arrows mark electrons promoted to the CB. Excitations different in energy have
been labelled with A and B. Spin splitting in the VB and the energy gap are labelled
with Ago and A respectively.

where

S =— > (U, (k)U5 (k)| V [, (k)5 (k)

)\<)\f

= = 3 (0] V|0 ). 556)
Vicrseo(a.b.) = (W5 ()W (0] V 05 ()0, ()

a

= (W, () (R)| V[, (k)% (K))

where to simulate a neutral system I am accounting for the uniform positive back-
ground charge, which produces contributions exactly cancelling the direct terms of
self energies ¥, leaving solely the exchange terms [162].

Let us examine the self energies ¥ more closely. The general expression for ¥, | 37
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at K is

2 (n—=1,m;n —1L,m|VIn—1mn —1,m) 0o

Nt == ’a:f Z (‘a;,
n/ml

+ ‘67:/|2 <n - ]‘7m;n/?m/| 4 |n - 17m;n/7m/>CVCV>
Ry (!a;/

2
-+ ‘Bn,| (n,m;n’,m!| V' |n,m; n/vml>vvvv>

2
(n,min’ = 1Lm/| Vi n,m;n" —1,m")y oy

—a, By Z@; a, (n—1,min',m/|Vin,min' —1,m) oy

—B +T£a (n,m;n' —1,m!'|Vin—1,m;n',m'),con
(5.57)
and
= —la —| Z(}a (n—1,m;n —1Lm||n—1,m;n —1,m") o000
— 1> (n — L,m;n',m/'|Vn — 1,m;n/um/>cvcv)
S R e
- (5.58)

2
1 (nomyn!,m |V in,msn/, m/>vvvv>

—a;, B Zﬁja; (n—1,m;n',m/|Vin,m;n —1,m") cyve

n'm/’

—B,, a Za (n,m;n’ 1,m/|v|n_17m§n/7m/>VC’CV7

and a = (n,m),b = (n,m), A\ = (n/,m’) and we neglect spin here for clarity.

I now calculate the self energy contribution to an electron-hole pair in lowest
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possible LLs at K as

m

]a1| Z<|a1‘ (0,m;0,m'| V |0,m;0,m) coce

m/’

+(0,m; 0,m' | V[0,m;0,m) oy o + BT | 0m1m|V|0m1m>cvcv>
51’ Z(’ﬂl (1,m;0,m/| V|1, m0m>vvvv+|51| (1,m;1,m'|V|17m;1,m')vvvv>

— 2Re (afﬁiﬂf*af > (0ms1,m' |V |1am§0am/>cvvc>

m’

+ |O‘1_|2 Z (0,m;0, m/| Vv |07m§07m/>vcvc + Z (0,m; O,m'\ V'10,m;0, m/>vvvv

m’

~ (Vvvvv - |0£Ir|2 chcv)'

Z((OmOm’|V|OmOm +1671 0m,1,m’|V|om,1,m>>, (5.59)

m/’

where I used |ﬁ5‘2 = ‘ﬂ(ﬂZ = 1 and assumed |a;; |° ~ 0 and |5|* ~ 0 for low n and
the amplitudes of the Coulomb matrix elements (e.g. Vi/yy) have been factored out
in front of the expression in Eq. 5.59, and their values are given in Eq. 5.48. The
resulting value of the electron-hole pair self energy 0%19(m) has been plotted in Fig.
5.9 for B = 60T". The values of §310(m) for large m decrease due to finite size effects,
which appear for this infinite lattice model when the CI basis needs to be truncated
to a finite number of LLS. Therefore, for modelling a bulk system, I need to remove

this artefact and in the following sections I will consider an unchanging d%;o(m = 0).
An analogous expression to Eq. 5.59 can be found for —K and, for both valleys,

the electron-hole self energies 0% read

6%10(m, K) = (Vvvvv - |af|2 VCVCV)'

: 0,m;0,m' |V |0,m;0,m") + |8y 2 0,m;1,m/ |V |0,m;1,m
1

m/

%01 (m, —K) (}ﬁl \ Wvvy — chcv) |87 \ Z (0,m;0,m’

(5.60)

which shows that 0%19(m, K) > §3¢;(m, —K) because ’51_}2 < 1. This is due to the
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Figure 5.9: Self energy of an electron in a massive Dirac fermion Landau level. Chang-
ing values of ¥ for growing m appear due to a finite size effect due to the truncation
of the CI basis.

assymetrically filled VB, with the Oth LL in the VB located at K.
I now evaluate the remaining terms of the CI Hamiltonian. The vertex correction

terms for both valleys read

2 |2
Viertea (11, M1, M2, Mo, K) = ‘CY,J{2| ‘ﬁm ((m — 1,mg;n1,ma| V ny, mysng — 1,ma) cyve

— (ng — 1,mo;ny,mq| V |ng — 1am25”17m1>cvcv>
2 |2
Viertez (11, M1, 2, Mo, —K) = ‘CY:{Q| S (<n2,m2;n1 — 1,my|Vng — 1L,mi;ng, ma) ooy

— (ng,ma;ny — 1,mq| V' ng, mo;ny — 1vm1>vcvc)a

(5.61)

where I assumed |a;|* ~ 0 and |3} ~ 0. I need also to evaluate the off-diagonal
terms using Eq. 2.90, and for two different configurations I obtain
(be, K| Horlad, k) = (U (k)WZ ()| V 95 ()@ (k)

(5.62)
— b5 (U (R)UE (K| V|05 (k)T (K)) .
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where the attractive term (W, (k)W) (k)| V |W (k)¥; (K)) is “direct” w.r.t. band in-
dices but “exchange” w.r.t. k indices and the repulsive term (¥, (k)0 (k)| V [V, (K) U] (k))

has opposite features. The off-diagonal terms for both valleys read

(be, K| HCI |ad, K) ""Bnls n} s’/87z/15’a7t28<<n17m1;n/2 —1,m5| V' [ny, miy;ng — Lma)yeve
_653’ <n17m1;n/2 - 17m/2| Vv ‘712 - 17m2;n/1am/1>VCCV)’
(be, —K| Hey |ad, —K) ~8; o, S,B;,ls,ags(ml = Limiing, mo| V [n} — 1,misna,ma)ycye

. / Lo I
_635’ <TL1 - 15m17n27m2| Vv ‘n2am2’n1 - 1’m1>VCCV>7

(5.63)

where a = (ny,mq,s),b = (n},m},s),c = (nh,m},s'),d = (ng, mg,s) and I also
assumed |, |> ~ 0 and |3 ~ 0

The last remaining matrix element of the CI Hamiltonian is an intervalley off-
diagonal element, i.e. for excitations in two different valleys (k # k' in Eq. 5.62).
Using Eq. 5.44, I calculate the biggest contribution to this matrix element, assuming

again |o;|* ~ 0 and |3} ~ 0, which reads

(be,~K|Heylad, K) =~ (V, K, C — K|V |V;y - K,CfK)
— 6 (V, K,.Cr -~ K|V|C]K,V, — K)
»

—-K K _
= (ulf] () [ufS) msan,sﬁngs/a;;s (s my | V s 1t g, o)

K -K K — + o / L !
555’ <uV’ U ‘uC’ |UV >6n18 nhs’ n/ls/angs <n17m1’n27m2|V|n27m27n17m1>

K-K-KK p— +* — + ! / / /.
VVCVC nlsan’s nfls/angs <n17m17n27m2| Vv |n1,m1,n2,m2>
K-KK-K +* - + ! / o /
— s Viooy msozn,s Bn,ls,ozms (ny,my;ng, my| V |ng, mo;nf,my) (5.64)

where a = (ny,my,s),b = (nf,m},s),c = (ny,mh,s"),d = (ny, ms,s). The factors
VVKCVIé KK and VVKCCIf,K K in Eq. 5.64 never involve the same periodic functions w,
because the matrix element is either “direct” in band index and “exchange” in valley
index or “exchange” in band index and “direct” in valley index. This makes these
elements close to 0, which will introduce negligible splittings in the Bethe-Salpeter

solutions [49]. T will therefore neglect the intervalley scattering in my calculations of

the magneto-exciton spectrum.
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5.2.4 Renormalisation of valley Zeeman splitting with inter-
actions.

Section 5.2.3 discusses all contributions to the interacting Hamiltonian for a magneto-
exciton. Here I show the effect of the self energy on VZS given by Eq. 5.30 and shown
in Fig. 5.3. Using Eq. 5.57 for valley K and analogously for —K, the renormalised

VZS with self energy contribution becomes

> — + +
A (m) = Ay + 55, (K) — S, (< K). (5.65)
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Figure 5.10: (left) Choice of N determines the valley polarisation p. Cases A and
C exhibit p > 0. (right) VZS Ay renormalised by interactions as a function of N
shown together with p(IN). The oscillations of Ay, follow the oscillations of p.

I have computed A%, (m = 0) renormalised by interactions for three lowest CB
LL in both valleys, which has been shown in Fig. 5.10 for B = 607 and for M =
24 (Fig. 5.10 left shows only 3 particles in a LL for clarity). It shows oscillatory
behaviour, which mimics the valley polarisation p. In an unpolarized case the VZS
renormalised by interactions decreases with the number of particles N and it increases

when polarisation is present [159].
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5.2.5 Magnetoexciton absorption spectrum.

After solving the BSE given in Eq. 5.54 we obtain the magnetoexciton wavefunctions
. . k .
| X, k) ., given by Eq. 5.52 and energies E;. We can calculate the magnetoexciton

absorption spectrum from Fermi’s golden rule as [148]
. 2
Alw,k) =Y ‘(X, K, PHGS)| 6(hw — E5), (5.66)
m

where the GS has been defined in Eq. 5.50 and El’j are measured from the GS. In Eq.
5.66 PT is the interband polarisation operator corresponding to photon absorption
given by

PH =3 "du ()", (5.67)
ab

where d,;, is the dipole moment given by

dab = Wnn’ = 92 |Oé,j;*5_/

n

, (5.68)

where W,,,» has been derived in Eq. 5.42. To compute the absorption spectrum in
Eq. 5.66 I have used the selection rules Am = 0, An = +1 for valleys £ K, derived
in Eq. 5.40 and shown in Fig. 5.5 with red arrows.

