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1 Introduction.
Since the discovery of graphene [1, 2] – one-atom-thin layer of hexagonally arranged

carbon atoms – exploration of two-dimensional (2D) materials has begun, revealing un-
usual properties and numerous potential application prospects [3–6]. Regardless of unique
nature of charge carriers in graphene [7, 8], its gapless electronic structure imposes lim-
itations over its use in nanoelectronics and therefore sparks intensive interest in other
materials with band gap in semiconducting regime [9, 10].

(a) (b)

Figure 1 – (a) Forming of the van der Waals heterostructure analogically to the Lego
blocks. Large variety of heterotructures is possible. [11] (b) A field-effect transistor built of
heterogenously stacked 2D materials. [12]

Among these there are various kinds of van der Waals (vdW) crystals like hexagonal
boron nitride or 2D transition metal dichalcogenides, which have been intensively explored
in the past decades for their diverse properties [13–15]. The nanostructures of vdW
crystals have proved to be easily obtained and patterned through chemical and mechanical
techniques [16–18]. Moreover, their separate layers can be stacked vertically due to weak
vdW interactions between adjacent layers, which allows for forming of heterostructures
with tailored properties (such heterostructures are shown in Fig. 1). Such materials make
highly suitable ingredients for components of next-generation nanoelectronic devices, as
well as give rise to new physical phenomena [19].

1.1 Crystals of transition metal dichalcogenides (TMDCs).
2D transition metal dichalcogenides (TMDCs) are a vast family of vdW crystals that can

be exfoliated into monolayers showing distinct properties from bulk structures [9,20–22].
These 2D materials can be regarded as semiconductor analogues of graphene, their lat-
tice consisting of three strongly bonded planes of hexagonally packed atoms: X-M-X,
where M atoms are molybdenum or tungsten and X atoms are selenium, sulphur or tel-
lurium [1] (shown in Fig. 2a). Similarly to graphene, these trilayers, loosely coupled to
each other by van der Waals interactions, have proven easy to exfoliate mechanically into
2D monocrystals [23]. On the other hand, the strong intra-planar bonding accounts for
mechanical strength of the crystal. The characteristic stacking of M atom between two
chalcogen planes saturates all ions, reducing the crystal’s reactivity and enabling realisa-
tion of free-standing monolayers [24]. The arrangement of atoms may form ABA stacking
with M atoms trigonal-prismatically coordinated with six X atoms in 2H structure or
ABC stacking with M atoms octahedrally coordinated in the 1T structure (shown in Fig.
3A-B) [25].
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It has been reported that these two similar structures, 2H and 1T of MX2, show very
different properties due to different stacking of atoms in monolayers. For molybdenum
disulphide (MoS2) the 2H crystal has been described as large-gap semiconductor [26]
while the 1T structure is metallic and unstable, spontaneously distorting into 1T’ crystal
(shown in Fig. 3C) [27,28].

Figure 2 – Crystal structure of bulk and monolayer TMDCs shown schematically. (a) Top
view of a monolayer TMDC and the unit cell which shows the inversion symmetry breaking.
(b) Even-layered TMDC crystal and its unit cell with the inversion center in between the
planes. [29]

Figure 3 – Different coordination of metal atoms in TMDCs: 2H (A), 1T (B), 1T’ (C) [29]

Monolayers of TMDCs have been already successfully synthesized with the use of
techniques like liquid exfoliation (shown in Fig. 5) [23] or micromechanical cleavage [9,30].
Planes of MoSe2 and MoS2 have also been obtained with selenisation and sulphurisation
of MoO3 via chemical vapour deposition on various substrates (schematically shown in
Fig. 4) [31, 32].

