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Abstract

This thesis presents a theory of electron-electron interaction effects and optical prop-

erties of nanostructures of two-dimensional (2D) honeycomb crystals - graphene and

transition metal dichalcogenides (TMDC). Graphene, a semimetallic hexagonal lat-

tice of carbon atoms can be described by a massless Dirac fermion model, with the

conduction band (CB) and valence band (VB) touching in the corners of a hexago-

nal Brillouin zone, valleys K and −K. TMDC crystals sites host either a transition

metal atom or a chalcogen dimer, which opens the energy gap and allows for describ-

ing their low-energy nature with massive Dirac fermion (mDf) model. The metal

atom in TMDC crystals causes strong spin-orbit (SO) coupling, resulting in large SO

splitting in bands at both valleys. For TMDCs it is possible to excite carriers in each

valley with oppositely circularly polarised light, which offers promising prospects for

devices based on electrons valley index, i.e. valleytronic devices. Additionally, the

optical response of TMDCs is enhanced by the presence of secondary CB minima, at

Q-points.

The dimensionality of 2D crystals can be further reduced to form quantum dots

(QDs) - nanostructures confined in all dimensions. This thesis first discusses hexag-

onal graphene QDs, which exhibit energy gap oscillation as a function of size, due to

the edge type: zigzag or armchair. These QDs are divided into concentric rings, anal-

ysed with tight-binding (TB) model. An armchair edged QD is built from a zigzag

edged QD by adding a 1D Lieb lattice of carbon atoms on its edge. The energy gap is

formed differently for both edges: from the outer ring states for zigzag edge and from

the 1D Lieb lattice zero-energy states for armchair edge, which causes the energy gap
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oscillation with QD size.

The remaining portion of the thesis focuses on TMDC materials. First a TB

model is presented for a member of TMDC group, MoS2, using three d orbitals of Mo

atom and three p orbitals of the S2 dimers. The tunneling matrix elements between

nearest-neighbor and next-nearest-neighbour sites are explicitly derived at K and −K

to form a six band TB Hamiltonian. Its solutions are fitted to the bands obtained from

the density functional theory ab initio calculations to obtain the correct behaviour

of bands around ±K and additional minima at Q-points, which explains the role of

d orbitals in TMDCs. Close to ±K the TB model is reduced to mDf model, which

is then studied in response to light, yielding the valley-dependent selection rules for

absorption.

The interaction of mDf with light is further studied in the presence of strong exter-

nal magnetic field, which leads to the formation of Landau levels (LLs), asymmetric

between both valleys, and valley Zeeman splitting. These LLs are populated with elec-

trons to form a Hartree-Fock ground state (GS), which can exhibit valley polarisation

due to the LL asymmetry. Quasi-electron-hole excitations out of the GS are then

formed and their self-energy, vertex corrections and scattering energy is calculated.

The effect of electron-electron interactions on valley Zeeman splitting is demonstrated

and the Bethe-Salpeter equation is numerically solved to give magnetoexciton spec-

trum for both valleys. The results include a valley-dependent absorption spectrum

for mDf magnetoexcitons that vary with the valley polarisation.

The final part of this thesis discusses the single particle and interacting effects

in gated MoS2 QDs. First, I perform a single electron atomistic calculation for a

million-atom computational box with periodic boundary conditions based on a TB

model developed from ab initio methods for bulk MoS2. Electrons are then confined

with a parabolic electrostatic potential from top metallic gates. They exhibit twofold

degenerate harmonic oscillator energy spectrum with shell spacing ω associated with

valleys ±K as well as a sixfold degenerate energy spectrum derived from the Q-points.

The degeneracy of electronic shells is broken due to valley contrasting Berry curvature,
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which acts as an effective magnetic field splitting opposite angular momentum states

in both valleys. I populate up to five K-derived harmonic oscillator shells with up to

six electrons and turn on the electron-electron interactions. The resulting GS phases

form two regimes dependent on ω, which are dominated each by a broken-symmetry

phase, i.e. valley and spin polarised GS for low ω and valley and spin unpolarised but

spin intervalley antiferromagnetic GS for higher ω. This behaviour is explained as

an effect of the strong SO splitting, weak intervalley exchange interaction and strong

correlations. Means of detecting these effects in experiment based on the spin and

valley blockade are proposed. These results advance the understanding of interaction-

driven breaking of symmetry for valley systems, crucial for designing of valleytronic

devices in the future.



Acknowledgements

I would like to thank prof. Pawel Hawrylak for his wise omnipresent guidance, con-

stant support, and incredible patience throughout my PhD studies. He always offered

invaluable insights and motivated me to achieve my goals, for what I am grateful.

I also wish to thank three special figures in my scientific journey: Dr. Alain

Delgado Gran, Dr. Amintor Dusko and Dr. Moritz Cygorek. They were always there

to answer my never-ending questions and point me in the right direction. I will always

cherish all the research as well as life advice I received from you.

I should also like to express my gratitude to all the members of the Quantum

Theory Group that I have met on my journey for their eager support and clever

advice. I especially thank Dr. Marek Korkusinski for always providing me with

precious testcases and for answering his emails late at night. Your most detailed

questions to all my presentations kept me sharp. Thank you.

Next, I must thank all my office colleagues, who witnessed my failures and suc-

cesses, and offered kind words of motivation. You made my studies the most delightful

and gratifying experience. Among these, I must say special thanks to Luc Robichaud

and Yasser Saleem, who kept following my projects with constant vigour and were

always there to discuss the details of my apparently insolvable problems. Also, I

would like to thank Eduard Dumitrescu for sharing his computational brilliance.

To my Mom, and Bhavaye, I offer my lifelong gratitude for their love and support. I

would have never done this without you. Lastly, I wish to thank my dear brother Jacek

and my irreplaceable friends Lena and Thoby, for offering their priceless perspective

and endless encouragement throughout this wild endeavour.

vi



Abbreviations

1D One-dimensional

2D Two-dimensional

CB Conduction band

CI Configuration interaction

DFT Density functional theory

GQD Graphene quantum dot

GS Ground state

HF Hartree Fock

HO Harmonic oscillator

LL Landau level

mDf Massive Dirac fermion

NN Nearest neighbor

NNN Next nearest neighbor

QD Quantum dot

SO Spin orbit

TB Tight binding

TMDC Transition metal dichalcogenide

VB Valence band

VZS Valley Zeeman splitting

vii



Contents

Abstract iii

Acknowledgements vi

Abbreviations vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Hexagonal 2D crystals: graphene and TMDCs. . . . . . . . . . . . . 2

1.2 Graphene and TMDC quantum dots. . . . . . . . . . . . . . . . . . 5

1.3 Thesis Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methodology 11

2.1 Single particle picture. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Linear combination of atomic orbitals wavefunction. . . . . . 11

2.1.2 Tight-binding approximation. . . . . . . . . . . . . . . . . . . 14

2.1.3 Example of a tight-binding calculation: bulk graphene. . . . . 15

2.1.4 Massless Dirac fermions: low energy spectrum of graphene. . . 22

2.1.5 Massive Dirac fermions: gapped graphene. . . . . . . . . . . . 24

2.1.6 Second quantisation. . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.7 Finite structure tight-binding model: graphene quantum dots. 28

viii



CONTENTS ix

2.2 Many electron picture. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Many-body Hamiltonian. . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Mean-field methods. . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Hartree-Fock approximation. . . . . . . . . . . . . . . . . . . 32

2.2.4 Density functional theory. . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Example of a DFT calculation: bulk MoS2. . . . . . . . . . . 36

2.2.6 Configuration interaction method. . . . . . . . . . . . . . . . 42

2.2.7 Exciton in configuration interaction method. . . . . . . . . . 45

2.3 Numerical methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Matrix diagonalisation. . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 High performance parallel computing. . . . . . . . . . . . . . . 51

2.3.3 Numerical integration of scattering Coulomb matrix elements. 51

3 Energy gap of graphene quantum dots 55

3.1 Zigzag-edged graphene quantum dot: coronene. . . . . . . . . . . . . 56

3.2 1D Lieb lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Armchair-edged graphene quantum dot: A42. . . . . . . . . . . . . . 65

4 Tight binding model for monolayer MoS2 69

4.1 Many-orbital nearest neighbour tight-binding model for MoS2. . . . . 69

4.2 Next nearest neighbour tight-binding model for MoS2. . . . . . . . . 77

4.3 Spin orbit-splitting in MoS2. . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Massive Dirac fermion model for MoS2. . . . . . . . . . . . . . . . . 84

4.5 Massive Dirac fermions interacting with light. . . . . . . . . . . . . . 87

5 Magnetoexcitons of massive Dirac fermions 92

5.1 Non-interacting Massive Dirac fermions in external magnetic field. . 92

5.1.1 Free electrons in external magnetic field. . . . . . . . . . . . . 92

5.1.2 Landau levels for massive Dirac fermions. . . . . . . . . . . . 96

5.1.3 The effect of spin-orbit coupling. . . . . . . . . . . . . . . . . 101

5.1.4 Coupling to light. . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS x

5.2 Interacting massive Dirac fermions. . . . . . . . . . . . . . . . . . . 107

5.2.1 Scattering Coulomb matrix elements. . . . . . . . . . . . . . 108

5.2.2 Valley polarisation. . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Single magneto-exciton Hamiltonian. . . . . . . . . . . . . . . 112

5.2.4 Renormalisation of valley Zeeman splitting with interactions. 118

5.2.5 Magnetoexciton absorption spectrum. . . . . . . . . . . . . . 119

6 Gated MoS2 quantum dots 124

6.1 Tight-binding model for MoS2 quantum dots. . . . . . . . . . . . . . 124

6.1.1 Nanostructures of MoS2 in the basis of atomic orbitals. . . . 125

6.1.2 Electrostatically defined MoS2 quantum dots. . . . . . . . . . 129

6.1.3 MoS2 quantum dots in the basis of Bloch states. . . . . . . . 132

6.2 Single particle energy spectrum. . . . . . . . . . . . . . . . . . . . . 136

6.2.1 Spectrum associated with valleys K and −K. . . . . . . . . . 136

6.2.2 Spectrum associated with the Q-points. . . . . . . . . . . . . 138

6.2.3 Spin-orbit splitting vs shell spacing. . . . . . . . . . . . . . . 140

6.3 Scattering Coulomb matrix elements. . . . . . . . . . . . . . . . . . 144

6.3.1 Static screening vs Keldysh screening. . . . . . . . . . . . . . . 147

6.3.2 Long and short-range contributions to Coulomb integrals. . . 148

6.3.3 Intervalley vs intravalley exchange interaction. . . . . . . . . 149

6.4 Many electron properties. . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4.1 Two electrons on the first harmonic oscillator shell. . . . . . . 153

6.4.2 Effect of spin orbit coupling. . . . . . . . . . . . . . . . . . . . 155

6.4.3 Two electrons on two harmonic oscillator shells. . . . . . . . . 156

6.4.4 Broken-symmetry many-electron states in a quantum dot. . . 160

6.4.5 Experimental signatures of many-body broken-symmetry states. 164

7 Conclusions 167

8 Bibliography 170



List of Figures

2.1 Forming of molecular electronic states. . . . . . . . . . . . . . . . . . 13

2.2 Vectors a1, a2 & b, building sublattices A & B. . . . . . . . . . . . . 16

2.3 Nearest neighbour vectors for A sublattice. . . . . . . . . . . . . . . . 19

2.4 Energy dispersion of the π band for graphene in the NN approximation. 20

2.5 Energy dispersion for the NNN approximation. . . . . . . . . . . . . . 22

2.6 1st Brillouin zone for graphene. . . . . . . . . . . . . . . . . . . . . . 23

2.7 Dirac cone near the corners of Brillouin zone. . . . . . . . . . . . . . 25

2.8 Dirac cone near the corners of Brillouin zone for gapped graphene. . . 26

2.9 Energy gap depdendence on size of graphene quantum dots. . . . . . 29

2.10 Crystal lattice of MoS2. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 DFT supercell for 2D, 1D and 0D systems. . . . . . . . . . . . . . . . 38

2.12 Plane wave and k-point mesh convergence study. . . . . . . . . . . . . 39

2.13 Monkhorst-Pack k-point grid. . . . . . . . . . . . . . . . . . . . . . . 40

2.14 DFT band structure of MoS2 . . . . . . . . . . . . . . . . . . . . . . 41

2.15 Example configurations of 3 electrons. . . . . . . . . . . . . . . . . . . 44

2.16 Example 1 excitation configurations. . . . . . . . . . . . . . . . . . . 47

2.17 Example off-diagonal matrix elements for excitations. . . . . . . . . . 48

3.1 Graphene quantum dot energy gap comparison: TB vs. DFT. . . . . 56

3.2 Hexagonal graphene quantum dots decomposed into concentric rings. 57

3.3 Spectrum of 1D periodic ring of carbon atoms. . . . . . . . . . . . . . 58

3.4 Forming of the valence band of coronene. . . . . . . . . . . . . . . . . 59

3.5 Forming of the valence and conduction band of coronene. . . . . . . . 60

xi



LIST OF FIGURES xii

3.6 1D Lieb lattice on the edge of an armchair-edged graphene quantum dot. 62

3.7 Coupling the 1D Lieb lattice to inside rings. . . . . . . . . . . . . . . 63

3.8 Clusters for larger armchair GQDs. . . . . . . . . . . . . . . . . . . . 64

3.9 Zero-energy state wavefunction for two clusters in armchair GQDs. . 65

3.10 Forming of an armchair-edged GQD. . . . . . . . . . . . . . . . . . . 66

3.11 Coupling of three rings to form an armchair-edged GQD. . . . . . . . 66

3.12 Energy spectrum evolution from a zigzag- to an armchair-edged GQD. 67

4.1 Nearest neighbours of an Mo atom. . . . . . . . . . . . . . . . . . . . 71

4.2 Lattice parameters of monolayer MoS2. . . . . . . . . . . . . . . . . . 73

4.3 Tight-binding band structure of MoS2 with only NN terms included. . 75

4.4 Next nearest neighbours of an Mo atom. . . . . . . . . . . . . . . . . 78

4.5 Tight-binding band structure of MoS2 with NNN terms included. . . 80

4.6 Joint optical density of states in MoS2. . . . . . . . . . . . . . . . . . 81

4.7 Band structure of MoS2 with spin-orbit coupling. . . . . . . . . . . . 83

4.8 Massive Dirac fermion approximation for MoS2 at K. . . . . . . . . . 87

4.9 Valley-dependent circularly polarised light absorption. . . . . . . . . . 91

5.1 Cyclotron motion of an electron in magnetic field. . . . . . . . . . . . 96

5.2 Eigenvector components for massive Dirac fermion Landau levels. . . 100

5.3 Massive Dirac fermion Landau levels. . . . . . . . . . . . . . . . . . . 102

5.4 Massive Dirac fermion Landau levels with SO splitting. . . . . . . . . 103

5.5 Optical selection rules for massive Dirac fermion Landau levels. . . . 107

5.6 Hartree-Fock ground state for massive Dirac fermions. . . . . . . . . . 110

5.7 Valley polarisation for massive Dirac fermion Landau levels. . . . . . 111

5.8 Electron-hole excitations between massive Dirac fermion Landau levels. 113

5.9 Self energy of an electron in a massive Dirac fermion Landau level. . . 116

5.10 Valley Zeeman splitting renormalised by interactions. . . . . . . . . . 118

5.11 Absorption spectrum for massive Dirac fermions in 1 Landau level. . 120

5.12 Absorption spectrum for massive Dirac fermions in 3 Landau levels. . 121



LIST OF FIGURES xiii

5.13 Convergence of mDf absorption spectrum. . . . . . . . . . . . . . . . 121

5.14 MDf Absorption spectrum in both valleys. . . . . . . . . . . . . . . . 122

5.15 MDf Absorption spectrum with spin mixing. . . . . . . . . . . . . . . 122

6.1 Rectangular piece of MoS2. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Rectangular MoS2 2× 2 computational box. . . . . . . . . . . . . . . 126

6.3 Rectangular MoS2 QD with PBC. . . . . . . . . . . . . . . . . . . . . 128

6.4 Comparison of MoS2 QD energy specturm with and without PBC. . . 129

6.5 Absolute value of the wavefunction in a 6× 6 MoS2 QD without PBC. 129

6.6 Example of a confining parabolic potential well with radius RQD. . . 130

6.7 Parabolic QD energy specturm comparison with and without PBC. . 131

6.8 Computational box shapes: romb. . . . . . . . . . . . . . . . . . . . . 132

6.9 K-point meshes for a romboidal and rectangular computational boxes. 133

6.10 QD state k-point content with and without the confinement. . . . . . 135

6.11 Energy levels in an MoS2 QD. . . . . . . . . . . . . . . . . . . . . . . 136

6.12 QD energy levels associated with valleys ±K. . . . . . . . . . . . . . 137

6.13 QD energy levels associated with Q-points. . . . . . . . . . . . . . . . 139

6.14 Topological splitting of electronic shells in an MoS2 QD. . . . . . . . 139

6.15 Spin orbit splitting for an MoS2 QD. . . . . . . . . . . . . . . . . . . 141

6.16 Spin orbit splitting for a TMDC QD. . . . . . . . . . . . . . . . . . . 141

6.17 Spin orbit splitting vs shell spacing for an MoS2 QD. . . . . . . . . . 142

6.18 Order of shells for an MoS2 QD. . . . . . . . . . . . . . . . . . . . . . 142

6.19 QD energy levels ordering. . . . . . . . . . . . . . . . . . . . . . . . . 143

6.20 MoS2 QD wavefunction amplitude. . . . . . . . . . . . . . . . . . . . 145

6.21 MoS2 QD wavefunction phase. . . . . . . . . . . . . . . . . . . . . . . 146

6.22 Coulomb potential with Keldysh screening. . . . . . . . . . . . . . . . 148

6.23 MoS2 atomic sites included in the evaluation of Coulomb integrals. . . 149

6.24 Direct and exchange Coulomb integrals for QD states. . . . . . . . . . 151

6.25 2 electrons in an Mo2 QD with no spin orbit coupling. . . . . . . . . . 154

6.26 2 electrons in an Mo2 QD in the first shell. . . . . . . . . . . . . . . . 156



LIST OF FIGURES xiv

6.27 Lowest energy two-electron configurations on two QD shells. . . . . . 157

6.28 Many-body groundstate of up to 6 electrons with static screening. . . 161

6.29 Many-body groundstate of up to 6 electrons with Keldysh screening. . 162

6.30 Two phases of the many-body groundstate of 6 electrons. . . . . . . . 163

6.31 Energy gaps between the GS and excited state phases. . . . . . . . . 164

6.32 Coulomb blockade peaks prediction for MoS2 QDs. . . . . . . . . . . 166



List of Tables

4.1 Slater-Koster parameters obtained by fitting to DFT band structure. 79

6.1 Coulomb integrals in atomistic basis. . . . . . . . . . . . . . . . . . . 149

xv



Chapter 1

Introduction

Last decade marks a new era in the physics of nanomaterials, inaugurated by the No-

bel prize awarded in 2010 to A. Geim and K. Novoselov for groundbreaking research

on graphene, the first two-dimensional (2D) crystal realized in experiment [1–3]. Since

then, the physics of low-dimensional materials on a nanoscale has attracted consid-

erable attention due to the promising prospects for tailor-made 2D-based technology.

The focus of interest has been a group of materials, called van der Waals (vdW)

crystals, built of layers of atoms linked together with weak vdW forces. The atomic

planes of vdW materials can be easily peeled off and stacked together again in custom

combinations or twisted relative to each other, which enables engineering properties

for desired applications [4–8]. This is possible, because vdW crystals host compounds

with a variety of properties, from insulators and metals, through semimetals, semi-

conductors and ferromagnets, to superconductors and topological insulators [5,9,10].

Among these, crystals with honeycomb lattice have revealed particularly exotic prop-

erties and emerging new phenomena [4, 10–17].

In this thesis I will focus on graphene, a honeycomb one-atom-thick semimetal, and

on transition metal dichalcogenides (TMDCs), a group of hexagonal nanocrystals with

formula MX2 (M metal, such as Mo and W, X chalcogen, such as S, Se and Te), which

exhibit semiconducting properties [18,19]. Section 1.1 gives an introduction to these

bulk honeycomb 2D crystals, and section 1.2 gives an overview of the applications

and properties of graphene and TMDCs quantum dots.

1



CHAPTER 1. INTRODUCTION 2

1.1 Hexagonal 2D crystals: graphene and TMDCs.

Graphene crystal lattice is made of carbon atoms arranged in a 2D honeycomb lattice,

which stacked and attracted to other graphene layers with vdW forces forms bulk

graphite [20]. A 2D hexagonal monolayer contains two inequivalent atomic sites

with two carbon atoms in a unit cell and produces a hexagonal Brillouin zone with

two inequivalent corners K and −K. The extrema of graphene's energy bands are

located in these points, where conduction and valence bands touch and make graphene

a unique semimetal. The touching energy bands at ±K are called valleys [3, 21, 22],

which are similar to valleys in silicon [3]. This non-conventional band structure was

first described by Wallace [23] in 1947. The resulting extraordinary electronic and

optical properties include large elasticity, high carrier mobility, high conductivity and

almost complete transparency, a set of features unlike any other material previously

known [3, 24–27]. These properties can be understood by employing the massless

Dirac fermion model, which uses an analogy to relativistic Dirac equation [24, 28].

This shows that graphene is an excellent example of how a material stripped to its

2D form can exhibit properties drastically different from its 3D analogue. Another

such example is a TMDC crystal.

TMDCs share the hexagonal shape with graphene, but the atomic composition

creates an important distinction. A site of a TMDC hexagonal lattice hosts a transi-

tion metal atom with valence d orbitals or a chalcogen dimer with valence p orbitals,

with both atoms of the dimer placed out of the metal plane [18,19]. In this way three

atomic layers make a monolayer of TMDC crystal, which is a honeycomb structure if

viewed from the top . The two sites in a unit cell now have different energies, which

breaks the inversion symmetry and opens an energy gap in valleys ±K. Interest-

ingly, the 3D TMDC counterpart actually possesses an indirect energy gap, but as

the thickness is reduced to a monolayer, a TMDC crystal becomes a direct gap semi-

conductor, with the bandgap at ±K [18,19,29]. The direct gap in TMDCs makes it
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an optically active material, attractive for optoelectronic applications [30,31].

However, an even more exciting optical feature of these crystals is a valley-

dependent circular dichroism, which means that carriers can be excited in each val-

ley with oppositely circularly polarised light [30, 32–35]. This allows for accessing

the valley index with optical measures and creates a possibility of designing val-

leytronic devices operating on electron's valley pseudospin instead of spin [36,37] - a

prospect that has already been explored in silicon [37–39]. Contrary to silicon, the

valley-selective optical properties of TMDCs as well as long valley coherence times

demonstrated by Jones et al. and Wang et al. [40, 41] offer practical means of valley

manipulation for valleytronics. In addition, the heavy metal atoms cause large spin-

orbit splitting of the bands at ±K, opposite for each valley, which causes spin-valley

locking [35,36]. This often means translating spin polarisation into valley pseudospin

polarisation [35,36] - an added benefit for valleytronic applications.

Another important aspect of the band structure of TMDCs is the massive Dirac

fermion (mDf) description, which applies to the low energy bands at K. It involves

unique topological properties distinct from standard semiconductors with parabolic

bands. The valley pseudospin creates effective topological moments (or orbital mag-

netic moments) opposite in each valley due to their opposite Berry curvature [42–45],

which makes the valleys topologically inequivalent (this is also true for massless Dirac

fermions in graphene [46]). This difference leads to the valley spin Hall effect [35,36],

which can be detected in experiment [47,48]. Topological effects also manifest them-

selves in the splitting of 2p exciton energies for opposite angular momentum states,

unobserved previously in standard semiconductors [44, 49]. This thesis discusses the

topological effects in many electron-states in an electrostatic confinement, as described

in section 1.2.

It is important to note that there exists another 2D material, which can be de-

scribed with mDf model, bilayer graphene. It is gapless, like graphene, but the bands

are characterised by nonzero effective masses. An energy gap can be opened in bi-

layer graphene by applying an external electric field. Although this thesis does not
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consider bilayer graphene in detail, important analogies exist between gapped bilayer

graphene and TMDCs, which I will often use to reveal the physics of mDf.

The rich mDf model however does not capture yet another important feature of

TMDC band structure, which has an important effect on its optical properties. It

involves the existence of three additional conduction band minima around each valley,

at Q-points, which cause band nesting [19, 50], and contribute to enhanced optical

absorption of TMDCs, e.g. excitons in TMDCs are strongly affected by the presence

of Q-points [49].

A theory providing explanation to all these features in a consistent manner was

needed. Many tight-binding and k · p approaches exist that attempt to reproduce

the experimental and ab initio findings [51–56]. Some tend to disregard the complex

role of d orbitals in the formation of bands and others lack the simplicity needed

in an efficient tool for material property prediction. This thesis focuses on develop-

ing a microscopic understanding of the characteristics of the TMDC band structure

simultaneously with keeping the model as minimal and intuitive as possible. The

approach presented in the thesis allows to build a theory of more complex properties

of TMDC, including external magnetic field effects, electrostatic confinement, and

electron-electron interactions.

The electron-electron interactions are in fact a vital component of the 2D material

theory, as they are pronounced in TMDCs and other 2D materials due to confinement

to a single atomic layer. They manifest themselves in large exciton binding energies in

TMDCs [57–59], spin or valley polarized broken-symmetry states in TMDCs [14, 60]

and strongly correlated systems, e.g. superconducting and Mott-insulating phases

in bilayer graphene [16, 17]. This thesis discusses some of the interacting effects in

TMDCs that are particularly of interest, including magnetoexcitons - excitons in

presence of strong magnetic field, and several electron complexes in confined nanos-

tructures.

In fact, strong external magnetic field amplifies the electron-electron interactions

in crystals, which form highly degenerate flat energy bands when exposed to magnetic
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field, which are called Landau levels (LLs) [61]. For a standard semiconductor, LLs are

equally spaced in energy, but hexagonal crystals exhibit unconventional LL structure.

For graphene, the LL spacings decrease with higher LLs as a square root function,

which is linked to the massless Dirac fermion nature of electrons in graphene [11,22].

In TMDCs, the mDf model forms even more complicated structure of LLs, as the 0th

LL is located asymmetrically within valleys at the top of the valence band at K and

at the bottom of the conduction band at −K [62–66]. Additional strong spin-orbit

coupling in TMDCs, opposite for both valleys further increases the LL asymmetry. As

a consequence, the first possible LLs in the conduction band are placed at different

energies in opposite valleys, causing valley Zeeman splitting [63–65, 67, 68]. These

effects enable selective population of TMDC samples with electrons of specific spin

and valley pseudospin, to achieve spin and valley polarisation [63–68]. Enhanced

interaction effects have been observed in this setting [66,67,69–71], which are a subject

of study in this thesis.

1.2 Graphene and TMDC quantum dots.

Quantum dots (QDs) are structures with all dimensions reduced to a nanoscale. The

quantum confinement produces discrete energy levels, which bears a resemblence to

an atom. This is why QDs are often called artificial atoms [72].

QDs made of conventional 3D materials include self-assembled QDs, i.e. islands

formed in epitaxial layers due to the strain produced by mismatch in lattice con-

stants [73,74], and gated QD, which are electrostatically defined regions that confine

electrons. The first demonstration of a single electron manipulation was reported in a

GaAs/GaAlAs field-effect transistor, where electrons were localized within a QD-like

region by metallic gates [75]. Theoretical predictions for the behaviour of a con-

fined electron in a self-assembled InAs/GaAs QD were confirmed experimentally to

be governed by a 2D harmonic oscillator (HO) spectrum with shell spacing ω [74].

Because the energy gap of a QD can be tuned with size, shape, atomic composition

and external potentials, they present a variety of applications in optoelectronics, such
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as solar cells, photodetectors and lasers [76–81]. The discrete energy levels allow also

for manipulation of single electrons, which is used for quantum computing, e.g. in

spin-based qubits - quantum computing units [82–93].

However, localizing electrons in a nanoscale region within a macroscopic volume

involves interactions with nuclear spins and atomic vibrations, which result in spin

decoherence. This is why 2D semiconducting materials offer a possibility of confining

electrons in atomically-thin layers, which could potentially decrease decoherence and

ensure room-temperature operation [91,94].

The exploration of 2D QDs started with graphene quantum dots (GQDs), which

are small pieces of graphene crystal. GQDs allow to take advantage of graphene's

properties, but with an energy gap present, essential for optoelectronics. By tuning

the size of the GQD, the bandgap can be continuously tuned within THz to UV

range [22,95,96]. There are however more factors determining their properties and the

magnitude of the energy gap, namely the shape and type of edge of a QD [12,15,97,98].

Possible edge types in a honeycomb lattice are zigzag and armchair [12, 15, 96]. For

hexagonally shaped graphene QDs (GQDs) different edge type induces an oscillation

of the energy gap with QD size, which is explained in this thesis.

The analogues of conventional QDs are 2D semiconductor QDs, which exploit

the naturally present energy gap for some 2D materials, such as TMDCs or bilayer

graphene in external electric field. Due to difficult edge control for nanostructures of

TMDC [99–102] (more troublesome than for GQDs [15,103]), a confinement created by

gated TMDC QDs is desirable. TMDC gated QDs have been obtained experimentally

with lateral metal electrodes [104–106] and gated bilayer graphene QDs have also

been realised [107–110]. Coulomb blockade effect has been observed in a transport

experiment [104, 111, 112], single electron and hole transfer has been reported [112],

as well as optical probing of excitons has been demonstrated in gated TMDC QDs

[104,111–113]. Local tuning of confinement and gate tuning of QD molecules have also

been shown [104,114]. Also, recent progress in the manipulation of valley pseudospin

includes a demonstration of long valley index lifetimes for holes in QDs [113].
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These experimental results have been matched by theoretical efforts to describe

the properties of TMDC QDs. The mDf in TMDCs have been proposed for qubit

applications [90,115–122]. Electronic properties of triangular QDs have been studied

in Ref. [123]. Three-band tight-binding calculations for various sizes of QD in the

presence of magnetic field have been reported by Pavlovic et al. and Chen et al. [124,

125], and other tight-binding studies include Refs. [120, 122, 126]. Effective models

have been used for realistic sizes of QDs in Refs. [90, 115, 117–119, 121]. The means

of valley control with strain, magnetic field and impurity coupling have been also

studied [90,118,121,122]. However, the theory of TMDC QDs presented in this thesis

provides the first comprehensive explanation of the role of valleys, topology and the

Q-points in forming of the single electron QD energy structure.

Furthermore, similarly to atoms, the properties of QDs can change immensely,

when additional electrons are placed inside them [12, 74, 127]. Together with en-

hanced interactions due to the 2D nature, QD of 2D materials offer a unique chance

for exploring strong electron-electron interactions. Two electron states in a bilayer

graphene QD have been studied theoretically in Refs. [110, 128] and experimental

demonstrations of many-body effects in bilayer graphene and TMDC QDs have also

been reported [94, 110]. In this thesis, I present a theory of emerging highly tunable

interacting system of N electrons in a TMDC QD, which reveals broken-symmetry

strongly correlated phases. These results advance our understanding of strongly in-

teracting electrons in valley systems and explain the role of interactions in designing

new nanomaterials and valleytronic devices.

1.3 Thesis Contributions.

This thesis includes a tight-binding model for hexagonal graphene quantum dots

and bulk MoS2, as well as a theory of magnetoexcitons of massive Dirac fermions

and electron-electron interactions in gated MoS2 quantum dots. The content of the

chapters is based on manuscripts in peer-review journals that have been published or

submitted for publication. Below I list all the articles relevant for this thesis:
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1. M. Bieniek, M. Korkusiski, L. Szulakowska, P. Potasz, I. Ozfidan, and P. Hawry-

lak, Band nesting, massive Dirac fermions, and valley Land and Zeeman effects

in transition metal dichalcogenides: A tight-binding model, Phys. Rev. B, vol.

97, no. 8, p. 085153, 2018.

2. Y. Saleem, L. Najera Baldo, A. Delgado, L. Szulakowska, and P. Hawrylak,

Oscillations of the bandgap with size in armchair and zigzag graphene quantum

dots, J. Phys.: Condens. Matter, vol. 31, no. 30, p. 305503, 2019.

3. L. Szulakowska, M. Bieniek, and P. Hawrylak, Electronic structure, magnetoex-

citons and valley polarized electron gas in 2D crystals, Solid-State Electronics,

vol. 155, pp. 105110, 2019.

4. M. Bieniek, L. Szulakowska, and P. Hawrylak, Band nesting and exciton spec-

trum in monolayer MoS2, Phys. Rev. B, vol. 101, no. 12, p. 125423, 2020.

5. M. Bieniek, L. Szulakowska, and P. Hawrylak, Effect of valley, spin, and band

nesting on the electronic properties of gated quantum dots in a single layer of

transition metal dichalcogenides, Phys. Rev. B, vol. 101, no. 3, p. 035401,

2020.

6. L. Szulakowska, M. Cygorek, M. Bieniek, and P. Hawrylak, Valley and spin

polarized broken symmetry states of interacting electrons in gated MoS2 quan-

tum dots, arXiv:2005.04467 [cond-mat], submitted for publication to Nature

Communications, 2020.

For articles 5. and 6., I have conducted all the mentioned calculations and deriva-

tions in full, in collaboration with the co-authors as listed. Manuscript 3. is a review

article that discusses my results on the magntoexciton spectrum, as well as work

by my collaborators within the Quantum Theory Group lead by prof. P. Hawrylak.

For articles 1. and 4., I was involved in the analytical aspect of the presented the-

ory. Manuscript 2. includes both my colleagues’ DFT results and my tight-binding

calculations, in which junior students listed as co-authors were involved.
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Chapter 3 and 4 are based on manuscript 2. and 1. respectively. Articles 1, 3 and

4. are relevant for chapter 5 and articles 1., 4., 5. and 6. are relevant for chapter 6.

1.4 Thesis Outline.

This thesis is organised as follows. Methodology is described in chapter 2., which

succeeds the introduction in chapter 1. The methods are discussed in three sec-

tions, dedicated to single electron picture, the many-body techniques and numerical

approaches.

Chapter 3. focuses on the tight-binding study of hexagonal graphene quantum

dots (HGQD). By expressing the atomic structure of HGQD in terms of concen-

tric rings, in section 3.1 I show that the energy structure of HGQDs can be under-

stood in terms of analytical solutions of 1D periodic chains coupled together. In

order to demonstrate the difference between the energy structure for zigzag-edged

and armchair-edged HGQDs, I describe the additon of 1D Lieb lattice in section 3.2

to the zigzag-edged HGQD to form an armchair-edged HGQD in section 3.3.

Chapter 4. presents the tight-binding model for bulk MoS2. Several contributions

to the model are included in sections 4.1-4.3, i.e. the nearest-neighbour, next-nearest-

neighbour hopping and the spin-orbit coupling. Section 4.4 describes the massive

Dirac fermion (mDf) model for electrons in MoS2, and the interaction of mDf with

light is explained in section 4.5. The theory presented in this chapter is then used in

chapter 5. to build on the mDf Hamiltonian and in chapter 6. to highlight the valley

and Q-point effects in finite structures.

Chapter 5. includes the theory of magnetoexciton absorption for mDf model.

The description starts with a single particle approach in section 5.1, which includes a

discussion of a modification of Landau level (LLs) energy spectrum for mDf in com-

parison to free electron LL spectrum. Section 5.1 also includes a description of the

effects of spin-orbit coupling on the spectrum and finally discusses the interaction

of mDf in LLs with light. Section 5.2 introduces interaction between mDf in LLs

with a detailed description of the Coulomb scattering terms and the exciton Hamil-
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tonian, followed by the discussion of the results on valley Zeeman splitting and the

magnetoexciton absorption spectrum.