Fig. 5.11 shows the absorption spectrum A(w, K) for Ny, = 1 LL in VB and
CB, with Viyccy = 1 and Voyeoy=0. Panels a-d show how different contributions
to the CI Hamiltonian affect the spectrum. The axis is measured in a SP gap with
no SO, but the exciton lines include SO (shown in red and blue for exciton A and
B). I start with SP energies, which gives many degenerate exciton lines at energy
differences calculated from Eq. 5.32. Inclusion of the self energy contributions given
by Eq. 5.57 and Eq. 5.58 shifts the spectrum for all lines, which remain degenerate.
This is because I implemented the correction of finite-size effects by using ¥ (m = 0)
for all m states. The vertex correction given in Eq. 5.61 is different for all m, which
splits the exciton lines. Finally, I include the off-diagonal terms of the Hamiltonian,

which is responsible for scattering of configurations. This changes the composition of
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Figure 5.11: Magnetoexciton absorption spectrum for mDf for Ny, = 1, M = 24
and B = 60 T. Colors denote spins. a) With no interactions all exciton lines are
equal to the SP energy of an electron-hole pair. b) Self-energy contribution shifts all
exciton lines to higher energies. c¢) Vertex correction is different for each excitation,
which splits the lines. Off-diagonal terms in the Hamiltonian produce varied oscillator
strength and one dominant peak for each spin remains. All contributions to the
exciton energy cancel almost exactly.

each exciton state and is responsible for the fading of the oscillator strength of the
exciton lines. The blue shifts from self energy are almost exactly cancelled by the red
shifts from vertex correction and scattering of configurations, so the final peaks are
slightly blue-shifted w.r.t. the SP energies [159].

A similar case is showed in Fig. 5.12 for N, = 3 LLs in CB and VB. However,
the resulting absorption peaks are shifted more towards higher energies as all the
contributions do not fully cancel. A single exciton line for each spin remains dominant
even for more LLs included in the CI basis. The difference in oscillator strength for
absorption peaks on panel a-c is due to the varying transition probability W, .

Fig. 5.13 shows the position of the dominant absorption peak for both spins for
up to Ny, =7 LLs and M = 5 included in the calculations. Each panel includes one
more LL than the previous panel. A converging tendency of the exciton energies is
visible when it reaches &~ 130meV above the SP gap marked with a green line on all
panels.

Fig. 5.14 shows the exciton A (lower energy) dominant absorption peak energy
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Figure 5.12: Magnetoexciton absorption spectrum for mDf for Ny, = 3, M = 24 and
B =60 T. Panels a-d shows the same contributions as Fig. 5.11. The final absorption
peaks are blue-shifted w.r.t. SP energy gap.
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Figure 5.13: Final magnetoexciton absorption peaks for mDf for Ny, = 1 — 7,
M =5 and B = 60 T. The absorption peaks move to higher energies as Ny grows.
A converging tendency is visible for high N .

for both valleys as a function of the valley polarisation p defined in Eq. 5.6. As more

LLs are filled with electrons, the absorption peaks shift towards higher energies. For

all NV it is clearly visible that the exciton peak at K remains at higher energy than

the exciton absorption peak at —K. This can be attributed to higher self-energy

contribution to the exciton energy at K, as demonstrated in Eq. 5.59 for low n. This

is a consequence of the assymetrical LL structure in both valleys.
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Figure 5.14: Magnetoexciton absorption spectrum for exciton A for Ny, = 1 — 3,
M = 24 and B = 60 T for both valleys. The exciton energy follows the valley
polarisation and remains smaller in valley —K than in valley K, as N is increased.
Colors label spins and valleys for exciton A.
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Figure 5.15: a) Magnetoexciton absorption spectrum for Nyp, M = 24 and B = 60
T. b) Effect of the exchange term in vertex correction (Voyeoy = 0.1). Second exciton
line for each spin dominates and peaks move to higher energies. c¢) The effect of spin
mixing on the absorption spectrum. The peak at higher energy dominates and is
visible at ~ 1.15A.

I now allow for nonzero Voyey = 0.1 and spin mixing of configurations. Fig.
5.15 shows the resulting absorption spectrum in subsequent steps. Panel b shows the
exciton lines in case of nonzero exchange between the electron and a hole, given in
Eq. 5.61 by the term with Vv oy contribution. This causes the second exciton line to
acquire oscillator strength, as the whole spectrum shift to higher energies at the same

time. Panel ¢ shows the effect of the scattering of different spin configurations as
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dictated by Eq. 5.63. Both spin contributions have been pictured with continuously
varying color from red (spin up mostly) to blue (spin down mostly) and purple denotes
equal spin contributions. The emerging peak has a mixed spin composition with more
spin down contribution and appears at much higher energy than the SP gap. Weak

residual spin up peak is still visible at energies slightly higher than the SP gap.



Chapter 6

Electron-electron interactions in
parabolic gated MoS> quantum

dots

This chapter presents a theory of SP and many-body properties of parabolic MoS,
QDs [163,164]. Section 6.1 contains the TB model of a finite MoS, structure and is
followed by the results on the SP energy structure of a parabolic QD in section 6.2.
I discuss the details of the electron-electron interactions in MoSy QDs in section 6.3
and give prediction of broken-symmetry many-body states in these nanostructures in

section 6.4.

6.1 Tight-binding model for MoS,; quantum dots.

In this section I derive the TB model of a MoSs finite structure and of an electrostat-
ically defined parabolic MoS, QD. I will first consider a rectangular piece of MoS, in
section 6.1.1, which will serve as a computational box for an atomistic problem of a
single electron in a parabolic QD in section 6.1.2. Section 6.1.3 discusses the same

problem in the Bloch basis, which provides information on valley effects in QDs.

124
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6.1.1 Nanostructures of MoS, in the basis of atomic orbitals.

I first consider a rectangular piece of MoSs shown in Fig. 6.1. The unit cell contains
four lattice sites (marked with a green rectangle) and is repeated by a multiple of the
supercell vectors d; and ds (shown in Fig. 6.1) to make an entire structure. I will
identify structures of different sizes by numbers N x M of the repetitions of the unit

cell.

~ 0 e - e O

o ® g e 0
¢4l |e—¢ e

@ ¢f*d2¢’* 0
e e < e

o e e e
8 ¢ 8 < e ¢ *

@ [ = [ = [ ]

Figure 6.1: Rectangular piece (supercell) of MoS,.Green box marks the unit cell of a
rectangular structure with 4 sites. Vectors d; define the repetition of the unit cell to
form supercell contained in the blue box.

I will use the 6-band TB model derived in section 4.1 but, because I want to study

finite structures, k will generally not be a good quantum number, so I will write the

TB Hamiltonian in the basis of all the A & B (A = Mo, B = S5) sites within the
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rectangle

ﬁgg = Z Z f:jcj,A’aCi,A,a + Z Z Z:ﬁBC;r,B,BCi7Bﬁ

7 a:{md:[LiZ} 1 ﬂ:{mpzo,il}

+ Z Z Z (Ej,aﬂcg,A,acj,B,B + h-C')

<Z’]> a:{md :OviQ} B:{mp :07:|:1}

+ Z Z <Ui‘?’aa,c£A’acj7A,a/ + h.c.)

<<6,j>> a,a’={m =0,%2}

T Z Z (Ulﬁﬂﬁ’c;‘r,B,Bcj,Bﬁ’ + h‘C-) ;

<<4,j>> B,8'={m,=0,£1}

where T is a 3 x 3 NN hopping integral matrix in the basis of orbitals equal to
Tijop = {0a(P)|V |@s(r + 8;)) defined in Eq. 4.11 and UA/® is a 3 x 3 NNN hopping
integral matrix in the basis of orbitals equal to U7, = (@a(T)|V [0a(r +;))
defined in Eq. 4.22 and 4.24 and Ej/ f is a 3 x 3 diagonal matrix of onsite energies for
orbitals and A & B denote sublattices. Note that the pairs of NN and NNN atoms
could obey periodic boundary conditions (PBC) or not - I will begin by selecting pairs

of neighbours without PBC.

lH SH
& 2‘ V. 6’

33— 78—¢€
d  wed e

Figure 6.2: Rectangular MoS; 2 x 2 computation box. Numbers label the atoms
within sublattice A.

It is useful to represent the Hamiltonian in Eq. 6.1 for the smallest meaningful
case of 2 x 2 supercells without PBC (pictured in Fig. 6.2) in a matrix form in the
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basis of atoms {1A,2A4,3A4,...,1B,2B,3B, ...}

4 U4 UA T T
A UA UA UA U4 T T T
A UA T T T
A UA T T
A UA UA T T
g4 U4 UA T T
A UA T T T
A58 = = ! ,
B UB UPB UB

B yUB UB UB

B UyB UB

B yUB

ZB
(6.2)

where each 7" is understood as a 3 x 3 matrix in the basis of orbitals T, . s = Ta 5(6;),
dependent on angle ¢;;, originating in directional cosines defined in Eq. 4.13, and
each U7 is understood as a 3 x 3 matrix in the basis of orbitals Uy, ., = Uz, (¢i;),
dependent on angle ¢;;, originating in directional cosines defined in Eq. 4.26. Explicit

forms of the elements in Eq. 6.2 read

Em =2 B, ——1
A = Ep, - B = B - (6.3)
Ep =12 B, —+1

% 0 —V, 210 7 310
TO) = | ~vie ® V5 Ve (6.4)

—Vge*?’w _V2ef2i9 Vleﬂ'o

7% Wae®  Wyeti® W 0  Wrei®
UN) = | Wae™2¢ Wy Wae2¢ | UP(@)=| o W o0 |, (65
Wye 49 Wae= 2 Wi Wre= 219 () W

where Vi_5 and W;_; have been defined in Eq. 4.17 and 4.28.

The dimension of the Hamiltonian matrix in Eq. 6.2 is Ny (N x M) =3-2-2-
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Figure 6.3: Periodic boundary conditions in a rectangular piece of MoS,. Numbers
label some edge atoms to demonstrate the process of finding NN within the copies of
a supercell repeated in space.

(N - M), which for the case of a 2 x 2 structure is Ng;;,(2 x 2) = 48.

Now, if I consider the PBC, I must fill in additional matrix elements in the matrix
in Eq. 6.2 corresponding to neighbours linked across the edges of the structure, as
shown in Fig. 6.3 for a bigger structure. Some edge atoms have been numbered to
depict how the structure is repeated in space to enable PBC.

The Hamiltonian matrix in Eq. 6.1 is diagonalised for a N x M structure with or
without PBC to obtain the eigenvalues and eigenvectors. Details on the diagonalisa-
tion routines have been included in section 2.3.1.

Fig. 6.4 shows the energy spectrum of a 6 x 6 structure with and without PBC for
comparison. It is visible how a gap opens in the structure treated with PBC. This is
due to elimination of edge effects, which is demonstrated in Fig. 6.5. The orientation
of the lattice in Fig. 6.5 is the same as in Fig 6.3, so right (left) edge is built of Mo (S)
atoms. Fig. 6.5 shows the wavefunction amplitude of states 288-291, which appear
in the gap in case without PBC. The wavefunction is strongly localised on Mo atoms
on the box edges. Therefore, studying the structures with PBC enables me to remove

the edge effects, which will prove useful in case of electrostatically confined QD.