Figure 4 – Schematic illustration of the sulphurisation method. MoO3 is evaporated on
sapphire substrate and then is converted to MoS2 in a two-step thermal process. [32]
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Figure 5 – (a) Bulk MoS2 is pre-exfoliated by the decomposition products of N2H4. (b)
Sample is intercalated and disperses into monolayers in water. (c) Photograph of bulkMoS2.
(d) Photograph of pre-exfoliated MoS2. (e) Photograph of MoS2 dispersion in water. [23]

1.2 Electronic properties of TMDCs.
2D TMDCs have become promising materials to complement the shortcomings of

graphene, which despite its high carrier mobilitties is semimetallic [2]. Thus, in search
of practical application TMDCs have started to play bigger role due to their appreciable
band gaps and structural similarity to graphene.

Among TMDCs monolayer of MoS2 has been most widely studied and recent reports
on properties of MoSe2 have also been presented [33]. These are intrinsic semiconductors
with direct band gap in the visible frequency range (∼1.8 eV for MoS2 and 1.5 eV for
MoSe2) [33–35], what makes them most favourable for optoelectronic devices. A transition
from indirect band gap in bulk several TMDC materials to direct band gap for monolayer
has also been reported (this is shown in Fig. 6) [33, 35]. Whereas in graphene and bulk
MoS2 high carrier mobilities have been observed [5, 36], single layer of MoS2 is found to
have low mobility due to substrate used in experiments [1,3]. It has been argued that both
substrates and contacts influence the performance of devices built with MoS2 [37, 38].

Figure 6 – Transition from bulk MoS2 band structure (a) with an indirect band gap to
band structures of thinner crystals (b,c) and to a monolayer (d) with a direct band gap. [22]

Analogically to graphene, for TMDCs monolayers valence and conduction band edges
are located in two inequivalent valleys K and K’ in the corners of hexagonal Brillouin
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zone (BZ) (shown in Fig. 7) [39]. This gives the charge carriers an extra discrete degree
of freedom, which may be used to encode and process information [40–42]. Moreover,
there is whole new range of phenomena related to electron’s spin in TMDCs because
of large spin-orbit coupling (SOC) induced by d orbitals of heavy metal atoms, which
creates substantial spin splitting of valence band and smaller – of conduction band for
these materials [43].

Figure 7 – Schematic illustration of the MoS2 band structure at band edges located in the
K and K ′ valleys of a hexagonal Brillouin zone. Large spin-splitting of the valence band is
visible and the spin bands are reversed for K and K ′ points. [19]

Notably, the inverse-symmetry breaking in 2H-coordinated TMDCs monolayers (il-
lustrated in Fig. 2a as opposed to Fig. 2b), together with strong SOC, induces valley-
dependent optical transition selection rules which allow for distinction of these valleys.
This is due to interband transitions in K and K’ valleys, which couple to left- and right-
circularly polarised light (shown in Fig. 8) [19, 44] . First experimental demonstrations
of valley polarization by pumping with circularly polarised beams have been reported for
MoS2 and WS2 [44–47].

Figure 8 – Demostration of optical control of the valley polarisation for monolayer TMDCs.
(a-c) Polarisation-resolved photoluminescence of excitons in WSe2 by (a) left, (b) right and
(c) linearly polarised light. (d-f) Band structure edges diagrams with polarised emission
corrsponding to a-c respectively. (g-i) Polarised excitations represented on the Bloch sphere
corresponding to a-c respectively. Arrows outside of the Bloch sphere show light polarisation
and the arrows inside it - valley pseudospin. [48]
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In view of these results, there exists a strong coupling of spin to valley degree of
freedom for TMDC materials. Importantly, the valley-contrasting spin splitting implies
that the spin-split alone processes are forbidden [19]. This occurs as the time-reversal
symmetry requires that the bands in opposite valleys are of opposite spin-splitting (shown
in the schematic drawing in Fig. 7), which means that the valley carriers can be also
distinguished by their spin moments. In addition, large separation of valleys in momentum
space allows for long spin coherence times as the intervalley scattering is suppressed
[49, 50]. Such fundamental properties of TMDCs suggest that these materials may be
effectively used for spintronics and valleytronics.