A theory of electronic properties of gated MoS2 QDs is presented in chapter 6. It

is divided in four sections. The first two sections describe the tight-binding model for

a QD and the resulting single particle energy spectrum associated with valleys and

Q−points. Sections 6.3 and 6.4 discuss the interacting effects in MoS2 QDs, starting

with a detailed description of scattering Coulomb matrix elements, which include the

distinction between intervalley and intravalley contributions. Section 6.4 discusses

the interplay of different single particle and interacting energy scales contributing

to valley and spin polarised states for two interacting electrons as well as strongly-

correlated broken-symmetry ground states of up to six electrons in gated MoS2 QDs.

Possible verification of the signatures of these states in experiment is also discussed.



Chapter 2

Methodology

This chapter focuses on all methodology used in this thesis. Section 2.1 discusses

treatment of a single electron in a solid and it follows with section 2.2, which is

dedicated to solving the many-body Hamiltonian for crystals.

2.1 Single particle picture.

Solids contain many atoms closely packed together in a geometrical lattice, building

a structure of large complexity. These atoms, containing many electrons, make it

impossible to solve exactly for properties of a solid. An approximation is therefore

needed. It is useful to start with a single atom solution and then, account for the

change in these electronic levels as other atoms are placed close to the original atom.

A practical assumption about the wavefunction of a few-atom molecule is to treat

it as a linear combination of atomic orbitals (LCAO), which has been described in

section 2.1.1. This approximation is then used to form band theory of solids using

the tight-binding method, as described in 2.1.2.

2.1.1 Linear combination of atomic orbitals wavefunction.

To solve for electronic states of a molecule, we can use the eigenstates of a single atom

potential and account for a modified energy potential of several atoms placed close

together, as shown in Fig. 2.1 a)-b). What follows is an example of the approach for

11
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a diatomic molecule. Let us assume that the single atom solutions are:

Ĥatφn(r) = enφn(r), (2.1)

where n labels energy levels en of an isolated atom with eigenstates φn, such as

1s, 2s, 2px etc. (an example of a spectrum shown in Fig. 2.1 a)) and Ĥat = − ~2

2m
∇2 +

V̂at(r) is a single atom Hamiltonian. Now, we consider two ideantical atoms a, b placed

close together to form a molecular potential shown in Fig. 2.1 b). The Hamiltonian

for a single electron in the molecule reads

Ĥ = − ~2

2m
∇2 + V̂a(r) + V̂b(r), (2.2)

where V̂a/b(r) = V̂at(r − Ra/b) for a potential centred on Ra/b. To search for the

solutions of the Hamiltonian in Eq. 2.2 we assume a trial LCAO wavefunction made

of the atomic orbitals n for atom a, identical to orbitals on atom b. I will assume one

orbital per atom for simplicity. The LCAO wavefunction in bracket notation reads

|ψ(r)〉 = ca |φa(r)〉+ cb |φb(r)〉 =

ca
cb

 , (2.3)

where φa (φb) is a single atomic orbital on atom a (b) and ca (cb) are coefficients of

the LCAO molecular wavefunction on atom a (b) and the LCAO wavefunction is a

two component vector in the basis of the atomic orbitals a, b.

We now look for the form of the Hamiltonian in Eq. 2.2 in the basis of the atomic

orbitals. Let us consider a diagonal term

〈φa| Ĥ |φa〉 = 〈φa|
(
− ~2

2m
∇2 + V̂a + V̂b

)
|φa〉

= ea + 〈φa| V̂b |φa〉 = ea + δa,

(2.4)
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Figure 2.1: a) Potential of a single atom. Horizontal lines denote energy levels. b)
Total potential formed by two atoms placed close together. The energy levels of a
single atom are modified by the presence of the second potential. c) Close up view of
the lowest molecular energy levels . The 1s orbitals from both atoms split and form
bonding and antibonding states (σ and σ∗ respectively) given by Eq. 2.7 and Eq. 2.8.

where V̂b shifts the energy of the atom a by δa. The off-diagonal term reads

〈φa| Ĥ |φb〉 = 〈φa|
(
− ~2

2m
∇2 + V̂a + V̂b

)
|φb〉

= eb〈φa|φb〉+ 〈φa| V̂a |φb〉 = ebsab + tab = τ,

(2.5)

where sab = 〈φa|φb〉 is the overlap of the basis atomic wavefunctions and tab is called

a hopping integral. The eigenvalue problem for Ĥ reads

Ĥψ =

e τ

τ e

ψ = E

 1 sab

sab 1

 = ESψ, (2.6)

where S is the the overlap matrix and ea + δa = eb + δb = e. The solutions of the

generalised eigenvalue problem in Eq. 2.6 are

Eσ =
e+ τ

1 + sab
,

Eσ∗ =
e− τ

1− sab
,

(2.7)

where Eσ (Eσ∗) is the bonding (anti-bonding) energy shown in Fig. 2.1 c). The
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corresponding wavefunctions are

ψσ =
1√

2(1 + sab)

1

1

 ,

ψσ∗ =
1√

2(1 + sab)

 1

−1

 ,

(2.8)

shown schematically in Fig. 2.1. It is apparent that single atom solutions are different

from the two-atom case.

2.1.2 Tight-binding approximation.

The LCAO wavefunction can be used to solve for properties of a variety of materials,

made of many atoms. Often, a tight-binding (TB) approximation can be employed.

It is well suited to materials with negligible overlap between atoms, so that S ≈ 1 in

Eq. 2.6. This means that electrons are tightly bound to atoms and are less likely to

localise in the space between sites than on sites. An example of a TB calculation for

a finite crystalline structure has been shown in section 2.1.7 for a graphene quantum

dot.

Periodic structures can be treated with the TB model as well. For an infinite

crystal, the potential created by many atoms is periodic, V (r) = V (r+R), where R

defines the periodicity of the lattice. The TB wavefunction for a crystal is written as

a LCAO wavefunction and it reads

ψk =
∑
R

eikRφ(r −R)

= eikr
∑
R

e−ik(r−R)φ(r −R)

= eikruk(r),

(2.9)

where uk is the periodic part of the wavefunction and φ(r −R) is an orbital in unit

cel R. The TB wavefunction in Eq. 2.9 obeys Bloch’s theorem [129], which states
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that electron’s wavefunctions in a periodic potential can be expressed as a plane wave

modulated by a periodic function uk. The eigenvalues of a periodic crystal will carry

the index k, the wavevector, which creates energy bands with dispersion in k. An

example of a TB treatment for an infinite crystal has been shown in section 2.1.3 for

a monolayer graphene.

2.1.3 Example of a tight-binding calculation: bulk graphene.

Graphene is a single layer of carbon atoms arranged in a honeycomb pattern.

Each carbon atom has 6 electrons, two of which are 1s electrons, strongly confined

to the carbon nucleus. They are referred to as core electrons and do not contribute

to the properties of graphene as much as valence electrons. Three of these valence

electrons occupy 2s,2px and 2py orbitals, which form hybridised sp2 bonds, connecting

a carbon atom to its three nearest neighbours (NN). These σ bonds are strong and

are responsible for unusual mechanical properties of graphene. The last electron

occupies a pz orbital, which extends out of the crystal plane. These electrons from

all the carbon atoms form π bonds of highly mobile electrons, which determine the

electronic properties of graphene.

I will show here how to build a TB model of monolayer graphene with one valence

electron on the pz orbital of a carbon atom. Graphene lattice is a honeycomb lattice,

which is not a Bravais lattice, since two lattice sites need to be translated together

to form the structure. Instead, graphene can be treated as two interpenetrating tri-

angular sublattices with one-atom basis, which are Bravais lattices. Both sublattices,

shifted with respect to each other by b = a√
3
(0, 1), are built with vectors:

a1 = a(−1

2
,

√
3

2
),

a2 = a(
1

2
,

√
3

2
),

(2.10)

where a is the sublattice constant a = 2.46Å (all vectors shown in Fig. 2.2). For
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integer n & m, vectors RA & RB represent lattice sites in sublattices A & B

RA = na1 +ma2. (2.11)

Vector RA gives atom positions in sublattice A, while vector RB = RA + b = na1 +

ma2 + b. gives the positions of atoms in B (Fig. 2.2.).

Figure 2.2: Vectors a1, a2 & b, building sublattices A & B.

Translational symmetry imposes the commutation of the Hamiltonian with the

operator of translation by RA. Thus, the eigenvectors of electrons in sublattices A &

B must be the eigenvectors of the translation operator

T̂RAψ
k
A(r) = ψkA(r −RA)

T̂RAψ
k
B(r) = ψkB(r −RA),

(2.12)

where k is wave vector. The wavefunctions must then obey the Bloch theorem, i.e.

ψkA(r −RA) = eikRAψkA(r),

ψkB(r −RA) = eikRAψkB(r).

(2.13)
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Therefore, we may express the wavefunctions as LCAO Bloch wavefunctions

ψkA(r) =
1√
N

∑
RA

eikRAφA(r −RA) = eikruAk (r)

ψkB(r) =
1√
N

∑
RB

eikRBφB(r −RB) = eikruBk (r)

(2.14)

where φA(r − RA) is wavefunction of a pz electron localised on the atom of the

cell identified by RA for sublattice A (and analogously for sublattice B), N is the

number of unit cells in the sublattice and u
A/B
k (r) is a periodic function of the Bloch

wavefunction. The wavefunction of the whole system is a linear combination of the

sublattice wavefunctions

ψk(r) = Akψ
k
A(r) +Bkψ

k
B(r), (2.15)

where ψkA & ψkB are given in Eq. 2.14, which gives

ψk(r) = Ak
1√
N

∑
RA

eikRAφA(r −RA) +Bk
1√
N

∑
RB

eikRBφB(r −RB), (2.16)

and I will search for a wavefunction solution in a spinor form

ψk =

Ak
Bk

 . (2.17)

The single-particle Hamiltonian reads

Ĥ =
p̂2

2m
+
∑
RA

[V A(r −RA)] +
∑
RB

[V B(r −RB)], (2.18)

where p̂2

2m
is a single electron’s kinetic energy, V A(r − RA) & V B(r − RB) are po-

tentials on the lattice sites given by RA & RB. The diagonal matrix element of the
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Hamiltonian Ĥ given in Eq. 2.18 in the basis of ψkA(r) and ψkB(r) is then

〈
ψkA
∣∣ Ĥ ∣∣ψkA〉 =

〈
ψkA
∣∣ p̂2

2m
+
∑
RA

V A(r −RA)
∣∣ψkA〉

+
〈
ψkA
∣∣∑
RB

V B(r −RB)
∣∣ψkA〉 (2.19)

and analogously for the ψkB diagonal element. The first term in the expression in Eq.

2.19 gives energy of sublattice A EA, because ψkA is an eigenstate of p̂2

2m
+
∑
RA

V A(r−

RA). The last term in Eq. 2.19 describes an electron’s hopping from A to A sites.

As the NN of A sites are always B sites (as shown in Fig. 2.3), this term accounts

for next-nearest neighbour (NNN) and further neighbour hopping and is smaller than

NN terms, so I will neglect it for now.

I now calculate the expressions for the off-diagonal terms of the Hamiltonian.

The first part is
〈
ψkB
∣∣ p̂2

2m
+
∑
RA

V A(r −RA)
∣∣ψkA〉 = EA〈ψkB|ψkA〉, which vanishes if I

assume zero overlap. The remaining part is

〈
ψkB
∣∣∑
R′B

[V B(r −R′B)]
∣∣ψkA〉 =

=
1

N
·
∑
RA,RB

eik(RA−RB)
∑
R′B

〈
φB(r −RB)

∣∣V B(r −R′B)
∣∣φA(r −RA)

〉
=

1

N
·
∑
RA,RB

eik(RA−RB)
〈
φB(r −RB)

∣∣V B(r −RB)
∣∣φA(r −RA)

〉
=

1

N
·
∑

<RA,RB>

eik(RA−RB)
〈
φB(r −RB)

∣∣V B(r −RB)
∣∣φA(r −RA)

〉
=

1

N
·N · t(eikRAB1 + eikRAB2 + eikRAB3 ) = t · eikb(1 + e−ika1 + e−ika2), (2.20)

where the three-body integrals (RB 6= R′B) were neglected and the last summation is

approximately restricted to only the B sites that are NN of sites A. In the expression

in Eq. 2.20

t =
〈
φB(r −RA −RAB1)

∣∣V B(r −RA −RAB1)
∣∣φA(r −RA)

〉
(2.21)
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is the NN hopping-term for RA −RB. In Eq. 2.20 I used

RAB1 = b,

RAB2 = b− a2,

RAB3 = b− a1,

(2.22)

Figure 2.3: Red (blue) atoms depict the sublattice A (B). Three NN vectors RABi

defined in Eq. 2.22 are shown here.

Finally, for EA = EB = 0, the eigenvalue problem for the system in the matrix

form reads 0 t · eikb(1 + e−ika1 + e−ika2)

t · e−ikb(1 + eika1 + eika2) 0


Ak
Bk

 = Ek

Ak
Bk

 .

(2.23)

After diagonalising we obtain

E±k = ±|t||f(k)|, (2.24)

where f(k) = eikb(1 + e−ika1 + e−ika2) and

|f(k)| =
√

3 + 2 cos(ka1) + 2 cos(ka2) + 2 cos(k(a2 − a1)). (2.25)
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The spinor eigenvectors corresponding to E±k read

Ak
Bk

 =

 1

±eiθk

 (2.26)

The obtained energy dispersion has been shown in Fig. 2.24. In the π band, which

we considered, there exists one electron per atom. Because of the possible double

occupancy for each orbital π the band is half-filled. As a consequence, the Fermi level

is located exactly in the point shared by valence band (VB) and conduction band

(CB), for E = 0, which are called K & −K and are the corners of graphene’s hexag-

onal Brillouin zone (BZ) (discussed further in section 2.1.4). This makes graphene a

semi-metal.

Figure 2.4: Energy dispersion of the π band for graphene in the NN approximation
for a) VB and b) CB. Colors encode the energy. Blue dots mark the corners of the
BZ K & −K. Mirror symmetry of both bands is apparent.

Importantly, the energy dispersion given in Eq. 2.41 is symmetric w.r.t. E = 0

plane. This is due to the NN approximation. The NNN hopping introduces an

additional term which breakes this symmetry, which is explained in what follows.

Considering NNN means including the last term in the diagonal element of the
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Hamiltonian in Eq. 2.19. The term reads

1

N

∑
RA,R

′
A 6=RA,RB

eik(RA−R′A)
〈
φA(r −R′A)

∣∣V B(r −RB)
∣∣φA(r −RA)

〉
=

1

N
·

∑
<<RA,R

′
A>>

eik(RA−R′A)
〈
φA(r −R′A)

∣∣∑
RB

V B(r −RB)
∣∣φA(r −RA)

〉
=

1

N
·N · t2(eikRAA1 + eikRAA2 + eikRAA3 + eikRAA4 + eikRAA5 + eikRAA6 )

= t2(eika2 + eika1 + e−ik(a2−a1) + e−ika2 + e−ika1 + eik(a2−a1)), (2.27)

and analogously for sublattice B. In the expression in Eq. 2.27 only the NNN terms

were included and further neighbours were neglected. In Eq. 2.27

t2 =
〈
φA(r −RA −RAA1)

∣∣∑
RB

VB(r −RB)
∣∣φA(r −RA)

〉
(2.28)

is the NNN hopping integral and the NNN vectors are

RAA1 = a2,

RAA2 = a1,

RAA3 = a1 − a2,

RAA4 = −a2,

RAA5 = −a1,

RAA6 = a2 − a1.

(2.29)

Therefore, the Hamiltonian in the matrix form reads

 t2 · g(k) t · f(k)

t∗ · f ∗(k) t2 · g(k)


Ak
Bk

 = Ek

Ak
Bk

 . (2.30)

where

f(k) = eikb(1 + e−ika1 + e−ika2), (2.31)

g(k) = 2 cos(ka1) + 2 cos(ka2) + 2 cos
(
k(a2 − a1)

)
. (2.32)
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Figure 2.5: Energy dispersion for the NNN approximation for a) VB and b) CB.
Colors have the same meaning as in Fig. 2.4 The mirror symmetry of CB and VB
has been broken.

After diagonalising we obtain

E±k = t2g(k)± t|f(k)| = t2g(k)± t
√

3 + g(k). (2.33)

The energy dispersion has been shown in Fig. 2.5.

2.1.4 Massless Dirac fermions: low energy spectrum of graphene.

In order to describe low energy dispersion for graphene we need to determine the

location in the k-space where the energy gap closes. These points, K & −K (shown

in Fig. 2.6), mark the two nonequivalent corners of the hexagonal Brillouin zone of

the honeycomb lattice. Because the gap closes at K & −K, we can write

f(K) = 1 + e−iKa1 + e−iKa2 = 0,

f ∗(K) = 1 + eiKa1 + eiKa2 = 0,

(2.34)

which gives

e−iKa2 = 1 + e−iKa1 ,

eiKa1 = 1 + eiKa2 .

(2.35)
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Multiplying both equations above by their conjugates we get

Ka1 = ±2π

3
+ 2πm,

Ka2 = ∓2π

3
+ 2πn.

(2.36)

Taking into account the choice of basis vectors given in Eq. 2.10 and solving the

equations Eq. 2.36, we obtain

Kx =
2π

a
(±2

3
+ (m− n)),

Ky =
2π(m+ n)

a
√

3
.

(2.37)

For any (m,n) we get

K = (±2

3
, 0) or K = (±1

3
,±
√

3

3
) (2.38)

in the units of 2π/a. It is important to state that two of these K points are inequiv-

alent and the rest can be obtained by translating these two points by the reciprocal

space vectors G1 & G2 (shown in Fig. 2.6).

Figure 2.6: 1st BZ for graphene. K and −K mark two inequivalent corners, and Γ
is the centre of the BZ. Vectors G1 and G2 are the reciprocal lattice vectors.

Let us now consider the energy dispersion in the proximity of K & −K for small

q, so that k = K+q. We then expand expression in Eq. 2.34 as a Taylor series with
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only linear terms. Using Eq. 2.36 we obtain

f(k) = f(±K + q) = 1 + e∓iKa1e−iqa1 + e∓iKa2e−iqa2 =

= −iqa1e
∓iKa1 − iqa2e

∓iKa2

=

√
3

2
a(∓qx + iqy)

(2.39)

and eikb = 1 to the first order in q because K · b = 0. Note that for a lattice rotated

by 90◦, the final expression in Eq. 2.39 would be f(k) =
√

3
2
a(iqx± qy) due to rotated

unit vectors a1/2. The linear expansion of the expression given by Eq. 2.32 produces

a constant in both diagonal elements, shifting the spectrum only. I therefore neglect

them. The expression given by Eq. 2.30 for small q around K point reads

|t|

 0 f−(K + q)

f ∗−(K + q) 0

 = |t|

 0
√

3
2
a(qx − iqy)

√
3

2
a(qx + iqy) 0

 = vfq · σ,

(2.40)

where
vf
~ is Fermi’s velocity for graphene and sigma is Pauli matrix vector. Eq.

2.40 has a form of the Dirac equation for massless particles (zero on diagonal), which

shows the relativistic nature of the carriers close to K and for low energies. We get

the solutions

E = ±|t||f(K + q)| = ±vf |q|. (2.41)

This linear dispersion is characteristic for massless Dirac particles and has been shown

in Fig. 2.7. This is the reason the corners of BZ are called the Dirac points and the

shape of the energy dispersion - a Dirac cone. This expansion is true only close to

the K points and only for low energies. High-energy parts of the bands significantly

differ from this behaviour.

2.1.5 Massive Dirac fermions: gapped graphene.

I will now show how to enable gap opening in graphene at K. If the atoms on the

sublattices A and B have different energies (e.g. from a hBN substrate material), one
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Figure 2.7: Low-energy dispersion given in Eq. 2.41 around the Dirac point K.

has to take into account the diagonal energy terms EA and EB that are in general

different. The gapped graphene NN TB Hamiltonian reads

 EA t · f(k)

t∗ · f ∗(k) EB


Ak
Bk

 = Ek

Ak
Bk

 . (2.42)

After diagonalising we obtain

E±k = ±
√
t2f 2(k) +

∆2

4
, (2.43)

where ∆ = |EA − EB| is the magnitude of the gap that opens at K (and I choose

(EA + EB)/2 = 0).

The linear expansion of bands near K gives a massive Dirac Hamiltonian with

the bands separated by a gap ∆, a mass term which enters expression in Eq. 2.40 on
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a diagonal

 ∆
2

t · f−(K + q)

t · f ∗−(K + q) −∆
2

 =

 ∆
2

√
3

2
at(qx − iqy)

√
3

2
at(qx + iqy) −∆

2

 = vfq · σ + σz
∆

2
.

(2.44)

The solutions are now

E±q = ±
√
t2f 2(K + q) +

∆2

4
= ±

√
v2
f |q|2 +

∆2

4
, (2.45)

where ∆ opens the gap, as visible in Fig. 2.8 a).

Figure 2.8: a) Low-energy dispersion obtained by linear expansion of the expression in
Eq. 2.45 around the Dirac pointK for ∆=0.1eV. Energy gap appears. b) Eigenvector
components given by Eq. 2.46 for qy = 0.

The eigenvectors of the Hamiltonian in Eq. 2.44 are

∣∣+±Kq 〉
=

 α+
q

±β+
q e
±iθq


∣∣−±Kq 〉

=

 α−q

±β−q e±iθq

 ,

(2.46)
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where ± stands for K and −K and where

α±q =
E±q + ∆

2

Nq±
,

β±q =
vf |q|
Nq±

,

Nq± =

√
2E±q

(
E±q +

∆

2

)
.

(2.47)

The components of the eigenvectors given in Eq. 2.47 were plotted in Fig. 2.8 b).

2.1.6 Second quantisation.

I will now introduce the second quantisation formalism, which focuses on occupa-

tion numbers, in anticipation of many-electron systems described in later parts of

this thesis. In order to rewrite the TB model introduced in 2.1.3 using the second

quantisation, we start with field operators

Ψk(r) =
∑
α=A,B

cα,kψ
k
α(r)

Ψk(r)† =
∑
α=A,B

c†α,kψ
k
α

∗
(r),

(2.48)

which describe destroying/ creating an electron on sublattice A or B at position r

and at k and cA,k (cB,k) and c†A,k (c†B,k) are annihilation and creation operators of an

electron at k and on sublattice A (B) with fermionic anticommutation relations

{ci, cj} = {c†i , c
†
j} = 0

{ci, c†j} = δij,

(2.49)

where indices i, j include both the k and the sublattice index. The creation and

annihilation operators act on vacuum and a filled state respectively to create new
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occupation states

c†A,k |0〉 =
∣∣ψkA〉 ,

cA,k
∣∣ψkA〉 = |0〉 .

(2.50)

We can use the field operators defined in Eq. 2.48 to obtain the matrix elements of

the Hamiltonian in second quantisation

∫
drΨk(r)†ĤΨk(r) =

∫
dr

∑
α,β=A,B

c†α,kψ
k
α(r)∗Ĥcβ,kψ

k
β (r)

=
∑

α,β=A,B

〈
ψkα(r)

∣∣ Ĥ ∣∣ψkβ (r)
〉
c†α,kcβ,k

=
∑

α,β=A,B

Ĥk
α,βc

†
α,kcβ,k, (2.51)

which rewrites the Hamiltonian in Eq. 2.42 in second quantisation form.

2.1.7 Finite structure tight-binding model: graphene quan-

tum dots.

I will now show the TB model for graphene quantum dots (GQDs), which confine elec-

trons within a small flake of graphene lattice. The Hamiltonian in second quantised

form reads

ĤTB =
∑
i,σ

εi,σc
†
i,σci,σ +

∑
<i,j>,σ

(tijc
†
i,σcj,σ + h.c.), (2.52)

where i, j denote atomic sites within the quantum dot and c†i,σ (ci,σ) creates (anni-

hilates) an electron on a pz orbital on a site i with spin σ. The second summation

in Eq. 2.52 is over the NN pairs of sites and tij is the hopping integral for the bond

between neighbouring i and j sites; εi,σ denotes the onsite energy of atom i and for

spin σ. Note that as shown in section 2.1.3, the NN of sites within sublattice A are

always in sublattice B, and vice versa.

The Hamiltonian in Eq. 2.52 is represented as a matrix in the basis of N sites

within a QD and diagonalised to obtain the single electron energy states. The con-
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Figure 2.9: Energy gap depdendence on size of graphene quantum dots. Blue (red)
points denote energy gap of structures with zigzag (armchair) edge type (smallest
examples pictures in insets).

finement opens the gap in the graphene layer, which decreases with size and in a limit

of an infinite structure will converge to the gapless spectrum of bulk graphene. The

energy gap dependence on the size of the flake is shown in Fig. 2.9 for armchair-

edged and zigzag-edged hexagonal GQDs (smallest examples shown in the inset).

The energy gap is calculated in the units of the hopping element tij = t in Eq. 2.52.

Despite the same shape of the QDs, different edge termination induces an energy gap

oscillation as a function of size.

2.2 Many electron picture.

So far I have considered a single particle (SP) picture, which means that electrons

in the system are not interacting and each behaves in the same way. However, elec-

tronic, optical or magnetic properties of 2D materials are largely determined by the

interactions between the particles in the system, which will be considered in this

section.
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2.2.1 Many-body Hamiltonian.

The interaction beyond the SP picture is introduced in the N-electron Hamiltonian

through the Coulomb potential Vee between all pairs of electrons:

Ĥ =
∑
i

ĥSPi +
1

2

∑
i,j,i6=j

Vee(ri − rj), (2.53)

where i, j count electrons and ĥSPi is a SP Hamiltonian for electron i. The wave-

function of the N-electron system is now an antisymmetrised product of the single

electron wavefunctions, described with a Slater determinant (or as I later show, as a

combination of Slater determinants)

Ψ(r1, r2, ...rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)

...
...

. . .
...

φ1(r1) φ2(r1) · · · φN(r1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.54)

where φ(r) denote orbitals of the SP solution. A single Slater determinant can be

written in short as

Ψ(r1, r2, ...rN) = 〈r|φ1, φ2, ...φN〉, (2.55)

which takes the form of

Ψ(r1, r2, ...rN) = 〈r| c†1c
†
2...c

†
N |0〉 , (2.56)

in the second quantised notation. The interacting part of the Hamiltonian in Eq.

2.53 expressed in second quantisation reads

Ĥee =
1

2

∑
ijklσ,σ′

〈ij|V |kl〉 c†iσc
†
jσ′ckσ′clσ, (2.57)

where

〈ij|V |kl〉 =

∫ ∫
drdr′φ∗iσφ

∗
jσ′

e2

κ |r − r′|
φkσ′φlσ (2.58)



CHAPTER 2. METHODOLOGY 31

are the two-body Coulomb scattering matrix elements for Vee = e2

κ|r−r′| . The matrix

elements 〈ij|V |kl〉 depend on the specific form of the SP wavefunctions i, j, k, l,

which will differ for problems considered in this thesis. The following subsections

will introduce different ways to treat Ĥee: mean-field approaches within Hartree-Fock

(HF) method and density functional theory as well as configuration interaction (CI)

method.

2.2.2 Mean-field methods.

The many body Hamiltonian in Eq. 2.53 becomes quickly too complex to solve for

a large number of interacting electrons. It is therefore useful to introduce approx-

imations to the form of electron-electron interaction term in Eq. 2.57. Mean-field

methods take the interactions into account in a mean-field manner, which involves

solving the problem for a single electron (quasiparticle) placed in an effective poten-

tial originating from the interactions with all the other electrons [130]. This effective

term is calculated using the electron density

ρ(r) =
∑

λ<λF ,σ

|ψλ,σ(r)|2 , (2.59)

where λ runs over occupied SP orbitals ψλ,σ. We can define a creation operator bλσ

that creates an electron on a SP mean-field orbital
∣∣ψλσSP〉 = b†λσ |0〉, which can be then

expanded in terms of the creation operators in the TB basis as

∣∣ψλσSP〉 = b†λσ |0〉 =
∑
i

A∗iλσc
†
iσ |0〉

c†iσ =
∑
λ

A∗iλσb
†
λσ

(2.60)
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The electron density operator in second quantisation becomes

ρ̂ =
∑

λ<λF ,σ

b†λσbλσ

=
∑

λ<λF ,σ

∑
i

A∗iλσc
†
iσ

∑
j

Aλjσcjσ

=
∑
i,j,σ

( ∑
λ<λF

A∗iλσAλjσ

)
c†iσcjσ

=
∑
i,j,σ

ρijσc
†
iσcjσ,

(2.61)

where ρijσ are matrix elements of the density operator, and λF is the index of the

highest occupied orbital.

2.2.3 Hartree-Fock approximation.

This section is based on Ref. [130,131]. The HF method involves the following mean-

field approximation to the interacting term in Eq. 2.57:

c†iσc
†
jσ′ckσ′clσ ≈ c†iσ〈c

†
jσ′ckσ′〉clσ + 〈c†iσclσ〉c

†
jσ′ckσ′

− c†iσckσ′〈c
†
jσ′clσ〉δσσ′ − 〈c

†
iσckσ′〉c

†
jσ′clσδσσ′

= 2

(
c†iσ〈c

†
jσ′ckσ′〉clσ − c

†
iσckσ′〈c

†
jσ′clσ〉δσσ′

)
,

(2.62)

where 〈c†jσ′ckσ′〉 = ρjkσ′ and the expectation values are calculated for the HF GS

wavefunction 〈c†jσ′ckσ′〉 = 〈c†jσ′ckσ′〉HF . The assumption of the HF method is that the

HF ground state (GS) wavefunction can be described by a single Slater determinant

|HF 〉 =
∏
λ<λF

b†λ↑b
†
λ↓ |0〉 , (2.63)

which involves N electrons placed with opposite spins on lowest N/2 levels λ (with

no spin splitting of levels).

Following the approximation in Eq. 2.62, the interacting Hamiltonian in Eq. 2.53
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becomes the HF Hamiltonian

HHF =
∑
iσ

εiσc
†
iσciσ +

∑
ijklσσ′

(
〈ij|V |kl〉 − 〈ij|V |lk〉 δσσ′

)
ρjkσ′c

†
iσclσ, (2.64)

where the 1/2 from Eq. 2.57 cancels the factor of 2 in Eq. 2.62 and I replaced

kσ′ ↔ lσ in the second term. The matrix elements 〈ij|V |kl〉 and 〈ij|V |lk〉 in the

second term of Eq. 2.64 are direct and exchange terms respectively. The Hamiltonian

in Eq. 2.64 contains the density ρjkσ′ , which itself is obtained from the eigensolutions

of the same Hamiltonian. It therefore needs to be diagonalised in a self-consistent

manner. To start, a trial density matrix ρtrial is used, which allows for diagonalising

the problem to obtain the eigenvectors, which are then again used to obtain the new

density matrix ρ. The solutions eventually converge after several steps.

The search for the GS HF energy in this self-consistent process is possible because

of the variational principle. It states that the exact GS energy is always lower or

equal to the GS energy obtained from a trial wavefunction:

E [Ψ] =
〈Ψ| Ĥ |Ψ〉
〈Ψ| |Ψ〉

≥ E0, (2.65)

where the exact GS energy E0 is reached for the exact GS wavefunction Ψ0. A

converged energy solution will overestimate the true GS energy.

The converged solutions of the HF Hamiltonian in Eq. 2.64 give the quasiparticle

states ψλ, which include the interactions from the other electrons in the VB in the

form of a self energy

Σλ =
∑
µ

(
2 〈λµ|V |µλ〉 − 〈λµ|V |λµ〉

)
, (2.66)

where the factor of 2 comes from 2 electrons occupying each quasiparticle level in

the GS and they both interact through direct term, but only same spin electrons can

interact via exchange.
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2.2.4 Density functional theory.

I will now describe the density functional theory (DFT) used widely to perform real-

istic calculations of systems with many electronic degrees of freedom. This section is

based on Ref. [132].

DFT uses two Hohenberg-Kohn (HK) theorems. The first HK theorem states that

the external potential Vext(r) of an electronic system is uniquely determined by the

GS density ρ0(r) up to a constant. This implies that the many-body wavefunction

and all properties of an interacting system are also fully determined by ρ0(r). It is an

important improvement on the assumptions of the many-body problem, because for

N electrons the many-body wavefunction Ψ({ri}) is 3N -dimensional and the density

is only 3-dimensional.

The second HK theorem defines an energy functional E [ρ(r)] for any external

potential Vext(r). It states that for any Vext(r) the exact GS of the many-body

system is determined by the global minimum of the energy functional E0 [ρ(r)] =

min 〈Ψ|H |Ψ〉 = minE [ρ(r)]. From the interacting Hamiltonian given in Eq. 2.53

the explicit form of the functional is constructed as

E [ρ(r)] = T [ρ(r)]︸ ︷︷ ︸
Kinetic
energy

+

∫
Vext(r)ρ(r)dr︸ ︷︷ ︸

External
potential

+
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′︸ ︷︷ ︸

Hartree term

+Encl [ρ(r)]︸ ︷︷ ︸
Nonclassical
interaction

. (2.67)

Out of the four terms in the functional in Eq. 2.67 only the external potential is

system-dependent, while the rest is universal for any system. The external potential

is also known exactly and as is the classical Coulomb interaction in the form of a

Hartree term EH [ρ(r)] = 1
2

∫ ρ(r)ρ(r′)
|r−r′| drdr

′. The other terms are a priori unknown.

This is where we need the Kohn-Sham (KS) ansatz. It assumes that the GS

density of the interacting system ρ(r) is equal to the GS density of some fictitious

non-interacting system, which could be solved exactly. To solve the fictitious problem

an approximate density functional is needed to replace unknown functionals in Eq.
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2.67. This allows for constructing the KS functional

EKS [ρ(r)] = TSP [ρ(r)]︸ ︷︷ ︸
Kinetic
energy

+

∫
Vext(r)ρ(r)dr︸ ︷︷ ︸

External
potential

+EH [ρ(r)]︸ ︷︷ ︸
Hartree term

+ EXC [ρ(r)]︸ ︷︷ ︸
Exchange-correlation

functional

, (2.68)

where EXC [ρ(r)] is the exchange correlation (XC) potential, which includes the non-

classical interaction: exchange and correlations, as well as the difference T [ρ(r)] −

TSP [ρ(r)] between the kinetic energy for the interacting system and the kinetic energy

for the fictitious SP system.

The introduction of the KS functional EKS allows now for formulating the problem

for the fictitious non-interacting system:

(
− ~2

2m
∇2 + VKS(r)

)
ψKS(r) = εKSψKS(r), (2.69)

where the effective KS potential is the functional derivative of EKS given in Eq. 2.68,

VKS [ρ(r)] = δEKS [ρ(r)]
δρ

, and it reads

VKS [ρ(r)] = Vext(r) + VH [ρ(r)] + VXC [ρ(r)] . (2.70)

The solutions of the fictitious problem in Eq. 2.69 are KS orbitals, similar in

nature to the HF orbitals. The KS orbitals allow for the calculation of the density

ρ(r) =
∑occ

λ

∣∣ψKSλ ∣∣2, which is then used to calculate the KS potential in Eq. 2.70. The

KS equation in 2.69 is solved self-consistently until the solutions converge and yield

a GS density ρ(r) of the interacting system. Importantly, only the density can be

directly taken as a proper solution of the interacting problem, while the KS eigenvalues

and KS orbitals do not have a true physical meaning. However the KS eigenvalues are

widely used to describe the electronic properties of materials as they often produce

results comparable with experiment. Despite this, they should be treated with caution

as the energy gaps are often underestimated in the DFT calculations. This is a

consequence of the main assumption of DFT: the GS density. It is only the GS
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properties that are described well by DFT.