CHAPTER 6. GATED MOS, QUANTUM DOTS 129

4 T T T T T T T T T T
* noPBC [
* PBC s
2+ - =
Jf
4
ok
2+ -,
>
2,
w
1 L L 1 Il L L 1 Il |
0 40 80 120 160 200 240 280 320 360 400

eigenvalue index

Figure 6.4: Comparison of the energy spectrum of a 6 x 6 MoSy QD with (red) and
without PBC (black). A gap opens at ~ 0 — 2 eV.

o 5 10 15 20 25 30 0 5 10 15 20 25 30
Figure 6.5: Wavefunction amplitude for states 288-291 for a 6 x 6 MoS, piece without

PBC. They are edge states, which can be eliminated if PBC is employed. Bright color
denote higher amplitude.

6.1.2 Electrostatically defined MoS, quantum dots.

This section includes description of the QDs that are defined electrostatically within

a nanostructure of MoS,. Contrary to graphene, MoS, is a semiconductor, which
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makes it possible to trap charges within potential wells in its plane. We want to do
so to enable manipulation of single charges within a QD for e.g. quantum computing
applications. It is done by adding an external parabolic potential (shown in Fig. 6.6)
to the Hamiltonian describing a piece of MoS, given in Eq. 6.1. The parabolic form
of the potential is used because any smooth potential profile can be described by a
parabola at low energies, and a single practical parameter w (shell spacing) can be
used to describe the eigenstates of a parabolic well. The external potential can be
generated by metallic gates placed on top of the nanostructure. The gates introduce
a perpendicular electric field to the MoS, layer, which modifies the onsite energies on
atomic sites. Such metallic gates are typically located far above and below the plane
of MoS,, which keeps the potential difference between the top and bottom edge of
the crystal very small, so the assumption made in our TB model in section 4.1 on the
even nature of contributing orbitals still holds (I estimate the effect of odd admixture

to the wavefunction below 1%).
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Tﬁ—_ﬁf - _/ -
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40 20 0 20 40 60 gg 199 -100
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Figure 6.6: External confining parabolic potential well with radius Rgp = 40nm and

Vinaz = 300 meV.

The Hamiltonian of an electrostatically confined parabolic QD with radius Rgp
is given by

Hpara - Agg + Z ‘/icgacicw (66)
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where V; is the external potential on an atomic site generated by metallic gates given
by

2

Vi=V(r) = (6.7)
0, |’I°Z| > RQD,

1~2..2
§w r; — Vma:t: ’Tz’ < RQD>

where @ = 4 /2|Vinaz|/ Ré p is the corresponding harmonic oscillator level spacing

defined by the depth of the confining potential V... In Eq. 6.7, ¢ runs over all the A
and B sites of the N x M computational box of the MoS,. While choosing Rgp we
keep the size of the computational box sufficiently big so that the confined states are
not affected by the edges. To avoid clouding the energy spectrum with edge states
while analysing the confined states, we use PBC. As we are interested in additional
electrons trapped in the potential well I will focus on the lowest states within the CB.
These states should not be associated with the edges and therefore should not depend
on the choice of the boundary conditions. Fig. 6.7 shows the energy spectrum of the
same computation box 24 x 16 with a confined QD of the same radius Rgp = 2nm
in two cases: with and without PBC. For such small dot we obtain only two confined
energy shells (highlighted in boxes), which remain at the same energy in both cases.
This proves that we can study those confined states with PBC, which eliminates the

effect of the edges of computation box for boxes sufficiently larger than Rgp.
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Figure 6.7: Comparison of the energy specturm of a 24 x 16 computation box with a
confined QD of Rgp = 2nm with (red) and without PBC (black). Boxed levels are
the same for both cases and are therefore confined inside the QD.
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6.1.3 MoS; quantum dots in the basis of Bloch states.

Below I will show how to obtain the energies of MoS,; confined QD in the basis of
Bloch states instead of atomic sites to gain the important information about the
origin of levels in k-space. I will consider different shapes of the computational box:
rectangular (as shown in Fig. 6.1) and romboidal (Fig. 6.8), with PBC in each case.
Each computational box is composed of N x M unit supercells, as before. We will
now label the unit supercells as R;; = (¢,7) = (i — 1)dy + (j — 1)ds, where d; and

d, are the supercell vectors for a chosen shape of a computational box.

Figure 6.8: N x M romboidal computation box. Unit cell is shown in a dashed box.
Unit vectors of a hexagonal lattice a; are the same as the supercell vectors d;.

I will use the Fourier transform of the operators in the site basis ¢;j4, B(CL. a/p) to

obtain the operators in the Bloch basis ayga, B<“Lq A/B):

—ikpq (3:3) .t
ij,A/ B>

1
T
Upg.a/B = Iring Z €
" NM ij=1,N,M
1
a g
peAf VNM ij=1,N,M

ikpq (2,
e pa .7)02,]‘714/B7

ekaq (i$j) a[T

vo.A/ B (6.8)

1
T
CijA/B~= ot Z
’ NM pq=1,N,M

1 ik (ir
C’L],A/B = \/W Z e P‘I('I',J)a/pq’A/B’

pq=1,N,M

k:pq:p%—l—q%, p=0,..N—1, q=0,..,M—1,

where v; and v, are reciprocal supercell vectors, obtained from supercell vectors d;
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and d,, which are equal to hexagonal lattice unit vectors a; and a, for a romboidal

box and are distinct for a rectangular box:

_\/75’ %)’ dqed = d||\/§(07 1)7
(6.9)

5 T 5) di* = dV3(v/3,0),

d?{omb —a, = d\l\/g(

dgomb =Qay = d”\/§<_

as shown in Fig. 6.8 for a rhombus and in Fig. 6.1 for a rectangle. Then the reciprocal

supercell vectors read

2m 1 2w
,Uromb =G, = ( -, 1)’ vt — 0’ 1 ’

1
b 2m 1 " 2T 2 (6.10)
,vgom :G2 = __7_1 3 vgec = _70 )
dH\/g \/g d||\/§ \/§

where G'; and G4 are reciprocal lattice vectors of the hexagonal lattice. The resulting
mesh of k,, has been shown in detail in Fig. 6.9 with black dots for both shapes of
computation boxes. High symmetry points and the contours of the reciprocal lattice

have been marked.
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3 a3

Figure 6.9: k-point meshes for a (left) romboidal and (right) rectangular computation
boxes (6 x 6 and 12 x 12 respectively). Black lines give BZ edges. High symmetry
points are labelled with colorful dots. Reciprocal supercell vectors v are shown (they
are the same as reciprocal lattice vectors G for a rhombus piece).

I will now transform the QD Hamiltonian given by Eq. 6.1 into the Bloch state
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basis in parts HY5 = Hgie + HYY + HYAN. Using Eq. 6.8, the onsite terms of the
QD Hamiltonian given by Eq. 6.1 can be expressed as

F ite __ At Bt
Hgs'e =3, Y Elchaatiaat), D, Eichpacine

tj a={m, =0,+2} tj p={m,=0,£2}

DD ML CL D SN T

pq,Ts ij a={m =0,£2}

— E § AT Bt
- <‘£a Apg,A,a%pg, A0 + Z;ﬁ apquﬁapq,B,ﬁ) )
Pq a={m, =0,£2}

Qrs, A« + EﬁBa;r)q,B,ﬁar&Bvﬂ) (611)

because Y, e/kra=kro)Bis — N M6, ., for a periodic system. The NN terms are ex-

pressed analogously as

HYY = ) (Taﬁ(91)ij,A,aCij,B,ﬁ+Taﬁ(92)03j,A,a0i+1J’,B,B+Ta5(93)ij,A,aCiHl,B,BﬂLh&)
a:{mdm=0,:t2}

p={m,=0,£1}

=2 2

Pq a={m, =0,£2}
B={m,=0,%1}

e—z‘k:qu (Taﬂ(el) 4 Taﬁ (ez)eikpqaz + Taﬁ (93>eikpqal + h.c.) a;q,A)aapq,B,B

= Z Z f}?/[ﬂosg (kPQ))a';q,A,aap%BwB (6.12)

Pq a={m, =0,+2}
B={m,=0,+1}

and the NNN terms for sublattice A are expressed as

ANNN A A
Hop™ = Z Z (Uaa’(¢1)czj’A7acij1,A,a’ + Uao/(¢2)Czj’A7aci+l,jfl,A,a/

tj o,a’={m =0,+2}

A A
+ UL (63)ch; 4 oCivrjiaar + Ul (Sa)el; 4 aCijr.a.0

+ Ul (85)eh 4 aCimt st aar + Ul (66)ch; a4 aCiz1jaar + h'c'>

=2 >

Pq o,o’={m, =0,%£2}

+ UA (¢g)e*ra®t 4 UA (¢5)e Fraar=a2) L 4 (ghg)eRradz 4 h.c.) a;qﬁAyaapq’Aya/

(Ué‘qm(gbl)@ik”al + UL (po)e Fralazma) L A (pg)etkrac

= Z Z IMoSs (k’pq)a;q,A,aapq’A,a’ (6.13)
P4 a,a’={m =0,£2}

and analogously for sublattice B. Phases 6 and ¢ in expressions in Eq. 6.11,6.12 and
6.13 correspond to NN and NNN phases given in Eq. 4.13 and 4.26.

It is apparent that ﬁgg is block-diagonal in k-states, where the blocks are in the
basis of sublattices A and B. However, when the external confining potential is added,

the problem is not periodic in space any more. Therefore the k-blocks are mixed.
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Figure 6.10: (left) Energy levels of QD states with (red) and without (black) the
confining potential for a rhombus box. (right) k-point distribution of the wavefunction
for states #1 (#2) (encoded in colorful dot sizes) has been shown for both cases in
panel 1 (2). Without the confining potential the state is localised at —K, and with
the confining potential it spreads to surrounding k-points. Small valley mixing is
visible.

The full form of the Hamiltonian with the confining term given in Eq. 6.6 expressed

in the Bloch state basis reads
Hpara = HOP +> VijAcl'Lj,A,acij,AOé +)° Vz‘jBCL,B,aCij,BB

ijo 58

= 55 + Z et kra—kra) Bij (Z V;jAa;q’A’a(lrs,A,a + Z V;'jBei(kpq_kTS)ban7B7ﬁars,B’ﬁ)a (6.14)
ij a B
pg;Ts

which is not diagonal in k-basis. In order to diagonalise Hamiltonian given in Eq.
6.14, T use the mesh of k-points given by PBC for a chosen shape and size of a
box (Fig. 6.9). Solutions of the Hamiltonian in Eq. 6.14 are naturally the same
as in section 6.1.2 but this time the eigenvectors carry the information about the
k-point distribution. An example of such eigenvector has been shown in Fig. 6.10.
The energy levels are obtained for a 12 x 12 computation box with and without a
confining potential (shown in red and black respectively). The panels 1 and 2 show
the k-point distribution of the eigenvector of state 1153 in both cases (size of a dot
encodes the amplitude for a given k-point). Without the confining potential the whole
wavefunction is located in the K-point, and when the potential is added, the state

spreads to surrounding k-points. Very slight mixing of both valleys is also visible.
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6.2 Single particle energy spectrum.