1.3 Physical phenomena in TMDCs.
These materials are also a particularly interesting platform for research due to phe-

nomena absent in graphene because of its weak spin-orbit coupling and conservation of
inverse-symmetry. Firstly, new properties of TMDCs may be observed when external
electric field is applied. In such case carriers of different spin and valley index (called
pseudospin [49]) tend to flow in the opposite directions and accumulate on transverse
boundaries of the sample, causing spin and valley polarisation. These are spin and valley
Hall effects (shown in Fig. 9) [19, 49]. It has been reported that photoinduced spin Hall
and valley Hall effects are responsible for long lived polarisations both in electron-doped
and hole-doped systems [19]. This introduces an efficient way of electrical manipulation
of optically generated excitonic states [49].

Figure 9 – Coupled spin and valley physics in monolayer TMDCs. (a) Valley and spin
optical transition selection rules. Spin-split bands with the corresponding spins are shown.
ωu (red) and ωd (blue) are transition frequencies from the spin-split valence band tops to the
conduction band bottom. Carriers in opposite valleys are excited by the light of opposite
polarisations. (b) Spin and valley Hall effects of electrons and holes excited by (in K) right-
and (in -K) left-polarised light of two diffeent frequencies ωu and ωd (like in a.). The carriers
are dissociated by an in-plane electric field and move to the two opposite boundaries of the
sample, creating Hall current. Electrons and holes from the two opposite valleys are marked
by ’-’ and ’+’ symbols, respectively, with the colors inverted for opposite valleys. [19]

Secondly, TMDCs 2D crystals exhibit peculiar magnetic-induced properties, highly
distinguishable from graphene. It has been reported that magnetic field provides simple
method of controlling valley and spin polarisation in 2D TMDCs [49]. In external magnetic
field Landau levels (LL) are non-uniformly spaced and the zeroth LL is shifted in opposite
directions for the two valleys (illustrated by Fig. 10a). This asymmetric behaviour can be
explained in terms of Zeeman effect for pseudospin which produces an additional orbital
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magnetic moment [49]. In magnetic field the energy bands are thus shifted accordingly to
valley-contrasting magnetic moments [49, 51]. This effect lifts the valley degeneracy and
has been referred to as the pseudospin-orbit coupling [49,52].

As an effect of this, the zeroth LL is located at the top of valence band in K valley and
at the bottom of conduction band in K’ valley (shown in Fig. 10b). Interestingly, due
to spin splitting of the valence bands low doping results in 100% spin polarisation of a
single valley, which can be inverted with reversed field. Larger doping leads to occupation
of higher LL and depolarisation. This allows the valley polarization to be controlled
by tuning the external magnetic field and the doping level [49]. Moreover, this shows
that the polarization selection rules for the inter-LL transitions are valley dependent and
therefore circularly polarized light may excite carriers in separate valleys, coupling photon
handedness to the exciton valley degree of freedom [53,54].

(a)

(b)

Figure 10 – Magnetic control of the valley degree of freedom in TMDCs. (a) The assymetric
LL structure for the conduction band of the two valleys (in solid black lines). The 0th LL is
located h̄ω/2 above the bootim of the conduction band. The red and green solid curves show
the band dispersion in opposite valleys shifted due to the pseudo-spin orbit coupling (see
text for explanation). Dashed lines show the original band dispersion without the magentic
field. (b) LLs for carriers in TMDCs. Solid (dashed) lines stand for spin-up (-down) bands
and the horizontal lines show the LL structure. The four red dashes show the location of
the 0th LL for each spin and valley. [49]

Furthermore, a topological insulating phase has been recently reported in atomic crys-
tals of TMDCs [55]. It emerges due to structural distortions of the 1T-coordinated lattice
of WSe2 and other TMDCs (it is named 1T’ structure [55]), which cause intrinsic band
inversion of chalcogenide-p and metal-d bands [55]. Such band structure is here con-
nected to properties characterisitc for QSH insulators. This includes insulating bulk and
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existence of conducting edge states (their electronic structure shown in Fig. 11), which
are topologically protected from backscattering by time reversal symmetry. Additional
benefits from utilisation of these materials as topological insulators are a large inverted
band gap (over 0.6 eV [55]) in comparison to other crystals with such properties as well
as possibility of tuning it with both in-plane elastic strain and external electric field [55].
These findings bring prospects for successful operation of novelty quantum electronic de-
vices. In addition to these numerous effects apparent in TMDC crystals, there have been
reports of discovery of a superconducting phase in thin films of MoS2 [24, 56], making it
an interesting material for both fundamental research and application-oriented studies.