Also, the results of a DFT calculation largely depend on the approximations

made to produce the exchange correlation functional EXC [ρ(r)]. If the exact form of

EXC [ρ(r)] was known, a DFT calculation would yield the exact GS. Out of all the

complex choices for the approximation of EXC , the simplest in form and the most

popular ones are functionals constructed within a local density approximation (LDA)

and generalised gradient approximation (GGA):

ELDA
XC (ρ(r)) =

∫
ρ(r′)VXC (ρ(r′)) dr′,

EGGA
XC [ρ(r)] =

∫
ρ(r′)VXC [ρ(r′),∇ρ(r′)] dr′,

(2.71)

with the GGA approximation depending not only on the density at a point r, but also

on its gradient at r. Other approximations in DFT involve numerical approximations

in solving of the KS equation in Eq. 2.69. This requires skill in choice of basis

sets, Brillouin k-point meshgrids and convergence criteria for the self-consistent loop

procedure, which I will briefly discuss in section 2.2.5.

2.2.5 Example of a DFT calculation: bulk MoS2.

I will now describe a DFT calculation for bulk monolayer within the TMDC group.

The members of TMDCs have a chemical formula of MX2, where M is a transition

metal atom, such as W or Mo and X2 is a chalcogen dimer, such as S2, Se2 or Te2.

Here, I will consider one member of TMDCs - MoS2.

The crystal structure of MoS2 looks like a graphene lattice from the top view, but

is composed of three layers of atoms, when viewed from the side - the plane of Mo

atoms makes up one triangular sublattice and two identical planes of sulphur atoms

placed below and above the metal plane build the second sublattice (Fig. 2.10). The

analogy with graphene is visible if one consideres a unit cell made of Mo atom (blue)

on one site and a S2 dimer (yellow) on the second site. As these sites hold distinct

atoms, the onsite energies on A and B sites will be different, just like in gapped
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Figure 2.10: Crystal lattice of MoS2. The top panel shows the view from the top.
Blue (yellow) atoms denote Mo and S2 sites. A green parallelogram marks the unit
cell, which contains 3 stoms (right). Bottom panel shows the plane of MoS2 from the
side view.

graphene (section 2.1.5). We should therefore expect MoS2 to have an energy gap at

K.

There are many available packages to conduct a DFT calculation, which all use the

theory outlined in section 2.2.4, but they differ in practical numerical approaches used

in the calculation. I have used the Abinit code [133] to obtain the results presented

in this section. Below I present a short description of the performed calculation.

Abinit uses a plane wave basis to formulate the KS problem given by Eq. 2.69 and

is intended to study 3D periodic systems. However, any low dimensional materials

can be studied as well if the supercell approach is taken. To fulfill the periodic

boundary condition in 3D, the low dimensional object is repeated in all the “missing”

dimensions with sufficient spacing that makes the copies independent. A single copy

of the system is called a supercell. This is needed because a linear combination of

plane waves poorly describes a localised object, but performs much better if it is

periodically repeated. Fig. 2.11 depicts examples of a supercell for a 2D system, 1D

system and a 0D system, all build from a square lattice. For a standard 3D system
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the supercell is the same as a unit cell of the material.

For calculation of bulk MoS2, I will use the supercell for a 2D system, shown in

Fig. 2.11 a). The supercell will contain two neighbouring sites A and B, just like in

graphene, which has been shown for MoS2 in Fig. 2.10 with a green parallelogram.

However, the supercell will now have a length in the z direction, which will be chosen

to ensure no tunneling between the planes repeated along z, just like it is pictured in

Fig. 2.11 a). The value set in practice was 28.3459 Bohr.

Figure 2.11: DFT supercell for a) 2D, b) 1D and c) 0D systems. Black dots are
atoms, green blocks show the 3D supercell and its dimensions are labelled with blue
symbols.

I will now explain the choice of the number of plane waves in the basis. According

to Bloch’s theorem

Ψn,k(r + dj) = eikdjΨn,k(r), (2.72)

where n labels bands and dj is the supercell vector, for j = x, y, z, as shown in Fig.

2.11. The wavefunction Ψn,k in Eq. 2.72 reads

Ψn,k(r) =
1√

NΩSC

eikrun,k(r), (2.73)

where un,k is the periodic part of the Bloch wavefunction, N is the number of super-

cells and ΩSC is the volume of the supercell. The function un,k is expanded in the
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basis of plane waves as

un,k(r) =
∑
G

un,k(G)eiGr, (2.74)

where G are reciprocal superlattice vectors, such that eiGdj = 1, and un,k(G) is the

Fourier transform of un,k(r), un,k(G) = 1
ΩSC

∫
ΩSC

e−iGrun,k(r)dr. The wavefunction

in Eq. 2.73 becomes

Ψn,k(r) =
1√

NΩSC

∑
G

un,k(G)ei(k+G)r, (2.75)

The energy of the a plane wave in the basis is then −∇2

2
ei(k+G)r = (k+G)2

2
ei(k+G)r.

As the coefficients un,k(G) decrease with kinetic energy (k+G)2

2
, the set of the plane

waves taken in the calculation can be chosen based on a cut-off energy Ecut, such that

(k+G)2

2
< Ecut. The energy Ecut is a parameter of the calculation and needs to be

chosen based on the convergence of total energy of the system with varying Ecut. The

results of such convergence calculation are shown in Fig. 2.12 a). The total energy

Etot converges at Ecut = 30 Ha with 0.00006 Ha≈ 1.7 meV precision sufficient for a

calculation of the bulk MoS2 band structure.

Figure 2.12: Total energy convergence with varying a) Ecut and b) k-point mesh
density.

Another important parameter is linked to calculating all the expectation values

in the DFT procedure: the choice of the grid of k-points. E.g. the electronic density
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(in case of a periodic system) is calculated as

ρ(r) =
occ∑
λ

|ψλ(r)|2 =
∑
n

1

ΩBZ

∫
ΩBZ

f(EF − En,k) |ψn,k(r)|2 dk, (2.76)

where ΩBZ is the volume of the BZ and f is the Fermi distribution. The choice of the

mesh of k-points in Eq. 2.76 follows the Monkhorst-Pack grid in the Ist BZ [134]. An

example of a denser and coarser mesh is shown in Fig. 2.13. a). A mesh can also be

shifted from the origin (shown in Fig. 2.13. b)) or it can combine both shifted and

unshifted meshes (Fig. 2.13. c)). The optimal choices for different lattices are well

known [134]. However, the mesh density is always a parameter of the calculation.

The denser the mesh, the more costly the calculation becomes. Fig 2.12 b). shows

the results of a convergence study with respect to the number of k-points nk in one

direction for an optimal shift (0, 0, 1/2) for a hexagonal lattice. The total energy Etot

is well converged already for nk = 8 within 0.00004 Ha≈ 1.1meV.

Figure 2.13: Monkhorst-Pack k-point grid for a) varying density, b) different shift and
c) for a mixture of shifted and unshifted meshes. Gi are reciprocal lattice vectors.

It is important to also mention a further step of the DFT calculation, which

involves optimisation of the supercell shape during the self-consistent procedure. The

KS problem for electrons, given by Eq. 2.69, is solved self-consistently, each time for a

varied position of ions, to yield the lowest-total-energy arrangement. This procedure

needs to be conducted in two steps: first considering a rigid supercell with ions

displaced within the cell, and then allowing the supercell to expand and contract to

produce an optimal supercell spacing |dx|, |dy|, |dz|.
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Figure 2.14: DFT band structure of MoS2. (left) Chosen path in the BZ. (right) Band
energies for the path shown on the left. Energies are marked with black lines, while
the colorful overlapping patterns depict the orbital content of bands. The thickness
of the pattern encodes the amount of orbital content. Colors label Mo orbitals for
md = 0 (red) and md = ±2 (blue). The energy band gap is shown at K with a green
symbol.

After this optimisation, the electronic density obtained in the self-consistent cal-

culation is correct and can be used to calculate the band structure, as a last step.

This step does not involve any self-consistent procedure, but performs a set of expec-

tation value calculations for a chosen k-point path in the BZ. Fig. 2.14. shows the

resulting band structure and the path in BZ used to obtain it. Additional run-time

parameters allow for extracting the orbital content of the bands, shown in Fig. 2.14

with colors for the Mo atoms. These results were obtained with the following values

of the most important parameters mentioned above:

(|dx|, |dy|, |dz|) = (5.9077, 5.9077, 28.3459)Bohr,

Ecut = 30.0Ha,

Ecut(PAW ) = 55.0Ha,

nk = 10,

(2.77)

and the XC functional and has been chosen as the Perdew-Burke-Ernzerhof (PBE)



CHAPTER 2. METHODOLOGY 42

XC functional [135], and the projected augmented wave (PAW) method has been

used [136, 137]. It is a standard choice to treat the core electrons on atoms. The

simplest method is the norm-conserving method, which “freezes” the core electrons

and only does the self-consistent calculation for valence electrons. The PAW method

incorporates in it both the valence and the core electrons. It is more costly and

requires an additional plane wave parameter, listed here as Ecut(PAW ), which has

been chosen in a similar convergence study as Ecut. In the above calculation the

spin-orbit (SO) coupling has been enabled, which produced the SO splitting of the

bands.

As shown in Fig. 2.14., the direct energy gap Eg for bulk MoS2 is located at K,

where the VB is made primarily of m
d

= ±2 orbitals and the CB is made mainly

of m
d

= 0 orbital. This composition is reversed at Γ. The VB and CB have an

additional contribution of the p orbitals from the sulphur dimer. This orbital content

motivates the choice of orbitals in the TB presented in section 4.1. The CB includes

also an additonal minimum at Q, which has a distinct orbital composition from K.

This shape of the CB around Q and K causes band nesting and the optical effects

described also in section 4.1.

2.2.6 Configuration interaction method.

Methods more accurate than the mean-field approach are often needed, e.g. for

studies of strongly-correlated systems or describing optical properties and excitations

in the system. Configuration interaction (CI) treats the full interacting Hamiltonian,

with the interacting part given by Eq. 2.57. We seek for a solution of the form of a

linear combination of all possible configurations of N electrons on M SP orbitals (e.g.

obtained from TB model). An example of a CI wavefunction for N = 3 electrons

reads

ΨCI(N = 3) =
∑
pqr

Apqrc
†
rc
†
qc
†
p |0〉 =

∑
pqr

Apqr |pqr〉 , (2.78)

where p 6= q 6= r label SP states, including spin, and |pqr〉 is a single configuration of

N = 3 electrons, which is a short notation for a single Slater determinant given in Eq.
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2.54-2.56. Contrary to mean-field methods, which produced single Slater determinant

solutions, CI eigenvectors are linear combinations of many Slater determinants. Apqr

in Eq. 2.78 needs to be determined through diagonalising the CI Hamiltonian.

The CI basis consists of all possible configurations of N electrons in M SP en-

ergy levels. These configurations can be categorised into blocks of different Sz =

(N↑ − N↓)/2 for N↑ (N↓) electrons with spin up (down). This allows for splitting

the Hamiltonian into blocks to speed up the diagonalisation. The speed-up is needed

as the number of configurations in the basis grows quickly with N = N↑ + N↓ and

M = M↑ + M↓, as a price for accuracy in CI. The number of configurations can be

calculated as

Nconf =

M↑
N↑


M↓
N↓

 (2.79)

and the Sz subblock of the Hamiltonian is a Nconf ×Nconf matrix.

I will now present examples of calculatng the matrix elements of the CI Hamil-

tonian, starting with the diagonal matrix element for an example N = 3 electron

configuration |a ↓ b ↓ c ↑〉 (with electron spin explicitly stated), shown in Fig. 2.15

(most left). The SP part of the diagonal CI Hamiltonian matrix element reads

〈a ↓ b ↓ c ↑| ĤSP |a ↓ b ↓ c ↑〉 =
∑
pσ

εp 〈a ↓ b ↓ c ↑| c†pσcpσ |a ↓ b ↓ c ↑〉

=
∑
pσ

εp 〈0| ca↓cb↓cc↑c†pσcpσc
†
c↑c
†
b↓c
†
a↓ |0〉

= εa + εb + εc.

(2.80)

The interacting part of the diagonal matrix element reads

〈a ↓ b ↓ c ↑| Ĥee |a ↓ b ↓ c ↑〉 =
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈abc| c†pσc
†
qσ′crσ′ctσ |abc〉

=
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈0| ca↓cb↓cc↑c†pσc
†
qσ′crσ′ctσc

†
c↑c
†
b↓c
†
a↓ |0〉

= 〈ab|V |ba〉 − 〈ab|V |ab〉+ 〈ac|V |ca〉+ 〈bc|V |cb〉 .

(2.81)
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Figure 2.15: Example configurations of 3 electrons. Each panel depicts a single
configuration mentioned in this section. Red (blue) arrows depict electrons with
spin up (down), and black lines represent spin-degenerate energy levels (labelled with
letters a-e).

The interacting term Ĥee also produces off-diagonal elements, but a Coulomb

operator cannot mix configurations different by more than two electron occupation,

so many off-diagonal terms vanish and the matrix becomes sparse. We can categorise

the off-diagonal terms into involving configurations different by 1 or 2 electrons. I

will give two examples of both (bold symbols highlight the scattering electrons):

〈a ↓ b ↓c ↑| Ĥee |a ↓ b ↓d ↑〉 =
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈0| ca↓cb↓cc↑ c†pσc
†
qσ′crσ′ctσc

†
d↑ c†b↓c

†
a↓ |0〉

= 〈ac|V |da〉+ 〈bc|V |db〉 ,

〈a ↓b ↓ c ↑| Ĥee |a ↓d ↓ c ↑〉 =
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈0| ca↓cb↓cc↑c†pσc
†
qσ′crσ′ctσc

†
c↑c

†
d↓c
†
a↓ |0〉

= 〈ab|V |da〉 − 〈ab|V |ad〉+ 〈cb|V |dc〉 ,

(2.82)

〈a ↓b ↓ c ↑| Ĥee |a ↓d ↓ e ↑〉 =
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈0| ca↓cb↓cc↑ c†pσc
†
qσ′crσ′ctσc

†
e↑ c

†
d↓c
†
a↓ |0〉

= 〈cb|V |de〉 ,

〈a ↓ b ↓ c ↑| Ĥee |d ↓ e ↓ c ↑〉 =
1

2

∑
pqrtσσ′

〈pq|V |rt〉 〈0| ca↓cb↓cc↑c†pσc
†
qσ′crσ′ctσc

†
c↑c

†
e↓c

†
d↓ |0〉

= 〈ab|V |ed〉 − 〈ab|V |de〉 ,

(2.83)

where all the configurations involved have been shown in Fig. 2.15 with spin down
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(up) electrons marked with blue (red).

2.2.7 Exciton in configuration interaction method.

In order to study optical properties of materials, I will also consider excitations of

electrons from a GS of a filled VB, induced by optical fields. Because the VB contains

many electrons and the excitations involve only a few particles, I will consider a basis

of excitation configurations. An example of a configuration for one excitation in the

basis of SP states reads

|lmσ〉 = c†mσclσ |GS〉 = c†mσclσ
∏
pinV B

c†p↑c
†
p↓ |0〉 . (2.84)

An eigenstate of the CI Hamiltonian for basis of such configurations is a single exciton

wavefunction

|X〉 =
∑
lmσ

Almσ |lmσ〉 , (2.85)

where the exciton wavefunction coefficients Almσ are obtained from the eigenvalue

problem in the form of a Bethe Salpeter equation [59]

(
(εmσ + Σmσ)− (εlσ + Σlσ)

)
Almσ +

∑
ijσ′

(Vljim − Vljmi)Aijσ′ = EAlmσ (2.86)

where I will now derive the contributions from self energy Σ and the form of scatter-

ing matrix elements Vljim, Vljmi. I will start with the derivation of diagonal matrix

elements of the CI Hamiltonian, which is diagonalised to give the solutions of Eq.

2.86. The energies of configurations in this case will be measured with respect to the

energy of the GS, which for the example shown in Fig. 2.16 (left) can be calculated
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as

EGS = 〈GS| ĤCI |GS〉 =
∑
pσ

εp 〈0| ca↓cb↓ca↑cb↑c†pσcpσc
†
b↑c
†
a↑c
†
b↓c
†
a↓ |0〉

+
1

2

∑
pqrtσσ′

Vpqrt 〈0| ca↓cb↓ca↑cb↑c†pσc
†
qσ′crσ′ctσc

†
b↑c
†
a↑c
†
b↓c
†
a↓ |0〉

= 2εa + 2εb + 〈aa|V |aa〉+ 〈bb|V |bb〉

+ 4 〈ab|V |ba〉 − 2 〈ab|V |ab〉 ,

(2.87)

where Vpqrt = 〈pq|V |rt〉. An example excitation configuration (shown in Fig. 2.16 in

the middle) then has the energy

E|bc↑〉 = 〈bc ↑| ĤCI |bc ↑〉 =
∑
pσ

εp 〈0| ca↓cb↓ca↑cc↑c†pσcpσc
†
c↑c
†
a↑c
†
b↓c
†
a↓ |0〉

+
1

2

∑
pqrtσσ′

Vpqrt 〈0| ca↓cb↓ca↑cc↑c†pσc
†
qσ′crσ′ctσc

†
c↑c
†
a↑c
†
b↓c
†
a↓ |0〉

= 2εa + εb + εc

+ 〈aa|V |aa〉+ 2 〈ab|V |ba〉 − 〈ab|V |ab〉

+ 2 〈ac|V |ca〉 − 〈ac|V |ac〉+ 〈bc|V |cb〉 .

(2.88)

The energy difference between the GS and configuration |bc ↑〉 then reads

E|bc↑〉 − EGS = −〈bb|V |bb〉 − 2 〈ab|V |ba〉+ 〈ab|V |ab〉

+ 2 〈ac|V |ca〉 − 〈ac|V |ac〉+ 〈bc|V |cb〉+ εc − εb

= εc − εb + Σc − Σb −
(
〈bc|V |cb〉 − 〈bc|V |bc〉

)
,

= (εc + Σc)− (εb + Σb)− Vvertex(b, c),

(2.89)

where Σ stands for self-energy as in Eq. 2.66 and Vvertex = VD − VX is a vertex

correction, which prevents overcounting while using self energy terms, and it consists

of the direct term VD = 〈bc|V |cb〉 and the exchange term VX = 〈bc|V |bc〉. Eq. 2.89

can be regarded as the difference of the interaction of the excited electron and the
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left-over hole with the filled VB, corrected by the interaction of the electron with the

hole itself. This situation is pictured in Fig. 2.16, using filled (empty) symbols for

electrons (holes) with spin up (down) in red (blue), and with the Fermi level marked

with a green dashed line. In configuration |bc ↑〉 an electron with spin up has been

promoted above the Fermi level and it no longer occupies the level b (only an electron

with spin down is still present), which creates a hole below the Fermi level with an

opposite spin to the spin of the missing electron (hole spin-down marked with an

empty blue arrow). The indices labelling the configurations can be regarded as the

indices of levels hosting an electron-hole pair.

Figure 2.16: (left) GS configuration, with all levels filled with electrons (solid arrows)
below the Fermi level EF . (right) An excitation schematically drawn in the electron
and electron-hole picture. In the electron picture, when an electron is promoted above
the Fermi energy, an empty level is left behind. The electron-hole picture regards the
empty level as a positive charge - a hole (empty arrow), which has an opposite spin
to the missing electron.

The matrix element I considered so far in Eq. 2.88 enter the CI Hamiltonian on a

diagonal. I will now demonstrate the construction of an off-diagonal matrix element

between the excitation configurations. Let us consider a scattering of an arbitrary

configuration |ad ↑〉 or |ad ↓〉 into configuration |bc ↑〉 (all shown in Fig. 2.17), given



CHAPTER 2. METHODOLOGY 48

by

〈bc ↑| Ĥee |ad ↑〉 =
1

2

∑
pqrtσσ′

Vpqrt 〈GS| c†b↑cc↑c
†
pσc
†
qσ′crσ′ctσc

†
d↑ca↑ |GS〉

= 〈ac|V |bd〉 − 〈ac|V |db〉 = VD − VX ,

〈bc ↑| Ĥee |ad ↓〉 =
1

2

∑
pqrtσσ′

Vpqrt 〈GS| c†b↑cc↑c
†
pσc
†
qσ′crσ′ctσc

†
d↓ca↓ |GS〉

= 〈ac|V |bd〉 = VD,

(2.90)

where the positive and negative terms are the direct VD = 〈ac|V |bd〉 and exchange

VX = 〈ac|V |db〉 terms respectively. The scattering processes for both cases have been

shown in Fig. 2.17 in green arrows, with solid (dashed) lines correspinding to direct

VD (exchange VX) terms. VX is only present in the case of the same spin scattering,

and the nature of the Coulomb operator V̂ee does not allow for it in case of an opposite

spin scattering.

Figure 2.17: Example off-diagonal matrix elements for configurations. (left) Same
spin configurations. (right) Opposite spin configurations. When the spin of scattering
configurations differs, only the direct element (VD) is possible. For the same spin
configurations also an exchange term is allowed (VX).

It is important to notice that the SP level indices labelling the configurations

do not enter the final matrix elements in the same order as they are written for

configurations. This is because the configurations here are labelled with electron

and hole indices and the Coulomb scattering matrix elements are defined here solely

for electrons. The green arrows in Fig. 2.17 demonstrate this fact by showing that

electrons in levels b and d will finally occupy levels a and d.
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2.3 Numerical methods.

In this section I will present the numerical methods and reference available software

that I have used to obtain the results included in this thesis.

I have written my own Fortran90 programs that create the TB Hamiltonians

described in section 2.1, the HF Hamiltonian given in section 2.2.3 as well as the CI

Hamiltonian given in section 2.2.6 and 2.2.7. The most complex CI calculations were

done using the QNano code developped in the C++ language at the University of

Ottawa [138], which offered better efficiency than my own procedures. My own TB

results were used as an input to QNano.

For diagonalisation of the Hamiltonian matrices I used several available packages,

described in section 2.3.1, which were chosen dependent on the size of the matrices,

number of sought eigenvalues and available resources on my own computer, on the

Quantum Theory Group cluster at the University of Ottawa and within the Compute

Canada clusters.

Often, for time and memory efficiency, I turned to multi-threading options for my

calculations. The interfaces that I used have been described in section 2.3.2. Section

2.3.3 includes the description of numerical integration methods needed to solve the

many-body Hamiltonians given in 2.2.6 and 2.2.7. The results from a DFT calculation

are included only in section 2.2.5 and they have all been performed with Abinit.

2.3.1 Matrix diagonalisation.

I will describe here three methods that I used commonly to diagonalise matrices.

If the whole eigenvalue spectrum was needed, or in case of small matrices which

can be quickly fully diagonalised, I used LAPACK routines [139]. It is an open-

source Fortran90 library of routines dedicated to linear algebra, which allows to solve

systems of linear equations and eigenvalue problems. It uses Basic Linear Algebra

Subprograms (BLAS ) available in most programming languages.

The most often used LAPACK routines are DSYEV and ZHEEV, for a symmetrix

matrix of type double and hermitian matrix of type complex double respectively. These
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routines are based on reducing the matrix into a tridiagonal form to perform the QR

algorithm [140].

Some of the TB calculations produced Hamiltonian matrices too large for full

diagonalisation. I have considered MoS2 nanoflakes of up to 800× 400 (as defined in

section 6.1.1), which corresponds to ≈ 1.3 · 106 atoms and results in matrices of up

to 3.8 · 106 in dimension. Similarly, the largest CI calculation that I have performed

involved all configurations for N↑ = 3, N↓ = 3 electrons (N = 6 electrons with Sz = 0)

on M↑ = 30,M↓ = 30 states (M = 60 states in total), which gives Nconf ≈ 1.6 · 107

and a Hamiltonian matrix Nconf × Nconf (as defined in section 2.2.6), taking up to

350GB of memory.

In case of these large matrices I used two methods: FEAST algorithm within

the Math Kernel Library (MKL) by Intel [141] and Scalable Library for Eigenvalue

Problem Computations (SLEPc) routines within the Portable, Extensible Toolkit for

Scientific Computation (PETSc) [142].

The FEAST algorithm, as a part of MKL, providing efficient math processing rou-

tines, is a high performance routine for eigenvalue problems, insipred by the density-

matrix representation and contour integration techniques [141]. It takes a sparse

matrix as an input and delivers eigenvalues within a chosen energy range. It however

requires an initial guess of the number of eigenvalues within that range. I found it

useful for finding eigenvalues of the TB Hamiltonian, which can be scaled from small

to large systems and makes it easy to provide expectations for the energy spectrum

needed to input a guess. It is not well suited for the CI calculations unless a mean-field

approach is used to provide a guess of the energy spectrum.

PETSc is a toolkit for creating data structures and scalable scientific compu-

tations, which includes SLEPc, offering projection-based diagonalisaton techniques,

such as Krylov-Schur and Jacobi-Davidson methods [143,144]. SLEPc routines have

been implemented within the QNano code, which made it easy to use together with

the large scale CI calculations done with QNano as well. The benefit of SLEPc meth-

ods for CI is that a variety of input parameters allow to search for eigenvalues within
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a desired range of energies as well as to input a number of eigenvalues closest to a

chosen energy.

2.3.2 High performance parallel computing.

In interest of time and memory efficiency, I have used two open source parallel com-

puting interfaces, available in many programming languages, Open Multi Processing

(OpenMP) [145] and Message Passing Interface (MPI ) [146]. They allow for exploit-

ing the many nodes and cores available through Compute Canada platform.

OpenMP is a multi-thread method, which uses a parent thread to divide tasks

between worker threads. They run their tasks concurrently, thus saving considerable

amount of time. OpenMP uses multiple threads with shared memory, which means

that all the threads access the same variables to read inputs and write outputs, unless

they are specified as private for a thread. This requires care when handling variables

to avoid overwriting memory and memory access conflicts between threads. I have

made use of the OpenMP in my own codes in order to enable parallel computing of

the scattering Coulomb matrix elements for CI.

The MPI protocol creates multiple processes, which do not share memory. The

program invoking MPI is responsible for distributing the memory between the pro-

cesses, for combining their results as well as for provoking the communication between

processes, when needed. I have used MPI, when utilising the SLEPc and FEAST di-

agonalisation routines.

Additionally, for evaluation of numerically demanding Coulomb scattering ma-

trix elements implemented in my own Python code, I have used the multiprocessing

package, similar in operation to OpenMP.

2.3.3 Numerical integration of scattering Coulomb matrix

elements.

I explain here the two approaches I have taken to obtain the scattering Coulomb

matrix elements given in Eq. 2.58 for two different projects: magnetoexcitons of
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massive Dirac fermions (mDf) described in chapter 5 and many electron properties

of MoS2 parabolic QDs described in chapter 6.

The energy spectrum of mDf in strong magnetic field exhibits the Landau level

(LL) structure, which can be expressed as 2D harmonic oscillator (HO) states (as

explained in detail in chapter 5.). The HO basis is then used to calculate the scatter-

ing Coulomb matrix elements between the electrons in LLs, which can be obtained

analytically as [147,148]

〈n′1m′1, n′2m′2|V |n2m2, n1m1〉 =
1

l

δLL,LR(−1)n
′
2+m′2+n2+m2√

n′1!m′1!n1!m1!n′2!m′2!n2!m2!

·
min(n1,n′1)∑

p1=0

p1!

n′1
p1


n1

p1

min(m1,m′1)∑
p2=0

p2!

m′1
p2


m1

p2


·

min(n2,n′2)∑
p3=0

p3!

n′1
p3


n2

p3

min(m2,m′2)∑
p4=0

p4!

m′2
p4


m2

p4


(
−1

2

)p
Γ(p+

1

2
),

(2.91)

where LR = (m1 +m2) − (n1 + n2) and LL = (m′1 +m′2) − (n′1 + n′2) are total an-

gular momenta for the electron pair before and after scattering (LL = LR) , and

p = n′1 +n′2 +m1 +m2− p1− p2− p3− p4. The expression in Eq. 2.91 involves multi-

plications and divisions by large numbers, which leads to accumulation of numerical

error. Such expression can only be evaluated using variables with large precision,

not available in every programming language. In order to evaluate this expression

I have written my own Python code using the mpmath package, which allows for

arbitrarily large precision numbers. Because increasing the precision order increases

the computation time, I treated it as a parameter adjusted by comparing the result

of a single integral to a result obtained from my own code in another computing

software, Mathematica. This is because Mathematica evaluates expressions based on

analytical transformations, which allows for reducing the numerical error. The price

for accuracy in Mathematica is long computation time, which motivated me to use
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a Python code with the multiprocessing interface and with routinely checks against

results from Mathematica. It allowed for better efficiency, while keeping the accuracy

level on a par with the accuracy in Mathematica.

I needed to perform another type of integral to calculate the Coulomb scattering

matrix elements for electrons in an MoS2 parabolic QD. The SP energy levels of an

QD are expressed in the site TB basis, so the interaction between the SP states can

be expressed using the site basis (as explained in detail in section 6.3). Coulomb

scattering matrix elements in the orbital basis are therefore needed:

〈ij|V |kl〉 =

∫
φ∗i (r)φ∗j(r

′)
e2

κ |r − r′|
φk(r

′)φl(r)drdr′

=

∫
φ∗i (r̃)φ∗j(r̃

′)
2∣∣r̃ − r̃′∣∣φk(r̃′)φl(r̃)dr̃dr̃′ [Ry] ,

(2.92)

where i, j, k, l label atomic orbitals and r̃ = r/a0 and a0 is the Bohr radius. To

evaluate this expression I used the Slater-type orbital (STO) form of the wavefunctions

φ(r) [149]:

φl,m,nSTO (r, ζ) = Y m
l (ϕ, θ)Rn(r, ζ), (2.93)

where Rn(r, ζ) is the radial part of the wavefunction given by

Rn(r, ζ) = Nnormr
n−1e−ζr, (2.94)

where r is in units of Bohr radius a0, constant ζ depends on the chemical element and

Nnorm = (2ζ)n
√

2ζ
(2n)!

[149]. ζ for Mo and S atoms are ζMo = 3.111 and ζS = 1.827

[149,150].

The 6 dimensional integral in Eq. 2.92 is difficult to calculate accurately with

a straight-forward implementation. For correct results, an adapted point mesh is

needed, which is computationally demanding. To tackle this problem, I have used

an existing routine for numerical integration fgsl monte vegas, which uses the Vegas

algorithm, implemented within the GNU Scientific Library (GSL) [151] with a For-

tran90 interface (FGSL). This routine performs a multidimensional integral using a
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Monte-Carlo method, which involves large number of integrand function calls for ran-

domly chosen points from a defined mesh. The Vegas algorithm optimises the choice

of the mesh and is based on importance sampling. The points are selected from the

probability distribution of the integrand to ensure that the highest concentration of

points is located in regions making the largest contribution to the value of the in-

tegral. Within the Vegas steps, a preliminary result is obtained for a coarse mesh,

which allows for producing a histogram of the integrand and redefining a new denser

adapted mesh.



Chapter 3

Energy gap of hexagonal graphene

quantum dots

In this chapter I will show how the spectrum of hexagonal graphene quantum dots

(HGQDs) can be calculated efficiently after decomposing them into 1D rings [152].

Electronic properties of 1D rings can be solved for exactly.

Because of the distinct edge termination of zigzag-edged HGQDs (ZHGQDs) and

armchair-edged HGQDs (AHGQDs), the energy gap has different origin for these

QDs and it causes the gap oscillation with size shown in Fig. 2.9 [152]. The following

sections explain the formation of the energy gap in ZHGQDs and AHGQDs based on

the edge termination contribution.

To describe the electronic properties of HGQDs, a NN one-orbital TB model of

pz electrons in carbon atoms in graphene will be used. This model implicitly assumes

passivation of px, py dangling bond orbitals by hydrogen atoms, leaving pz orbitals

unaffected [153]. This choice is justified by the excellent agreement of the TB model

with energy gaps obtained within DFT (Fig. 3.1) [152]. The hopping integral t for

the NN TB model has been fit by matching the energy gaps obtained within DFT

the TB model for benzene (first data point). The rest of the data points has been

obtained independently with these two methods and with the use of the previously

fitted value of t. The results of both methods agree extremely well, which validates

55
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Figure 3.1: Comparison of the energy gap of GQDs obtained from NN TB model and
DFT methods. The hopping element t has been fot for the first data point (benzene)
and used to obtain remaining TB energy gaps.

the simple NN TB model that excludes the edge passivation.

3.1 Zigzag-edged graphene quantum dot: coronene.

Any ZHGQD can be decomposed into concentric 1D rings of carbon atoms, which are

linked together, as shown in Fig. 3.2 a). Fig. 3.2 b) shows how a 24-atom ZHGQD

(Z24), called coronene, can be regarded as two concentric rings of 6 and 18 atoms

each. Let us call them ring I and ring II, for the inner and outer ring respectively

(shown in Fig. 3.2 b)).

The SP TB Hamiltonian for coronene reads

ĤZ24 = t
∑
<i,j>σ

c†iσcjσ, (3.1)



CHAPTER 3. ENERGY GAP OF GRAPHENE QUANTUM DOTS 57

Figure 3.2: a) Decomposition of a HGQD into concentric rings (red). b) Coronene
regarded as two concentric rings (I and II).

where i, j labels sites and it can be decomposed into three terms:

ĤZ24 = ĤI + ĤII + τ V̂I−II , (3.2)

where ĤI and ĤII are Hamiltonians for 1D periodic rings of atoms:

ĤI = t

NI∑
i=1,σ

(
c†iσci+1σ + h.c.

)
,

ĤII = t

NII∑
i=1,σ

(
c†iσci+1σ + h.c.

)
,

(3.3)

and NI = 6 (NII = 18) for ring I (II), t is the hopping integral and the definition

of V̂I−II needs to be determined (the strength of coupling is controlled with τ). The

eigensolutions of the Hamiltonians in Eq. 3.3 are Bloch functions

Ψk
I =

1√
NI

NI−1∑
l=0,σ

eikalψl,

Ψq
II =

1√
NII

NII−1∑
m=0,σ

eiqamψm,

(3.4)
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where ψi are pz orbitals on sites, a is lattice constant and

kn =
2π

NIa
n =

2π

6a
n, n ∈ Z,

qn′ =
2π

NIIa
n′ =

2π

18a
n′, n′ ∈ Z.

(3.5)

Figure 3.3: Energy spectrum (in the units of t) of ring a) I and b) II. The size of
the ring determines the number of states n, n′. Energy gap of each ring EI

g , E
II
g is

marked. Fermi level is marked with Ef . c) Coupling rule for both rings (see text for
details).

The eigenenergies for ring I and II are analytical:

EI(k) = −2t cos ka,

EII(q) = −2t cos qa,

(3.6)

which has been shown in Fig. 3.3 a)-b) for both rings. At half filling, the Fermi level

Ef is at 0 and the conduction and valence band edge energies are

Ering
V (N) = 2t cos

(2π

N

N
2
− 1

2

)
,

Ering
C (N) = 2t cos

(2π

N

N
2

+ 1

2

)
,

(3.7)
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for a ring of N sites. For large N the energy gap becomes

Ering
g = Ering

C − Ering
V ≈ 4tπ

N
sin
(
π

(
1

2
− 1

N

))
∼ 1

N
∼ 1

R
∼ 1√

Ndot

, (3.8)

where the gap Ering
g is inversely proportional to the radius of the ring R, which

depends on the number of atoms enclosed within the dot marked by that ring as

1√
Ndot

.

Figure 3.4: a) Levels from both rings (marked with boxes, red and blue for ring I and
II) given in Eq. 3.10e couple. b) Resulting energy levels of the coupled block as the
tunneling is turned on with τ . Blue energy becomes the VB of Z24.

I will now determine the coupling term V̂I−II using the form of the Bloch wave-

functions given in Eq. 3.4. The coupling becomes

〈
Ψk
I

∣∣ V̂I−II |Ψq
II〉 = − t√

6 · 18

5∑
l=0

17∑
m=0

e−ikaleiqam 〈ψl| V̂I−II |ψm〉

= − t√
6 · 18

5∑
l=0

e−i(k−3q)al = − t√
3
δk,{3q,3q± 2π

a
},

(3.9)

where the tunneling matrix element 〈ψl| V̂I−II |ψm〉 is only nonzero for NN pairs of

atoms (0I , 0II), (1I , 3II), etc. (as shown in Fig. 3.3 c)), so 〈ψl| V̂I−II |ψm〉 = δm,3l.