In this section I will present the results I have obtained on the SP properties of
MoS, QDs. The energy structure for QDs with radii Rgp = 12,15,18,20 nm and
Vinae = 300 meV have been shown in Fig. 6.11. The computations were performed
on a 160 x 220 box with PBC and no SO splitting. As the radius Rgp grows, more

states are confined within the dot, and the spacing between states decreases.

152} e
15 1 Q-derived
1481 ™ states
D146t e
LU 1441 e e R=12nm |-
142 I ¢ derived ° R=15nm )
" Kederive -
14 t states e R=18nm |
- e R=20nm
1 38 [ 4

Figure 6.11: Energy levels of MoS; QDs with Rgp = 12,15, 18,20 nm (colors). Lower
ladder of states can be attributed to valleys £ K, while higher levels originate in Q-
points. For growing Rgp level spacing decreases.

In the low-energy spectrum in Fig. 6.11 states originating in valleys + K are
visible. They have been described in section 6.2.1. At higher energies a ladder of
states associated with the Q-points appears, which I described in section 6.2.2. The
effects of SO coupling in MoS, have been neglected in section 6.2.1 and 6.2.2 and are

discussed finally in section 6.2.3.

6.2.1 Spectrum associated with valleys K and — K.

I will now discuss the low-energy levels associated with the K valleys.
The levels form groups of almost-degenerate shells, spaced equally by w, as shown
schematically in green in Fig. 6.12 (left). It resembles a HO spectrum consisting of

electronic shells, but in case of the QD, the spectrum degeneracy is doubled w.r.t. the
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Figure 6.12: (left) QD energy levels associated with valleys £K. For each valley
almost-degenerate levels are grouped, so shells are formed. w is a shell spacing (not
to scale) and L is angular momentum. Shells are split by %, which appears because
+ K are topologically inequivalent. Levels order according to L oppositely in both
valleys. (right) k-point distribution for the wavefunction of two lowest levels A and
B. They are associated with the =K valleys.

HO spectrum. This is a consequence of two valleys K, as shown in the right panel
of Fig. 6.12 [163]. Tt pictures the Fourier composition of the two lowest states plotted
against the hexagonal BZ, and this information has been obtained by diagonalising
the Hamiltonian in the Bloch basis using Eq. 6.14. The wavefunction amplitude has
been encoded with the size of a dot and its color at the same time. The eigenvector
is localised mainly at K and —K and their surrounding points. Levels A and B can
be classified as localised around K and —K respectively, which will be proven with
SO coupling included in section 6.2.3.

In analogy to standard HO, the shells from both valleys can be labelled by 2D HO
quantum numbers (n, m) (along x+iy directions), or equivalently by the shell number
I = n+m and shell angular momentum L = n—m. The values of L have been marked
in Fig. 6.12 for all levels. They have been assgned to numerical eigenstates based on
the charge density and degeneracy resembling the 2D HO solutions, as discussed in
detail in section 6.3.

A further modification of the HO spectrum for MoSy QDs involves intra-shell
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splitting 6% (shown in pink in Fig. 6.12 left, not to scale), which depends on L, and
the splitting is opposite in opposite valleys, as shown in Fig. 6.12 with red and blue
labels. The thick red and blue arrows emphasize this difference for the |L| = 2 states
in the I = 2 shell. This effect is similar to the degeneracy lifting in standard HO by
an external magnetic field [165] and appears also in excitons in MoSy [44,163]. This
effect resembles a conventional orbital Zeeman effect, which arises due to magnetic
field coupling to the angular momentum of atomic orbitals [44]. In consequence, 2p
atomic states with opposite m; quantum number are split. A parabolic MoS, QD is an
artificial atom, with discrete energy levels that are angular momentum eigenstates,
and they are associated with either of the two valleys K and —K in momentum
space. At the same time, the mDf nature of an MoS, crystal produces a non-zero
Berry curvature, opposite for opposite valleys, which is an analogue of a magnetic field
vector acting on finite angular momentum states, with opposite directions in opposite
valleys [44-46]. Berry curvature couples to the angular momentum of quantum dot
states from each valley, just as a magnetic field does in real space in case of atomic
orbitals. As a result, the degeneracy of p-shell states in an MoSy QD is broken, similar
to a Landé splitting in an atom [44]. I call the intra-shell splitting 6 a “topological”
splitting. The magnitude of splitting % is analysed together with splittings in the

Q-derived spectrum in section 6.2.2.

6.2.2 Spectrum associated with the ()-points.

I now turn to the description of the states visible at higher energy in Fig. 6.11.

The shells are six-fold degenerate, as shown in Fig. 6.13 (left), which has its origin
in the 6 inequivalent Q-points [163], three per valley, as shown in the inset at the
bottom of Fig. 6.13 with red blue and green points. These colors correspond to the
energy levels in Fig. 6.13 (left). This ladder of states can be attributed to the Q-
points, because of the Fourier composition of the levels, which has been pictured in
Fig. 6.13 (right) for the two lowest energy groups of states A and B (groupped with

solid and dashed lined polygons respectively). The size and colors of the dots encode
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Figure 6.13: (left) QD energy levels associated with Q-points (not to scale). For each
valley there are three Q-points (red, blue and green in inset and corresponding energy
levels), which produce threefold degenerate spectrum for each valley. Topological
splitting 0% is larger than §%. (right) k-point distribution for lowest 6 states (groups
A and B) shows localisation at Q-points.

the probability density at these points.

—e—Q-derived
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| o—e—° |

1 2 3
Shell number |L|

Figure 6.14: (left) Topological splitting ¢ for K-derived and @Q-derived states (iden-
tified on the bottom and top of left panel, not to scale). (right) Magnitude of 6% and
59 shown for different shells with black empty and blue solid dots. §€ is an order of
magnitude larger than AX and reaches up to 6.5 meV.

The Q-derived ladder of states also exhibits topological splitting 6%, opposite for

states around opposite valleys, as shown schematically in Fig. 6.13. The topological
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splitting for both ladder of states, 8% and §9, have been schematically marked again
in Fig. 6.14 (left) with pink symbols. Fig. 6.14 (right) plots the magnitude of §%
and 69 for Rop = 30 nm as a function of the maximum angular momentum in a shell
|L|. Tt is clear that 0% is an order of magnitude larger than 6% for the lowest energy

shells, and it reaches up to 6% ~ 6.5 meV for the second I = 1 shell.

6.2.3 Spin-orbit splitting vs shell spacing.

I now include the SO coupling, as in Eq. 4.34, which results in a SO splitting Agp in
the QD energy levels. Fig. 6.15 shows schematically how Ago modifies the QD energy
structure, by illustrating the effect on the lowest shells of both ladders, K-derived and
Q-derived (as shown in the left panel of Fig. 6.15). Spin spliting for both ladders,
AE, and Ago, are opposite around opposite valleys (red and blue arrows denote
spin up and down). These spin states have been classified by examining the Fourier
spectrum of the lowest four states (marked by green box), which has been shown in
Fig. 6.15 (right) for all four states (arrows link the Fourier spectrum to the energy
level). The localisation of a state in a given valley together with the spin quantum
number produce the spin arrangement of states pictured in Fig. 6.15 (middle).

The relative arrangement of spin states between the K-derived and Q-derived
ladder depends on the bulk properties of the material. As shown in Fig. 6.16 (right),
MoS, exhibits the same spin bands at the bottom of the CB at K and @, which is
reflected in the QD energy structure in Fig. 6.16 (left). For a similar TMDC QD,
consisting of a different metal, e.g. for WS,, the spin of the bottom of the CB at K
and @ are opposite, which would reverse the spin states in one ladder of QD states.
This fact can be used to engineer the desired energy structure for custom spintronic
devices.

I now discuss the relevant energy scales w and Agp (marked again in Fig. 6.17
right) as a function of Rgp. Fig. 6.17 (left) shows w decreasing as ~ 1/rgp, while
the middle panel plots Agp increasing as ~ —1/Rgp. Grey horizontal line in Fig.

6.16 (middle) marks the limiting value of SO splitting for bulk.
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Figure 6.15: The effect of Agp on SP energy levels of an MoSs QD. The SO splitting of
lowest shell (left) is shown in the middle (not to scale). Spin up and down are denoted
with red and blue arrows respectively. A%, and Ago are opposite in opposite valleys.
and the same within a valley. (right) Fourier distribution of the K-derived L = 0
shell (marked with green box). Each level is clearly linked to valley and spin, which
allows for distinction.
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Figure 6.16: Demonstration of possible spin arrangement in different TMDC materi-
als. (left) Spin levels for an MoS, QD. (right) Two possible spin band arrangements
for bulk MoSy; and WS, at K and at Q. Spins are aligned (anti-aligned) for MoS,
(WSy).

The values spanned by w and Agp shown in Fig. 6.17 create a possibility for

the forming of two regimes: w > Agp and w < Agp, as pictured schematically in

Fig. 6.18. Red and blue colors denote energy levels of opposite spin. In situation a),
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w > Ago, the levels are grouped within a shell, and filling of the first shell requires 4
electrons (in a non-interacting picture). In case b), w < Agp, the levels of the same
spin group together within a valley, with opposite spins at lower energy in opposite

valleys, and the filling of the lowest energy incomplete shell requires just 2 electrons.
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Figure 6.17: (left) Ago grows and w decreases as a function of Rgp. (right) Ago

and w identified within a QD energy structure for Ago < w (spins showed in red and
blue).
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Figure 6.18: Order of energy levels for Agp < w (left) and Ago > w (right).

In fact, Fig. 6.18 b) shows w < Agp/3, but for slightly higher w within the same
regime a peculiar energy structure is possible, where shells intertwine. By varying w
and Agp different scenarios can be realised, when lower incomplete shells “pass” above

the higher shells. Such “passings” happen at w < Ago, w < Ago/2, w < Ago/3, etc.
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Figure 6.19: Energy level ordering (normalised) for spin states within (top) I = 1
and (bottom) I = 2 shell for varying Rgp. Black boxes a-d gather levels that are
schematically pictured in a-d panels. Colors denote spins. The variable ordering is a
result of the interplay of Ago and ¢, and it reaches a “final” arrangement for large

Rop (b,d).