Figure 11 – Edge states electronic structure of topologically insulating TMDC crystals.
(a-b) Left panel shows the density of states and the right panel - spin-polarisation. [55]

1.4 TMDC nanostructures.
With all the possible application prospects of TMDCs in nanoelectronics taken into ac-

count it is vital to investigate the properties of nanostructures of these materials. It has
been expected that they differ significantly from these of bulk materials due to confinement
effect, edge contribution, chemical reactivity and particle interactions. Naturally, many
degrees of freedom for monolayer TMDCs suggest the usage of single electron as an infor-
mation carrier for spintronic and valleytronic devices [57]. Since the desired properties of
bulk materials involve carrier’s valley index processes, it has been of huge importance to
determine whether valley physics is preserved in nanostructured TMDCs. Interestingly,
recent results have shown that the valley hybridization is negligible in TMDC quantum
dots (QDs) and therefore pseudospin is then a valid degree of freedom. [57]. This observa-
tion motivates intensive application-oriented exploration of phenomena present in TMDC
nanostructures.

Figure 12 – (b) A MoS2 nanocluster with two edge types (a,c) and sulphur coverage
percentages. Blue balls are Mo atoms and yellow - sulphur atoms. [58]
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An additional motivation for theoretical studies of such structures are numerous exper-
imental cases of TMDCs obtained in nanoscale [59–64] and reports on devices operating on
their basis [65–69]. MX2 nanocrystals with various sizes, edge types or terminations have
been obtained and favourable shapes for specific compounds have been determined. Sev-
eral edge types possible for MoS2 nanoclusters are shown in Fig. 13. Also, experimental
results have shown that triangular shapes are most frequently observed for S-passivated
QD edges due to sulphur excess [70]. Additionally, synthesis of TMDC fullerene-like struc-
tures, nanowires and nanotubes has been reported [71–73]. Recently, extremely narrow
MoS2 nanoribbons have also been obtained heating of carbon nanotubes in presence of
molybdenum compounds [74].

Figure 13 – Experimentally observed triangular MoS2 quantum dots. This shape is
favoured in case of MoS2. First quantum dot from the left is Mo-edged with S-passivation
and the remaining 3 structures are of S-edge. [58]

In view of this, various TMDCs nanostructures have been widely studied in order to
determine their diverse properties. Reports on density functional theory (DFT) geome-
try optimisation of MoS2 QDs have been presented [70, 75, 76] as well as electronic and
magnetic properties of MoS2 nanoribbons (NRs) have been analysed [77, 78]. Also, re-
cently a few simple tight-binding (TB) models have been proposed to describe low-energy
electronic structure of planar TMDC crystals and NRs [39,79–82].

Among various nanostructured TMDCs nanoribbons might prove highly useful for
nanoelectronic applications. This has encouraged intensive research in this area, mainly
for the widely-explored MoS2. It has been predicted that the TMDC monolayers might
be easily tailored into NRs with zigzag and armchair edge types of different passivations
and atom termination. Stability, electronic and magnetic properties of various sizes and
edge types of NRs have been already analysed theoretically [77, 83–91].

Contrary to the bulk properties of MoS2, recent studies have identified zigzag-edged
MoS2 NRs (MoS2 ZNRs) as metallic [89, 90, 92, 93], whereas armchair-edged MoS2 NRs
(MoS2 ANRs) have been reported to show semiconducting properties [89,90,92–94]. This
has proven true in many passivation types of the metal atom edges [95] and is observed
also for WS2 ANRs. Passivation with carbon and hydrogen atoms has also been reported
to increase the band gap of the MoS2 ANRs [95]. Layered NRs have also been studied [89].