The selection rule k = {3q, 3q ± 2π
a
} in Eq. 3.9 enables block diagonal form of the
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Z24 Hamiltonian in Eq. 3.1 in the basis of plane waves labelled by k, q, because only

some kn and qn′ couple. Using Eq. 3.9, the groups of coupled kn and qn′ (eq. 3.5) are

|I, k−2〉 → |II, q−8〉 , |II, q−2〉 , |II, q4〉 , (3.10a)

|I, k−1〉 → |II, q−7〉 , |II, q−1〉 , |II, q5〉 , (3.10b)

|I, k0〉 → |II, q−6〉 , |II, q0〉 , |II, q6〉 ,

|I, k1〉 → |II, q−5〉 , |II, q1〉 , |II, q7〉 ,

|I, k2〉 → |II, q−4〉 , |II, q2〉 , |II, q8〉 ,

|I, k3〉 → |II, q−3〉 , |II, q3〉 , |II, q9〉 ,

(3.10c)

(3.10d)

(3.10e)

(3.10f)

where the boxed groups produce unique subblocks in the Hamiltonian.

Figure 3.5: a)Energy of states within both rings. Chosen sets of states from both
rings couple. b) Resulting energy levels of Z24 as the tunneling is turned on with τ .
Blue levels mark VB and CB of Z24.

The eigenvalues of the original 24× 24 Hamiltonian can therefore be obtained by

diagonalising four 4× 4 blocks. Each block includes the diagonal energies EI(k) and

EII(q) and the offdiagonal terms
〈
Ψk
I

∣∣ V̂I−II |Ψq
II〉, e.g. the block in the basis of states
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given in Eq. 3.10e (shown in Fig. 3.4) reads

t



1 − τ√
3

− τ√
3
− τ√

3

− τ√
3
−0.3472 0 0

− τ√
3

0 −1.532 0

− τ√
3

0 0 1.879


, (3.11)

where τ is the coupling strength between the rings. Fig. 3.4 a) and b) shows the

evolution of the eigenvalues of the block given in Eq. 3.11 as a function of τ . As the

bottom of the CB state of ring I couples to the top of the VB state of ring II, the

energies evolve to give a subset of the coronene’s energy levels. The level marked in

blue in Fig. 3.4 b) originates in the top of the VB of the ring II and becomes the top

of the VB of coronene. Fig. 3.5 shows the formation of both the VB and the CB for

coronene from states given in Eq. 3.10d and 3.10e.

3.2 1D Lieb lattice.

In order to develop the same approach for an AHGQD, we need to consider the atoms

that appear on the edges and surround the inner ZHGQD made of rings I and II. I

will consider here the smallest AHGQD, A42. The atoms making the armchair edge

are grouped into six three-atom clusters, one of which has been circled with a dashed

green ellipse in Fig. 3.6. These clusters make up a periodic lattice with a three-atom

basis - the 1D Lieb lattice [154], marked in Fig. 3.6 b) as a green circle, constituting

the ring III of A42.

I start with considering a single cluster and its TB solution. Only tunneling

between the centre atom and its NN is present, which generates an energy spectrum

Eu = {−1, 0, 1} in the units of t. The presence of a zero-energy state is typical of a
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Figure 3.6: 1D Lieb lattice on the edge of an armchair-edged graphene quantum dot.
a) Single cluster and b) ring of clusters.

Lieb lattice and plays an important role for this problem. All eigenvectors are:

ψu=±1 =
1√
2


1√
2

±1

1√
2

 , (3.12a)

ψu=0 =
1√
2


−1

0

1

 . (3.12b)

Interestingly, the wavefunction of the state at zero energy given in Eq. 3.12b is

localised on the tips of the cluster, i.e. ψu=0 = 1√
2

(−φ0 + φ2).

I now consider all clusters made into a periodic 1D lattice. The Bloch wavefunction

of ring III reads

Ψpu
III =

1√
6

5∑
j=0

eip·5ajψuj, (3.13)

where j labels clusters and the periodicity is present over a 5a distance (distance

along the lattice bonds), present in the exponential factor. The wavevector in Eq.

3.13 is given by p = 2π
6·5a .

In order to couple ring III to the inner rings, we need to determine the coupling

between them. Let us start with the coupling V̂II−III between the most outer rings
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shown in Fig. 3.7 a) (18 ring II states and 6 cluster states):

〈Ψq
II | V̂II−III |Ψ

pu
III〉 =

1√
18 · 6

17∑
m=0

5∑
j=0

ei(5pj−pm)a 〈φm| V̂II−III |ψuj〉 . (3.14)

The matrix element 〈φm| V̂II−III |ψuj〉 needs to be determined. Tunneling is allowed

only between NN as shown in Fig. 3.7 b). The atoms on the tip of the cluster

numbered 0 and 2 are coupled to specific atoms on ring II, numbered 3j − 1 and

3j + 1 for a given cluster j. We obtain the tunneling matrix elements

〈φm| V̂II−III |ψ0,j〉 = − t√
2

(−δm,3j−1 + δm,3j+1) ,

〈φm| V̂II−III |ψ±1,j〉 = − t
2

(δm,3j−1 + δm,3j+1) .

(3.15)

Figure 3.7: a) Ring II and III are coupled. j labels clusters. b) Rule for tunneling
between rings II, III. Only the outside atoms of the cluster exhibit tunneling to ring
II.

The final matrix elements of V̂II−III are

〈Ψq
II | V̂II−III

∣∣Ψp,0
III

〉
= − t√

6

(
e−iqa − eiqa

)
δ5p,{3q,3q± 2π

a
}

=
t√
6

2i sin (qa)δ5p,{3q,3q± 2π
a
},

〈Ψq
II | V̂II−III

∣∣Ψp,±1
III

〉
= − t√

12

(
e−iqa + eiqa

)
δ5p,{3q,3q± 2π

a
}

= − t√
12

2 cos (qa)δ5p,{3q,3q± 2π
a
}.

(3.16)
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The sets of coupled states are

|II, q−8〉 , |II, q−2〉 , |II, q4〉 → |III, p−2, u = 0,±1〉 , (3.17a)

|II, q−7〉 , |II, q−1〉 , |II, q5〉 → |III, p−1, u = 0,±1〉 , (3.17b)

|II, q−6〉 , |II, q0〉 , |II, q6〉 → |III, p0, u = 0,±1〉 ,

|II, q−5〉 , |II, q1〉 , |II, q7〉 → |III, p1, u = 0,±1〉 ,

|II, q−4〉 , |II, q2〉 , |II, q8〉 → |III, p2, u = 0,±1〉 ,

|II, q−3〉 , |II, q3〉 , |II, q9〉 → |III, p3, u = 0,±1〉 ,

(3.17c)

(3.17d)

(3.17e)

(3.17f)

where only four blocks are unique again and the block size is now 7× 7 (the groups

of qn′ couple to one more kn state as given in Eq. 3.10).

Figure 3.8: Clusters for AHGQDs with increasing size (a-e). Blue lines mark the
inner ZHGQDs, and red lines identify clusters.

Before I combine all rings to form an AHGQD in section 3.3, it is important to

point out that the 1D Lieb lattice in not unique to the smallest QD example considered

here. Larger ZHGQDs are the base to form larger AHGQDs with a 1D Lieb lattice

consisting of different clusters, as shown in Fig. 3.8 for several sizes. Blue line marks

the inner ZHGQD and red lines highlight the clusters. All these clusters exhibit zero-

energy states with the wavefunction localised only on one sublattice, similarly to Eq.
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3.12b. The amplitude of the zero-energy states on atoms has been shown for two

example clusters in Fig. 3.9 with red circles.

Figure 3.9: Zero-energy state wavefunction amplitude (top) for two (a,b) clusters in
AHGQDs (bottom). Size of a circle (top) denotes the magnitude of the wavefunction.
Only one sublattice hosts the cluster zero-energy wavefunction.

3.3 Armchair-edged graphene quantum dot: A42.

For ZHGQDs, the energy gap is formed by the states from the outer ring II located

on the edge of the QD, as explained in section 3.1. It is important to understand how

this picture is changed for AHGQDs, whose edge is built of the 1D Lieb lattice. I will

demonstrate this process on the example of A42 shown in Fig. 3.10 (right), which is

composed of a smaller ZHGQD (Z24) with the 1D Lieb lattice on the edge (as shown

in the left and middle of Fig. 3.10).

We want to add the tunneling from Z24 to ring III, as shown in Fig. 3.11, using

the matrix elements derived in Eq. 3.16. Let us start with the eigenstates of the

entire coronene QD given as

Ων =
5∑

k=0

AνkΨ
k
I +

17∑
q=0

Bν
qΨq

II , (3.18)
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Figure 3.10: Forming of an AHGQD by adding clusters outside of a ZHGQD.

where Ψk
I and Ψq

II are given in Eq. 3.4 and coefficients Aνk, B
ν
q are obtained through

diagonalising the four 4× 4 TB Hamiltonian blocks, like in Eq. 3.11.

Figure 3.11: Components making the AHGQD are: an inner ZHGQD (yellow, left)
made of rings I and II (red and blue on the right), and an outer ring III of clusters
(green on the left).

We now couple the eigenstates Ων given in Eq. 3.18 to the states from ring III

Ψpu
III given in Eq. 3.13 and obtain

〈Ων | V̂Z24−III |Ψpu
III〉 =

��
���

���
���

���5∑
k=0

Aνk
〈
Ψk
I

∣∣ V̂Z24−III |Ψpu
III〉

+
17∑
q=0

Bν
q 〈Ψ

q
II | V̂Z24−III |Ψpu

III〉 , (3.19)

where the crossed out term vanishes because of no tunneling between the inner ring

I and the cluster ring III and 〈Ψq
II | V̂Z24−III |Ψpu

III〉 = 〈Ψq
II | V̂II−III |Ψ

pu
III〉 given by Eq.

3.16. The second term in Eq. 3.19 can be evaluated numerically using the numerical

form of the eigenvector of the inner Z24 QD.

Fig. 3.12 shows how the energy spectrum of a HGQD evolves as the rings are
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Figure 3.12: Energy spectrum evolution (left to right) from a ZHGQD to an AHGQD.
Energy levels of ring I and II (red and blue, far left) evolve when coupled to form
ZHGQD energy levels (yellow), and when coupled to the cluster levels (green) they
evolve into the AHGQD levels (far right).

coupled together. The left part of Fig. 3.12 (shown in red and blue for ring I and II)

contains a summary of the spectrum change shown in Fig. 3.5, due to the coupling of

ring I and ring II. In the centre of Fig. 3.12 a complete Z24 QD is shown in orange,

and the orange energy levels correspond to eigenvectors Ων given in Eq. 3.18. The

green levels which overlap the Z24 spectrum originate in ring III and make up the

six-fold degenerate spectrum Eu = {−1, 0, 1} of the clusters. The right part of Fig.

3.12 shows how the Z24 energies evolve into the energies of A42 as the tunneling

between ring II and ring III is turned on. It is apparent that the energy gap of A42

is formed from the cluster zero-energy state shell of the ring III.

The difference between the mechanisms responsible for forming of the energy gap

in ZHGQDs and AHGQDs explains the oscillation in the gap magnitude as a function

of GQD size, shown in Fig. 2.9. For ZHGQDs the gap is formed from the states of

the outer ring of atoms (ring II for Z24) shown in section 3.1, while for AHGQDs the
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gap forms between split zero-energy shell of a 1D Lieb lattice on the edge. This also

produces the difference in level degeneracies close to the gap: two-fold for ZHGQDs

and a single state followed by a close pair of states for AHGQDs.

An analysis like the one performed in this chapter can be perfomed for any size of

a HGQD, using coupled rings of carbon atoms. This method, based on analytical so-

lutions in 1D, could allow for more efficient calculation of the energy spectrum of very

large QDs. It could be particularly useful as a first step of many-body calculations

based on density matrix renormalisation group (DMRG) techniques [155].



Chapter 4

Tight binding model for monolayer

MoS2

Final chapters of this thesis present studies of valley physics in MoS22 in the presence

of magnetic field and for large finite nanostructures. As magnetic field effects (chapter

5) or large computation boxes (chapter 6) cannot be considered in DFT, a TB model

that can efficiently incorporate these effects is needed and will be presented in this

chapter. The electronic structure obtained within DFT (section 2.2.5) will serve as

guide for the choice of the TB basis, to include the orbitals that mostly build the

low-energy bands, as shown in Fig. 2.14. The derivation presented in the following

sections is conducted in a similar way to the graphene TB model derivation presented

in section 2.1.3., but with a larger basis of d and p orbitals.

4.1 Many-orbital nearest neighbour tight-binding

model for MoS2.

I start with a NN TB model of MoS2 based on ab initio work described in section

2.2.5. Even though the Mo atoms exhibit strong spin-orbit coupling (SOC) due to

presence of heavy metal atoms, I will first consider spinless Hamiltonian for simplicity

and return to including the SOC effects at the end of this chapter. The hexagonal

69
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crystal lattice of MoS2 has been shown in Fig. 2.10.

We start with considering valence orbitals on Mo and S atoms. Motivated by the

DFT results for MoS2 presented in section 2.2.5, we select only the orbitals even with

respect to the Mo plane with l = 2,md = 0,±2 for Mo atom and with l = 1,mp =

0,±1 for the sulphur dimer, with even combinations of the top (T) and bottom (B)

atom of the dimer [156]:

ϕmp=±1(r) =
1√
2

(ϕTl=1,mp=±1(r) + ϕBl=1,mp=±1(r))

ϕmp=0(r) =
1√
2

(ϕTl=1,mp=0(r)− ϕBl=1,mp=0(r)),

(4.1)

where the mp = 0 orbital is taken with a minus sign due to the odd nature of

the pz orbital. With these orbitals we construct Bloch wavefunctions for sublattices

(A = Mo,B = S2)

Ψk
A,m

d
(r) =

1√
NUC

∑
RA

eik·RAϕm
d

(r −RA) , (4.2)

Ψk
B,mp

(r) =
1√
NUC

∑
RB

eik·RBϕmp (r −RB) . (4.3)

We will look for a solution of the form

Ψk
n (r) =

∑
m
d

Ak,nm
d
Ψk
A,m

d
(r) +

∑
mp

Bk,nmp Ψk
B,mp

(r) , (4.4)

where n is the band index and Ak,nm
d

and Bk,nmp are the coefficients we solve for.

The single electron Hamiltonian reads

Ĥ =
p̂2

2m
+
∑
RA

[V A(r −RA)] +
∑
RB

[V B(r −RB)], (4.5)

where V A(r) is the potential from A atoms (and analogously for B atoms).
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Figure 4.1: Nearest neighbours (yellow) of an Mo atom (blue).

We now construct the off-diagonal elements of Eq. 4.5 in the NN approximation:

〈Ψk
A,m

d
| Ĥ |Ψk

B,mp
〉

=
1

NUC

∑
<RA,RB>

eik(RB−RA)
〈
ϕm

d
(r −RA)

∣∣V A(r −RA)
∣∣ϕmp (r −RB)

〉
=
∑
δj

eikδj
〈
ϕm

d
(r −RA)

∣∣V A(r −RA)
∣∣ϕmp (r −RA − δj)

〉
, (4.6)

where δj are the NN vectors (Fig. 4.1). The NN integral in Eq. 4.6 can be evaluated

using the Slater-Koster rules [129]. However we first need to express the orbitals in

the angular momentum basis in terms of the spatial orbitals:

ϕm
d

=0 = d
3z2
,

ϕm
d

=±2 =
1√
2

(d
x2−y2 ± idxy),

ϕmp=0 = ϕpz ,

ϕmp=±1 =
1√
2

(px ± ipy).

(4.7)

Slater-Koster rules involve directional cosines (L,M,N) (i.e. angles that the bond
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makes with all axes) of the nearest neighbour sulphur atoms (as shown in Fig. 4.1)

S1 : (L,M,N) = (
d‖
d
, 0,±d⊥

d
),

S2 : (L,M,N) = (−
d‖
d
,

√
3

2

d‖
d
,±d⊥

d
),

S3 : (L,M,N) = (−
d‖
d
,−
√

3

2

d‖
d
,±d⊥

d
),

(4.8)

where ± in Eq. 4.8 refers to top (bottom) sulphur atoms and d⊥ and d‖ are shown in

Fig. 4.2. Expressions in Eq. 4.9 list the Slater-Koster matrix elements Vpd(L,M,N)

for all the orbitals involved [129].

〈d
3z2
|V |px〉 = −1

2
L

(
(3N2 − 1)Vdpσ − 2

√
3N2Vdpπ

)
,

〈d
3z2
|V |py〉 = −1

2
M

(
(3N2 − 1)Vdpσ − 2

√
3N2Vdpπ

)
,

〈d
3z2
|V |pz〉 = −1

2
N

(
(3N2 − 1)Vdpσ − 2

√
3(N2 − 1)Vdpπ

)
,

〈d
x2−y2 |V |px〉 = −1

2
L

(√
3(L2 −M2)Vdpσ + 2(2M2 +N2)Vdpπ

)
,

〈d
x2−y2 |V |py〉 = −1

2
M

(√
3(L2 −M2)Vdpσ − 2(2L2 +N2)Vdpπ

)
,

〈d
x2−y2 |V |pz〉 = −1

2
N(L2 −M2)(

√
3Vdpσ − 2Vdpπ),

〈dxy |V |px〉 = −M
(
L2(
√

3Vdpσ − 2Vdpπ) + Vdpπ

)
,

〈dxy |V |py〉 = −L
(
M2(
√

3Vdpσ − 2Vdpπ) + Vdpπ

)
,

〈dxy |V |pz〉 = −LMN(
√

3Vdpσ − 2Vdpπ).

(4.9)

From Eq. 4.8, 4.7 and 4.9 we calculate

〈ϕm
d

=0|V |ϕmp=±1〉

=
1

2

(
〈d

3z2
|V |pT

x
〉 ± i 〈d

3z2
|V |pT

y
〉+ 〈d

3z2
|V |pB

x
〉 ± 〈d

3z2
|V |pB

y
〉
)

= −1

2
(L± iM)

((
3
d2
⊥
d2
− 1
)
Vdpσ − 2

√
3
d2
⊥
d2
Vdpπ

)
, (4.10)

where T (B) subscripts stand for top (bottom) sulphur atoms. By performing anal-
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Figure 4.2: Lattice parameters of monolayer MoS2. The bond length between Mo
(blue) and S (yellow) atoms is labelled with d. Parameters d‖, d⊥ are used in Slater
Koster rules.

ogous calculation for remaining matrix elements we obtain

〈ϕm
d
=0|V |ϕmp=±1〉 = (L± iM)Vm

d
=0,mp=±1 = −1

2
(L± iM)

((
3
d2⊥
d2
− 1
)
Vdpσ − 2

√
3
d2⊥
d2
Vdpπ

)
,

〈ϕm
d
=0|V |ϕmp=0〉 = Vm

d
=0,mp=0 = − 1√

2

d⊥
d

((
3
d2⊥
d2
− 1
)
Vdpσ − 2

√
3(
d2⊥
d2
− 1)Vdpπ

)
,

〈ϕm
d
=±2|V |ϕmp=±1〉 = (L∓ iM)Vm

d
=±2,mp=±1 =

1√
2

(L∓ iM)
(√3

2

(d2⊥
d2
− 1
)
Vdpσ −

(d2⊥
d2

+ 1
)
Vdpπ

)
,

〈ϕm
d
=±2|V |ϕmp=∓1〉 = (L∓ iM)3Vm

d
=±2,mp=∓1 = − 1√

2
(L∓ iM)3

(√3

2
Vdpσ − Vdpπ

)
,

〈ϕm
d
=±2|V |ϕmp=0〉 = (L∓ iM)2Vm

d
=±2,mp=0 = −1

2
(L∓ iM)2

d⊥
d

(√
3Vdpσ − 2Vdpπ

)
.

(4.11)

We now insert Eq. 4.11 into the NN hopping matrix element in Eq. 4.6 to obtain

〈Ψk
A,m

d
=0| Ĥ |Ψk

B,mp=1〉

=
∑
δj

eikδj
〈
ϕm

d
=0(r −RA)

∣∣V A(r −RA)
∣∣ϕmp=1(r −RA − δj)

〉
= Vm

d
=0,mp=±1

∑
δj

eikδj(Lj ± iMj) = Vm
d

=0,mp=±1

d‖
d

∑
δj

eikδje±iθj

= Vm
d

=0,mp=±1

d‖
d

(
eikxd‖ + e−ikx

d‖
2 ei
√

3ky
d‖
2 ei

±2π
3 + e−ikx

d‖
2 e−i

√
3ky

d‖
2 ei

±4π
3

)
, (4.12)

and analogously for the remaining integrals. In Eq. 4.12 θj are phases generated by
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tunneling to different nearest neighbours arising from Lj ± iMj (Fig. 4.1):

S1 : L+ iM = ei0
d‖
d

=
d‖
d

S2 : L+ iM = ei
2π
3
d‖
d

S3 : L+ iM = ei
4π
3
d‖
d
.

(4.13)

We can evaluate the NN integrals as in Eq. 4.12 at K = (0, 4π
3
√

3d‖
) (here the lattice

and Brillouin zone are defined as rotated by 90◦ w.r.t. graphene lattice in Eq. 2.1.3)

to obtain a general expression

〈Ψk=K
A,m

d
| Ĥ |Ψk=K

B,mp
〉 =

(
1 + ei(1−m

d
+mp)2π/3 + ei(1−m

d
+mp)4π/3

)
Vm

d
,mp , (4.14)

where Vm
d
,mp have been defined in Eq. 4.11. The expression in Eq. 4.14 includes the

phases dependent on the angular momentum of the neighbouring orbitals. Analogous

phase factors in graphene vanish for pz orbitals on all sites, which closes the gap. In

TMDCs these factors are responsible for removing the degeneracy of d orbitals at

K, which build VB and CB (in accordance with Fig. 2.14) and therefore must be

nonzero. For the nonvanishing tunneling matrix elements in Eq. 4.14, the orbitals

satisfy a selection rule 1 +m
d
−m−p = 0,±3. This restricts the pairs of orbitals that

build the bands at high symmetry points:

K :
[
m

d
=0,mp=−1

]
,
[
m

d
=+2,mp=+1

]
,
[
m

d
=−2,mp=0

]
,

−K :
[
m

d
=0,mp=+1

]
,
[
m

d
=−2,mp=−1

]
,
[
m

d
=+2,mp=0

]
,

Γ :
[
m

d
=0,mp=0

]
,
[
m

d
= + 2,mp=−1

]
,
[
m

d
=−2,mp=+1

]
,

(4.15)

which makes the Hamiltonian block diagonal at these k-points.

We now collect all the NN Hamiltonian matrix elements in the basis of ΨA,m
d

and
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Figure 4.3: (left) TB band structure of MoS2 obtained by diagonalising the Hamil-
tonian in Eq. 4.16 with only NN terms included. (right) Comparison of the TB NN
band structure (black) to the DFT bands (white). The band masses are incorrect
and a closing of the gap around M is visible.

ΨB,mp

ĤNN (k) =



Em
d

=−2 0 0 V1f−1(k) −V2f0(k) V3f1(k)

Em
d

=0 0 −V4f0(k) −V5f1(k) −V4f−1(k)

Em
d

=2 −V3f1(k) −V2f−1(k) V1f0(k)

Emp=−1 0 0

h.c. Emp=0 0

Emp=1


, (4.16)
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where V1−5 and f0,±1(k) are

V1 = Vm
d

=±2,mp=±1

d‖
d

=
1√
2

[√
3

2

(
d2
⊥
d2
− 1

)
Vdpσ −

(
d2
⊥
d2

+ 1

)
Vdpπ

]
d‖
d
,

V2 = Vm
d

=±2,mp=0

(
d‖
d

)2

=
1

2

[√
3Vdpσ − 2Vdpπ

] d⊥
d

(
d‖
d

)2

,

V3 = Vm
d

=±2,mp=∓1

(
d‖
d

)3

=
1√
2

[√
3

2
Vdpσ − Vdpπ

](
d‖
d

)3

,

V4 = Vm
d

=0,mp=±1

d‖
d

=
1

2

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3
d2
⊥
d2
Vdpπ

]
d‖
d
,

V5 = Vm
d

=0,mp=0 =
1√
2

[(
3
d2
⊥
d2
− 1

)
Vdpσ − 2

√
3

(
d2
⊥
d2
− 1

)
Vdpπ

]
d⊥
d
,

(4.17)

f0(k) = eikx + e−ikx/2ei
√

3ky/2e−i2π/3 + e−ikx/2e−i
√

3ky/2ei2π/3,

f−1(k) = eikx + e−ikx/2ei
√

3ky/2ei2π/3 + e−ikx/2e−i
√

3ky/2e−i2π/3,

f+1(k) = eikx + e−ikx/2ei
√

3ky/2 + e−ikx/2e−i
√

3ky/2.

(4.18)

The Hamiltonian in Eq. 4.16 and expressions in Eq. 4.17 and Eq. 4.18 contain

Slater-Koster parameters which can be found if one fits the TB band structure to

the band structure obtained within the DFT methods (see section 2.2.4 and 2.2.5).

Fig. 4.3 shows such fitting for the NN Hamiltonian done with a genetic algorithm

using weights setting the priority of fitting for the VB and CB edges between K and

Γ. It is clear that, even though the simple NN Hamiltonian predicts correct gap at

K, it results in the gap closing around the M -point, incorrect for a semiconductor.

This is due to the role of the m
d

= 0 orbital which builds the CB at K and a VB at

Γ (Fig. 2.14) [156]. Without any hopping between the d orbitals, which could only

come from the NNN terms, the correct orbital composition throughout the BZ can

therefore only be achieved if the bands cross. This means that this artifact should

be corrected if one included the NNN terms in the TB Hamiltonian in Eq. 4.16, as

described in section 4.2.
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4.2 Next nearest neighbour tight-binding model

for MoS2.

I will now consider the NNN TB terms, which come from tunnelling between a pair

of nearest Mo atoms or between a pair of nearest sulphur dimers (Fig. 4.4). These

terms are calculated analogously to NN terms:

〈ΨkA,m
d
=0| Ĥ |ΨkA,m

d
=+2〉 =

∑
γj

eikγj

〈
ϕm

d
=0(r −RA)

∣∣∣V A(r −RA)
∣∣∣ϕm

d
=+2(r −RA − γj)

〉
,

(4.19)

where γj are the NNN vectors (Fig. 4.4) and the NNN hopping integral requires the

Slater-Koster matrix elements [129]:

〈d
3z2 |V |d3z2 〉 =

(
1

2
L2 +

1

2
M2 −N2

)2

Vddσ + 3N2(1−N2)Vddπ +
3

4
(N2 − 1)2Vddδ,

〈d
3z2 |V |dx2−y2 〉 =

√
3

4
(L2 −M2)

(
(3N2 − 1)Vddσ − 4N2Vddπ + (N2 + 1)Vddδ

)
,

〈d
3z2 |V |dxy 〉 =

√
3

2
LM

(
(3N2 − 1)Vddσ − 4N2Vddπ + (N2 + 1)Vddδ

)
,

〈d
x2−y2 |V |dx2−y2 〉 =

3

4
(L2 −M2)2Vddσ +

(
L2 +M2 − (L2 −M2)2

)
Vddπ +

(
1

4
(L2 −M2)2 +N2

)
,

〈d
x2−y2 |V |dxy

〉 =
1

2
LM(L2 −M2)(3Vddσ − 4Vddπ + Vddδ),

〈d
xy
|V |d

xy
〉 = 3L2M2Vddσ + (L2 +M2 − 4L2M2)Vddπ + (L2M2 +N2)Vddδ,

(4.20)

〈px|V |px〉 = L2Vppσ + (1− L2)Vppπ,

〈px|V |py〉 = LM(Vppσ − Vppπ),

〈px|V |pz〉 = LN(Vppσ − Vppπ)

〈py |V |py〉 = M2Vppσ + (1−M2)Vppπ,

〈py |V |pz〉 = MN(Vppσ − Vppπ),

〈pz |V |pz〉 = N2Vppσ + (1−N2)Vppπ.

(4.21)



CHAPTER 4. TIGHT BINDING MODEL FOR MONOLAYER MOS2 78

Using N = 0 and L2 +M2 = 1 for NNN atoms, and using Eq. 4.7 we get

〈ϕm
d
=0(r)|V |ϕm

d
=0(r + γ)〉 = V NNNm

d
=0,m

d
=0 =

1

4
Vddσ +

3

4
Vddδ,

〈ϕm
d
=±2(r)|V |ϕm

d
=±2(r + γ)〉 = V NNNm

d
=±2,m

d
=±2 =

1

8
(3Vddσ + 4Vddπ + V ddδ),

〈ϕm
d
=0(r)|V |ϕm

d
=±2(r + γ)〉 = (L± iM)2V NNNm

d
=0,m

d
=±2 =

√
3

4
√

2
(L± iM)2(−V ddσ + Vddδ),

〈ϕm
d
=±2(r)|V |ϕm

d
=∓2(r + γ)〉(L∓ iM)4V NNNm

d
=±2,m

d
=∓2 = (L∓ iM)4

1

8
(3Vddσ − 4Vddπ + Vddδ).

(4.22)

Figure 4.4: Six NNN of an Mo atom are also Mo atoms (blue). The NNN vectors
(red) are the same for NNN of an S2 site (yellow).

To obtain the NNN hopping integrals between sulphur dimers we need to include

the hopping between sulphur atoms within the same plane but we neglect the cross

terms between the planes:

〈ϕmp=0(r)|V |ϕmp=0(r + γ)〉

=
1

2

(
〈pT

z
(r)|V |pT

z
(r + γ)〉+ 〈pB

z
(r)|V |pB

z
(r + γ)〉

+
((((

(((
((((

(
〈pT

z
(r)|V |pB

z
(r + γ)〉+

((((
((((

((((〈pB
z

(r)|V |pT
z

(r + γ)〉
)

= N2Vppσ + (1−N2)Vppπ = Vppπ, (4.23)
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where we used N = 0 for NNN terms. We collect all the NNN hopping integrals:

〈ϕmp=0(r)|V |ϕmp=0(r + γ)〉 = V NNNmp=0,mp=0 = Vppπ,

〈ϕmp=±1(r)|V |ϕmp=±1(r + γ)〉 = V NNNmp=±1,mp=±1 =
1

2
(Vppσ + Vppπ),

〈ϕmp=0(r)|V |ϕmp=±1(r + γ)〉 = V NNNmp=0,mp=±1 = 0,

〈ϕmp=−1(r)|V |ϕmp=+1(r + γ)〉 = (L+ iM)2V NNNmp=−1,mp=+1 =
1

2
(L+ iM)2(Vppσ − Vppπ).

(4.24)

We now insert Eq. 4.22 and Eq. 4.24 into Eq. 4.19 to obtain

〈Ψk
A,m

d
=0| Ĥ |Ψk

A,m
d

=+2〉

=
∑
γj

eikγj
〈
ϕm

d
=0(r −RA)

∣∣V A(r −RA)
∣∣ϕm

d
=+2(r −RA − γj)

〉
= V NNN

m
d

=0,m
d

=+2

∑
γj

eikγj(Lj ± iMj)
2 = V NNN

m
d

=0,m
d

=+2

∑
γj

eikγje2φj

= V NNN
m
d

=0,m
d

=+2

(
2 cos

(
3
kxd‖

2
+
√

3
kyd‖

2

)
ei
π
3

+ 2 cos

(
3
kxd‖

2
−
√

3
kyd‖

2

)
e−i

π
3 − 2 cos

(√
3kyd‖

))
. (4.25)

In Eq. 4.25 φj are phases generated by tunneling to different NNN arising from

Lj ± iMj (Fig. 4.4):

Mo1 : L+ iM = ei
π
6 , Mo4 : L+ iM = e−i

5π
6 ,

Mo2 : L+ iM = ei
π
2 , Mo5 : L+ iM = e−i

π
2

Mo3 : L+ iM = ei
5π
6 , Mo5 : L+ iM = e−i

π
6 .

(4.26)

Parameter Best fit (in eV) Parameter Best fit (in eV)
Em

d
=0,±2 -0.03 Vddσ -1.10

Emp=±1 -3.36 Vddπ 0.76

Emp=0 -4.78 Vddδ 0.27

Vdpσ -3.39 Vppσ 1.19
Vdpπ 1.10 Vppπ -0.83

Table 4.1: Slater-Koster parameters obtained by fitting to DFT band structure.
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Figure 4.5: (left) TB band structure of MoS2 obtained by diagonalising the Hamilto-
nian in Eq. 4.27 with NNN terms included. (right) Comparison between TB (black)
and DFT (white) bands. The agreement on the path K → Γ is excellent.

We now collect all the matrix elements in a NNN Hamiltonian matrix

ĤNNN (k) =



Em
d

=−2

+W1g0(k)
W3g2(k) W4g4(k) V1f−1(k) −V2f0(k) V3f1(k)

Em
d

=0

+W2g0(k)
W3g2(k) −V4f0(k) −V5f1(k) −V4f−1(k)

Em
d

=2

+W1g0(k)
−V3f1(k) −V2f−1(k) V1f0(k)
Emp=−1

+W5g0(k)
0 W7g2(k)

h.c.
Emp=0

+W6g0(k)
0

Emp=1

+W5g0(k)


, (4.27)
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where

W1 = V NNN
m
d

=±2,m
d

=±2 =
1

8
(3Vddσ + 4Vddπ + Vddδ) ,

W2 = V NNN
m
d

=0,m
d

=0 =
1

4
(Vddσ + 3Vddδ) ,

W3 = V NNN
m
d

=0,m
d

=±2 = −
√

3

4
√

2
(Vddσ − Vddδ) ,

W4 = V NNN
m
d

=±2,m
d

=∓2 =
1

8
(3Vddσ − 4Vddπ + Vddδ) ,

W5 = V NNN
mp=±1,mp=±1 =

1

2
(Vppσ + Vppπ) ,

W6 = V NNN
mp=0,mp=0 = Vppπ,

W7 = V NNN
mp=−1,mp=+1 =

1

2
(Vppσ − Vppπ) ,

(4.28)

and

g0(k) = 4 cos (3kx/2) cos
(√

3ky/2
)

+ 2 cos
(√

3ky

)
,

g2(k) = −2 cos
(√

3ky

)
+ 2 cos

(
3kx/2 +

√
3ky/2

)
eiπ/3 + 2 cos

(
3kx/2−

√
3ky/2

)
e−iπ/3,

g4(k) = 2 cos
(√

3ky

)
+ 2 cos

(
3kx/2 +

√
3ky/2

)
ei2π/3 + 2 cos

(
3kx/2−

√
3ky/2

)
e−i2π/3.

(4.29)

Figure 4.6: (left) The bands around the Q-point are approximately parallel, which
causes band nesting. The nesting transition energy (blue arrow) around Q is the
most common through BZ, which causes the joint optical density of states to peak
in the right panel. (right) Joint optical density of states in MoS2. Peak at ≈ 2.8 eV
corresponds to the nesting transition energy in the left panel.
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The Hamiltonian in Eq. 4.27 and expressions in Eq. 4.28 contain Slater-Koster

parameters which are obtained again by fitting the TB band structure to the band

structure obtained within DFT. This is again conducted using a genetic algorithm

with a weighted path in the Brillouin zone. The values of parameters obtained through

this fitting have been collected in Table 4.1. Fig. 4.5 shows the comparison of TB

and DFT bands. We now see that the gap has opened throughout the BZ due to the

interaction between d orbitals. There is excellent agreement between the methods for

CB and VB around points K,Q,Γ [156].

An important feature of these bands is the existence of a secondary CB minimum

at Q-point, which is built of m
d

= −2 orbital, contrary to CB minimum at K,

composed of m
d

= 0 orbital. Around Q CB and VB are nested, i.e. parallel. This

band nesting causes the CB-VB transition energy at Q to be common across a large

area in the BZ, which maximises the joint optical density of states (Fig. 4.6) [156].