The value of Agp affects also higher shells, which are split by larger ¢ (as shown
in Fig. 6.14). Because of the interplay of ¢ and Agp for different dot sizes, the order
of levels within a shell changes as Rgp increases. This process is described by Fig.
6.19 for I = 1,2 K-derived shells (shown in top and bottom). Left panels of Fig. 6.19
show normalised energy of levels within a shell, and colors depict spin states. Initial
and starting level arrangement have been labelled with a and b (c and d) for I =1
(I = 2) shell. These arrangements have been schematically shown in the right panels
a-d to illustrate the transition. For larger dots (small w) § < Ago which results in
a spin arrangement similar to that in Fig. 6.15 shown for the first I = 0 shell. Such
process is true for all shells, but the transition to the final arrangement (as in b and
d in Fig. 6.19) happens at larger Rop for higher shells (e.g. at ~ 10 nm for I =1

and at ~ 15 nm for [ = 2).
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6.3 Scattering Coulomb matrix elements.

In order to study the many-electron properties of MoSy QDs 1 first have to obtain
the Coulomb scattering matrix elements between electrons in SP QD states. By
diagonalising the Hamiltonian in Eq. 6.14, I obtain the eigenvectors for these states
in the atomic site basis or in the Bloch state basis. The Bloch state representation
allows me to categorise the SP QD states as belonging to specific valleys, while the
atomistic basis enables me to explicitly calculate the value of the Coulomb integrals.

The Coulomb matrix elements in the SP QD basis read

(pal V |st) = / / drdr g ()L () V (o, ) () (), (6.15)

where each QD TB eigenvector for state p = (=K ,n,m, o) (o labels spin) is given in

the atomic basis as

de(’l“) = Z Z Z Af,u,aygbi,l/,au (T)v (616)

i v=AB _{md:0,:|:2
A =1mp=0,+1

p
1,U,00

where the amplitudes A are obtained by diagonalising the TB Hamiltonian in
Eq. 6.14. In Eq. 6.16 all indices have the same meaning as in Eq. 6.1 and v labels
sublattices. The functions ¢; 4, (r) = ¢a,(r — R;,) in Eq. 6.16 are atomic orbital
functions on site R, , .

Examples of distribution of ‘Ang for p = {(0,0,1),(0,1,1),(1,0,)} (all at
K) have been shown in Fig. 6.20 for Rgp = 10 nm and a 160 x 220 box. The
plots show only fragments of the box, red circle marks the QD boundary and bright
colors denote higher amplitude. The (0,0) state has a clear s-type nature, while the
(0,1),(1,0) states resemble p-type orbitals, as expected for a HO ladder of states.
There is no visible difference in ‘AP | between the valleys + K. However, there is a

L,V,0p

slight difference in }AP ! for both p-type states in the very centre of the dot, which

1,V,0

will affect the strength of interaction of electrons in these states, due to the different

wavefunction overlap.
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Figure 6.20: Absolute value of the wavefunction for SP QD states for Rgp = 10 nm
for a) (0,0,]) s-type level, b) (0,1,]) p-type and ¢) (1,0,]) p-type levels. Red cirlce
marks the boundary of the dot (only fragments of the computation box are showed).
There is a slight difference between the amplitude of b) and ¢) in the centre.

Fig. 6.21 shows the phase 67, of A7, = [AF, | ¢van for the same QD
Rgp = 10 nm and for the four lowest energy states for both valleys, i.e. (0,0,]
),(0,0,1),(0,1,]),(1,0,)) (and opposite spin for valley —K). Fig. 6.21 a-d (e-h)
show the phase for valley K (—K). Red circle marks the boundary of a QD, and
the values of the phase outside of this boundary constitute a numerical error, as
the problem is diagonalised for the entire computational box (only fragments of the
box are shown here). The values of the phase remain uniform for the s-type states
in a,b,e,f, but exhibit a cyclic behaviour for other plots, which corresponds to p-
type states. The phase winds 3 times for a 27 rotation around the QD (the pattern
follows for higher shells, which wind 6 times, etc.), which appears to mimic the crystal
symmetry. There is a difference in phase distribution in the s-type states for opposite
valleys, as well as the phase cycles oppositely in opposite valleys for the p-type states,
i.e. the phase grows clockwise in Fig. 6.21 ¢ and h, and increases counterclockwise
in Fig. 6.21 d and g. This enables classification of states according to L, as shown in

Fig. 6.12. Additionally, all plots in Fig. 6.21 exhibit rapid phase oscillations on the

scale of a unit cell, which is manifested in striped features in all plots.
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Figure 6.21: Phase of the wavefunction (shown with colors) for SP QD states for
Rgp = 10 nm for a) (0,0, ) s-type, b) (0,0,1) s-type levels, ¢) (0, 1,]) p-type and d)
(1,0,]) p-type levels for K (and e-h for —K with opposite spins). Red circle marks
the boundary of the dot (only fragments of the computation box are showed). Values
of the phase outside of the dot constitute numerical error. a,b,e,f show no angular
phase modulation on the scale of the dot and ¢,h (d,g) show clockwise (anticlockwise)
angular phase modulation. The opposite direction of rotation enables classification
of states with opposite L. Threefold winding is attributed to the symmetry of the
crystal. Stripped pattern in all subplots originates in rapid oscillations in periodic
part of the wavefunction u(r) (see discussion in section 6.3.3).

[ now return to the Coulomb integral definition. Using Eq. 6.16, Eq. 6.15 becomes

pq| v |8t Z Z Ap,ll’,a/t A.] 14 61’ AZ:&?’YE A}t:g:ég'

ijkl _ fmg=0,42
prée ’ma_{mp=07i1

. / / drdr' &% o (F)6% i (7D (7 B (1) 6105, ()

=> > AL AT 3 AT e ALy, (s juB V kEye; Lod,) . (6.17)

ijkl _ Imyg=0,£2
préo a’ﬁwa_{mp=0,:l:l

where 7kl run over unit cells, uvéo denote sublattices and a/3v¢d stand for orbitals.
V(r,r') in Eq. 6.15 is the Coulomb interaction V(r,r’) = 4‘3—2_, with static
mereo|r—r'|
screening €, or with Keldysh screening, which are compared in section 6.3.1. The
integrals (ipoy,; jvB,| V |kéve; 10d,) in Eq. 6.17 have been given in section 6.3.2. The
resulting Coulomb matrix elements (pq| V' |st) for SP QD states have been discussed

In section 6.3.3.
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6.3.1 Static screening vs Keldysh screening.

To describe the electron-electron interaction potential I start with the Coulomb po-

tential screened everywhere by a dielectric constant ¢,, which reads

VP (r—r') = — (6.18)

where I separated a 3D vector 7 into the radial and z component as r = (p, z). Eq.
6.18 can be written in terms of a 2D Fourier transform as [166]
1 62 1 e 21 / . ’

VEP (r—7') = ———/ el Ik ikle=pY) g2 6.19

To study 2D another model of screening is relevant, Keldysh screening. It ac-

counts for the effect of the reduced dimension on interactions. To obtain the Keldysh

screening form [167,168], Eq. 6.18 needs to be modified by the 2D polarisability «,
which defines the screening length ro = 2w [162,166]. Eq. 6.18 becomes

1 62 1 oo 2T 1 ’ . /

V3D _ ) — ___/ =t = —lz=Zlk| jik(p—p )ko’ 6.20

i (r=r) e dmeg (27m)° J o |E| 1+27roz|k|e ‘ (6:20)

where o = 2.24 and I used €* instead of €, to include the screening by the materials

surrounding the MoS, plane. T use ¢ = , where ¢, = 1.0 and e3 = 4.0 are

%
the dielectric constants of the material layers below and above MoS,, taken here as
Si09 and vacuum respectively [162]. In section 6.3.3 I compare results obtained with
€. = €" = 2.5.

For two electrons in the MoS, plane Eq. 6.20 can be written in real space, when
z = 2. It reads [166]

1 e? 1 > 271 1 - p
V3D . /’ — N — ___/ s -  _ik(p—p )ko
Ko (p=pz=2) e dmey (2m)° o |E| 1+27Toz|k:\e

1 e (HO(IP—M) _Yo(lp—p’l))

(6.21)

" dea 4meg 2mo 2T

where Hy, Yy are Struve and Bessel functions respectively [166].
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Figure 6.22: a) Coulomb potential with static screening (black) vs. Keldysh screening
(couloured) for z = 0 and ¢, = 1 and varied « (Eq. 6.18 and Eq. 6.21). b) Keldysh
screening for varied z and a = 2.24.

Fig. 6.22 (left) shows the Coulomb potential function with Keldysh screening in
Eq. 6.21 compared to static screening from Eq. 6.18 for varying o and ¢, = ¢* = 1.
As expected, Keldysh screening lowers the value of the potential very strongly at
small p and less drastically for large p. Larger o produces stronger screening. Fig.
6.22 (right) shows the comparison of approximate expression in Eq. 6.21 and the full

Keldysh potential in Eq. 6.20 for increasing z, which creates larger discrepancy.

6.3.2 Long and short-range contributions to Coulomb inte-

grals.

Here I describe the contribution of (iuc,; jvB,| V' |k&ve; lod,) to Eq. 6.17.
I find that the main contribution to the value of (pg|V |st) comes from the long
range part, which involves sites far away from each other. This part has been treated

2

classically as (ipoy,; jvB,|V |jry;ind,) = TroalR, R, because the Mo and S
dimer sites are located at z = 0, for Keldysh screening I used Eq. 6.21.
For small |r — 7'|, I obtain accurate values of integrals (ipc,; jvB,|V |k&vye; 106,),

using the Vegas algorithm within the GSL library, as described in section 2.3.3. Onsite
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as well as the biggest NN and NNN integrals have been listed in Table 6.1. Numbers
in Table 6.1 correspond to the atoms labels in Fig. 6.23 as well as orbitals, i.e. d0 is

mgq = 0 etc. Columns Vg, Vi, Vi correspond to Eq. 6.18,6.21 and 6.20.

s—C e—C

@ 19— [ g

> d o_d
3

@ o—C [ 2

s—C s—C

Figure 6.23: MoSy atomic sites included in the evaluation of Coulomb integrals.
Numbers label atoms identified in integrals in Table 6.1. Red (green) arrows mark
NN (NNN) integrals (rows 7,8 in the Table).

Keldysh

Integral (ic; 5|V |kv;10) | static Vi [eV] 2= 0 Vigo [eV] Keldysh Vi [eV]
(1, d0; 1,d0] V|1, d0; 1, dO) 7.32 2.16 1.05
(1,d2;1,d2[V |1, d2; 1, d2) 711 1.90 1.10
(1,d0; 1, d2| V [1,d2; 1, d0) 6.55 1.98 1.05
(2,p0;2,p0| V|2, p0; 2, p0) 4.54 2.36 0.92
(2,p1;2,p1| V |2,p1; 2, pl) 3.60 1.79 0.80
(2,p1;2,p0| V' |2,p0; 2, pl) 3.74 2.01 0.85
(1, d0; 2, pO| V' |2, p0; 1, d0) 2.67 147 0.79
(1,d0; 3, d0| V |3, d0; 1, dO) 178 1.00 0.69

Table 6.1: Selected coulomb integrals in atomistic basis. Columns V¢, Vi, Vi corre-
spond to Eq. 6.18,6.21 and 6.20 and numbers in column “Integral” have been marked
in Fig. 6.23.

The onsite terms alone account for only &~ 1% of the value of (pg|V |st). 1 have
checked that including all the NN and NNN integrals possible (not all are listed here)
does not change the value of (pg| V' |st) by more than 0.5% or the values of energy
differences between the CI eigenvalues by more than 3%. This is true both for static

and Keldysh screening. Therefore, I neglect all these NN and NNN terms.

6.3.3 Intervalley vs intravalley exchange interaction.

I discuss here the scattering Coulomb matrix elements (pq| V' |st) between QD K-

derived electron states, as defined in Eq. 6.17. Fig. 6.24 shows the values of chosen
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matrix elements, which read

Vi = (K,0,0,]; —K,0,0,1|V |-K,0,0,1; K, 0,0, )
v, = (K,0,0,1; K,0,0,1|V |K,0,0,1; K, 0,0, )
= (K,0,0,1:—K,0,0, |V |-K,0,0,1; K,0,0, ) (6.22)
Vs = (K,0,0,1;—K,0,0, |V |-K,0,0,]; K,0,0,1)

‘/;l - <K7 O? 07 \l/; K7 07 ]‘7\1/"/ |K7 07 ]‘7\1/; K? 07 07\l/>
and

‘/5 = <K’ O? 07 \L; K7 07 ]‘7\L|V |K7 07 07J/; K? 07 17¢>
(6.23)

% = <K70707J/;_Ka0707\L|V|K70707J/;_Ka0707\L>a

where Eq. 6.22 list direct matrix elements V; and Eq. 6.23 lists exchange matrix
elements V.

Fig. 6.24 shows the w dependence of all elements given in Eq. 6.22 and Eq.
6.23 with static (“st”) and Keldysh (“K”) screening shown with a solid and dashed
line respectively. All V; with static screening follow the ~ y/w dependence, as for a
standard QD [73]. As does the intravalley exchange element V5 with static screening,
as expected in an standard HO [73]. The intervalley exchange Vg, however, is an
order magnitude smaller that V5 and departs from the square root behaviour. All
Keldysh elements exhibit some deviation from ~ y/w dependence. In particular, the
intervalley exchange element Vi with Keldysh screening stands out, as two orders of
magnitude smaller than its intravalley analogue, and significantly deviating from /w.

These large differences between the matrix elements within and between the op-
posite valleys are crucial for observing the broken symmetry many-electron states
discussed in section 6.4.4 [164].

In order to better understand the role of valleys in the observed Coulomb matrix
elements, I will consider the SP QD states within the envelope function approxima-

tion. The SP QD wavefunction can be regarded as a product of a periodic part of a
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Figure 6.24: Direct and exchange Coulomb integrals for QD states given by Eq. 6.22
(left) and 6.23 (right) with static (“st”) and Keldysh (“K”) screening. Statically
screened elements V; and V; follow ~ /w. Others depart from this behaviour. In-
tervalley V, are one (two) orders magnitude smaller than the intravalley V,, for static
(Keldysh) screening (Vj is intravalley, Vj is intervalley).

Bloch function wug(r) (manifesting itself in the fast phase oscillations on the scale of
a unit cell in Fig. 6.21) and an envelope, resembling the atomic orbitals, as in Fig.
6.20. If I include the strong association with a particular valley £ K the wavefunction

reads

Up(1) = Viknmo (1) = Wik nmo(P)usk (T)X(0) = wy(p)urk (r)x(0),  (6.24)

where Wy g mo(p) is a 2D HO envelope and y is the spin part of the wavefunction.
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I can now express the integral in Eq. 6.15 as

(pq| V' |st) = / / drdr (b (Y (7)o (7 ()
= (o) [ [ drdro,()use, (v, (ous, (1)

V(r = rws(p)ux, (r)wi(p)ux,(r). (6.25)

I now separate the two length scales, analogously to section 5.2.1: within and outside
of a unit cell. This allows me to replace an integral [ dr in Eq. 6.25 by a summation
over unit cells and an integral over a single unit cell 3" p [, d7 (R labels unit cells).
Fig. 6.20 shows that the envelope functions w change slowly on the scale of a single
unit cell. Assuming that the Coulomb potential behaves similarly, I can integrate out

the unit cell space and finally replace Y ~ Q [ dR, which gives

{pal V'[st) = Oxplxa) (Xalxs) (ukc, [ur, ) (uke, [ur,)-

0 / / dRAR w,(P)w,(P\V(R — R)w,(P)w,(P), (6.26)

where R = (P, Z) and (ug,|uk,) = [;odrug (F)uk, (7). Eq. 6.26 clearly shows
that the valley index plays a similar role for the Coulomb integral as spin, which is
reflected in the term wvalley pseudospin. The magnitude of the element in Eq. 6.26
depends on the envelope functions, but the whole integral can vanish if K, # K or
K, # K,. This means that the exchange elements are non-zero only for the same
valley (parallel valley pseudospin), i.e. only in the intravalley case.

However, unlike for spin, the vanishing of (pg| V' |st) holds only approximately for
valley pseudospin, because K is not a good quantum number (states are localised
around K, but not at K exactly, and other k-points participate). This approx-
imate vanishing of the intervalley pseudospin exchange elements explains the small

numerical values presented in Fig. 6.24.



CHAPTER 6. GATED MOS, QUANTUM DOTS 153

6.4 Many electron properties.

This section presents the results of CI calculations for MoS, QD for up to N = 6
electrons and up to M = 60 states included in a CI calculation. I first present a
thorough analysis of the N = 2 electron behaviour for increasing number of shells
populated by electrons, which has been described in sections 6.4.1, 6.4.2 and 6.4.3.

Section 6.4.4 discusses the broken symmetry many-electron states for N > 2.

6.4.1 Two electrons on the first harmonic oscillator shell.

I start with N = 2 interacting electrons in the first (0,0) shell with Agpo = 0. The
solutions of this problem for a standard parabolic QD can be obtained exactly for a
given confinement [73]. Tt yields a spin singlet GS, because there is only one possible
level (0,0) in a standard QD, and due to Pauli exclusion principle the spins of electrons
antialign. In an MoSs QD however, there are two spin-degenerate (0, 0) levels due to
the double valley degeneracy. Therefore, the N = 2 properties can be understood in
terms of spin singlet and triplets, similarly to the physics of half-filled p-type shell of

a self-assembled QD [73]. The GS is a three-fold degenerate spin triplet

[TE) = 1111,
175 = <o (1) 1)+ 1) 1) (6:27)
[72) = 1) 1),

which has been shown in Fig. 6.25 in the bottom panel for w = 36 meV. The three-
fold degenerate GS energy has been marked with a red dot in Fig. 6.25 (left). Because
the two levels are also labelled by the valley pseudospin, the spin triplet in Eq. 6.27

is at the same time a valley singlet

|5%) = %(IKH—IQ —|-K)|K)). (6.28)
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The labels |S) |T°) in Eq. 6.27 and Eq. 6.28 have been marked in Fig. 6.25 (left)

with a red box.
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Figure 6.25: (left) Solutions of N = 2 interacting electrons in the first I = 0 shell of
an Moy QD with SO strength x = 0 (Aso — xAso). The GS is a spin triplet |7)
and valley singlet |SV). Excited stated are labelled analogously. (right) Eigenvectors
building states in the left. Spins are shown with arrows, colors label S, eigenstates.

The spin nature of the GS is clear when we consider its energy

Ers =2eg0+ V) (K, -K) - V3 (K,—-K), (6.29)

where eg is the SP energy of the (0,0) shell with Ago = 0 and VJ(K,—K) and
VY (K, —K) are direct and exchange intervalley Coulomb matrix element respectively.
It is expected that the triplet has the lower energy due to —V{¢ contribution. The

excited state are therefore spin singlets

1

5% = 75 (M) = W11 (6.30)

Sl
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which are also valley triplets at the same time

) = |K) |K),

w— L) - _

ITo>—\/§(\K>! K) +|-K) |K)), (6.31)
TY) =|-K)|-K),

which gives the character of all the excited states for N = 2 electrons, as shown in
Fig. 6.25 (left) with black boxes. It is now apparent that the V{ contribution that
decreased the energy of |SV) |T¥), causes the energy of |T{) |S*®) to increase, while the
states ’T V) |S¢) are not affected by the exchange V.

The energy structure shown in Fig. 6.25 agrees with experimental results obtained
by Kurzmann et al. [110] for bilayer graphene QDs, which is also a valley system, but

with negligible Ago.

6.4.2 Effect of spin orbit coupling.

I now include the spin orbit splitting Ago &~ 4 meV for CB of MoS,, which has been
discussed in section 4.3. For other TMDC materials the CB SO splitting can reach
up to Aso ~ 30 meV, which would emphasise the effects described here even more.
Nonzero Agp, which I turn on with a parameter y = 0 — 1, causes the spin down
(up) state to decrease its energy in valley K (—K), as discussed in section 6.2.3. As a
consequence, the spin triplets |7%) and singlets |S®) mix, which breaks the degeneracy
of the |S”) |T*) GS, as shown in Fig. 6.26 (left) for increasing strength of SO coupling
X- The right top panel of Fig. 6.26 shows the spin degenerate (0,0) shell for x = 0,
and the bottom panel depicts the formation of a spin-valley unpolarised GS at y = 1,

which is a mixutre of |7°%) and |S*). This mixture can be expressed as

1

57) = 5

(IKDI-KT) - [-KT)|K)), (6.32)

which reflects the spin-valley locking, i.e. strong linking of the spin to valley due to

large Aso.
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Figure 6.26: (left) Solutions of N = 2 interacting electrons in the first / = 0 shell of
an Moy QD with varied SO strength x (Aso — xAso). The GS becomes a mix of
spin triplet |7) and spin singlet |S*®), shown with a green box. (right,top) Energy
levels for y = 0. (right,bottom) GS for x = 1 is spin and valley unpolarised.

The unpolarised nature of the GS for Agp # 0 arises because of the competition of
Ago with VY (K, —K). With the weak intervalley exchange (as discussed in section
6.3.3), the SO splitting dominates Ago > VI(K,—K), and causes the unpolarised

configuration shown with a green box in Fig. 6.26 to become the GS [164].