4.3 Spin orbit-splitting in MoS2.

So far I have considered a spinless Hamiltonian, but it is important to include the

SOC effects due to the presence of heavy atoms. As a consequence of the choice of

our basis, the SO term L · S does not couple the states and enters our Hamiltonian

only on a diagonal. This can be proven if one considers an explicit form of L · S:

L · S =
1

2
(L+S− + L−S+) + LzSz,

Lz |lm〉 = ~m |lm〉 ,

L± |lm〉 = ~
√
l(l + 1)−m(m± 1) |lm± 1〉 .

(4.30)

Then, I consider possible non-zero off-diagonal matrix elements of L · S for angular

momentum eigenstates as

〈mp = 0 ↓| 1
2

(L+S− + L−S+) + LzSz |mp = −1 ↑〉 =
~
2

√
2,

〈mp = 0 ↑| 1
2

(L+S− + L−S+) + LzSz |mp = +1 ↓〉 =
~
2

√
2,

(4.31)
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where all the other elements for mp vanish and the raising and lowering operators

cannot couple states with ∆m = 2, so the matrix elements for md also vanish. Using

Eq. 4.31, I calculate the couping terms for the elements of the 6-band Hamiltonian

basis as

1√
2

(
〈mp = 0 ↓|T − 〈mp = 0 ↓|B

)1

2
(L+S− + L−S+) + LzSz·

· 1√
2

(
|mp = −1 ↑〉T + |mp = −1 ↑〉B

)
=

1

2

(
T 〈mp = 0 ↓| 1

2
L+S− |mp = −1 ↑〉T − B 〈mp = 0 ↓| 1

2
L+S− |mp = −1 ↑〉T

+ T 〈mp = 0 ↓| 1
2
L+S− |mp = −1 ↑〉B − B 〈mp = 0 ↓| 1

2
L+S− |mp = −1 ↑〉B

)
= 0 (4.32)

and analogously in the second term in Eq. 4.31. This proves that Sz is still a good

quantum number in our basis.

Figure 4.7: VB and CB of MoS2 with spin-orbit coupling included as in Eq. 4.34.
The SO splitting in the CB is not visible on this scale, but the large SO splitting in
the VB at K is apparent.

Our spin Hamiltonian reads

ĤNNN
SO (k) = ĤNNN(k)⊗

1 0

0 1

+

ĤSO(σ = 1) 0

0 ĤSO(σ = −1)

 , (4.33)
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where

ĤSO(σ) =



−σλMo

0

σλMo

−σ λS2

2

0

σ
λS2

2


(4.34)

and fitting to DFT band structure gives λMo = 0.067eV and λS2 = 0.02eV . Fig. 4.7

shows the band structure of MoS2 with SO splitting included. The large spin splitting

in VB at K ∆V B
SO = 135meV is due to the m

d
= +2 orbital building the VB. The spin

splitting in CB is smaller, ∆CB
SO = 4meV , as it is composed of the m

d
= 0 orbital. It

is however still resolvable in an experiment [157].

4.4 Massive Dirac fermion model for MoS2.

I will now show how the 6 × 6 NNN Hamiltonian in Eq. 4.27 can be approximated

as an effective two-band massive Dirac Hamiltonian at K, by analogy to gapped

graphene. At K some terms in the NNN Hamiltonian vanish because only 3 pairs of

orbitals remain coupled (given in Eq. 4.15)

ĤNNN (K) =



Em
d

=−2

−3W1g0
0 0 0 −3V2f0 0

Em
d

=0

−3W2g0
0 −3V4f0 0 0

Em
d

=2

−3W1g0
0 0 3V1f0

Emp=−1

−3W5g0
0 0

Emp=0

−3W6g0
0

Emp=1

−3W5g0


, (4.35)

which is block diagonal if viewed in the basis of the pairs of orbitals

[
m

d
=0,mp=−1

]
,
[
m

d
=2,mp=1

]
,
[
m

d
=−2,mp=0

]
, (4.36)
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where the first two pairs build the CB and VB at K and the last pair builds lower and

higher bands, so I will disregard it in this model. We can therefore rewrite the original

NNN Hamiltonian matrix in Eq. 4.27 as a reduced 4× 4 Hamiltonian including only

the orbitals building the low-energy bands at K

Ĥ4×4 (k) =



Em
d

=0

+W2g0(k) W3g2(k) −V4f0(k) −V4f−1(k)

Em
d

=2

+W1g0(k) −V3f1(k) V1f0(k)

Emp=−1

+W5g0(k) W7g2(k)

Emp=1

+W5g0(k)


. (4.37)

Similarly to the way we expanded the off-diagonal expression for the 2× 2 Hamil-

tonian for graphene in Eq. 2.39, we can now expand the k-dependent functions as a

function of q around K and retain only up to the second order terms in q:

Ĥ4×4 (K + q) =



Em
d

=0

−3W2
0 −3V4 0

Em
d

=2

−3W1
0 3V1

Emp=−1

−3W5
0

Emp=1

−3W5


+



9
4W2 0 3

4V4 0

9
4W1 0 − 3

4V1

9
4W5 0

9
4W5


|q|2d‖

+



0 −i 92W3q−d‖ 0 −i 32V4q−d‖

0 −i 32V3q+d‖ 0

0 −i 92W7q−d‖

0



+



0 9
8W3q

2
+d

2
‖ 0 3

8V4q
2
+d

2
‖

0 3
8V3q

2
−d

2
‖ 0

0 9
8W7q

2
+d

2
‖

0


,

(4.38)

where q± = qx ± iqy. Since we are interested in an effective two-band Hamiltonian,

from each pair of coupled orbitals at K we need to select the states that form the
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edges of the bands. We therefore define a new basis

Ψ+
CB = αΨm

d
=0 + βΨmp=−1,

Ψ−CB = βΨm
d

=0 − αΨmp=−1,

Ψ+
V B = µΨm

d
=2 + νΨmp=+1,

Ψ−V B = νΨm
d

=2 − µΨmp=+1

(4.39)

and rotate Hamiltonian in Eq. 4.38 to this basis, while retaining only the block of

Ψ+
CB and Ψ+

V B (corresponding to the edges of CB and VB):

H2×2(K + q) =


E+
CB

+ 3
4
d2
‖(3α

2W2+2αβV4+3β2W5)|q|2 0

0
E+
V B

+ 3
4
d2
‖(3µ

2W1+2µνV1+3ν2W5)|q|2


+

3

2
d‖(3αµW3 − βµV3 + αν + 3βνW7)

 0 −iq−

iq+ 0


+

3

8
d2
‖(3αµW3 + βµV3 + αν + 3βνW7)

 0 q2
+

q2
− 0

 ,

(4.40)

which has the form of a Hamiltonian given in [158]

H2 band(q) = at

 τq−

τq+

+
∆

2

1

−1


+

uq2

vq2

+ w

 q2
+

q2
−

 .

(4.41)

We then fit the eigenvalues of the Hamiltonian in Eq. 4.41 to the ab initio TB

model given in Eq. 4.1 and obtain the bands shown in Fig. 4.8. For u = w = 0 we

retrieve the massive Dirac fermion (mDf) Hamiltonian with the best-fit values of its

parameters a = 3.193Å, t = 1.4677eV and ∆ = 1.6848eV . The fitted bands have

been shown in Fig. 4.8 in red over the TB band structure shown in black.
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Figure 4.8: Bands obtained through a massive Dirac fermion approximation for MoS2

at K (red) in comparison to the TB bands for MoS2 throughout the BZ (black).

4.5 Massive Dirac fermions interacting with light.

I will now derive the optical response of massive Dirac fermions for both valleys when

excited with circularly polarised light. From Eq. 2.44 (and from the first term of Eq.

4.41), the unperturbed Hamiltonian for both valleys reads:

Ĥ =

 ∆
2

vf
~ (τpx − ipy)

vf
~ (τpx + ipy) −∆

2
,

 (4.42)

where τ is the valley index and p = ~q. I now take circularly polarised light of the

form

σ± : ±Ex = E0 sinωt,

Ey = E0 cosωt,

(4.43)

where E0 is the strength of the electric field and ω is the frequency of light. We

integrate A = −
∫
Edt to obtain the vector potential as

Ax = ∓E0

ω
cosωt,

Ay = −E0

ω
sinωt,

(4.44)
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which can be now inserted in the mDf Hamiltonian at K given in Eq. 4.41 for

u = w = 0, with a substitution p→ p− eA. We obtain

Ĥ =

 ∆
2

vf
~

(
(px − eAx)− i (py − eAy)

)
vf
~

(
(px − eAx) + i (py − eAy)

)
−∆

2


=

 ∆
2

vf
~ (px − ipy)

vf
~ (px + ipy) −∆

2

− g
 0 ±e±iωt

±e∓iωt 0


= ĤmDf + Ĥ ′(σ±), (4.45)

where g =
evfE0
~ω . The stationary solutions of the unperturbed part ĤmDf , |−q〉 , |+q〉

have been given in Eq. 2.46. The perturbation for both valleys takes the form:

Ĥ ′(σ±) = −g

 0 ±τe±τiωt

±τe∓τiωt 0

 . (4.46)

With the perturbation Ĥ ′ added, we seek a time dependent wavefunction of the

form

|Ψ(t)〉 = cq−(t)e−
i
~E
−
q t |−q〉+ cq+(t)e−

i
~E

+
q t |+q〉 , (4.47)

where c− and c+ are coefficients of the wavefunction components wirtten in the basis

of the unperturbed problem with eigenstates |±q〉 , E±q . We insert the wavefunction

in Eq. 4.47 into the time-dependent Schrodinger’s equation (TDSE)

i~
∂

∂t
Ψ(t) =

(
ĤmDf + Ĥ ′

)
Ψ (4.48)

to obtain

i~
∂c−(t)

∂t
e−

i
~E
−t |−〉+ i~

∂c+(t)

∂t
e−

i
~E

+t |+〉 = c−(t)e−
i
~E
−tĤ ′ |−〉+ c+(t)e−

i
~E

+tĤ ′ |+〉 ,

(4.49)

where the index q has been dropped for simplicity. We then project on |−〉 and |+〉
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to obtain a system of equations

i~ ˙c+(t) = c−(t)H+−e
i
~∆Et + c+(t)H++,

i~ ˙c−(t) = c−(t)H−− + c+(t)H−+e
− i

~∆Et,

(4.50)

where ∆E = E+ − E− and H+− etc. denote matrix elements of the perturbation in

the basis of the unperturbed states calculated for valley K as

H+− = 〈+| Ĥ ′(σ+) |−〉 = − gvf |q|
N+N−

((
E +

∆

2

)
ei(ωt+θ) +

(
−E +

∆

2

)
e−i(ωt+θ)

)

= 2g0

(
− ∆

2
cos (ωt+ θ)− iE sin (ωt+ θ)

)
,

H−+ = 〈−| Ĥ ′(σ+) |−〉 = − gvf |q|
N+N−

((
E − ∆

2

)
ei(ωt−θ) +

(
−E − ∆

2

)
e−i(ωt−θ)

)

= 2g0

(∆

2
cos (ωt− θ)− iE sin (ωt− θ)

)
(4.51)

and similarly for other matrix elements. In Eq. 4.51, g0 = g 1
2E

, g± = g
vf |q|

2E(E±∆
2 )

,

E =
∣∣E±q ∣∣ and q = |q|eiθ, where θ is the wavevector’s angle. For both valleys we

obtain

〈+| Ĥ ′(σ±) |−〉 = −g0

((
τE ± ∆

2

)
ei(ωt±θ) +

(
−τE ± ∆

2

)
e−i(ωt±θ)

)

= 2g0

(
∓ ∆

2
cos (ωt± θ)− iτE sin (ωt± θ)

)
,

〈−| Ĥ ′(σ±) |−〉 = ±2g−

(
E − ∆

2

)
cos (ωt± θ),

〈+| Ĥ ′(σ±) |+〉 = ∓2g+

(
E +

∆

2

)
cos (ωt± θ).

(4.52)

We now transform Eq. 4.50 using

c+(t) = e−
i
~
∫ t
0 H++(t′)dt′ c̃+(t),

c−(t) = e−
i
~
∫ t
0 H−−(t′)dt′ c̃−(t),

(4.53)
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and obtain

i~ ˙̃c+(t) = c̃−(t)H+−e
i
~
∫ t
0 (∆E+H++(t′)−H−−(t′))dt′ ,

i~ ˙̃c−(t) = c̃+(t)H−+e
i
~
∫ t
0 (∆E+H++(t′)−H−−(t′))dt′ .

(4.54)

We now use the explicit form of the matrix elements given in Eq. 4.52 and to the

first order in the electric field strength E0 and for c−(t = 0) = 1 we get

σ+,K : ˙̃c+(t) =
i

~
g0

((
E +

∆

2

)
ei(ωt+

∆E
~ t+θ) +

���
���

���
���

��(
−E +

∆

2

)
e−i(ωt−

∆E
~ t+θ)

)
,

σ−,K : ˙̃c+(t) =
i

~
g0

(
���

���
���

���
(
E − ∆

2

)
ei(ωt+

∆E
~ t−θ) +

(
−E − ∆

2

)
e−i(ωt−

∆E
~ t−θ)

)
,

σ+,−K : ˙̃c+(t) =
i

~
g0

(
���

���
���

���
�(

−E +
∆

2

)
ei(ωt+

∆E
~ t+θ) +

(
E +

∆

2

)
e−i(ωt−

∆E
~ t+θ)

)
,

σ−,−K : ˙̃c+(t) =
i

~
g0

((
−E − ∆

2

)
ei(ωt+

∆E
~ t−θ)︸ ︷︷ ︸

non−resonant

+
���

���
���

���
�(

E − ∆

2

)
e−i(ωt−

∆E
~ t−θ)︸ ︷︷ ︸

resonant

)
,

(4.55)

where terms with ω −∆E/~ are resonant absorption terms and ω + ∆E/~ are non-

resonant. The crossed out terms in Eq. 4.55 vanish because at K and −K, E = ∆
2

.

We use the rotating wave approximation and keep only the resonant terms to obtain

σ−,K : ˙̃c+(t) = − i
~
g0

(
E +

∆

2

)
e−i(ωt−

∆E
~ t−θ),

σ+,−K : ˙̃c+(t) =
i

~
g0

(
E +

∆

2

)
e−i(ωt−

∆E
~ t+θ).

(4.56)

Eq. 4.56 shows that the valleys can be selectively excited using oppositely circularly

polarised light, as shown schematically in Fig. 4.9.
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Figure 4.9: Valley-dependent circularly polarised light absorption.

I will now solve Eq. 4.56 to obtain the rate of transition. We calculate

c̃+(t) = −τ i
~
g0

(
E +

∆

2

)
eiτθ

∫ t

0

e−i(ω−
∆E
~ )t′dt′

= −τ i
~
g0

(
E +

∆

2

)
eiτθ

1

− i
~w

(
e−

i
~wt − 1

)
= τg0

(
E +

∆

2

)
eiτθ

w
e−

i
~
w
2
t
(
e−

i
~
w
2
t − e

i
~
w
2
t
)

= τg0

(
E +

∆

2

)
eiτθe−

i
~
w
2
t−2i sin w

2~t
w
2~t

t

2~

− iτg0

(
E +

∆

2

)
eiτθe−

i
~
w
2
t sin

w
2~t

w
2~t

t

~
, (4.57)

where w = ω −∆E. I now calculate the transition rate γfi as

γfi =
|c̃+|2

t
=

1

t
g2

0

(
E +

∆

2

)2 ∣∣∣eiτθ− i
~
w
2
t
∣∣∣2 sin2 w

2~t(
w
2~t
)2

(
t

~

)2

=
1

t
g2

0

(
E +

∆

2

)2 ∣∣∣eiτθ− i
~
w
2
t
∣∣∣2πδ(w)

t
2~

(
t

~

)2

=
1

t
g2

0

(
E +

∆

2

)2 ∣∣∣eiτθ− i
~
w
2
t
∣∣∣2 2πt

~
δ(w)

= g2

(
E + ∆

2

)2

4E2

2π

~
δ(ω −∆E), (4.58)

where
sin2 xt

2~
x2t
2~
→ πδ(x) as t→∞, w = ω −∆E and g =

evfE0
~ω . For ∆ = 0 we retrieve

the graphene case. The Eq. 4.58 yields the Fermi Golden rule for mDf, which will be

used in chapter 5.



Chapter 5

Magnetoexcitons of massive Dirac

fermions

In this chapter I develop a theory of excitons of mDf in the presence of external

magnetic field [159]. The SP Hamiltonian used in this chapter is based on the results

presented in chapter 4, while the interacting picture solves a single exciton problem

using the CI method described in section 2.2.7.

5.1 Non-interacting Massive Dirac fermions in ex-

ternal magnetic field.

Before I study the exciton spectrum of mDf in magnetic field, I will solve this problem

for free electrons (section 5.1.1). I will build on this description to treat mDf in

sections 5.1.2 and 5.1.3. Section 5.1.4 contains a derivation of the optical selection

rules used in the interacting problem.

5.1.1 Free electrons in external magnetic field.

I will first consider a free electron in 2D in the presence of strong external magnetic

field and show the emergence of degenerate energy levels, called Landau levels (LL)

[160].

92
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I start with a magnetic field in the z direction as B = (0, 0, B). I substitute

Ĥ(p̂)→ Ĥ(Π̂) = Ĥ(p̂+ e ˆA(r)) [160] in order to introduce the magnetic field in the

free electron Hamiltonian, where A(r) is vector potential given by ∇ ×A(r) = B.

Throughout the thesis I will choose the symmetric gauge, where

A(r) = (−By
2
,
Bx

2
, 0).

∇×A(r) =

∣∣∣∣∣∣∣∣∣∣
∂
∂x

∂
∂y

∂
∂z

−By
2

Bx
2

0

î ĵ k̂

∣∣∣∣∣∣∣∣∣∣
=

(
B

2
+
B

2

)
k̂ = (0, 0, B).

(5.1)

The free electron Hamiltonian in the presence of external magnetic field then reads

ĤB =
1

2m∗
Π̂

2
+ gµBBσ =

1

2m∗

(
p̂+ e ˆA(r)

)2

+ gµBBσ, (5.2)

where e is electron charge, g is the Lande factor, µB = e~
2me

is the Bohr magneton

and σ denotes spin. The second term in Eq. 5.2 is the Zeeman term, that splits the

energy levels of spin up and spin down and I will neglect it in the following discussion.

Because of the spatial dependence of A in Eq. 5.2, the Hamiltonian ĤB is no

longer translationally invariant Ĥ(p̂+ eÂ) = Ĥ(p̂, r̂).

After introducing A in Eq. 5.2, the components of the new momentum Π also no

longer commute

[Πx,Πy] = [px + eAx, py + eAy] = e
(

[px, Ay]− [py, Ax]
)

= e
(B

2
[px, x]− B

2
[py, y]

)
= −i~eB = −i~m∗ωc, (5.3)

where ωc = eB
m∗

is a cyclotron frequency. Now, because the components of momentum

Π do not commute, the Hamiltonian in Eq. 5.2 cannot be solved separately for x and
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y components. I therefore have to introduce ladder operators

a =
lB√
2~

(iΠx + Πy) , a† =
lB√
2~

(−iΠx + Πy) ,

Πx =
1

i

~√
2lB

(
a− a†

)
, Πy =

~√
2lB

(
a+ a†

) (5.4)

where lB =
√

~
m∗ωc

is magnetic length and the commutator of the ladder operators

a, a† is
[
a, a†

]
= 1, as required. The Hamiltonian in Eq. 5.2 written in terms of ladder

operators in Eq. 5.4 (without the Zeeman term) reads

ĤB =
1

2m∗

(
Π̂2
x + Π̂2

y

)
=

1

2m∗
~2

2l2B

(
−
(
a− a†

)2
+
(
a+ a†

)2
)

=
~ωc
2

(
a†a+ aa†

)
= ~ωc

(
a†a+

1

2

)
. (5.5)

The Hamiltonian in Eq. 5.5 is in fact a harmonic oscillator (HO) Hamiltonian and

the solutions are

En = ~ωc
(
n+

1

2

)
,

|n〉 =
1√
n!

(
a†
)n |0〉 , (5.6)

where the energy eigenstates |n〉 are called Landau levels (LL). However, the solutions

in Eq. 5.6 are described by one quantum number only. This is not complete, as

the Hamiltonian in Eq. 5.2 contains two dimensions. We must therefore search for

another pair of operators, which will determine the degeneracy of levels En. Let us

use
ˆ̃
Π = p̂− eÂ so that we get

b =
lB√
2~

(
iΠ̃x − Π̃y

)
, b† =

lB√
2~

(
−iΠ̃x − Π̃y

)
,

Π̃x =
1

i

~√
2lB

(
b− b†

)
, Π̃y =

~√
2lB

(
−b− b†

) (5.7)

and the commutator of the ladder operators b, b† is
[
b, b†

]
= 1 and also [a, b] =[

a†, b†
]

= 0, as required. This proves that a, b correspond to two independent HO
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with eigenstates written in a standard way as

a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉 ,

b |m〉 =
√
m |m− 1〉 , b† |m〉 =

√
m+ 1 |m+ 1〉 .

(5.8)

The Hamiltonian in Eq. 5.5 can be also written as

ĤB = ~ωc
(
a†a+

1

2

)
+ 0 ·

(
b†b+

1

2

)
, (5.9)

where the additonal HO has a vanishing spacing, which makes the energy levels En

degenerate. The full 2D HO solutions are

En = ~ωc
(
n+

1

2

)
,

|nm〉 =
1√
n!m!

(
a†
)n (

b†
)m |00〉 ,

(5.10)

where m gives the degeneracy of En.

In order to discuss this degeneracy, I will turn to a semiclassical interpretation

of the cyclotron motion governed by Eq. 5.5. Because the Hamiltonian ĤB depends

only on Π̂, but not
ˆ̃
Π, then

ˆ̃
Π is a constant of motion. Let me express variables x, y

in terms of Π, Π̃. We use

A =
B

2
(−y, x) =

1

2e

(
Π− Π̃

)
(5.11)

to obtain

y = Π̃x
1

eB
− Πx

1

eB
= Y + ηy,

x = −Π̃y
1

eB
+ Πy

1

eB
= X + ηx,

(5.12)

where momentum Π determines the relative cyclotron variable of motion η =
l2B
~ (Πy,−Πx)

and R = (X, Y ) =
l2B
~ (−Π̃y, Π̃x) is the position of the centre of motion, which is a

constant, as one would expect. The electron position is described as r = R + η, as
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shown in Fig. 5.1.

Figure 5.1: Relative cyclotron motion η (blue circle) of an electron about the centre
R with uncertainty of the position (grey circle).

It is instructive to consider a commutator

[X, Y ] =
l4B
~2

[
−Π̃y, Π̃x

]
=
l4B
~2

~2

2l2B

−1

i

( [
b, b†

]
−
[
b†, b

] )
= il2B. (5.13)

This means that there is uncertainty regarding the centre postion (X, Y ) so the min-

imal surface it takes is ∆X∆Y = 2πl2B. This allows us to define the number of

quantum states per unit area

nB =
1

∆X∆Y
=

1

2πl2B
=

B

h/e
, (5.14)

which is the magnetic field measured in the units of flux quantum h
e
. The number

of flux quanta nB penetrating a surface is therefore equal to the degeneracy of a LL.

Eq. 5.14 shows that the degeneracy of a LL increases with magnetic field B.

5.1.2 Landau levels for massive Dirac fermions.

I will now describe the LL structure for mDf and highlight the differences from the

free electron case given in section 5.1.1.

I start with a mDf Hamiltonian for valley K with vector potential, just as in Eq.
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4.45, to obtain

ĤB
mDf =

 ∆
2

vf

(
− i∂x − ∂y − eB

2~ (y + ix)
)

vf

(
− i∂x + ∂y + eB

2~ (−y + ix)
)

−∆
2

 ,

(5.15)

where p
~ = q = −i∂. In order to diagonalise the Hamiltonian in Eq. 5.15 I introduce

ladder operators, identical to those given in Eq. 5.4, written explicitly as

â =
lB√

2

(
∂x − i∂y +

1

2l2B
(x− iy)

)
=

1

2

( ζ√
2

+
√

2∂∗ζ

)
,

â† =
lB√

2

(
− ∂x − i∂y +

1

2l2B
(x+ iy)

)
=

1

2

( ζ∗√
2
−
√

2∂ζ

)
,

(5.16)

where I introduced dimensionless variables

ζ =
x− iy
lB

, ζ∗ =
x+ iy

lB
,

∂ζ = lB (∂x + i∂y) , ∂∗ζ = lB (∂x − i∂y) .
(5.17)

The Hamiltonian in Eq. 5.15 can be expressed with the ladder operators given in Eq.

5.16 as

ĤB
mDf (K) =

 ∆
2
−ivâ

ivâ† −∆
2

 , (5.18)

where v =
√

2
vf
lB

. The Hamiltonian in Eq. 5.18 is written in the basis of CB and VB

states at K, as explained in section 4.4.

Following the section 5.1.1, we expect a 2D HO wavefunction solution of the

Hamiltonian in Eq. 5.18. We postulate a solution of the form

∣∣ΨK
B

〉
=

α |n− 1,m〉

β |n,m〉

 , (5.19)

where |n,m〉 are LLs for a free electron, given in Eq. 5.10. It is important to em-

phasize the form of the postulated wavefunction here. The magnetic field modifies its

envelope, from the wavefunction in the absence of magnetic field (given by Eq. 2.46)
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to the wavefunction in the presence of magnetic field, as:

Ψ±q (K) =

 α±q e
iKruKC (r)

β±q e
iθqeiKruKV (r)

 =

C±q (K)

V ±q (K)


↓ B

Ψ±nm(K) =

α±nwn,m,KC (r)uKC (r)

β±n w
n,m,K
V (r)uKV (r)

 =

C±nm(K)

V ±nm(K)

 ,

(5.20)

where
∣∣∣wn,m,KC

〉
= |n− 1,m〉 and

∣∣∣wn,m,KV

〉
= |n,m〉 are LL envelopes atK and uKC/V

are periodic parts of the wavefunction, and ± corresponds to positive and negative

energy solutions. To solve for α, β and En I substitute ΨK
B from Eq. 5.19 in the TISE

and obtain  ∆
2
−ivâ

ivâ† −∆
2


α |n− 1,m〉

β |n,m〉

 = E±n

α |n− 1,m〉

β |n,m〉

 . (5.21)

I evaluate

∆

2
α |n− 1〉 − ivβ

√
n |n− 1〉 = Eα |n− 1〉 ,

ivα
√
n |n〉 − ∆

2
α |n〉 = Eα |n〉 ,

(5.22)

where I used â |n〉 =
√
n |n− 1〉 and I obtain

 ∆
2

−iv
√
n

iv
√
n −∆

2


α
β

 = E±n

α
β

 . (5.23)
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The solutions to Eq. 5.23 are then

E±n = ±

√
v2n+

(
∆

2

)2

,

∣∣Ψ±nm(K)
〉

=

α±n |n− 1,m〉

β±n |n,m〉


= α±n |n− 1,m〉C,K + β±n |n,m〉V,K ,

(5.24)

where the energies EmDf
± follow a square root dependence on n for large n, unlike

the free electron LL energy levels given in Eq. 5.10, which are linear in n. More

importantly, the mDf LL wavefunction for positive and negative energies is a mixture

of VB and CB LLs at K with the number of LL different by 1. The coefficients α, β

are given by

α±n = −iv
√
n

N±n
,

β±n =
E±n − ∆

2

N±n
,

N±n =

√
2E±n

(
E±n −

∆

2

) (5.25)

and have been plotted in Fig. 5.2 for the lowest LLs for a strong magnetic field of

B = 60T , close to the highest fields obtained in experiment [161]. For small n it is

apparent that the admixture of VB LLs in positive energy solutions and CB LLs in

negative energy solutions is low.

In particular, let us consider the wavefunction |Ψ±nm〉 for n = 0:

∣∣Ψ−0,m(K)
〉

=

 0

|0,m〉

 = |0,m〉V,K

∣∣Ψ+
0,m(K)

〉
= 0,

(5.26)

which shows that the zeroth LL is the only level that is not a mixture and is built of

the VB states entirely. It is also absent in the positive energies. The missing positive
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Figure 5.2: Eigenvector components for mDf LLs for (left) positive and (right) nega-
tive energies. Red (blue) lines label αn, (βn) components given by Eq. 5.25.

energy zero LL comes from the −K valley. By substituting the vector potential in

Eq. 5.1 into the massive Dirac Hamiltonian around −K given in Eq. 4.42, I obtain

the Hamiltonian

ĤB
mDf (−K) =

 ∆
2

ivâ†

−ivâ −∆
2

 (5.27)

and the solutions are analogously obtained to give

E±n = ±

√
v2n+

(
∆

2

)2

,

∣∣Ψ±nm(−K)
〉

=

 α±
∗

n |n,m〉

β±n |n− 1,m〉


= α±

∗

n |n,m〉C,−K + β±n |n− 1,m〉V,−K ,

(5.28)

where α±n , β
±
n are given with the same expressions as in Eq. 5.25, but α±n is conjugated.

As expected, I obtain the zeroth LL at −K as

∣∣Ψ−0,m(−K)
〉

= 0,

∣∣Ψ+
0,m(−K)

〉
=

|0,m〉
0

 = |0,m〉C,−K ,
(5.29)
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which reveals a zeroth LL only for positive energies in valley −K.

The LL energy structure for both valleys has been shown in Fig. 5.3, including

the asymmetric 0th LL, given by Eq. 5.26 and 5.29. The black lines represent LLs

for both valleys, and blue lines show energy dispersion for B = 0. Red thick lines

denote the 0th LL, with negative energy E−0 (K) = −∆
2

at K and positive energy

E+
0 (−K) = ∆

2
at −K. This places the 0th LL at the top of the VB at K and at the

bottom of the CB at −K.

It is important to emphasize the emerging asymmetry of the energy structure in

both valleys which results in energy splitting between the first available CB state at

K and −K, called the valley Zeeman splitting (VZS) ∆V Z (shown in green in Fig.

5.3). ∆V Z is given by

∆V Z = E+
1 (K)− E+

0 (−K) ≈ ∆
(vf

∆

)2

~ωc, (5.30)

which increases with magnetic field strength B through ωc. The presence of the

splitting ∆V Z enables selective populating of the valleys with charges [63], as will

become apparent later in this chapter.

5.1.3 The effect of spin-orbit coupling.

I will now include the SO coupling in the LL spectrum for mDf by accounting for

SO splitting in CB and VB at K and −K, ∆C
SO and ∆V

SO respectively. The SO mDf
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Figure 5.3: Scheamtic asymmetric LL structure for mDf in both valleys (numbers
label energy levels). Blue (black and red) lines show energy bands for B = 0 (B > 0).
Red lines denote the 0th LL, which is located at the top of VB (bottom of CB) at
K (−K). Valley Zeeman splitting ∆V Z originating in the asymmetrical placement
of the 0th LL is shown in green.

Hamiltonian for both valleys in the basis {CB ↓, V B ↓, CB ↑, V B ↑} reads

HB
SO(K) =



∆
2
− ∆C

SO

2
−ivâ 0 0

ivâ† −∆
2
− ∆V

SO

2
0 0

0 0 ∆
2

+
∆C
SO

2
−ivâ

0 0 ivâ† −∆
2

+
∆V
SO

2



HB
SO(−K) =



∆
2

+
∆C
SO

2
ivâ† 0 0

−ivâ −∆
2

+
∆V
SO

2
0 0

0 0 ∆
2
− ∆C

SO

2
ivâ†

0 0 −ivâ −∆
2
− ∆V

SO

2


,

(5.31)
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where the SO splitting is opposite in both valleys. The solutions for spin s are

E±ns = s
∆C
SO + ∆V

SO

4
±

√
v2n+

(∆ + s
∆C
SO−∆V

SO

2

2

)2

∣∣Ψ±nms(K)
〉

=

α±n,s |n− 1,m〉

β±n,s |n,m〉


∣∣Ψ±nms(−K)

〉
=

 α±
∗

n,−s |n,m〉

β±n,−s |n− 1,m〉


(5.32)

and

α±n,s = −iv
√
n

N±n,s
,

β±n,s =
E±ns −

∆+s
∆CSO−∆VSO

2

2

N±n,s
,

N±ns =

√√√√2E±ns

(
E±ns −

∆ + s
∆C
SO−∆V

SO

2

2

)
.

(5.33)

Figure 5.4: Asymmetrical LL structure for mDf with SO splitting ∆V
SO > 0,∆C

SO = 0.
Red (blue) denotes spin up (down), and grey lines show the LLs for ∆V

SO = 0. Black
thick line marks the 0th LL at −K, which is not split by ∆V

SO > 0. Other LLs
for positive energies are split by ∆V

SO > 0 because of the nature of the mDf LL
wavefunction given by Eq. 5.32.
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The LL structure with SO splitting has been shown in Fig. 5.4 for ∆C
SO = 0 and

∆V
SO > 0 (∆V

SO and ∆ are not to scale) to emphasise the effect of strong SO splitting

for MoS2 at K and −K. Colors show spin-split LLs (red and blue for ↑ and ↓), while

grey shows the LL with no SO. Strong SO splitting in the VB causes large splitting of

LLs for negative energies, but also creates a smaller splitting of positive energy LLs,

according to Eq. 5.32. This is a consequence of the mixture of LLs from VB and CB

for mDf [156]. The only level, which does not exhibit splitting caused by ∆V
SO > 0

is the 0th LL at −K, due to the cancellation of the SO term in E+
0σ in Eq. 5.32. It

is apparent that the resulting LL structure is highly assymetric, and additionally, it

produces different ∆V Z(s) for opposite spins s [159].

5.1.4 Coupling to light.

This section describes how mDf in LLs couple to light. I will use the results of section

4.5 to arrive at the transition probability from VB to CB state. We start with the

same Hamiltonian of coupling to light Ĥ ′(σ±) as given in Eq. 4.46 and calculate the

matrix elements of Ĥ ′(σ±) in the basis of unperturbed LL states given in Eq. 5.24

and 5.28, in a similar fashion to Eq. 4.52. SO splitting does not change the derivation

procedure and will be accounted for in the end result. Let us start with the matrix

elements of Ĥ ′(σ±) for valley K, which read

〈
Ψ+
nm(K)

∣∣ Ĥ ′(σ+)
∣∣Ψ−n′m′(K)

〉
= −g

(
α+∗
n 〈n− 1,m|C,K β+∗

n 〈n,m|V,K

)
·

·

 0 eiωt

e−iωt 0


α−n′ |n′ − 1,m′〉C,K

β−n′ |n
′,m′〉V,K


= −g

(
e−iωtβ+∗

n α−n′V,K 〈n,m|
∣∣n′ − 1,m′

〉
C,K

+ eiωtα+∗
n β−n′C,K 〈n− 1,m|

∣∣n′,m′〉
V,K

)
,

(5.34)
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and analogously for opposite polarisation σ−. The matrix elements for both σ± in

valley K read

〈+| Ĥ ′σ+ |−〉 = −g
(
e−iωtβ+∗

n α−n′〈n,m|n
′ − 1,m′〉+ eiωtα+∗

n β−n′〈n− 1,m|n′,m′〉
)
CV
,

〈+| Ĥ ′σ− |−〉 = g
(
e−iωtα+∗

n β−n′〈n− 1,m|n′,m′〉+ eiωtβ+∗
n α−n′〈n,m|n

′ − 1,m′〉
)
CV
,

(5.35)

where |+〉 = |Ψ+
nm(K)〉 and C, V indices are written as CV for brevity. The reamining

matrix elements of Ĥ ′ are calculated analogously.

Then, analogously to Eq. 4.47, I can express the time dependent wavefunction as

|Ψ(t,K)〉 = cnm− (t)e−
i
~E
−
n t
∣∣Ψ−nm(K)

〉
+ cnm+ (t)e−

i
~E

+
n t
∣∣Ψ+

nm(K)
〉
, (5.36)

which is then inserted into the TDSE and the final equations, analogous to Eq. 4.54,

read

i~ ˙̃c+(t) = c̃−(t)H+−e
i
~
∫ t
0 (∆E+H++(t′)−H−−(t′))dt′ ,

i~ ˙̃c−(t) = c̃+(t)H−+e
i
~
∫ t
0 (∆E+H++(t′)−H−−(t′))dt′ ,

(5.37)

where H+− = 〈+| Ĥ ′ |−〉 and we can calculate the analogous expressions for valley

−K. To the first order in the electric field strength E0 and for c−(t = 0) = 1 we get

the expressions for both polarisations and both valleys:

σ+,K : ˙̃c+(t) = − g

i~

(
e−i(ω−

∆E
~ )tβ+∗

n α−n′〈n,m|n
′ − 1,m′〉+ ei(ω+

∆E
~ )tα+∗

n β−n′〈n− 1,m|n′,m′〉
)

σ−,K : ˙̃c+(t) =
g

i~

(
e−i(ω−

∆E
~ )tα+∗

n β−n′〈n− 1,m|n′,m′〉+ ei(ω+
∆E
~ )tβ+∗

n α−n′〈n,m|n
′ − 1,m′〉

)
σ+,−K : ˙̃c+(t) =

g

i~

(
e−i(ω−

∆E
~ )tα+

n β
−
n′〈n,m|n

′ − 1,m′〉+ ei(ω+
∆E
~ )tβ+∗

n α−
∗

n′ 〈n− 1,m|n′,m′〉
)

σ−,−K : ˙̃c+(t) = − g

i~

(
e−i(ω−

∆E
~ )tβ+∗

n α−
∗

n′ 〈n− 1,m|n′,m′〉︸ ︷︷ ︸
resonant

+ ei(ω+
∆E
~ )tα+

n β
−
n′〈n,m|n

′ − 1,m′〉︸ ︷︷ ︸
non−resonant

)
,

(5.38)

where terms with ω − ∆E are resonant absorption terms and ω + ∆E are non-

resonant. We use the rotating wave approximation and keep only the resonant terms



CHAPTER 5. MAGNETOEXCITONS OF MASSIVE DIRAC FERMIONS 106

to obtain

σ+,K : ˙̃c+(t) =
i

~
ge−i(ω−

∆E
~ )tβ+∗

n α−n′〈n,m|n
′ − 1,m′〉, (5.39a)

σ−,K : ˙̃c+(t) = − i
~
ge−i(ω−

∆E
~ )tα+∗

n β−n′〈n− 1,m|n′,m′〉CV ,

σ+,−K : ˙̃c+(t) = − i
~
ge−i(ω−

∆E
~ )tα+

n β
−
n′〈n,m|n

′ − 1,m′〉CV ,

(5.39b)

(5.39c)

σ−,−K : ˙̃c+(t) =
i

~
ge−i(ω−

∆E
~ )tβ+∗

n α−
∗

n′ 〈n− 1,m|n′,m′〉, , (5.39d)

similarly to Eq. 4.56. We obtain one dominant transition (boxed) and one much

weaker. This is because the terms with a prefactor α−n , β
+
n in Eq. 5.39a and Eq.

5.39d are much smaller for low n than the ones with β−n , α
+
n in Eq. 5.39b and Eq.

5.39c, because α−n , β
+
n � β−n , α

+
n for low n, as shown in Fig. 5.2. Later on I will focus

only on the dominant transitions. In order to determine the allowed transitions, we

notice that for the expressions in Eq. 5.39a-5.39d to be non-zero, we require that

σ+,K : n′ − 1 = n, m = m′ → ∆n = −1, ∆m = 0 (5.40a)

σ−,K : n′ = n− 1, m = m′ → ∆n = +1, ∆m = 0

σ+,−K : n′ − 1 = n, m = m′ → ∆n = −1, ∆m = 0,

(5.40b)

(5.40c)

σ−,−K : n′ = n− 1, m = m′ → ∆n = +1, ∆m = 0, (5.40d)

so the dominant (boxed) LL absorption selection rules are in short ∆n = ±1,∆m = 0

for ±K [62], which has been pictured in Fig. 5.5 by red solid (dashed) arrows for σ−

(σ+) polarisation. The selection rules corresponding to weaker transitions have been

marked with grey arrows. The arrows link only the LLs allowed by Eq. 5.40 and by

the assumption of a filled VB and empty CB.

We can now obtain the transition rate for the dominant absorption (boxed in Eq.

5.39b and Eq. 5.39c) from Fermi Golden rule, analogously to Eq. 4.58. It reads

∆n = ±1,±K : γfi =
|c̃+|2

t
= g2

∣∣∣α+
n β
−
n′

∣∣∣2 2π

~
δ(~ω −∆E), (5.41)
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Figure 5.5: Schematical representation of the optical selection rules for mdF LLs.
Thick red (thin grey) lines mark the dominant (weak) transitions allowed by Eq.
5.40. The dominant selection rules at ±K are ∆n = ±1,∆m = 0 for σ∓ (shown with
solid and dashed lines respectively) and opposite polarisation for the weak transitions.

where

W+n,−n′ = g2
∣∣α+

n β
−
n′

∣∣ (5.42)

is the dipole moment used in later sections, corresponding to σ− (σ+) polarisation at

K (−K).

5.2 Interacting massive Dirac fermions.

This section describes the interaction of mDf in LLs and derives a magnetoexciton

spectrum for mDf. I first discuss the form of scattering Coulomb matrix elements in

section 5.2.1 and consider valley polarisation due to the asymmetric LL structure in

section 5.2.2. Detailed expressions for the interacting Hamiltonian matrix elements

needed to solve the exciton problem are derived in section 5.2.3. My results on the

effect of interactions on VZS is discussed in section 5.2.4 and the magnetoexciton

absorption spectrum results are presented in section 5.2.5.
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5.2.1 Scattering Coulomb matrix elements.

I begin by considering the interaction of mDf in LLs, which are described by a wave-

function in Eq. 5.20. To explain the form of scattering Coulomb matrix elements I

will use the envelope function approximation, which separates two scales of the wave-

fucntion. The envelope of the wavefunction is assumed to be constant on the scale of

one unit cell, that is the scale of the oscillation of the periodic part u. For mDf LLs,

the C and V parts of the spinor wavefunction are given by Eq. 5.20. Let us consider

a Coulomb matrix element betwen different spinor components at K, e.g.

〈
V ±n1,m1

K, C±n2,m2
K
∣∣V ∣∣C±n3,m3

K, V ±n4,m4
K
〉

=

∫∫
drdr′V ±

∗

n1m1
(r)C±

∗

n2m2
(r′)·

· e2

4πεrε0

1

|r − r′|
C±n3m3

(r′)V ±n4m4
(r)

∼ e2

4πεrε0

∫∫
drdr′wn1,m1,K

∗

V (r)uK
∗

V (r)wn2,m2,K
∗

C (r′)uK
∗

C (r′)·

· 1

|r − r′|
wn3,m3,K
C (r′)uKC (r′)wn4,m4,K

V (r)uKV (r) (5.43)

where I separated r = (r, z) and I dropped the α, β factors in front which are indepen-

dent of r (they will be explicitly accounted for in the expressions for CI Hamiltonian

matrix elements in section 5.2.3).

I now distinguish between two length scales: within and outside of a single unit cell

of the crystal. I replace an integral
∫
dr in Eq. 5.43 by a summation over unit cells

and an integral over a single unit cell
∑
R

∫
UC

dr̃, whereR labels unit cells. Assuming

that the LL envelopes and the Coulomb potential changes slowly on the scale of a

unit cell, I can integrate out the unit cell space and again replace
∑
R ≈ Ω

∫
dR, to

obtain

〈
V ±n1,m1

K, C±n2,m2
K
∣∣V ∣∣C±n3,m3

K, V ±n4,m4
K
〉
∼
〈
uKV
∣∣ 〈uKC |uKC 〉 ∣∣uKV 〉 ·

· e2

4πεrε0

∫∫
dRdR′wn1,m1,K

∗

V (R)wn2,m2,K
∗

C (R′)
1

|R−R′|
wn3,m3,K
C (R′)wn4,m4,K

V (R)

= VV CCV 〈n1,m1;n2,m2|V |n3,m3;n4,m4〉 , (5.44)
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where

〈uKV |uKV 〉 =

∫
UC

dr̃uK
∗

V (r̃)uKV (r̃) = 1,

〈uKC |uKC 〉 =

∫
UC

dr̃uK
∗

C (r̃)uKC (r̃) = 1

(5.45)

and

VV CCV =
〈
uKV
∣∣ 〈uKC |uKC 〉 ∣∣uKV 〉 = 〈uKV |uKV 〉〈uKC |uKC 〉 = 1. (5.46)

The components V/Cni,mi decide on the nature of the matrix element and on the

products 〈uKV |uKV 〉, which in case of a matrix element V CV C are

VV CV C =
〈
uKV
∣∣ 〈uKC |uKV 〉 ∣∣uKC 〉 = 〈uKV |uKC 〉〈uKC |uKV 〉 ≈ 0. (5.47)

Analogously the other possible factors are

VV CCV = VCV V C = VV V V V = VCCCC = 1,

VV CV C = VCV CV ≈ 0.

(5.48)

However, because we made a significant approximation by separating the length scales

in Eq. 5.44, the relations in Eq. 5.46 and Eq. 5.47 do not hold exactly, which is why a

sign ≈ is placed in Eq. 5.48. In practice, I will consider two cases: VV CV C = VCV CV =

0 and VV CV C = VCV CV = 0.1.

The matrix elements in Eq. 5.44 involve also the Coulomb scattering matrix

elements between LL states, which can be obtained using an analytical formula, given

in Eq. 2.91. The computational details of evaluation of these matrix elements have

been described in the same section, 2.3.3.

Additionally, I have to consider the overall strength of the matrix element in Eq.

5.44. The expression in Eq. 2.91 is given in the units of Rydberg Ry, and it consists of

a unitless magnetic length lB = laB. I need to account for the effective units Ry∗, aB,

which can be obtained by extracting the effective mass m∗ from the energy bands,

given by solutions of the Hamiltonian in Eq. 4.27. I obtain m∗ = 0.34m0, where m0
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is the free electron mass. For a dielectric constant εr = 2.5 [162], this gives

Ry∗ =
~2

2m∗a2
B

=
e2

2 · 4πεrε0aB
,

aB =
4πεrε0~2

e2m∗
=
εrm0

m∗
a0 = 3.9Å,

Ry∗ =
Ry ·m∗

ε2
rm0

= 740meV,

VRy = Ry∗
1

l
= Ry∗

aB
lB

= 2.88eV ·
√
B.

(5.49)

The scattering Coulomb matrix elements described in this section make up the CI

Hamiltonian matrix elements derived in section 5.2.3.

5.2.2 Valley polarisation.

I will now populate the negative energy LLs derived in section 5.1.2 with N electrons,

to form a HF GS

|GS〉 =
∏
λ<λf

(
c−λ,K

)† ∏
λ<λf

(
c−λ,−K

)† |0〉 , (5.50)

where λ = (n,m, s) corresponds to a collective LL index and the superscript − stands

for LLs for negative energy (in the VB). A schematic picture of the HF GS has been

shown in Fig. 5.6. Due to large SO splitting in the VB, the VB LLs are split into red

(spin up) and blue (spin down).

Figure 5.6: HF GS for mDf. Red (blue) dots depict electrons with spin up (down)
populating levels below the Fermi level Ef . Spin splitting in the VB and the energy
gap are labelled with ∆SO and ∆ respectively.
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The HF GS involves many filled LLs, so to reach convergence of absorption spectra

in section 5.2.5, I will use a fixed number of electrons N and an energy cut-off Ec in

the VB, which restricts the number of filled LLs counted from the top of the VB and

allows for finite number of available SP states in my computations. This procedure

of choosing N and Ec is shown in Fig. 5.7 (left) for mDf LLs.

Figure 5.7: (left) Choice of EC , which determines the number of electron N in the
VB for a fixed degeneracy of a LL M = 3. Cases A and C contain more electrons at
K than −K, which causes a valley polarisation ρ. (right) ρ for mDf LLs oscillates
as a function of N . Cases A-C are marked with red dots.

The mDf LL energy structure, asymmteric in opposite valleys, creates a possibility

of filling the levels with unequal number of electrons in opposite valleys as Ec increases.

This produces a finite valley polarisation

ρ =
NK −N−K

N
, (5.51)

where NK and N−K counts the electrons in each valley. The choice of N , Ec and

strength of magnetic field B determines the value of ρ, which has been plotted in Fig.

5.7 (right) for the degeneracy of a LL M = 3. For case A, Ec < E−0 , and for cases B

and C Ec < E−1 . As N grows, ρ oscillates between 0 (unpolarised) and a finite value,
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which is maximised for ρ(N ≤M) = 1. This is due to the unpaired states within the

0th LL, which bring smaller contribution to ρ as N increases.

5.2.3 Single magneto-exciton Hamiltonian.

With the GS defined, I will now create excitations from this GS, as shown in Fig. 5.8,

where filled (empty) circles represent an electron (hole). Due to large SO splitting

in the VB, the energies of transitions A and B will be significantly different. I now

express the magnetoexciton wavefunction as a linear combination of all possible single

excitations as

|X, k〉 =
∑
ab

Aab,k |ab, k〉 , (5.52)

according to the definition in Eq. 2.85, where k = ±K labels valleys and |ab, k〉 is a

mDf LL excitation configuration for valley k, given as

|ab, k〉 =
∣∣Ψ+

b (k)
〉 ∣∣Ψ−a (k)

〉
, (5.53)

and the collective index a = (n,m, s) carries LL indices n,m and spin s and
∣∣Ψ+

b (k)
〉
,

|Ψ−a (k)〉 have been defined in Eq. 5.32. In analogy to Eq. 2.86, the wavefunction

coefficients Aab,k are obtained by solving the Bethe Salpeter equation (BSE)

( (
ε+bk + Σ+

bk

)
−
(
ε−ak + Σ−ak

)
− Vvertex(a, b, k)

)
Aab,k +

∑
ij

(Vajib − Vajbi)Aij,k = EAab,k. (5.54)

I will now construct the CI Hamiltonian in the basis of configurations |ab, k〉,

which needs to be diagonalised to solve Eq. 5.54. I will use the definitions introduced

in section 2.2.7. I start with a diagonal element, as in Eq. 2.89, which for mDf in LLs

reads

〈ab, k| ĤCI |ab, k〉 =
(
ε+
bk + Σ+

bk

)
−
(
ε−ak + Σ−ak

)
− Vvertex(a, b, k), (5.55)
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Figure 5.8: Single electron-hole excitations between mDf LLs. Red (blue) filled dots
depict electrons with spin up (down), empty dots denote holes (missing electrons).
Black arrows mark electrons promoted to the CB. Excitations different in energy have
been labelled with A and B. Spin splitting in the VB and the energy gap are labelled
with ∆SO and ∆ respectively.

where

Σ−ak = −
∑
λ<λf

〈
Ψ−a (k)Ψ−λ (k)

∣∣V ∣∣Ψ−a (k)Ψ−λ (k)
〉
,

Σ+
bk = −

∑
λ<λf

〈
Ψ+
b (k)Ψ−λ (k)

∣∣V ∣∣Ψ+
b (k)Ψ−λ (k)

〉
,

Vvertex(a, b, k) =
〈
Ψ−a (k)Ψ+

b (k)
∣∣V ∣∣Ψ+

b (k)Ψ−a (k)
〉

−
〈
Ψ−a (k)Ψ+

b (k)
∣∣V ∣∣Ψ−a (k)Ψ+

b (k)
〉
,

(5.56)

where to simulate a neutral system I am accounting for the uniform positive back-

ground charge, which produces contributions exactly cancelling the direct terms of

self energies Σ, leaving solely the exchange terms [162].

Let us examine the self energies Σ more closely. The general expression for Σ−ak,Σ
+
bk
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at K is

Σ+
nm = −

∣∣α+
n

∣∣2∑
n′m′

(∣∣α−n′∣∣2 〈n− 1,m;n′ − 1,m′|V |n− 1,m;n′ − 1,m′〉CCCC

+
∣∣β−n′∣∣2 〈n− 1,m;n′,m′|V |n− 1,m;n′,m′〉CV CV

)

−
∣∣β+
n

∣∣2∑
n′m′

(∣∣α−n′∣∣2 〈n,m;n′ − 1,m′|V |n,m;n′ − 1,m′〉V CV C

+
∣∣β−n′∣∣2 〈n,m;n′,m′|V |n,m;n′,m′〉V V V V

)

−α+∗

n β+
n

∑
n′m′

β−
∗

n′ α
−
n′ 〈n− 1,m;n′,m′|V |n,m;n′ − 1,m′〉CV V C

−β+∗

n α+
n

∑
n′m′

α−
∗

n′ β
−
n′ 〈n,m;n′ − 1,m′|V |n− 1,m;n′,m′〉V CCV

(5.57)

and

Σ−nm = −
∣∣α−n ∣∣2∑

n′m′

(∣∣α−n′∣∣2 〈n− 1,m;n′ − 1,m′| |n− 1,m;n′ − 1,m′〉CCCC

+
∣∣β−n′∣∣2 〈n− 1,m;n′,m′|V |n− 1,m;n′,m′〉CV CV

)

−
∣∣β−n ∣∣2∑

n′m′

(∣∣α−n′∣∣2 〈n,m;n′ − 1,m′|V |n,m;n′ − 1,m′〉V CV C

+
∣∣β−n′∣∣2 〈n,m;n′,m′|V |n,m;n′,m′〉V V V V

)

−α−∗n β−n
∑
n′m′

β−
∗

n′ α
−
n′ 〈n− 1,m;n′,m′|V |n,m;n′ − 1,m′〉CV V C

−β−∗n α−n
∑
n′m′

α−
∗

n′ β
−
n′ 〈n,m;n′ − 1,m′|V |n− 1,m;n′,m′〉V CCV ,

(5.58)

and a = (n,m), b = (n,m), λ = (n′,m′) and we neglect spin here for clarity.

I now calculate the self energy contribution to an electron-hole pair in lowest
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possible LLs at K as

δΣ10(m) = Σ+
1m − Σ−0m

= −
∣∣α+

1

∣∣2∑
m′

(∣∣α−1 ∣∣2 〈0,m; 0,m′|V |0,m; 0,m′〉CCCC

+ 〈0,m; 0,m′|V |0,m; 0,m′〉CV CV +
∣∣β−1 ∣∣2 〈0,m; 1,m′|V |0,m; 1,m′〉CV CV

)

−
∣∣β+

1

∣∣2∑
m′

(∣∣β−1 ∣∣2 〈1,m; 0,m′|V |1,m; 0,m′〉V V V V +
∣∣β−1 ∣∣2 〈1,m; 1,m′|V |1,m; 1,m′〉V V V V

)

− 2Re

(
α+∗

1 β+
1 β
−∗
1 α−1

∑
m′

〈0,m; 1,m′|V |1,m; 0,m′〉CV V C

)

+
∣∣α−1 ∣∣2∑

m′

〈0,m; 0,m′|V |0,m; 0,m′〉V CV C +
∑
m′

〈0,m; 0,m′|V |0,m; 0,m′〉V V V V

≈
(
VV V V V −

∣∣α+
1

∣∣2 VCV CV )·
·
∑
m′

(
〈0,m; 0,m′|V |0,m; 0,m′〉+

∣∣β−1 ∣∣2 〈0,m; 1,m′|V |0,m; 1,m′〉

)
, (5.59)

where I used
∣∣β−0 ∣∣2 =

∣∣β+
0

∣∣2 = 1 and assumed |α−n |
2 ≈ 0 and |β+

n |
2 ≈ 0 for low n and

the amplitudes of the Coulomb matrix elements (e.g. VV V V V ) have been factored out

in front of the expression in Eq. 5.59, and their values are given in Eq. 5.48. The

resulting value of the electron-hole pair self energy δΣ10(m) has been plotted in Fig.

5.9 for B = 60T . The values of δΣ10(m) for large m decrease due to finite size effects,

which appear for this infinite lattice model when the CI basis needs to be truncated

to a finite number of LLS. Therefore, for modelling a bulk system, I need to remove

this artefact and in the following sections I will consider an unchanging δΣ10(m = 0).

An analogous expression to Eq. 5.59 can be found for −K and, for both valleys,

the electron-hole self energies δΣ read

δΣ10(m,K) ≈
(
VV V V V −

∣∣α+
1

∣∣2 VCV CV )·
·
∑
m′

(〈
0,m; 0,m′

∣∣V ∣∣0,m; 0,m′
〉

+
∣∣β−1 ∣∣2 〈0,m; 1,m′

∣∣V ∣∣0,m; 1,m′
〉)

δΣ01(m,−K) ≈
( ∣∣β−1 ∣∣2 VV V V V − VCV CV ) ∣∣β−1 ∣∣2∑

m′

〈
0,m; 0,m′

∣∣V ∣∣0,m; 0,m′
〉
,

(5.60)

which shows that δΣ10(m,K) > δΣ01(m,−K) because
∣∣β−1 ∣∣2 < 1. This is due to the
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Figure 5.9: Self energy of an electron in a massive Dirac fermion Landau level. Chang-
ing values of Σ for growing m appear due to a finite size effect due to the truncation
of the CI basis.

assymetrically filled VB, with the 0th LL in the VB located at K.

I now evaluate the remaining terms of the CI Hamiltonian. The vertex correction

terms for both valleys read

Vvertex(n1,m1, n2,m2,K) ≈
∣∣α+

n2

∣∣2 ∣∣β−n1

∣∣2( 〈n2 − 1,m2;n1,m1|V |n1,m1;n2 − 1,m2〉CV V C

− 〈n2 − 1,m2;n1,m1|V |n2 − 1,m2;n1,m1〉CV CV

)

Vvertex(n1,m1, n2,m2,−K) ≈
∣∣α+

n2

∣∣2 ∣∣β−n1

∣∣2( 〈n2,m2;n1 − 1,m1|V |n1 − 1,m1;n2,m2〉V CCV

− 〈n2,m2;n1 − 1,m1|V |n2,m2;n1 − 1,m1〉V CV C

)
,

(5.61)

where I assumed |α−n |
2 ≈ 0 and |β+

n |
2 ≈ 0. I need also to evaluate the off-diagonal

terms using Eq. 2.90, and for two different configurations I obtain

〈bc, k′| ĤCI |ad, k〉 =
〈
Ψ−a (k)Ψ+

c (k′)
∣∣V ∣∣Ψ−b (k′)Ψ+

d (k)
〉

− δss′
〈
Ψ−a (k)Ψ+

c (k′)
∣∣V ∣∣Ψ+

d (k)Ψ−b (k′)
〉
.

(5.62)
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where the attractive term 〈Ψ−a (k)Ψ+
c (k′)|V

∣∣Ψ+
d (k)Ψ−b (k′)

〉
is “direct” w.r.t. band in-

dices but “exchange” w.r.t. k indices and the repulsive term 〈Ψ−a (k)Ψ+
c (k′)|V

∣∣Ψ−b (k′)Ψ+
d (k)

〉
has opposite features. The off-diagonal terms for both valleys read

〈bc,K| ĤCI |ad,K〉 ≈β−
∗

n1sα
+∗

n′2s
′β
−
n′1s
′α

+
n2s

(
〈n1,m1;n′2 − 1,m′2|V |n′1,m′1;n2 − 1,m2〉V CV C

−δss′ 〈n1,m1;n′2 − 1,m′2|V |n2 − 1,m2;n′1,m
′
1〉V CCV

)
,

〈bc,−K| ĤCI |ad,−K〉 ≈β−
∗

n1sα
+∗

n′2s
′β
−
n′1s
′α

+
n2s

(
〈n1 − 1,m1;n′2,m

′
2|V |n′1 − 1,m′1;n2,m2〉V CV C

−δss′ 〈n1 − 1,m1;n′2,m
′
2|V |n2,m2;n′1 − 1,m′1〉V CCV

)
,

(5.63)

where a = (n1,m1, s), b = (n′1,m
′
1, s
′), c = (n′2,m

′
2, s
′), d = (n2,m2, s) and I also

assumed |α−n |
2 ≈ 0 and |β+

n |
2 ≈ 0.

The last remaining matrix element of the CI Hamiltonian is an intervalley off-

diagonal element, i.e. for excitations in two different valleys (k 6= k′ in Eq. 5.62).

Using Eq. 5.44, I calculate the biggest contribution to this matrix element, assuming

again |α−n |
2 ≈ 0 and |β+

n |
2 ≈ 0, which reads

〈bc,−K| ĤCI |ad,K〉 ≈
〈
V −a K, C+

c −K
∣∣V ∣∣V −b −K, C+

d K
〉

− δss′
〈
V −a K, C+

c −K
∣∣V ∣∣C+

d K, V −b −K
〉

=
〈
uKV
∣∣ 〈u−KC |u−KV 〉 ∣∣uKC 〉 β−∗n1s

α+∗

n′2s
′β
−
n′1s
′α

+
n2s
〈n1,m1;n′2,m

′
2|V |n′1,m′1;n2,m2〉

− δss′
〈
uKV
∣∣ 〈u−KC |uKC 〉 ∣∣u−KV 〉

β−
∗

n1s
α+∗

n′2s
′β
−
n′1s
′α

+
n2s
〈n1,m1;n′2,m

′
2|V |n2,m2;n′1,m

′
1〉

= V K−K−KKV CV C β−
∗

n1s
α+∗

n′2s
′β
−
n′1s
′α

+
n2s
〈n1,m1;n′2,m

′
2|V |n′1,m′1;n2,m2〉

− δss′V K−KK−KV CCV β−
∗

n1s
α+∗

n′2s
′β
−
n′1s
′α

+
n2s
〈n1,m1;n′2,m

′
2|V |n2,m2;n′1,m

′
1〉 (5.64)

where a = (n1,m1, s), b = (n′1,m
′
1, s
′), c = (n′2,m

′
2, s
′), d = (n2,m2, s). The factors

V K−K−KKV CV C and V K−KK−KV CCV in Eq. 5.64 never involve the same periodic functions u,

because the matrix element is either “direct” in band index and “exchange” in valley

index or “exchange” in band index and “direct” in valley index. This makes these

elements close to 0, which will introduce negligible splittings in the Bethe-Salpeter

solutions [49]. I will therefore neglect the intervalley scattering in my calculations of

the magneto-exciton spectrum.
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5.2.4 Renormalisation of valley Zeeman splitting with inter-

actions.

Section 5.2.3 discusses all contributions to the interacting Hamiltonian for a magneto-

exciton. Here I show the effect of the self energy on VZS given by Eq. 5.30 and shown

in Fig. 5.3. Using Eq. 5.57 for valley K and analogously for −K, the renormalised

VZS with self energy contribution becomes

∆Σ
V Z(m) = ∆V Z + Σ+

1m(K)− Σ+
0m(−K). (5.65)

Figure 5.10: (left) Choice of N determines the valley polarisation ρ. Cases A and
C exhibit ρ > 0. (right) VZS ∆V Z renormalised by interactions as a function of N
shown together with ρ(N). The oscillations of ∆V Z follow the oscillations of ρ.

I have computed ∆Σ
V Z(m = 0) renormalised by interactions for three lowest CB

LL in both valleys, which has been shown in Fig. 5.10 for B = 60T and for M =

24 (Fig. 5.10 left shows only 3 particles in a LL for clarity). It shows oscillatory

behaviour, which mimics the valley polarisation ρ. In an unpolarized case the VZS

renormalised by interactions decreases with the number of particles N and it increases

when polarisation is present [159].
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5.2.5 Magnetoexciton absorption spectrum.

After solving the BSE given in Eq. 5.54 we obtain the magnetoexciton wavefunctions

|X, k〉µ given by Eq. 5.52 and energies Ek
µ. We can calculate the magnetoexciton

absorption spectrum from Fermi’s golden rule as [148]

A(ω, k) =
∑
µ

∣∣∣〈X, k|µ P̂ † |GS〉∣∣∣2 δ(~ω − Ek
µ), (5.66)

where the GS has been defined in Eq. 5.50 and Ek
µ are measured from the GS. In Eq.

5.66 P̂ † is the interband polarisation operator corresponding to photon absorption

given by

P̂ † =
∑
ab

dab
(
c+
b

)†
c−a , (5.67)

where dab is the dipole moment given by

dab = Wnn′ = g2
∣∣α+∗

n β−n′
∣∣ , (5.68)

where Wnn′ has been derived in Eq. 5.42. To compute the absorption spectrum in

Eq. 5.66 I have used the selection rules ∆m = 0,∆n = ±1 for valleys ±K, derived

in Eq. 5.40 and shown in Fig. 5.5 with red arrows.

Fig. 5.11 shows the absorption spectrum A(ω,K) for NLL = 1 LL in VB and

CB, with VV CCV = 1 and VCV CV =0. Panels a-d show how different contributions

to the CI Hamiltonian affect the spectrum. The axis is measured in a SP gap with

no SO, but the exciton lines include SO (shown in red and blue for exciton A and

B). I start with SP energies, which gives many degenerate exciton lines at energy

differences calculated from Eq. 5.32. Inclusion of the self energy contributions given

by Eq. 5.57 and Eq. 5.58 shifts the spectrum for all lines, which remain degenerate.

This is because I implemented the correction of finite-size effects by using Σ(m = 0)

for all m states. The vertex correction given in Eq. 5.61 is different for all m, which

splits the exciton lines. Finally, I include the off-diagonal terms of the Hamiltonian,

which is responsible for scattering of configurations. This changes the composition of
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Figure 5.11: Magnetoexciton absorption spectrum for mDf for NLL = 1, M = 24
and B = 60 T. Colors denote spins. a) With no interactions all exciton lines are
equal to the SP energy of an electron-hole pair. b) Self-energy contribution shifts all
exciton lines to higher energies. c) Vertex correction is different for each excitation,
which splits the lines. Off-diagonal terms in the Hamiltonian produce varied oscillator
strength and one dominant peak for each spin remains. All contributions to the
exciton energy cancel almost exactly.

each exciton state and is responsible for the fading of the oscillator strength of the

exciton lines. The blue shifts from self energy are almost exactly cancelled by the red

shifts from vertex correction and scattering of configurations, so the final peaks are

slightly blue-shifted w.r.t. the SP energies [159].

A similar case is showed in Fig. 5.12 for NLL = 3 LLs in CB and VB. However,

the resulting absorption peaks are shifted more towards higher energies as all the

contributions do not fully cancel. A single exciton line for each spin remains dominant

even for more LLs included in the CI basis. The difference in oscillator strength for

absorption peaks on panel a-c is due to the varying transition probability Wnn′ .

Fig. 5.13 shows the position of the dominant absorption peak for both spins for

up to NLL = 7 LLs and M = 5 included in the calculations. Each panel includes one

more LL than the previous panel. A converging tendency of the exciton energies is

visible when it reaches ≈ 130meV above the SP gap marked with a green line on all

panels.

Fig. 5.14 shows the exciton A (lower energy) dominant absorption peak energy
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Figure 5.12: Magnetoexciton absorption spectrum for mDf for NLL = 3, M = 24 and
B = 60 T. Panels a-d shows the same contributions as Fig. 5.11. The final absorption
peaks are blue-shifted w.r.t. SP energy gap.

Figure 5.13: Final magnetoexciton absorption peaks for mDf for NLL = 1 → 7,
M = 5 and B = 60 T. The absorption peaks move to higher energies as NLL grows.
A converging tendency is visible for high NLL.

for both valleys as a function of the valley polarisation ρ defined in Eq. 5.6. As more

LLs are filled with electrons, the absorption peaks shift towards higher energies. For

all N it is clearly visible that the exciton peak at K remains at higher energy than

the exciton absorption peak at −K. This can be attributed to higher self-energy

contribution to the exciton energy at K, as demonstrated in Eq. 5.59 for low n. This

is a consequence of the assymetrical LL structure in both valleys.
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Figure 5.14: Magnetoexciton absorption spectrum for exciton A for NLL = 1 → 3,
M = 24 and B = 60 T for both valleys. The exciton energy follows the valley
polarisation and remains smaller in valley −K than in valley K, as N is increased.
Colors label spins and valleys for exciton A.

Figure 5.15: a) Magnetoexciton absorption spectrum for NLL, M = 24 and B = 60
T. b) Effect of the exchange term in vertex correction (VCV CV = 0.1). Second exciton
line for each spin dominates and peaks move to higher energies. c) The effect of spin
mixing on the absorption spectrum. The peak at higher energy dominates and is
visible at ≈ 1.15∆.

I now allow for nonzero VCV CV = 0.1 and spin mixing of configurations. Fig.

5.15 shows the resulting absorption spectrum in subsequent steps. Panel b shows the

exciton lines in case of nonzero exchange between the electron and a hole, given in

Eq. 5.61 by the term with VCV CV contribution. This causes the second exciton line to

acquire oscillator strength, as the whole spectrum shift to higher energies at the same

time. Panel c shows the effect of the scattering of different spin configurations as
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dictated by Eq. 5.63. Both spin contributions have been pictured with continuously

varying color from red (spin up mostly) to blue (spin down mostly) and purple denotes

equal spin contributions. The emerging peak has a mixed spin composition with more

spin down contribution and appears at much higher energy than the SP gap. Weak

residual spin up peak is still visible at energies slightly higher than the SP gap.



Chapter 6

Electron-electron interactions in

parabolic gated MoS2 quantum

dots

This chapter presents a theory of SP and many-body properties of parabolic MoS2

QDs [163, 164]. Section 6.1 contains the TB model of a finite MoS2 structure and is

followed by the results on the SP energy structure of a parabolic QD in section 6.2.

I discuss the details of the electron-electron interactions in MoS2 QDs in section 6.3

and give prediction of broken-symmetry many-body states in these nanostructures in

section 6.4.

6.1 Tight-binding model for MoS2 quantum dots.

In this section I derive the TB model of a MoS2 finite structure and of an electrostat-

ically defined parabolic MoS2 QD. I will first consider a rectangular piece of MoS2 in

section 6.1.1, which will serve as a computational box for an atomistic problem of a

single electron in a parabolic QD in section 6.1.2. Section 6.1.3 discusses the same

problem in the Bloch basis, which provides information on valley effects in QDs.

124
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6.1.1 Nanostructures of MoS2 in the basis of atomic orbitals.

I first consider a rectangular piece of MoS2 shown in Fig. 6.1. The unit cell contains

four lattice sites (marked with a green rectangle) and is repeated by a multiple of the

supercell vectors d1 and d2 (shown in Fig. 6.1) to make an entire structure. I will

identify structures of different sizes by numbers N ×M of the repetitions of the unit

cell.

Figure 6.1: Rectangular piece (supercell) of MoS2.Green box marks the unit cell of a
rectangular structure with 4 sites. Vectors di define the repetition of the unit cell to
form supercell contained in the blue box.

I will use the 6-band TB model derived in section 4.1 but, because I want to study

finite structures, k will generally not be a good quantum number, so I will write the

TB Hamiltonian in the basis of all the A & B (A = Mo,B = S2) sites within the
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rectangle

ĤTB
QD =

∑
i

∑
α={m

d
=0,±2}

EA
α c
†
i,A,αci,A,α +

∑
i

∑
β={mp=0,±1}

EB
β c
†
i,B,βci,B,β

+
∑
<i,j>

∑
α={m

d
=0,±2}

∑
β={mp=0,±1}

(
Tij,αβc

†
i,A,αcj,B,β + h.c.

)

+
∑

<<i,j>>

∑
α,α′={m

d
=0,±2}

(
UA
ij,αα′c

†
i,A,αcj,A,α′ + h.c.

)

+
∑

<<i,j>>

∑
β,β′={mp=0,±1}

(
UB
ij,ββ′c

†
i,B,βcj,B,β′ + h.c.