6.4.3 Two electrons on two harmonic oscillator shells.

I now allow the population of higher HO oscillator shells for N = 2 electrons. More
configurations are now possible, in addition to the ones shown in Fig. 6.25.

Fig. 6.27 shows two of the configurations discussed previously in sections 6.4.1
and 6.4.2, labelled as A and B respectively, as well as two new configurations of
N = 2 electrons with parallel spins and within the same valley, labelled as C and
D. Configuration A involves direct interaction V) within the (0,0) shell and the
intervalley exchange interaction V(K , —K) and for Ago = 0 it was forming the GS
of N = 2 electrons in one shell only (see section 6.4.3). The energy of configuration
B includes the direct interaction V) only and B is the GS of N = 2 in only one shell

with the presence of Ago (see section 6.4.2).
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Configurations C and D involve direct interaction Vgﬂ and, importantly, the in-
travalley exchange interaction V)jfl(K , K). The right panel of Fig. 6.27 shows the
energies of all the configurations A-D as a function of the strength of interactions
1, when I switch on the interactions gradually n = 0 — 1. A and B, initially the
lower energy configurations, move to higher energies as n ~ 0.5, and the valley and

spin-polarised configurations C and D reach the lowest energies.
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Figure 6.27: (left) Four relevant N = 2-clectron configurations. A and B (C and
D) are valley unpolarised (polarised), B (A,C,D) is spin unpolarised (polarised).
Agso,w,0 (Vp,Vx) mark relevant SP (interaction) energies. (right) Energies of con-
figurations A-D for varied strength of interactions 7. For non-interacting case n = 0
B is the GS (valley-spin unpolarised), and for interacting case n = 1 D is the GS
(valley-spin polarised).

I will now analyse all the contributing factors carefully, in order to understand the
effect pictured in Fig. 6.27 (right). Let me start with listing all allowed configurations,

assuming the fermionic antisymmetric total wavefunction of N = 2 electrons:

|S)|T7) |T°) (6.33a)
|15)[5%)157) (6.33b)
T 15°)1T7) (6-33¢)

|T°) |T") |S®), (6.33d)
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where |5€) and |7°) are antisymmetric (singlet-like) and symmetric (triplet-like) com-
binations of the two envelope functions respectively. Considering relevant energy
scales will allow me to understand which of Eq. 6.33 forms the GS. The determining

factors are:

1. Coulomb repulsion Vp. The SP energy w competes with the Coulomb in-
teraction Vp, which is dependent on ~ /w, so at high w occupation of lower
shells is preferable (1) and at low w population of higher shells (5S¢ or T) gives
lower energy. These regimes correspond to shell spacings lower and higher than

a critical spacing we = 0.785 [73].

Let us determine which of these regimes is relevant for MoS, QDs. The exper-
imentally achievable QD sizes and potential strengths of Rgp ~ 10 — 100 nm

and Ve ~ 100 — 500 meV produce w ~ 5 — 35 meV, which gives & = 7= ~

0.007 — 0.05, using Ry* = 740 meV (given in Eq. 5.49). Therefore the MoS,
QDs lie in the strongly interacting regime, where occupation of higher shells is
energetically favourable. The configuration energies for A-D in Fig. 6.27 follow

this argument.

2. Exchange interaction Vx. Exchange interaction causes spatially antisym-
metric wavefunctions to lower their energies below the symmetric ones, which
points to the |S€) nature of the GS wavefunction (given in Eq. 6.33a and b).
Because of the dominance of the intravalley exchange over the intervalley ex-
change Vi (K, K) > V2(K,—K), valley-polarised configurations, like C and

D in Fig. 6.27, are energetically favourable.

3. SO splitting Agp. Large Ago induces spin-valley locking and mixing of spin

singlets and triplets |S*),|7*). This is why it is useful to introduce explicitly
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these mixtures, which reflect the spin-valley locking. They read

T2) = |T2) |T2) = |[K 1) | K 1),

[77) = [T2)|72) = 1=K 1)K 1),

1T37) = <= (IT5) I75) ~ 15 15°)

1 (6.34)
(K1) |-K )+ K 1)K ),

QI

Sl

1

|57 = = (IS 1T5) = |1T0) [57).

1

V2

Sl

(IK L) [-KT) - [-KT)[K ).

Out of the states given by Eq. 6.34, only the triplets |7°") allow for decreasing
the energy due to the strong intravalley exchange V;(K , K), because they

impose the antisymmetric envelope part |S€).

The remaining |S*¥) only takes part in forming the GS for a single shell (0, 0),
with the triplet-like envelope part |TE>, i.e. in the case described in section
6.4.2 and written explicitly in Eq. 6.32. It is also the GS configuration shown

in a green box in Fig. 6.26 as well as the configuration B in Fig. 6.27.

Importantly, for more shells, |7%") is always the GS. Out of these triplet states,
the GS can prove fully spin-valley polarised (SVP) |Ti”> or intervalley antiferro-
magnetic (IVAF) |T§") [164], as discussed in section 6.4.4. The labels SVP and
IVAF are used for more electrons to reflect the same underlying physics, even
if the strongly correlated states have much more complex form than described

here for N = 2 electrons.

4. Topological splitting 6. The topological splitting ¢ creates a difference be-
tween C and D configurations in Fig. 6.27, which would be degenerate in
energy for a standard 2D HO. The SP energy for C and D is w F g respec-
tively, which is higher for D. However, due to smaller wavefunction overlap
of the electrons in (0,0), (1,0) states than the electrons in (0,0), (0, 1) states,

the direct interaction is smaller for the higher L = +1 state, V' < V5!, At
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the same time, the exchange included in configuration D is larger than for C,
VIHK,K) > Vy'(K, K). These interaction contributions compensate the SP
energy gain and lower the energy of D below C. Hence, D-type configurations
always form the GS, also for higher shells. This means populating the highest
L states within a shell for valley K (and the time-reversed degenerate in energy

partner configuration involves the lowest L states at —K).

6.4.4 Broken-symmetry many-electron states in a quantum

dot.

I have so far analysed the GS and excited states of N = 2 electrons in up to 4, = 2
HO shells. T now turn to the results of my CI calculations for up to N = 6 electrons
and with up to M = 60 SP states (up to 4, = 5 HO shells).

All my numerical results show spin-valley locking for the GS wavefunctions. This
means that all spin down (up) electrons occupy valley K (—K), regardless of the
total S, of the many-electron state. I always observe N| = Ng and Ny = N_g for

the GS. I therefore introduce one quantum number

N_x—N N — N
_ KK _ g2 _ N (6.35)

- 9
v N N N

which denotes the total spin and valley polarisation of the GS. Because of the N
factor in Eq. 6.35, 1% always takes values betwen (0, 1), where 1 corresponds to total
polarisation SVP (N = Ng = N, or N = N_g = N; for the time-reversed degenerate
state) and 0 stands for an IVAF GS (no net valley polarisation Ng = N = N_g =
N;) (see section 6.4.3).

Fig. 6.28 shows the values of V for N = 2 — 6 electrons and for the highest
allowed I, = 5 shells for static screening and varying w. Each panel in Fig. 6.28
describes a fixed N, while rows in each panel correspond to increasing number of the
highest shell 1,,,,. White and black labels identify the phases and give schematic spin

configurations. Colors encode V: orange depicts SVP phase and dark green stands
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Figure 6.28: The nature of the many-body GS for N = 2 — 6 electrons with static
screening for varied w (horizontal axis). Colors depict V' (Eq. 6.35): V =1 for SVP
phase (orange) and V = 0 IVAF phase (dark green). Ivory, yellow and light green
show intermediate V. Panels (rows) give results for varied N (Ine). Inset arrows
label phases and give schematic spin configurations. SVP is common for low I,,,.
and a IVAF — SVP transition is visible for N = 2,3,6 for I,,,, = 5 (and partial for
N = 4). Changes in features for low w are linked to shell reordering (see text).

for IVAF GS (yellow, ivory and light green are all intermediate \7) Note, that for odd
N it is impossible to create an S, = 0 phase, so the IVAF phase for odd N manifests
itself with minimal values of V possible for a given odd N (shown in light green for
N =3,5).

I will now describe the main features of Fig. 6.28. Firstly, an overall high V for
lowest I,,,,, and low V for intermediate ©qe is apparent. This can be understood as
favouring the polarised states for low I,,,, due to all w corresponding to the strong
interaction regime (as explained in section 6.4.3-1.), while, for increasing I,,q,, the
correlation effects take over and lower the energy of phases with small 1% [73]. E.g.
for N = 2,3, including the I,,,,, = 3 shell adds an allowed level with L = 0, which
significantly increases the number of configurations with low L, which scatter into un-
polarised configurations, and lower their energy. With even higher I,,,,, the strongly
correlated w-dependent trend appears.

Secondly, a dominating feature of the data in Fig. 6.28 involves overall higher
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possibility of large V for small w. This is especially true for N = 2,3,6, where a
transition appears from IVAF GS for N = 2,6 (and unpolarised state for N = 3)
to an SVP GS for N = 2,3,6 [164]. This transition occurs at wy ~ 10, 16,21 meV
respectively. For NV = 4 a transition to a partially polarised GS occurs (marked with
ivory for I,,,: = 5), which transitions back to IVAF phase for w < 2.1 meV. There

appears no transition for N =5 (for I, = 5).
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Figure 6.29: The nature of the many-body GS for N = 2 — 6 electrons with Keldysh
screening for varied w (horizontal axis). Colors have the same meaning as in Fig.
6.28. IVAF — SVP transition for N = 2,3,6, [,,.. = 5 occurs at lower w than for
static screening.

Thirdly, additional features are visible for w < 4.2 meV, where the GS phase
tendency reverses for some N and [,,,.. This appears because of the labelling con-
vention I took, which assigns I,,,, to the number of the highest SP available shell
that is complete, i.e. includes the states for both spins. Due to this, there is more
SP levels available in the CI calculation than for the same I,,,, for w > 4.2 meV,
because additional incomplete shells are included at lower energies. This is caused
by the effect of interpenetrating shells, discussed in section 6.2.3. The changes in 1%
for w < 4.2 meV trace the “passing” of shells occuring at w = Agp = 4.2 meV and
w = Ago/2 = 2.1 meV. For these w, as more SP levels are available for one spin in

each valley, the correlation effects are switched on earlier in I,,,,, which explains the
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“jumps” in coloured regions of V.

Inter-valley antiferromagnetic (IVAF) GS Spin-valley polarised (SVP) GS

K -K K K T

Figure 6.30: (left) IVAF GS and (right) SVP GS for N = 6 electrons. Colors denote
spins. Electrons occupy higher-energy shells and large-|L| levels.