)
,

(6.1)

where T is a 3 × 3 NN hopping integral matrix in the basis of orbitals equal to

Tij,α,β = 〈ϕα(r)|V |ϕβ(r + δj)〉 defined in Eq. 4.11 and UA/B is a 3×3 NNN hopping

integral matrix in the basis of orbitals equal to UA
ij,α,α′ = 〈ϕα(r)|V |ϕα′(r + γj)〉

defined in Eq. 4.22 and 4.24 and EA/B
α/β is a 3×3 diagonal matrix of onsite energies for

orbitals and A & B denote sublattices. Note that the pairs of NN and NNN atoms

could obey periodic boundary conditions (PBC) or not - I will begin by selecting pairs

of neighbours without PBC.

Figure 6.2: Rectangular MoS2 2 × 2 computation box. Numbers label the atoms
within sublattice A.

It is useful to represent the Hamiltonian in Eq. 6.1 for the smallest meaningful

case of 2 × 2 supercells without PBC (pictured in Fig. 6.2) in a matrix form in the
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basis of atoms {1A, 2A, 3A, ..., 1B, 2B, 3B, ...}

ĤTB
QD =





EA UA UA

EA UA UA UA UA

EA UA

EA UA

EA UA UA

EA UA UA

EA UA

EA





T T

T T T

T T T

T T

T T

T T

T T T

T




EB UB UB UB

EB UB UB

EB UB UB UB

EB

EB UB UB

EB UB UB

EB UB

EB





,

(6.2)

where each T is understood as a 3×3 matrix in the basis of orbitals Tij,α,β = Tα,β(θij),

dependent on angle θij, originating in directional cosines defined in Eq. 4.13, and

each UA/B is understood as a 3×3 matrix in the basis of orbitals UA
ij,α,α′ = UA

α,α′(φij),

dependent on angle φij, originating in directional cosines defined in Eq. 4.26. Explicit

forms of the elements in Eq. 6.2 read

EA =


Em

d
=−2

Em
d

=0

Em
d

=+2

 EB =


Emp=−1

Emp=0

Emp=+1

 (6.3)

T (θ) =


V1e

iθ −V2e
2iθ −V3e

3iθ

−V4e
−iθ −V5 −V4e

iθ

−V3e
−3iθ −V2e

−2iθ V1e
−iθ

 (6.4)

UA(φ) =


W1 W3e

2iφ W4e
4iφ

W3e
−2iφ W2 W3e

2iφ

W4e
−4iφ W3e

−2iφ W1

 UB(φ) =


W5 0 W7e

2iφ

0 W6 0

W7e
−2iφ 0 W5

 , (6.5)

where V1−5 and W1−7 have been defined in Eq. 4.17 and 4.28.

The dimension of the Hamiltonian matrix in Eq. 6.2 is Ndim(N ×M) = 3 · 2 · 2 ·
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Figure 6.3: Periodic boundary conditions in a rectangular piece of MoS2. Numbers
label some edge atoms to demonstrate the process of finding NN within the copies of
a supercell repeated in space.

(N ·M), which for the case of a 2× 2 structure is Ndim(2× 2) = 48.

Now, if I consider the PBC, I must fill in additional matrix elements in the matrix

in Eq. 6.2 corresponding to neighbours linked across the edges of the structure, as

shown in Fig. 6.3 for a bigger structure. Some edge atoms have been numbered to

depict how the structure is repeated in space to enable PBC.

The Hamiltonian matrix in Eq. 6.1 is diagonalised for a N ×M structure with or

without PBC to obtain the eigenvalues and eigenvectors. Details on the diagonalisa-

tion routines have been included in section 2.3.1.

Fig. 6.4 shows the energy spectrum of a 6×6 structure with and without PBC for

comparison. It is visible how a gap opens in the structure treated with PBC. This is

due to elimination of edge effects, which is demonstrated in Fig. 6.5. The orientation

of the lattice in Fig. 6.5 is the same as in Fig 6.3, so right (left) edge is built of Mo (S)

atoms. Fig. 6.5 shows the wavefunction amplitude of states 288-291, which appear

in the gap in case without PBC. The wavefunction is strongly localised on Mo atoms

on the box edges. Therefore, studying the structures with PBC enables me to remove

the edge effects, which will prove useful in case of electrostatically confined QD.
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Figure 6.4: Comparison of the energy spectrum of a 6× 6 MoS2 QD with (red) and
without PBC (black). A gap opens at ≈ 0− 2 eV.

Figure 6.5: Wavefunction amplitude for states 288-291 for a 6×6 MoS2 piece without
PBC. They are edge states, which can be eliminated if PBC is employed. Bright color
denote higher amplitude.

6.1.2 Electrostatically defined MoS2 quantum dots.

This section includes description of the QDs that are defined electrostatically within

a nanostructure of MoS2. Contrary to graphene, MoS2 is a semiconductor, which
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makes it possible to trap charges within potential wells in its plane. We want to do

so to enable manipulation of single charges within a QD for e.g. quantum computing

applications. It is done by adding an external parabolic potential (shown in Fig. 6.6)

to the Hamiltonian describing a piece of MoS2 given in Eq. 6.1. The parabolic form

of the potential is used because any smooth potential profile can be described by a

parabola at low energies, and a single practical parameter ω (shell spacing) can be

used to describe the eigenstates of a parabolic well. The external potential can be

generated by metallic gates placed on top of the nanostructure. The gates introduce

a perpendicular electric field to the MoS2 layer, which modifies the onsite energies on

atomic sites. Such metallic gates are typically located far above and below the plane

of MoS2, which keeps the potential difference between the top and bottom edge of

the crystal very small, so the assumption made in our TB model in section 4.1 on the

even nature of contributing orbitals still holds (I estimate the effect of odd admixture

to the wavefunction below 1%).

Figure 6.6: External confining parabolic potential well with radius RQD = 40nm and
Vmax = 300 meV.

The Hamiltonian of an electrostatically confined parabolic QD with radius RQD

is given by

Ĥpara = ĤTB
QD +

∑
iα

Vic
†
iαciα, (6.6)
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where Vi is the external potential on an atomic site generated by metallic gates given

by

Vi = V (ri) =


1
2
ω̃2r2

i − Vmax, |ri| 6 RQD,

0, |ri| > RQD,

(6.7)

where ω̃ =
√

2|Vmax|/R2
QD is the corresponding harmonic oscillator level spacing

defined by the depth of the confining potential Vmax. In Eq. 6.7, i runs over all the A

and B sites of the N ×M computational box of the MoS2. While choosing RQD we

keep the size of the computational box sufficiently big so that the confined states are

not affected by the edges. To avoid clouding the energy spectrum with edge states

while analysing the confined states, we use PBC. As we are interested in additional

electrons trapped in the potential well I will focus on the lowest states within the CB.

These states should not be associated with the edges and therefore should not depend

on the choice of the boundary conditions. Fig. 6.7 shows the energy spectrum of the

same computation box 24 × 16 with a confined QD of the same radius RQD = 2nm

in two cases: with and without PBC. For such small dot we obtain only two confined

energy shells (highlighted in boxes), which remain at the same energy in both cases.

This proves that we can study those confined states with PBC, which eliminates the

effect of the edges of computation box for boxes sufficiently larger than RQD.

Figure 6.7: Comparison of the energy specturm of a 24× 16 computation box with a
confined QD of RQD = 2nm with (red) and without PBC (black). Boxed levels are
the same for both cases and are therefore confined inside the QD.
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6.1.3 MoS2 quantum dots in the basis of Bloch states.

Below I will show how to obtain the energies of MoS2 confined QD in the basis of

Bloch states instead of atomic sites to gain the important information about the

origin of levels in k-space. I will consider different shapes of the computational box:

rectangular (as shown in Fig. 6.1) and romboidal (Fig. 6.8), with PBC in each case.

Each computational box is composed of N ×M unit supercells, as before. We will

now label the unit supercells as Rij = (i, j) = (i − 1)d1 + (j − 1)d2, where d1 and

d2 are the supercell vectors for a chosen shape of a computational box.

Figure 6.8: N ×M romboidal computation box. Unit cell is shown in a dashed box.
Unit vectors of a hexagonal lattice ai are the same as the supercell vectors di.

I will use the Fourier transform of the operators in the site basis cijA/B(c†ijA/B) to

obtain the operators in the Bloch basis apqA/B(a†pqA/B):

a†pq,A/B =
1√
NM

∑
ij=1,N,M

e−ikpq(i,j)c†ij,A/B,

apq,A/B =
1√
NM

∑
ij=1,N,M

eikpq(i,j)cij,A/B,

c†ij,A/B =
1√
NM

∑
pq=1,N,M

eikpq(i,j)a†pq,A/B,

cij,A/B =
1√
NM

∑
pq=1,N,M

e−ikpq(i,j)apq,A/B,

kpq = p
v1

N
+ q

v2

M
, p = 0, ..., N − 1, q = 0, ...,M − 1,

(6.8)

where v1 and v2 are reciprocal supercell vectors, obtained from supercell vectors d1
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and d2, which are equal to hexagonal lattice unit vectors a1 and a2 for a romboidal

box and are distinct for a rectangular box:

dromb1 = a1 = d‖
√

3(−
√

3

2
,
1

2
), drect1 = d‖

√
3(0, 1),

dromb2 = a2 = d‖
√

3(−
√

3

2
,−1

2
), drect2 = d‖

√
3
(√

3, 0
)
,

(6.9)

as shown in Fig. 6.8 for a rhombus and in Fig. 6.1 for a rectangle. Then the reciprocal

supercell vectors read

vromb1 = G1 =
2π

d‖
√

3

(
− 1√

3
, 1

)
, vrect1 =

2π

d‖
√

3
(0, 1),

vromb2 = G2 =
2π

d‖
√

3

(
− 1√

3
,−1

)
, vrect2 =

2π

d‖
√

3

(
2√
3
, 0

)
,

(6.10)

where G1 and G2 are reciprocal lattice vectors of the hexagonal lattice. The resulting

mesh of kpq has been shown in detail in Fig. 6.9 with black dots for both shapes of

computation boxes. High symmetry points and the contours of the reciprocal lattice

have been marked.

Figure 6.9: k-point meshes for a (left) romboidal and (right) rectangular computation
boxes (6 × 6 and 12 × 12 respectively). Black lines give BZ edges. High symmetry
points are labelled with colorful dots. Reciprocal supercell vectors v are shown (they
are the same as reciprocal lattice vectors G for a rhombus piece).

I will now transform the QD Hamiltonian given by Eq. 6.1 into the Bloch state
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basis in parts ĤTB
QD = Ĥonsite

QD + ĤNN
QD + ĤNNN

QD . Using Eq. 6.8, the onsite terms of the

QD Hamiltonian given by Eq. 6.1 can be expressed as

Ĥonsite
QD =

∑
ij

∑
α={m

d
=0,±2}

EAα c
†
ij,A,αcij,A,α +

∑
ij

∑
β={m

d
=0,±2}

EBβ c
†
ij,B,βcij,B,β

=
1

NM

∑
pq,rs

∑
ij

ei(kpq−krs)Rij

∑
α={m

d
=0,±2}

(
EAα a

†
pq,A,αars,A,α + EBβ a

†
pq,B,βars,B,β

)

=
∑
pq

∑
α={m

d
=0,±2}

(
EAα a

†
pq,A,αapq,A,α + EBβ a

†
pq,B,βapq,B,β

)
,

(6.11)

because
∑

ij e
i(kpq−krs)Rij = NMδpr,qs for a periodic system. The NN terms are ex-

pressed analogously as

ĤNN
QD =

∑
ij

α={m
d
=0,±2}

β={mp=0,±1}

(
Tαβ(θ1)c†ij,A,αcij,B,β+Tαβ(θ2)c†ij,A,αci+1j,B,β+Tαβ(θ3)c†ij,A,αcij+1,B,β+h.c.

)

=
∑
pq

∑
α={m

d
=0,±2}

β={mp=0,±1}

e−ikpqb

(
Tαβ(θ1) + Tαβ(θ2)eikpqa2 + Tαβ(θ3)eikpqa1 + h.c.

)
a†pq,A,αapq,B,β

=
∑
pq

∑
α={m

d
=0,±2}

β={mp=0,±1}

fαβMoS2
(kpq))a

†
pq,A,αapq,B,β (6.12)

and the NNN terms for sublattice A are expressed as

ĤNNN
QD =

∑
ij

∑
α,α′={m

d
=0,±2}

(
UAαα′(φ1)c†ij,A,αcij−1,A,α′ + UAαα′(φ2)c†ij,A,αci+1,j−1,A,α′

+ UAαα′(φ3)c†ij,A,αci+1j,A,α′ + UAαα′(φ4)c†ij,A,αcij+1,A,α′

+ UAαα′(φ5)c†ij,A,αci−1,j+1,A,α′ + UAαα′(φ6)c†ij,A,αci−1j,A,α′ + h.c.

)
=
∑
pq

∑
α,α′={m

d
=0,±2}

(
UAαα′(φ1)e−ikpqa1 + UAαα′(φ2)e−ikpq(a2−a1) + UAαα′(φ3)eikpqa2

+ UAαα′(φ4)eikpqa1 + UAαα′(φ5)e−ikpq(a1−a2) + UAαα′(φ6)e−ikpqa2 + h.c.

)
a†pq,A,αapq,A,α′

=
∑
pq

∑
α,α′={m

d
=0,±2}

gαα
′

MoS2
(kpq)a

†
pq,A,αapq,A,α′ (6.13)

and analogously for sublattice B. Phases θ and φ in expressions in Eq. 6.11,6.12 and

6.13 correspond to NN and NNN phases given in Eq. 4.13 and 4.26.

It is apparent that ĤTB
QD is block-diagonal in k-states, where the blocks are in the

basis of sublattices A and B. However, when the external confining potential is added,

the problem is not periodic in space any more. Therefore the k-blocks are mixed.
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Figure 6.10: (left) Energy levels of QD states with (red) and without (black) the
confining potential for a rhombus box. (right) k-point distribution of the wavefunction
for states #1 (#2) (encoded in colorful dot sizes) has been shown for both cases in
panel 1 (2). Without the confining potential the state is localised at −K, and with
the confining potential it spreads to surrounding k-points. Small valley mixing is
visible.

The full form of the Hamiltonian with the confining term given in Eq. 6.6 expressed

in the Bloch state basis reads

Ĥpara = ĤTB
QD +

∑
ijα

VijAc
†
ij,A,αcij,Aα +

∑
ijβ

VijBc
†
ij,B,βcij,Bβ

= ĤTB
QD +

∑
ij

pq,rs

ei(kpq−krs)Rij

(∑
α

VijAa
†
pq,A,αars,A,α +

∑
β

VijBe
i(kpq−krs)ba†pq,B,βars,B,β

)
, (6.14)

which is not diagonal in k-basis. In order to diagonalise Hamiltonian given in Eq.

6.14, I use the mesh of k-points given by PBC for a chosen shape and size of a

box (Fig. 6.9). Solutions of the Hamiltonian in Eq. 6.14 are naturally the same

as in section 6.1.2 but this time the eigenvectors carry the information about the

k-point distribution. An example of such eigenvector has been shown in Fig. 6.10.

The energy levels are obtained for a 12 × 12 computation box with and without a

confining potential (shown in red and black respectively). The panels 1 and 2 show

the k-point distribution of the eigenvector of state 1153 in both cases (size of a dot

encodes the amplitude for a given k-point). Without the confining potential the whole

wavefunction is located in the K-point, and when the potential is added, the state

spreads to surrounding k-points. Very slight mixing of both valleys is also visible.
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6.2 Single particle energy spectrum.

In this section I will present the results I have obtained on the SP properties of

MoS2 QDs. The energy structure for QDs with radii RQD = 12, 15, 18, 20 nm and

Vmax = 300 meV have been shown in Fig. 6.11. The computations were performed

on a 160 × 220 box with PBC and no SO splitting. As the radius RQD grows, more

states are confined within the dot, and the spacing between states decreases.

Figure 6.11: Energy levels of MoS2 QDs with RQD = 12, 15, 18, 20 nm (colors). Lower
ladder of states can be attributed to valleys ±K, while higher levels originate in Q-
points. For growing RQD level spacing decreases.

In the low-energy spectrum in Fig. 6.11 states originating in valleys ±K are

visible. They have been described in section 6.2.1. At higher energies a ladder of

states associated with the Q-points appears, which I described in section 6.2.2. The

effects of SO coupling in MoS2 have been neglected in section 6.2.1 and 6.2.2 and are

discussed finally in section 6.2.3.

6.2.1 Spectrum associated with valleys K and −K.

I will now discuss the low-energy levels associated with the K valleys.

The levels form groups of almost-degenerate shells, spaced equally by ω, as shown

schematically in green in Fig. 6.12 (left). It resembles a HO spectrum consisting of

electronic shells, but in case of the QD, the spectrum degeneracy is doubled w.r.t. the
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Figure 6.12: (left) QD energy levels associated with valleys ±K. For each valley
almost-degenerate levels are grouped, so shells are formed. ω is a shell spacing (not
to scale) and L is angular momentum. Shells are split by δK , which appears because
±K are topologically inequivalent. Levels order according to L oppositely in both
valleys. (right) k-point distribution for the wavefunction of two lowest levels A and
B. They are associated with the ±K valleys.

HO spectrum. This is a consequence of two valleys ±K, as shown in the right panel

of Fig. 6.12 [163]. It pictures the Fourier composition of the two lowest states plotted

against the hexagonal BZ, and this information has been obtained by diagonalising

the Hamiltonian in the Bloch basis using Eq. 6.14. The wavefunction amplitude has

been encoded with the size of a dot and its color at the same time. The eigenvector

is localised mainly at K and −K and their surrounding points. Levels A and B can

be classified as localised around K and −K respectively, which will be proven with

SO coupling included in section 6.2.3.

In analogy to standard HO, the shells from both valleys can be labelled by 2D HO

quantum numbers (n,m) (along x±iy directions), or equivalently by the shell number

I = n+m and shell angular momentum L = n−m. The values of L have been marked

in Fig. 6.12 for all levels. They have been assgned to numerical eigenstates based on

the charge density and degeneracy resembling the 2D HO solutions, as discussed in

detail in section 6.3.

A further modification of the HO spectrum for MoS2 QDs involves intra-shell
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splitting δK (shown in pink in Fig. 6.12 left, not to scale), which depends on L, and

the splitting is opposite in opposite valleys, as shown in Fig. 6.12 with red and blue

labels. The thick red and blue arrows emphasize this difference for the |L| = 2 states

in the I = 2 shell. This effect is similar to the degeneracy lifting in standard HO by

an external magnetic field [165] and appears also in excitons in MoS2 [44, 163]. This

effect resembles a conventional orbital Zeeman effect, which arises due to magnetic

field coupling to the angular momentum of atomic orbitals [44]. In consequence, 2p

atomic states with opposite ml quantum number are split. A parabolic MoS2 QD is an

artificial atom, with discrete energy levels that are angular momentum eigenstates,

and they are associated with either of the two valleys K and −K in momentum

space. At the same time, the mDf nature of an MoS2 crystal produces a non-zero

Berry curvature, opposite for opposite valleys, which is an analogue of a magnetic field

vector acting on finite angular momentum states, with opposite directions in opposite

valleys [44–46]. Berry curvature couples to the angular momentum of quantum dot

states from each valley, just as a magnetic field does in real space in case of atomic

orbitals. As a result, the degeneracy of p-shell states in an MoS2 QD is broken, similar

to a Landé splitting in an atom [44]. I call the intra-shell splitting δ a “topological”

splitting. The magnitude of splitting δK is analysed together with splittings in the

Q-derived spectrum in section 6.2.2.

6.2.2 Spectrum associated with the Q-points.

I now turn to the description of the states visible at higher energy in Fig. 6.11.

The shells are six-fold degenerate, as shown in Fig. 6.13 (left), which has its origin

in the 6 inequivalent Q-points [163], three per valley, as shown in the inset at the

bottom of Fig. 6.13 with red blue and green points. These colors correspond to the

energy levels in Fig. 6.13 (left). This ladder of states can be attributed to the Q-

points, because of the Fourier composition of the levels, which has been pictured in

Fig. 6.13 (right) for the two lowest energy groups of states A and B (groupped with

solid and dashed lined polygons respectively). The size and colors of the dots encode
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Figure 6.13: (left) QD energy levels associated with Q-points (not to scale). For each
valley there are three Q-points (red, blue and green in inset and corresponding energy
levels), which produce threefold degenerate spectrum for each valley. Topological
splitting δQ is larger than δK . (right) k-point distribution for lowest 6 states (groups
A and B) shows localisation at Q-points.

the probability density at these points.

Figure 6.14: (left) Topological splitting δ for K-derived and Q-derived states (iden-
tified on the bottom and top of left panel, not to scale). (right) Magnitude of δK and
δQ shown for different shells with black empty and blue solid dots. δQ is an order of
magnitude larger than ∆K and reaches up to 6.5 meV.

The Q-derived ladder of states also exhibits topological splitting δQ, opposite for

states around opposite valleys, as shown schematically in Fig. 6.13. The topological
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splitting for both ladder of states, δK and δQ, have been schematically marked again

in Fig. 6.14 (left) with pink symbols. Fig. 6.14 (right) plots the magnitude of δK

and δQ for RQD = 30 nm as a function of the maximum angular momentum in a shell

|L|. It is clear that δQ is an order of magnitude larger than δK for the lowest energy

shells, and it reaches up to δQ ≈ 6.5 meV for the second I = 1 shell.

6.2.3 Spin-orbit splitting vs shell spacing.

I now include the SO coupling, as in Eq. 4.34, which results in a SO splitting ∆SO in

the QD energy levels. Fig. 6.15 shows schematically how ∆SO modifies the QD energy

structure, by illustrating the effect on the lowest shells of both ladders, K-derived and

Q-derived (as shown in the left panel of Fig. 6.15). Spin spliting for both ladders,

∆K
SO and ∆Q

SO, are opposite around opposite valleys (red and blue arrows denote

spin up and down). These spin states have been classified by examining the Fourier

spectrum of the lowest four states (marked by green box), which has been shown in

Fig. 6.15 (right) for all four states (arrows link the Fourier spectrum to the energy

level). The localisation of a state in a given valley together with the spin quantum

number produce the spin arrangement of states pictured in Fig. 6.15 (middle).

The relative arrangement of spin states between the K-derived and Q-derived

ladder depends on the bulk properties of the material. As shown in Fig. 6.16 (right),

MoS2 exhibits the same spin bands at the bottom of the CB at K and Q, which is

reflected in the QD energy structure in Fig. 6.16 (left). For a similar TMDC QD,

consisting of a different metal, e.g. for WS2, the spin of the bottom of the CB at K

and Q are opposite, which would reverse the spin states in one ladder of QD states.

This fact can be used to engineer the desired energy structure for custom spintronic

devices.

I now discuss the relevant energy scales ω and ∆SO (marked again in Fig. 6.17

right) as a function of RQD. Fig. 6.17 (left) shows ω decreasing as ∼ 1/rQD, while

the middle panel plots ∆SO increasing as ∼ −1/RQD. Grey horizontal line in Fig.

6.16 (middle) marks the limiting value of SO splitting for bulk.
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Figure 6.15: The effect of ∆SO on SP energy levels of an MoS2 QD. The SO splitting of
lowest shell (left) is shown in the middle (not to scale). Spin up and down are denoted
with red and blue arrows respectively. ∆K

SO and ∆Q
SO are opposite in opposite valleys.

and the same within a valley. (right) Fourier distribution of the K-derived L = 0
shell (marked with green box). Each level is clearly linked to valley and spin, which
allows for distinction.

Figure 6.16: Demonstration of possible spin arrangement in different TMDC materi-
als. (left) Spin levels for an MoS2 QD. (right) Two possible spin band arrangements
for bulk MoS2 and WS2 at K and at Q. Spins are aligned (anti-aligned) for MoS2

(WS2).

The values spanned by ω and ∆SO shown in Fig. 6.17 create a possibility for

the forming of two regimes: ω > ∆SO and ω < ∆SO, as pictured schematically in

Fig. 6.18. Red and blue colors denote energy levels of opposite spin. In situation a),
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ω > ∆SO, the levels are grouped within a shell, and filling of the first shell requires 4

electrons (in a non-interacting picture). In case b), ω < ∆SO, the levels of the same

spin group together within a valley, with opposite spins at lower energy in opposite

valleys, and the filling of the lowest energy incomplete shell requires just 2 electrons.

Figure 6.17: (left) ∆SO grows and ω decreases as a function of RQD. (right) ∆SO

and ω identified within a QD energy structure for ∆SO < ω (spins showed in red and
blue).

Figure 6.18: Order of energy levels for ∆SO < ω (left) and ∆SO > ω (right).

In fact, Fig. 6.18 b) shows ω < ∆SO/3, but for slightly higher ω within the same

regime a peculiar energy structure is possible, where shells intertwine. By varying ω

and ∆SO different scenarios can be realised, when lower incomplete shells “pass” above

the higher shells. Such “passings” happen at ω < ∆SO, ω < ∆SO/2, ω < ∆SO/3, etc.
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Figure 6.19: Energy level ordering (normalised) for spin states within (top) I = 1
and (bottom) I = 2 shell for varying RQD. Black boxes a-d gather levels that are
schematically pictured in a-d panels. Colors denote spins. The variable ordering is a
result of the interplay of ∆SO and δ, and it reaches a “final” arrangement for large
RQD (b,d).

The value of ∆SO affects also higher shells, which are split by larger δ (as shown

in Fig. 6.14). Because of the interplay of δ and ∆SO for different dot sizes, the order

of levels within a shell changes as RQD increases. This process is described by Fig.

6.19 for I = 1, 2 K-derived shells (shown in top and bottom). Left panels of Fig. 6.19

show normalised energy of levels within a shell, and colors depict spin states. Initial

and starting level arrangement have been labelled with a and b (c and d) for I = 1

(I = 2) shell. These arrangements have been schematically shown in the right panels

a-d to illustrate the transition. For larger dots (small ω) δ � ∆SO which results in

a spin arrangement similar to that in Fig. 6.15 shown for the first I = 0 shell. Such

process is true for all shells, but the transition to the final arrangement (as in b and

d in Fig. 6.19) happens at larger RQD for higher shells (e.g. at ≈ 10 nm for I = 1

and at ≈ 15 nm for I = 2).
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6.3 Scattering Coulomb matrix elements.

In order to study the many-electron properties of MoS2 QDs I first have to obtain

the Coulomb scattering matrix elements between electrons in SP QD states. By

diagonalising the Hamiltonian in Eq. 6.14, I obtain the eigenvectors for these states

in the atomic site basis or in the Bloch state basis. The Bloch state representation

allows me to categorise the SP QD states as belonging to specific valleys, while the

atomistic basis enables me to explicitly calculate the value of the Coulomb integrals.

The Coulomb matrix elements in the SP QD basis read

〈pq|V |st〉 =

∫∫
drdr′ψ∗p(r)ψ∗q (r

′)V (r, r′)ψs(r
′)ψt(r), (6.15)

where each QD TB eigenvector for state p = (±K, n,m, σ) (σ labels spin) is given in

the atomic basis as

ψp(r) =
∑
i

∑
ν=A,B

∑
αν=
{
md=0,±2
mp=0,±1

}Api,ν,ανφi,ν,αν (r), (6.16)

where the amplitudes Api,ν,αν are obtained by diagonalising the TB Hamiltonian in

Eq. 6.14. In Eq. 6.16 all indices have the same meaning as in Eq. 6.1 and ν labels

sublattices. The functions φi,ν,αν (r) = φαν (r −Ri,ν) in Eq. 6.16 are atomic orbital

functions on site Ri,ν .

Examples of distribution of
∣∣Api,ν,αν ∣∣ for p =

{
(0, 0, ↓), (0, 1, ↓), (1, 0, ↓)

}
(all at

K) have been shown in Fig. 6.20 for RQD = 10 nm and a 160 × 220 box. The

plots show only fragments of the box, red circle marks the QD boundary and bright

colors denote higher amplitude. The (0, 0) state has a clear s-type nature, while the

(0, 1), (1, 0) states resemble p-type orbitals, as expected for a HO ladder of states.

There is no visible difference in
∣∣Api,ν,αν ∣∣ between the valleys ±K. However, there is a

slight difference in
∣∣Api,ν,αν ∣∣ for both p-type states in the very centre of the dot, which

will affect the strength of interaction of electrons in these states, due to the different

wavefunction overlap.
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Figure 6.20: Absolute value of the wavefunction for SP QD states for RQD = 10 nm
for a) (0, 0, ↓) s-type level, b) (0, 1, ↓) p-type and c) (1, 0, ↓) p-type levels. Red cirlce
marks the boundary of the dot (only fragments of the computation box are showed).
There is a slight difference between the amplitude of b) and c) in the centre.

Fig. 6.21 shows the phase θpi,ν,αν of Api,ν,αν =
∣∣Api,ν,αν ∣∣ eiθpi,ν,αν for the same QD

RQD = 10 nm and for the four lowest energy states for both valleys, i.e. (0, 0, ↓

), (0, 0, ↑), (0, 1, ↓), (1, 0, ↓) (and opposite spin for valley −K). Fig. 6.21 a-d (e-h)

show the phase for valley K (−K). Red circle marks the boundary of a QD, and

the values of the phase outside of this boundary constitute a numerical error, as

the problem is diagonalised for the entire computational box (only fragments of the

box are shown here). The values of the phase remain uniform for the s-type states

in a,b,e,f, but exhibit a cyclic behaviour for other plots, which corresponds to p-

type states. The phase winds 3 times for a 2π rotation around the QD (the pattern

follows for higher shells, which wind 6 times, etc.), which appears to mimic the crystal

symmetry. There is a difference in phase distribution in the s-type states for opposite

valleys, as well as the phase cycles oppositely in opposite valleys for the p-type states,

i.e. the phase grows clockwise in Fig. 6.21 c and h, and increases counterclockwise

in Fig. 6.21 d and g. This enables classification of states according to L, as shown in

Fig. 6.12. Additionally, all plots in Fig. 6.21 exhibit rapid phase oscillations on the

scale of a unit cell, which is manifested in striped features in all plots.
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Figure 6.21: Phase of the wavefunction (shown with colors) for SP QD states for
RQD = 10 nm for a) (0, 0, ↓) s-type, b) (0, 0, ↑) s-type levels, c) (0, 1, ↓) p-type and d)
(1, 0, ↓) p-type levels for K (and e-h for −K with opposite spins). Red circle marks
the boundary of the dot (only fragments of the computation box are showed). Values
of the phase outside of the dot constitute numerical error. a,b,e,f show no angular
phase modulation on the scale of the dot and c,h (d,g) show clockwise (anticlockwise)
angular phase modulation. The opposite direction of rotation enables classification
of states with opposite L. Threefold winding is attributed to the symmetry of the
crystal. Stripped pattern in all subplots originates in rapid oscillations in periodic
part of the wavefunction u(r) (see discussion in section 6.3.3).

I now return to the Coulomb integral definition. Using Eq. 6.16, Eq. 6.15 becomes

〈pq|V |st〉 =
∑
ijkl
µνξ%

∑
α,βγδ=

{
md=0,±2
mp=0,±1

}Ap∗i,µ,αµAq∗j,ν,βνAsk,ξ,γξAtl,%,δ%·
·
∫∫

drdr′φ∗i,µ,αµ(r)φ∗j,ν,βν (r
′)V (r, r′)φk,ξ,γξ(r

′)φl,%,δ%(r)

=
∑
ijkl
µνξ%

∑
α,βγδ=

{
md=0,±2
mp=0,±1

}Ap∗i,µ,αµAq∗j,ν,βνAsk,ξ,γξAtl,%,δ% 〈iµαµ; jνβν |V |kξγξ; l%δ%〉 , (6.17)

where ijkl run over unit cells, µνξ% denote sublattices and αβγδ stand for orbitals.

V (r, r′) in Eq. 6.15 is the Coulomb interaction V (r, r′) = e2

4πεrε0|r−r′| with static

screening εr or with Keldysh screening, which are compared in section 6.3.1. The

integrals 〈iµαµ; jνβν |V |kξγξ; l%δ%〉 in Eq. 6.17 have been given in section 6.3.2. The

resulting Coulomb matrix elements 〈pq|V |st〉 for SP QD states have been discussed

in section 6.3.3.
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6.3.1 Static screening vs Keldysh screening.

To describe the electron-electron interaction potential I start with the Coulomb po-

tential screened everywhere by a dielectric constant εr, which reads

V 3D
C (r − r′) =

1

εr

e2

4πε0

1√
(ρ− ρ′)2 + (z − z′)2

, (6.18)

where I separated a 3D vector r into the radial and z component as r = (ρ, z). Eq.

6.18 can be written in terms of a 2D Fourier transform as [166]

V 3D
C (r − r′) =

1

εr

e2

4πε0

1

(2π)2

∫ ∞
−∞

2π

|k|
· e−|z−z′||k|eik(ρ−ρ′)d2k. (6.19)

To study 2D another model of screening is relevant, Keldysh screening. It ac-

counts for the effect of the reduced dimension on interactions. To obtain the Keldysh

screening form [167, 168], Eq. 6.18 needs to be modified by the 2D polarisability α,

which defines the screening length r0 = 2πα [162,166]. Eq. 6.18 becomes

V 3D
K (r − r′) =

1

ε∗
e2

4πε0

1

(2π)2

∫ ∞
−∞

2π

|k|
· 1

1 + 2πα |k|
e−|z−z

′||k|eik(ρ−ρ′)d2k, (6.20)

where α = 2.2Å and I used ε∗ instead of εr to include the screening by the materials

surrounding the MoS2 plane. I use ε∗ = ε1+ε3
2

, where ε1 = 1.0 and ε3 = 4.0 are

the dielectric constants of the material layers below and above MoS2, taken here as

SiO2 and vacuum respectively [162]. In section 6.3.3 I compare results obtained with

εr = ε∗ = 2.5.

For two electrons in the MoS2 plane Eq. 6.20 can be written in real space, when

z = z′. It reads [166]

V 3D
K0 (ρ− ρ′, z = z′) =

1

ε∗
e2

4πε0

1

(2π)2

∫ ∞
−∞

2π

|k|
· 1

1 + 2πα |k|
eik(ρ−ρ′)d2k

=
1

4ε∗α

e2

4πε0

(
H0

( |ρ− ρ′|
2πα

)
− Y0

( |ρ− ρ′|
2πα

))
,

(6.21)

where H0, Y0 are Struve and Bessel functions respectively [166].
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Figure 6.22: a) Coulomb potential with static screening (black) vs. Keldysh screening
(couloured) for z = 0 and εr = 1 and varied α (Eq. 6.18 and Eq. 6.21). b) Keldysh
screening for varied z and α = 2.2Å.

Fig. 6.22 (left) shows the Coulomb potential function with Keldysh screening in

Eq. 6.21 compared to static screening from Eq. 6.18 for varying α and εr = ε∗ = 1.

As expected, Keldysh screening lowers the value of the potential very strongly at

small ρ and less drastically for large ρ. Larger α produces stronger screening. Fig.

6.22 (right) shows the comparison of approximate expression in Eq. 6.21 and the full

Keldysh potential in Eq. 6.20 for increasing z, which creates larger discrepancy.

6.3.2 Long and short-range contributions to Coulomb inte-

grals.

Here I describe the contribution of 〈iµαµ; jνβν |V |kξγξ; l%δ%〉 to Eq. 6.17.

I find that the main contribution to the value of 〈pq|V |st〉 comes from the long

range part, which involves sites far away from each other. This part has been treated

classically as 〈iµαµ; jνβν |V |jνγν ; iµδµ〉 = e2

4πεrε0|Riµ−Rjν | . Because the Mo and S

dimer sites are located at z = 0, for Keldysh screening I used Eq. 6.21.

For small |r − r′|, I obtain accurate values of integrals 〈iµαµ; jνβν |V |kξγξ; l%δ%〉,

using the Vegas algorithm within the GSL library, as described in section 2.3.3. Onsite
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as well as the biggest NN and NNN integrals have been listed in Table 6.1. Numbers

in Table 6.1 correspond to the atoms labels in Fig. 6.23 as well as orbitals, i.e. d0 is

md = 0 etc. Columns VC , VK0, VK correspond to Eq. 6.18,6.21 and 6.20.

Figure 6.23: MoS2 atomic sites included in the evaluation of Coulomb integrals.
Numbers label atoms identified in integrals in Table 6.1. Red (green) arrows mark
NN (NNN) integrals (rows 7,8 in the Table).

Integral 〈iα; jβ|V |kγ; lδ〉 static VC [eV]
Keldysh

z = 0 VK0 [eV]
Keldysh VK [eV]

〈1, d0; 1, d0|V |1, d0; 1, d0〉 7.32 2.16 1.05
〈1, d2; 1, d2|V |1, d2; 1, d2〉 7.11 1.90 1.10
〈1, d0; 1, d2|V |1, d2; 1, d0〉 6.55 1.98 1.05
〈2, p0; 2, p0|V |2, p0; 2, p0〉 4.54 2.36 0.92
〈2, p1; 2, p1|V |2, p1; 2, p1〉 3.60 1.79 0.80
〈2, p1; 2, p0|V |2, p0; 2, p1〉 3.74 2.01 0.85
〈1, d0; 2, p0|V |2, p0; 1, d0〉 2.67 1.47 0.79
〈1, d0; 3, d0|V |3, d0; 1, d0〉 1.78 1.00 0.69

Table 6.1: Selected coulomb integrals in atomistic basis. Columns VC , VK0, VK corre-
spond to Eq. 6.18,6.21 and 6.20 and numbers in column “Integral” have been marked
in Fig. 6.23.

The onsite terms alone account for only ≈ 1% of the value of 〈pq|V |st〉. I have

checked that including all the NN and NNN integrals possible (not all are listed here)

does not change the value of 〈pq|V |st〉 by more than 0.5% or the values of energy

differences between the CI eigenvalues by more than 3%. This is true both for static

and Keldysh screening. Therefore, I neglect all these NN and NNN terms.

6.3.3 Intervalley vs intravalley exchange interaction.

I discuss here the scattering Coulomb matrix elements 〈pq|V |st〉 between QD K-

derived electron states, as defined in Eq. 6.17. Fig. 6.24 shows the values of chosen
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matrix elements, which read

V1 = 〈K, 0, 0, ↓;−K, 0, 0, ↑|V |−K, 0, 0, ↑;K, 0, 0, ↓〉

V2 = 〈K, 0, 0, ↓;K, 0, 0, ↑|V |K, 0, 0, ↑;K, 0, 0, ↓〉

= 〈K, 0, 0, ↓;−K, 0, 0, ↓|V |−K, 0, 0, ↓;K, 0, 0, ↓〉

V3 = 〈K, 0, 0, ↑;−K, 0, 0, ↓|V |−K, 0, 0, ↓;K, 0, 0, ↑〉

V4 = 〈K, 0, 0, ↓;K, 0, 1, ↓|V |K, 0, 1, ↓;K, 0, 0, ↓〉

(6.22)

and

V5 = 〈K, 0, 0, ↓;K, 0, 1, ↓|V |K, 0, 0, ↓;K, 0, 1, ↓〉

V6 = 〈K, 0, 0, ↓;−K, 0, 0, ↓|V |K, 0, 0, ↓;−K, 0, 0, ↓〉 ,
(6.23)

where Eq. 6.22 list direct matrix elements Vd and Eq. 6.23 lists exchange matrix

elements Vx.

Fig. 6.24 shows the ω dependence of all elements given in Eq. 6.22 and Eq.

6.23 with static (“st”) and Keldysh (“K”) screening shown with a solid and dashed

line respectively. All Vd with static screening follow the ∼
√
ω dependence, as for a

standard QD [73]. As does the intravalley exchange element V5 with static screening,

as expected in an standard HO [73]. The intervalley exchange V6, however, is an

order magnitude smaller that V5 and departs from the square root behaviour. All

Keldysh elements exhibit some deviation from ∼
√
ω dependence. In particular, the

intervalley exchange element V6 with Keldysh screening stands out, as two orders of

magnitude smaller than its intravalley analogue, and significantly deviating from
√
ω.

These large differences between the matrix elements within and between the op-

posite valleys are crucial for observing the broken symmetry many-electron states

discussed in section 6.4.4 [164].

In order to better understand the role of valleys in the observed Coulomb matrix

elements, I will consider the SP QD states within the envelope function approxima-

tion. The SP QD wavefunction can be regarded as a product of a periodic part of a
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Figure 6.24: Direct and exchange Coulomb integrals for QD states given by Eq. 6.22
(left) and 6.23 (right) with static (“st”) and Keldysh (“K”) screening. Statically
screened elements Vd and V5 follow ∼

√
ω. Others depart from this behaviour. In-

tervalley Vx are one (two) orders magnitude smaller than the intravalley Vx for static
(Keldysh) screening (V5 is intravalley, V6 is intervalley).

Bloch function uk(r) (manifesting itself in the fast phase oscillations on the scale of

a unit cell in Fig. 6.21) and an envelope, resembling the atomic orbitals, as in Fig.

6.20. If I include the strong association with a particular valley ±K, the wavefunction

reads

ψp(r) = ψ±K,n,m,σ(r) ≈ w±K,n,m,σ(ρ)u±K(r)χ(σ) = wp(ρ)u±K(r)χ(σ), (6.24)

where w±Kn,m,σ(ρ) is a 2D HO envelope and χ is the spin part of the wavefunction.
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I can now express the integral in Eq. 6.15 as

〈pq|V |st〉 =

∫∫
drdr′ψ∗p(r)ψ∗q (r

′)V (r, r′)ψs(r
′)ψt(r)

= 〈χp|χt〉〈χq|χs〉
∫∫

drdr′wp(ρ)uKp(r)wq(ρ
′)uKq(r

′)·

· V (r − r′)ws(ρ′)uKs(r
′)wt(ρ)uKt(r). (6.25)

I now separate the two length scales, analogously to section 5.2.1: within and outside

of a unit cell. This allows me to replace an integral
∫
dr in Eq. 6.25 by a summation

over unit cells and an integral over a single unit cell
∑
R

∫
UC

dr̃ (R labels unit cells).

Fig. 6.20 shows that the envelope functions w change slowly on the scale of a single

unit cell. Assuming that the Coulomb potential behaves similarly, I can integrate out

the unit cell space and finally replace
∑
R ≈ Ω

∫
dR, which gives

〈pq|V |st〉 = 〈χp|χt〉〈χq|χs〉〈uKp|uKt〉〈uKq |uKs〉·

· Ω2

∫∫
dRdR′wp(P )wq(P

′)V (R−R′)ws(P ′)wt(P ), (6.26)

where R = (P , Z) and 〈uKp |uKt〉 =
∫
UC

dr̃u∗Kp
(r̃)uKt(r̃). Eq. 6.26 clearly shows

that the valley index plays a similar role for the Coulomb integral as spin, which is

reflected in the term valley pseudospin. The magnitude of the element in Eq. 6.26

depends on the envelope functions, but the whole integral can vanish if Kp 6= Kt or

Kq 6= Ks. This means that the exchange elements are non-zero only for the same

valley (parallel valley pseudospin), i.e. only in the intravalley case.

However, unlike for spin, the vanishing of 〈pq|V |st〉 holds only approximately for

valley pseudospin, because K is not a good quantum number (states are localised

around ±K, but not at K exactly, and other k-points participate). This approx-

imate vanishing of the intervalley pseudospin exchange elements explains the small

numerical values presented in Fig. 6.24.
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6.4 Many electron properties.

This section presents the results of CI calculations for MoS2 QD for up to N = 6

electrons and up to M = 60 states included in a CI calculation. I first present a

thorough analysis of the N = 2 electron behaviour for increasing number of shells

populated by electrons, which has been described in sections 6.4.1, 6.4.2 and 6.4.3.

Section 6.4.4 discusses the broken symmetry many-electron states for N ≥ 2.

6.4.1 Two electrons on the first harmonic oscillator shell.

I start with N = 2 interacting electrons in the first (0, 0) shell with ∆SO = 0. The

solutions of this problem for a standard parabolic QD can be obtained exactly for a

given confinement [73]. It yields a spin singlet GS, because there is only one possible

level (0, 0) in a standard QD, and due to Pauli exclusion principle the spins of electrons

antialign. In an MoS2 QD however, there are two spin-degenerate (0, 0) levels due to

the double valley degeneracy. Therefore, the N = 2 properties can be understood in

terms of spin singlet and triplets, similarly to the physics of half-filled p-type shell of

a self-assembled QD [73]. The GS is a three-fold degenerate spin triplet

∣∣T s+〉 = |↑〉 |↑〉 ,

|T s0 〉 =
1√
2

(|↑〉 |↓〉+ |↓〉 |↑〉) ,∣∣T s−〉 = |↓〉 |↓〉 ,

(6.27)

which has been shown in Fig. 6.25 in the bottom panel for ω = 36 meV. The three-

fold degenerate GS energy has been marked with a red dot in Fig. 6.25 (left). Because

the two levels are also labelled by the valley pseudospin, the spin triplet in Eq. 6.27

is at the same time a valley singlet

|Sv〉 =
1√
2

(|K〉 |−K〉 − |−K〉 |K〉) . (6.28)
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The labels |Sv〉 |T s〉 in Eq. 6.27 and Eq. 6.28 have been marked in Fig. 6.25 (left)

with a red box.

Figure 6.25: (left) Solutions of N = 2 interacting electrons in the first I = 0 shell of
an Mo2 QD with SO strength χ = 0 (∆SO → χ∆SO). The GS is a spin triplet |T s〉
and valley singlet |Sv〉. Excited stated are labelled analogously. (right) Eigenvectors
building states in the left. Spins are shown with arrows, colors label Sz eigenstates.

The spin nature of the GS is clear when we consider its energy

ET s = 2e00 + V 0
D(K,−K)− V 0

X(K,−K), (6.29)

where e00 is the SP energy of the (0,0) shell with ∆SO = 0 and V 0
D(K,−K) and

V 0
X(K,−K) are direct and exchange intervalley Coulomb matrix element respectively.

It is expected that the triplet has the lower energy due to −V 0
X contribution. The

excited state are therefore spin singlets

|Ss〉 =
1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉) , (6.30)
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which are also valley triplets at the same time

∣∣T v−〉 = |K〉 |K〉 ,

|T v0 〉 =
1√
2

(|K〉 |−K〉+ |−K〉 |K〉) ,∣∣T v+〉 = |−K〉 |−K〉 ,

(6.31)

which gives the character of all the excited states for N = 2 electrons, as shown in

Fig. 6.25 (left) with black boxes. It is now apparent that the V 0
X contribution that

decreased the energy of |Sv〉 |T s〉, causes the energy of |T v0 〉 |Ss〉 to increase, while the

states
∣∣T v±〉 |Ss〉 are not affected by the exchange V 0

X .

The energy structure shown in Fig. 6.25 agrees with experimental results obtained

by Kurzmann et al. [110] for bilayer graphene QDs, which is also a valley system, but

with negligible ∆SO.

6.4.2 Effect of spin orbit coupling.

I now include the spin orbit splitting ∆SO ≈ 4 meV for CB of MoS2, which has been

discussed in section 4.3. For other TMDC materials the CB SO splitting can reach

up to ∆SO ≈ 30 meV, which would emphasise the effects described here even more.

Nonzero ∆SO, which I turn on with a parameter χ = 0→ 1, causes the spin down

(up) state to decrease its energy in valley K (−K), as discussed in section 6.2.3. As a

consequence, the spin triplets |T s〉 and singlets |Ss〉 mix, which breaks the degeneracy

of the |Sv〉 |T s〉 GS, as shown in Fig. 6.26 (left) for increasing strength of SO coupling

χ. The right top panel of Fig. 6.26 shows the spin degenerate (0, 0) shell for χ = 0,

and the bottom panel depicts the formation of a spin-valley unpolarised GS at χ = 1,

which is a mixutre of |T s〉 and |Ss〉. This mixture can be expressed as

|Ssv〉 =
1√
2

(|K ↓〉 |−K ↑〉 − |−K ↑〉 |K ↓〉) , (6.32)

which reflects the spin-valley locking, i.e. strong linking of the spin to valley due to

large ∆SO.
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Figure 6.26: (left) Solutions of N = 2 interacting electrons in the first I = 0 shell of
an Mo2 QD with varied SO strength χ (∆SO → χ∆SO). The GS becomes a mix of
spin triplet |T s〉 and spin singlet |Ss〉, shown with a green box. (right,top) Energy
levels for χ = 0. (right,bottom) GS for χ = 1 is spin and valley unpolarised.

The unpolarised nature of the GS for ∆SO 6= 0 arises because of the competition of

∆SO with V 0
X(K,−K). With the weak intervalley exchange (as discussed in section

6.3.3), the SO splitting dominates ∆SO � V 0
X(K,−K), and causes the unpolarised

configuration shown with a green box in Fig. 6.26 to become the GS [164].

6.4.3 Two electrons on two harmonic oscillator shells.

I now allow the population of higher HO oscillator shells for N = 2 electrons. More

configurations are now possible, in addition to the ones shown in Fig. 6.25.

Fig. 6.27 shows two of the configurations discussed previously in sections 6.4.1

and 6.4.2, labelled as A and B respectively, as well as two new configurations of

N = 2 electrons with parallel spins and within the same valley, labelled as C and

D. Configuration A involves direct interaction V 0
D within the (0, 0) shell and the

intervalley exchange interaction V 0
X(K,−K) and for ∆SO = 0 it was forming the GS

of N = 2 electrons in one shell only (see section 6.4.3). The energy of configuration

B includes the direct interaction V 0
D only and B is the GS of N = 2 in only one shell

with the presence of ∆SO (see section 6.4.2).
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Configurations C and D involve direct interaction V ±1
D and, importantly, the in-

travalley exchange interaction V ±1
X (K,K). The right panel of Fig. 6.27 shows the

energies of all the configurations A-D as a function of the strength of interactions

η, when I switch on the interactions gradually η = 0 → 1. A and B, initially the

lower energy configurations, move to higher energies as η ≈ 0.5, and the valley and

spin-polarised configurations C and D reach the lowest energies.

Figure 6.27: (left) Four relevant N = 2-electron configurations. A and B (C and
D) are valley unpolarised (polarised), B (A,C,D) is spin unpolarised (polarised).
∆SO, ω, δ (VD, VX) mark relevant SP (interaction) energies. (right) Energies of con-
figurations A-D for varied strength of interactions η. For non-interacting case η = 0
B is the GS (valley-spin unpolarised), and for interacting case η = 1 D is the GS
(valley-spin polarised).

I will now analyse all the contributing factors carefully, in order to understand the

effect pictured in Fig. 6.27 (right). Let me start with listing all allowed configurations,

assuming the fermionic antisymmetric total wavefunction of N = 2 electrons:

|Se〉 |T v〉 |T s〉 (6.33a)

|Se〉 |Sv〉 |Ss〉 (6.33b)

|T e〉 |Sv〉 |T s〉 (6.33c)

|T e〉 |T v〉 |Ss〉 , (6.33d)
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where |Se〉 and |T e〉 are antisymmetric (singlet-like) and symmetric (triplet-like) com-

binations of the two envelope functions respectively. Considering relevant energy

scales will allow me to understand which of Eq. 6.33 forms the GS. The determining

factors are:

1. Coulomb repulsion VD. The SP energy ω competes with the Coulomb in-

teraction VD, which is dependent on ∼
√
ω, so at high ω occupation of lower

shells is preferable (T e−) and at low ω population of higher shells (Se or T e0 ) gives

lower energy. These regimes correspond to shell spacings lower and higher than

a critical spacing ω̃C ≈ 0.785 [73].

Let us determine which of these regimes is relevant for MoS2 QDs. The exper-

imentally achievable QD sizes and potential strengths of RQD ≈ 10 − 100 nm

and Vmax ≈ 100 − 500 meV produce ω ≈ 5 − 35 meV, which gives ω̃ = ω
Ry∗
≈

0.007 − 0.05, using Ry∗ = 740 meV (given in Eq. 5.49). Therefore the MoS2

QDs lie in the strongly interacting regime, where occupation of higher shells is

energetically favourable. The configuration energies for A-D in Fig. 6.27 follow

this argument.

2. Exchange interaction VX . Exchange interaction causes spatially antisym-

metric wavefunctions to lower their energies below the symmetric ones, which

points to the |Se〉 nature of the GS wavefunction (given in Eq. 6.33a and b).

Because of the dominance of the intravalley exchange over the intervalley ex-

change V ±X (K,K) � V 0
X(K,−K), valley-polarised configurations, like C and

D in Fig. 6.27, are energetically favourable.

3. SO splitting ∆SO. Large ∆SO induces spin-valley locking and mixing of spin

singlets and triplets |Ss〉 , |T s〉. This is why it is useful to introduce explicitly
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these mixtures, which reflect the spin-valley locking. They read

∣∣T sv− 〉 =
∣∣T v−〉 ∣∣T s−〉 = |K ↓〉 |K ↓〉 ,∣∣T sv+

〉
=
∣∣T v+〉 ∣∣T s+〉 = |−K ↑〉 |−K ↑〉 ,

|T sv0 〉 =
1√
2

(|T v0 〉 |T s0 〉 − |Sv〉 |Ss〉) ,

=
1√
2

(|K ↓〉 |−K ↑〉+ |−K ↑〉 |K ↓〉) ,

|Ssv〉 =
1√
2

(|Sv〉 |T s0 〉 − |T v0 〉 |Ss〉) ,

=
1√
2

(|K ↓〉 |−K ↑〉 − |−K ↑〉 |K ↓〉) .

(6.34)

Out of the states given by Eq. 6.34, only the triplets |T sv〉 allow for decreasing

the energy due to the strong intravalley exchange V ±X (K,K), because they

impose the antisymmetric envelope part |Se〉.

The remaining |Ssv〉 only takes part in forming the GS for a single shell (0, 0),

with the triplet-like envelope part
∣∣T e−〉, i.e. in the case described in section

6.4.2 and written explicitly in Eq. 6.32. It is also the GS configuration shown

in a green box in Fig. 6.26 as well as the configuration B in Fig. 6.27.

Importantly, for more shells, |T sv〉 is always the GS. Out of these triplet states,

the GS can prove fully spin-valley polarised (SVP)
∣∣T sv± 〉 or intervalley antiferro-

magnetic (IVAF) |T sv0 〉 [164], as discussed in section 6.4.4. The labels SVP and

IVAF are used for more electrons to reflect the same underlying physics, even

if the strongly correlated states have much more complex form than described

here for N = 2 electrons.

4. Topological splitting δ. The topological splitting δ creates a difference be-

tween C and D configurations in Fig. 6.27, which would be degenerate in

energy for a standard 2D HO. The SP energy for C and D is ω ∓ δ
2

respec-

tively, which is higher for D. However, due to smaller wavefunction overlap

of the electrons in (0, 0), (1, 0) states than the electrons in (0, 0), (0, 1) states,

the direct interaction is smaller for the higher L = +1 state, V +1
D < V −1

D . At
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the same time, the exchange included in configuration D is larger than for C,

V +1
X (K,K) > V −1

X (K,K). These interaction contributions compensate the SP

energy gain and lower the energy of D below C. Hence, D-type configurations

always form the GS, also for higher shells. This means populating the highest

L states within a shell for valley K (and the time-reversed degenerate in energy

partner configuration involves the lowest L states at −K).

6.4.4 Broken-symmetry many-electron states in a quantum

dot.

I have so far analysed the GS and excited states of N = 2 electrons in up to Imax = 2

HO shells. I now turn to the results of my CI calculations for up to N = 6 electrons

and with up to M = 60 SP states (up to Imax = 5 HO shells).

All my numerical results show spin-valley locking for the GS wavefunctions. This

means that all spin down (up) electrons occupy valley K (−K), regardless of the

total Sz of the many-electron state. I always observe N↓ = NK and N↑ = N−K for

the GS. I therefore introduce one quantum number

Ṽ =
N−K −NK

N
= Sz

2

N
=
N↑ −N↓

N
, (6.35)

which denotes the total spin and valley polarisation of the GS. Because of the N

factor in Eq. 6.35, Ṽ always takes values betwen (0, 1), where 1 corresponds to total

polarisation SVP (N = NK = N↓ or N = N−K = N↑ for the time-reversed degenerate

state) and 0 stands for an IVAF GS (no net valley polarisation NK = N↓ = N−K =

N↑) (see section 6.4.3).

Fig. 6.28 shows the values of Ṽ for N = 2 − 6 electrons and for the highest

allowed Imax = 5 shells for static screening and varying ω. Each panel in Fig. 6.28

describes a fixed N , while rows in each panel correspond to increasing number of the

highest shell Imax. White and black labels identify the phases and give schematic spin

configurations. Colors encode Ṽ : orange depicts SVP phase and dark green stands
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Figure 6.28: The nature of the many-body GS for N = 2 − 6 electrons with static
screening for varied ω (horizontal axis). Colors depict Ṽ (Eq. 6.35): Ṽ = 1 for SVP

phase (orange) and Ṽ = 0 IVAF phase (dark green). Ivory, yellow and light green

show intermediate Ṽ . Panels (rows) give results for varied N (Imax). Inset arrows
label phases and give schematic spin configurations. SVP is common for low Imax
and a IVAF → SVP transition is visible for N = 2, 3, 6 for Imax = 5 (and partial for
N = 4). Changes in features for low ω are linked to shell reordering (see text).

for IVAF GS (yellow, ivory and light green are all intermediate Ṽ ). Note, that for odd

N it is impossible to create an Sz = 0 phase, so the IVAF phase for odd N manifests

itself with minimal values of Ṽ possible for a given odd N (shown in light green for

N = 3, 5).

I will now describe the main features of Fig. 6.28. Firstly, an overall high Ṽ for

lowest Imax and low Ṽ for intermediate Imax is apparent. This can be understood as

favouring the polarised states for low Imax due to all ω corresponding to the strong

interaction regime (as explained in section 6.4.3-1.), while, for increasing Imax, the

correlation effects take over and lower the energy of phases with small Ṽ [73]. E.g.

for N = 2, 3, including the Imax = 3 shell adds an allowed level with L = 0, which

significantly increases the number of configurations with low L, which scatter into un-

polarised configurations, and lower their energy. With even higher Imax, the strongly

correlated ω-dependent trend appears.

Secondly, a dominating feature of the data in Fig. 6.28 involves overall higher
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possibility of large Ṽ for small ω. This is especially true for N = 2, 3, 6, where a

transition appears from IVAF GS for N = 2, 6 (and unpolarised state for N = 3)

to an SVP GS for N = 2, 3, 6 [164]. This transition occurs at ω0 ≈ 10, 16, 21 meV

respectively. For N = 4 a transition to a partially polarised GS occurs (marked with

ivory for Imax = 5), which transitions back to IVAF phase for ω < 2.1 meV. There

appears no transition for N = 5 (for Imax = 5).

Figure 6.29: The nature of the many-body GS for N = 2− 6 electrons with Keldysh
screening for varied ω (horizontal axis). Colors have the same meaning as in Fig.
6.28. IVAF → SVP transition for N = 2, 3, 6, Imax = 5 occurs at lower ω than for
static screening.

Thirdly, additional features are visible for ω < 4.2 meV, where the GS phase

tendency reverses for some N and Imax. This appears because of the labelling con-

vention I took, which assigns Imax to the number of the highest SP available shell

that is complete, i.e. includes the states for both spins. Due to this, there is more

SP levels available in the CI calculation than for the same Imax for ω > 4.2 meV,

because additional incomplete shells are included at lower energies. This is caused

by the effect of interpenetrating shells, discussed in section 6.2.3. The changes in Ṽ

for ω < 4.2 meV trace the “passing” of shells occuring at ω = ∆SO = 4.2 meV and

ω = ∆SO/2 = 2.1 meV. For these ω, as more SP levels are available for one spin in

each valley, the correlation effects are switched on earlier in Imax, which explains the
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“jumps” in coloured regions of Ṽ .

Figure 6.30: (left) IVAF GS and (right) SVP GS for N = 6 electrons. Colors denote
spins. Electrons occupy higher-energy shells and large-|L| levels.

Let us consider how these results are affected when Keldysh screening is included.

Fig. 6.29 shows the GS phases of N electrons for Keldysh-screened interaction, gov-

erned with similar physics. The correlation effects induce unpolarised GS for inter-

mediate Imax, while polarised states appear for low and high Imax. For N = 2, 6

a transition from an IVAF (an unpolarised for N = 3) to a SVP GS is visible at

ω0 ≈ 9, 13, 8 meV respectively. These values are lower than ω0 was for static sreeen-

ing. In particular, the GS phase for N = 6 acquires a wide IVAF phase regime for

large ω (and Imax = 5).

Fig. 6.30 shows a schematic picture of the configurations contributing mostly to

the GS of N = 6 electrons for Imax = 5 with Keldysh screening. The spin-valley

locking is apparent. For high ω the IVAF GS involves NK = N↓ = N−K = N↑ = 3

electrons. This highly correlated state involves occupation of high shells and favours

high |L| states, as discussed in section 6.4.3-4., producing a large-total-L GS. For low

ω, an SVP phase forms the GS, which populates only one valley with spin-aligned

electrons N = NK = N↓ = 6 (time-reversed partner of N = N−K = N↑ is degenerate).

The electrons also reach high shells and occupy high |L| states.
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6.4.5 Experimental signatures of many-body broken-symmetry

states.

This section discusses the possibility of detecting the broken symmetry many-electron

GS in experiment.

An important aspect to consider is the stability of the GS phases, which is partly

determined by the energy gap between the GS and excited states ∆EX−GS. These

gaps impact a transport measurement, by setting the temperature needed to resolve

the energy level structure, and they determine their Coulomb diamond signature

[75,169].

Figure 6.31: (top) GS phases and (bottom) Energy gaps ∆EX−GS for varied N as
a function of ω. ∆EX−GS = 0 marks transitions between phases (as illustrated by
vertical dashed lines). For N = 2, 3, 6 ∆EX−GS vanishes once, and twice (never) for
N = 4 (N = 5). Other smaller dips mark a transition for an excited state.

Fig. 6.31 (bottom) shows the values of ∆EX−GS for Imax = 5, Keldysh screening,

for all N up to N = 6 and for varying ω. Values of ω, where ∆EX−GS = 0 mark the

transition between phases described in Fig. 6.29 and summarised for Imax in the top

panel of Fig. 6.31. Transitions for N = 2, 6 electrons have been linked between the
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panels with vertical dashed lines (black and red respectively) to guide the eye. It is

clear that curves for each N exhibit one clear dip each with ∆EX−GS = 0, except for

N = 4, which exhibits two points of vanishing ∆EX−GS (consistent with Fig. 6.29),

which gives the boundary to a partially polarised GS phase.

There are also smaller dips in ∆EX−GS visible, e.g. for N = 4, 6 at high ω and for

N = 3 at low ω, which do not reach ∆EX−GS = 0 and they do not mark a transition

in the GS phase. They are however a manifestation of the effect of high SP shells on

the many-body GS phases. This is because these small dips correspond to changes in

the nature of the excited state phases, which in turn are affected by the spin states

order within higher shells, as discussed in section 6.2.3.

Importantly, the gaps shown in Fig. 6.31 are of the order of meV, which could

be resolved in a QD transport experiment [75]. The separation of the GS from the

excited states is especially promising in this context for N = 6, where the transition

occurs over a narrow region, and produces a well isolated GS energy level for a wide

spectrum of ω within both SVP and IVAF phases [164].

I will now discuss how the two competing GS phases could be distinguished based

on the results of a Coulomb and spin blockade spectroscopy experiment. A conduc-

tance through an MoS2 QD can be measured as a function of gate voltage if the QD

is connected to metallic leads [75]. The information on the features of the GS can

be obtained from the observed relative position and height of the Coulomb blockade

conductance peaks, which mark the addition of electron to a QD. The weight of these

peaks is proportional to [12,75,148,169,170]

F (ε,N) =
∑
p

∣∣∣ 〈GS(N + 1)| d†pσ |GS(N)〉
∣∣∣2δ (EGS(N+1) − EGS(N) − ε

)
, (6.36)

where 〈GS(N + 1)| d†pσ |GS(N)〉 is the probability of adding an electron to a SP QD

state pσ, in the presence of N electrons occupying the QD.

Fig. 6.32 plots F (ε) for ω inside two regions dominated by SVP and IVAF phases

(for Imax = 5 and Keldysh screening). Corresponding electron quantum numbers
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Figure 6.32: Values of F (ε) (Eq. 6.36) for two ω regimes for N = 2−6 electrons. Spin
up (down) shown with a dashed (solid) line and red (blue) arrows. As a consequence
of the nature of the GS phase, both regimes differ by the spin sequence of peaks. Low
ω lacks the last peak (grey dot) due to spin and valley blockade.

are schematically plotted in insets. The valley pseudospin of the initial electron

has been fixed (by choosing a specific valley the spin of the electron is determined

due to valley-spin locking). Additional electrons are added to a QD, and only a

process obeying ∆Sz = Sz(N + 1)− Sz(N) = ±1/2 and ∆NK = ±1 (spin and valley

pseudospin conservation) has a nonzero probability. Because the GS phases for low

ω in Fig. 6.32 differ by ∆Sz > 1/2 and ∆NK > 1, a transition is forbidden. This is

a manifestation of spin and valley blockade and is the reason why a peak is missing

for Fig. 6.32 (right).

Also, in a spin-resolved experiment, the peaks will reveal a distinct spin pattern for

both phases (spin up and down marked with dashed and solid lines respectively). Left

panel of Fig. 6.32 pictures adding electrons of alternating spins, while on the right,

spin up electrons can only be added first, followed by only spin up. These signatures

could allow for distinguishing the SVP and IVAF GS phases for N electrons in an

MoS2 QD of different ω.

These results suggest that the experimental verification of the discussed nature

of the GS for many electrons in MoS2 QD is likely achievable in transport and could

offer further confirmation of the nature of these states.
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Conclusions

In this thesis I have presented results on optical properties and electron-electron in-

teractions in two-dimensional nanostructures of graphene and TMDCs. They offer

potential applications in valleytronics - new generation of technology based on the

valley pseudospin. Also, honeycomb crystals host new exotic physics, often linked to

strong correlations. The results presented in this thesis contribute to the understand-

ing of these materials and identify new effects driven by electron-electron interactions

in valley systems.

My results are contained within chapters 3-6. Chapter 3. presents a tight-binding

study of hexagonal graphene QDs, which can be analysed with analytically solvable

building blocks, significantly reducing the numerical complexity of such problem for

large systems. This is an excellent base for exploring many-body effects for experi-

mentally relevant structures within DMRG techniques. This analysis also illuminates

the mechanism behind the energy gap formation in graphene QDs, strongly linked to

the edge type. The approaches taken in this thesis build on the methods used in this

chapter.

Chapter 4. contains a tight-binding theory of MoS2, derived from ab initio meth-

ods. It elucidates the electron tunneling processes in TMDCs and develops the un-

derstanding of the physics of d orbitals in honeycomb crystals. Building on this,

the origin of the energy band features for TMDCs is thoroughly explained, includ-

ing the existence of Q-points responsible for band nesting and strong light-matter

167
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interaction. A starting point for studying the valley physics in TMDCs is the mas-

sive Dirac fermion model derived in this chapter from the tight-binding Hamiltonian.

This minimal but powerful description highlights the role of valley pseudospin and

reveals complex behaviour in the presence of electron-electron interactions, as seen in

later chapters. The last part of chapter 4. discusses the light-matter interaction of

massive Dirac fermions with light, involving valley-dependent optical selection rules.

This description is then further developed to include the external magnetic field in

chapter 5.

A theory of magnetoexcitons of massive Dirac fermions is presented in chapter 5.

The asymmetric Landau level structure for massive Dirac fermions is contrasted with

the energy levels of a free electron in external magnetic field. Valley Zeeman splitting

and valley polarisation are discussed as a consequence of the asymmetry of the energy

structure. As the electron-electron interactions are turned on the valley Zeeman

splitting is demonstrated to renormalize with interactions and exhibit oscillations

as a function of the valley polarisation. I then present numerical solutions of the

Bethe-Salpeter equation for a single magnetoexciton, with all the contributions to

the magnetoexciton energies indentified in detail. The cancellation of self-energy

and vertex correction has been observed, which leads to small blue shifts of the

exciton lines. Finally, I have calculated the magnetoexciton absorption spectrum and

observed a splitting of exciton lines for opposite valleys, originating in the non-zero

valley polarisation. This chapter demonstrates the computational treatment of a

valley polarised system and highlights the complexity of interaction-driven effects for

valley-based materials. These concepts are further explored in the final chapter of

this thesis.

Chapter 6. gathers the results on single particle energy structure of gated MoS2

QDs as well as the emerging strongly correlated phases of many electrons in these

nanostructures. The first section uses the tight-binding model for bulk MoS2 in chap-

ter 4. to obtain the eigenstates of a computational box of MoS2 of up to million atoms

treated with periodic boundary conditions. This problem was defined in two separate
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bases: atomistic basis and Bloch basis, in order to illuminate the underlying physics.

The eigenstates of a box are shown to evolve as a parabolic electrostatic potential

is included to define a confining region for a gated QD. The resulting single particle

structure for confined electrons is shown to consists of two harmonic oscillator spectra:

twofold degenerate derived from K valleys and a sixfold degenerate associated with

Q points (vital for TMDCs other than MoS2). Also, the strong spin orbit coupling in

TMDCs as well as a valley-contrasting Berry curvature are shown to play crucial role

for the energy spectrum of MoS2 QDs, as they produce opposite splittings for shells

in both valleys. This is linked to the emergence of broken symmetry ground state

phases in the final part of this chapter.

The last sections of chapter 6. include results on many-electron behaviour of

TMDC QDs. I started with a thorough analysis of scattering Coulomb matrix el-

ements with static and Keldysh screening and identified intravalley and intervalley

contributions. I have shown that for two electrons within the first shell with no spin-

orbit splitting the ground state is a spin triplet and valley singlet, which matches

experimental reports for bilayer graphene QDs. In contrast, in TMDCs QDs with

more shells considered, the strong spin-orbit splitting and weak intervalley exchange

interaction result in spin-valley locking and produce two competing ground state

broken-symmetry phases: spin and valley polarised phase and spin and valley un-

polarised but intervalley antiferromagnetic phase. I have demonstrated how these

phases emerge in two regimes of shell spacing with a sharp phase transition for two,

three and six electrons, and explained the role of correlations in forming of these

ground states. Finally, I discussed possibilities for experimental confirmation of these

phases by showing large energy gaps separating the ground state from the excited

states, which affects operating temperature in experiment. To simulate the results of

a transport measurement, I have also calculated a spectral function with different spin

signature in both regimes and with absent peaks due to spin-valley blockade effect.

These results contribute to the understanding of the interaction-driven phenomena

in valley systems and offer valuable insight for creating future valleytronic devices.
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Kenji Watanabe, and Takashi Taniguchi. Spin and Valley States in Gate-Defined

Bilayer Graphene Quantum Dots. Physical Review X, 8(3):031023, July 2018.

[110] A Kurzmann, M Eich, H Overweg, M Mangold, F Herman, P Rickhaus,

R Pisoni, Y Lee, R Garreis, C Tong, K Watanabe, T Taniguchi, K Ensslin,

and T Ihn. Excited States in Bilayer Graphene Quantum Dots. Physical Re-

view Letters, 123:026803, July 2019.

[111] Riccardo Pisoni, Zijin Lei, Patrick Back, Marius Eich, Hiske Overweg, Yongjin

Lee, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, and Klaus Ensslin. Gate-

tunable quantum dot in a high quality single layer MoS2 van der Waals het-

erostructure. Applied Physics Letters, 112(12):123101, March 2018.

[112] Mauro Brotons-Gisbert, Artur Branny, Santosh Kumar, Raphaël Picard,
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