Let us consider how these results are affected when Keldysh screening is included.
Fig. 6.29 shows the GS phases of N electrons for Keldysh-screened interaction, gov-
erned with similar physics. The correlation effects induce unpolarised GS for inter-
mediate [,,,., while polarised states appear for low and high I,,,.. For N = 2.6
a transition from an IVAF (an unpolarised for N = 3) to a SVP GS is visible at
wo ~ 9,13,8 meV respectively. These values are lower than wy was for static sreeen-
ing. In particular, the GS phase for N = 6 acquires a wide IVAF phase regime for
large w (and I,,4, = 5).

Fig. 6.30 shows a schematic picture of the configurations contributing mostly to
the GS of N = 6 electrons for I,,,, = 5 with Keldysh screening. The spin-valley
locking is apparent. For high w the IVAF GS involves Ny = Ny = N_g = Ny = 3
electrons. This highly correlated state involves occupation of high shells and favours
high |L| states, as discussed in section 6.4.3-4., producing a large-total-L GS. For low
w, an SVP phase forms the GS, which populates only one valley with spin-aligned
electrons N = Ng = N| = 6 (time-reversed partner of N = N_g = N is degenerate).

The electrons also reach high shells and occupy high |L| states.
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6.4.5 Experimental signatures of many-body broken-symmetry

states.

This section discusses the possibility of detecting the broken symmetry many-electron
GS in experiment.

An important aspect to consider is the stability of the GS phases, which is partly
determined by the energy gap between the GS and excited states AEx_gs. These
gaps impact a transport measurement, by setting the temperature needed to resolve

the energy level structure, and they determine their Coulomb diamond signature

[75,169].
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Figure 6.31: (top) GS phases and (bottom) Energy gaps AEx_gg for varied N as
a function of w. AFx_gs = 0 marks transitions between phases (as illustrated by
vertical dashed lines). For N = 2,3,6 AFEx_gs vanishes once, and twice (never) for
N =4 (N =5). Other smaller dips mark a transition for an excited state.

Fig. 6.31 (bottom) shows the values of AEx_gg for I, = 5, Keldysh screening,
for all N up to N = 6 and for varying w. Values of w, where AEx_4s = 0 mark the
transition between phases described in Fig. 6.29 and summarised for I,,,, in the top

panel of Fig. 6.31. Transitions for N = 2,6 electrons have been linked between the
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panels with vertical dashed lines (black and red respectively) to guide the eye. It is
clear that curves for each N exhibit one clear dip each with AEyx_gg = 0, except for
N = 4, which exhibits two points of vanishing AFy_¢g (consistent with Fig. 6.29),
which gives the boundary to a partially polarised GS phase.

There are also smaller dips in AEx_gg visible, e.g. for N = 4,6 at high w and for
N = 3 at low w, which do not reach AEx_ggs = 0 and they do not mark a transition
in the GS phase. They are however a manifestation of the effect of high SP shells on
the many-body GS phases. This is because these small dips correspond to changes in
the nature of the excited state phases, which in turn are affected by the spin states
order within higher shells, as discussed in section 6.2.3.

Importantly, the gaps shown in Fig. 6.31 are of the order of meV, which could
be resolved in a QD transport experiment [75]. The separation of the GS from the
excited states is especially promising in this context for N = 6, where the transition
occurs over a narrow region, and produces a well isolated GS energy level for a wide
spectrum of w within both SVP and IVAF phases [164].

I will now discuss how the two competing GS phases could be distinguished based
on the results of a Coulomb and spin blockade spectroscopy experiment. A conduc-
tance through an MoS; QD can be measured as a function of gate voltage if the QD
is connected to metallic leads [75]. The information on the features of the GS can
be obtained from the observed relative position and height of the Coulomb blockade
conductance peaks, which mark the addition of electron to a QD. The weight of these

peaks is proportional to [12,75,148,169,170]
2
F(e,N) =Y ‘ (GS(N +1)|di,, |GS(N)) ‘ 5 (Basvan — Eosovy —2) . (6.36)
p

where (GS(N +1)|df, |GS(N)) is the probability of adding an electron to a SP QD
state po, in the presence of N electrons occupying the QD.
Fig. 6.32 plots F'(¢) for w inside two regions dominated by SVP and IVAF phases

(for Ine: = 5 and Keldysh screening). Corresponding electron quantum numbers
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Figure 6.32: Values of F'(¢) (Eq. 6.36) for two w regimes for N = 2—6 electrons. Spin
up (down) shown with a dashed (solid) line and red (blue) arrows. As a consequence
of the nature of the GS phase, both regimes differ by the spin sequence of peaks. Low
w lacks the last peak (grey dot) due to spin and valley blockade.

are schematically plotted in insets. The valley pseudospin of the initial electron
has been fixed (by choosing a specific valley the spin of the electron is determined
due to valley-spin locking). Additional electrons are added to a QD, and only a
process obeying AS, = S,(N +1) = S,(N) = +1/2 and ANg = +1 (spin and valley
pseudospin conservation) has a nonzero probability. Because the GS phases for low
w in Fig. 6.32 differ by AS, > 1/2 and ANk > 1, a transition is forbidden. This is
a manifestation of spin and valley blockade and is the reason why a peak is missing
for Fig. 6.32 (right).

Also, in a spin-resolved experiment, the peaks will reveal a distinct spin pattern for
both phases (spin up and down marked with dashed and solid lines respectively). Left
panel of Fig. 6.32 pictures adding electrons of alternating spins, while on the right,
spin up electrons can only be added first, followed by only spin up. These signatures
could allow for distinguishing the SVP and IVAF GS phases for N electrons in an
MoS; QD of different w.

These results suggest that the experimental verification of the discussed nature
of the GS for many electrons in MoSy QD is likely achievable in transport and could

offer further confirmation of the nature of these states.
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Conclusions

In this thesis I have presented results on optical properties and electron-electron in-
teractions in two-dimensional nanostructures of graphene and TMDCs. They offer
potential applications in valleytronics - new generation of technology based on the
valley pseudospin. Also, honeycomb crystals host new exotic physics, often linked to
strong correlations. The results presented in this thesis contribute to the understand-
ing of these materials and identify new effects driven by electron-electron interactions
in valley systems.

My results are contained within chapters 3-6. Chapter 3. presents a tight-binding
study of hexagonal graphene QDs, which can be analysed with analytically solvable
building blocks, significantly reducing the numerical complexity of such problem for
large systems. This is an excellent base for exploring many-body effects for experi-
mentally relevant structures within DMRG techniques. This analysis also illuminates
the mechanism behind the energy gap formation in graphene QDs, strongly linked to
the edge type. The approaches taken in this thesis build on the methods used in this
chapter.

Chapter 4. contains a tight-binding theory of MoSs,, derived from ab initio meth-
ods. It elucidates the electron tunneling processes in TMDCs and develops the un-
derstanding of the physics of d orbitals in honeycomb crystals. Building on this,
the origin of the energy band features for TMDCs is thoroughly explained, includ-

ing the existence of Q)-points responsible for band nesting and strong light-matter
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interaction. A starting point for studying the valley physics in TMDCs is the mas-
sive Dirac fermion model derived in this chapter from the tight-binding Hamiltonian.
This minimal but powerful description highlights the role of valley pseudospin and
reveals complex behaviour in the presence of electron-electron interactions, as seen in
later chapters. The last part of chapter 4. discusses the light-matter interaction of
massive Dirac fermions with light, involving valley-dependent optical selection rules.
This description is then further developed to include the external magnetic field in
chapter 5.

A theory of magnetoexcitons of massive Dirac fermions is presented in chapter 5.
The asymmetric Landau level structure for massive Dirac fermions is contrasted with
the energy levels of a free electron in external magnetic field. Valley Zeeman splitting
and valley polarisation are discussed as a consequence of the asymmetry of the energy
structure. As the electron-electron interactions are turned on the valley Zeeman
splitting is demonstrated to renormalize with interactions and exhibit oscillations
as a function of the valley polarisation. I then present numerical solutions of the
Bethe-Salpeter equation for a single magnetoexciton, with all the contributions to
the magnetoexciton energies indentified in detail. The cancellation of self-energy
and vertex correction has been observed, which leads to small blue shifts of the
exciton lines. Finally, I have calculated the magnetoexciton absorption spectrum and
observed a splitting of exciton lines for opposite valleys, originating in the non-zero
valley polarisation. This chapter demonstrates the computational treatment of a
valley polarised system and highlights the complexity of interaction-driven effects for
valley-based materials. These concepts are further explored in the final chapter of
this thesis.

Chapter 6. gathers the results on single particle energy structure of gated MoS,
QDs as well as the emerging strongly correlated phases of many electrons in these
nanostructures. The first section uses the tight-binding model for bulk MoSs in chap-
ter 4. to obtain the eigenstates of a computational box of MoSs of up to million atoms

treated with periodic boundary conditions. This problem was defined in two separate
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bases: atomistic basis and Bloch basis, in order to illuminate the underlying physics.
The eigenstates of a box are shown to evolve as a parabolic electrostatic potential
is included to define a confining region for a gated QD. The resulting single particle
structure for confined electrons is shown to consists of two harmonic oscillator spectra:
twofold degenerate derived from K valleys and a sixfold degenerate associated with
@ points (vital for TMDCs other than MoS,). Also, the strong spin orbit coupling in
TMDCs as well as a valley-contrasting Berry curvature are shown to play crucial role
for the energy spectrum of MoSy QDs, as they produce opposite splittings for shells
in both valleys. This is linked to the emergence of broken symmetry ground state
phases in the final part of this chapter.

The last sections of chapter 6. include results on many-electron behaviour of
TMDC QDs. I started with a thorough analysis of scattering Coulomb matrix el-
ements with static and Keldysh screening and identified intravalley and intervalley
contributions. I have shown that for two electrons within the first shell with no spin-
orbit splitting the ground state is a spin triplet and valley singlet, which matches
experimental reports for bilayer graphene QDs. In contrast, in TMDCs QDs with
more shells considered, the strong spin-orbit splitting and weak intervalley exchange
interaction result in spin-valley locking and produce two competing ground state
broken-symmetry phases: spin and valley polarised phase and spin and valley un-
polarised but intervalley antiferromagnetic phase. I have demonstrated how these
phases emerge in two regimes of shell spacing with a sharp phase transition for two,
three and six electrons, and explained the role of correlations in forming of these
ground states. Finally, I discussed possibilities for experimental confirmation of these
phases by showing large energy gaps separating the ground state from the excited
states, which affects operating temperature in experiment. To simulate the results of
a transport measurement, I have also calculated a spectral function with different spin
signature in both regimes and with absent peaks due to spin-valley blockade effect.
These results contribute to the understanding of the interaction-driven phenomena

in valley systems and offer valuable insight for creating future valleytronic devices.
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