Interestingly, TMDC NRs exhibit magnetic behaviour which can be influenced by
numerous factors. Most of these unusual properties stem from the magnetic moments
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placed at the edge atoms, especially for metal-dominated edges [78]. MoS2 ZNRs have
been shown to be ferromagnetic (shown in Fig. 14a) [89, 90]. The ANRs on the other
hand exhibit no magnetism [89]. Although weaker, the ferromagnetism remains for hy-
drogenated MoS2 [90], while WS2 ZNRs have been identified as antiferromagnetic (shown
in Fig. 14b) [78]. Magnetic properties of MoS2 zigzag edges in nanocrystals have been
studied experimentally as well [96,97].

(a)

(b)

Figure 14 – (a) Spin-polarisation of edges of a MoS2 nanoribbon (top) unpassivated and
(bottom) hydrogen-passivated. For unpassivated case the alignment of spin is ferromagentic
(↑↑) and remains so after hydrogen-passivation, though weaker. Thicker arrows show larger
magnetisation and the colors are for opposite spins. [77] (b) Anti-ferromagnetic (↑↓) spin
polarisation for a WS2 nanoribbon. [78]

Importantly, in case of sulphur-termination the magnetism of MoS2 ZNRs depends
strongly on the coverage percentage of the sulphur atom on the edges and changes drasti-
cally if edge defects or vacancies are introduced [98,99]. This demonstrates how sensitive
these structures are to the edge characteristics. Another important conclusion from these
results regards the equally strong contribution of Mo-edge and S-edge to the magnetiza-
tion.

Other means of influencing the magnetic and electronic properties of TMDCs nanorib-
bons include external fields [83, 100] and applied strain [87, 91, 92, 101] (MoS2 NRs have
proved to be stretchable up to a strain of 10%). As the magnetic moment of strained NRs
is increased [87], it has been predicted that applying strain may be used to control the
band gap and engineer their magnetic moment.
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In addition to all the means of streering the nanoribbons properties, an effective
method of obtaining devices with tailored characteristics is combining the TMDC nanocrys-
tals into in-plane heterostructures. This is especially desirable in case of TMDCs with
close-matched lattice constants as this reduces strain and inhomogeneities on the inter-
faces. For TMDCs of very similar lattice constants the mismatch may be even an order of
magnitude smaller than for graphene and hexagonal boron nitride [63]. Such heterostruc-
ture of very sharp interfaces have been already observed experimentally for MoS2-WS2
and MoSe2-WSe2 nanocrystals (shown in Fig. 15) [63,64] and studied theoretically [102].

Figure 15 – In-plane heterostructures of MoSe2 and WSe2 nanocrystals. (top) Scanning
tunneling microscopy (SEM) images of heterostructure crystals from two different growths.
Both scale bars indicate a 10µm distance. (bottom) Schematic illustration of the in-plane
heteroepitaxy process. [63]

The research done in pursue of better understanding of unusual properties of TMDC
materials brought discovery of numerous effects and detailed description of a high diver-
sity of nanostructures [60, 70, 77, 87]. Many of these results indicate that these crystals
give promising perspectives to the next-generation nanoelectronics, spintronics and val-
leytronics. Yet, still this research area encourages unceasingly wide exploration of TMDC
crytstals’ properties and establishes strong motivation for further studies in this matter.
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2 Methodology.
In this chapter the methodology of this work is explained. Section 2.1 provides de-

scription of tight-binding theory, which was the base for performed calculations. Later,
an overview of density functional theory is presented, together with the details of the
computations in the Abinit package.

2.1 Tight-binding model.
Tight-binding model has proved a valuable tool used to determine the electronic prop-

erties of many 2D materials and has been used for calculating the band structures of
TMDC materials [39,79]. Here, the tight-binding theory is explained [103] and the details
of the three-band approximation are presented.

2.1.1 General description.

Tight-binding (TB) model assumes that the crystal potential is strong and it bounds
electrons to the atoms in result. This means that the electrons are captured by ions
during their motion through lattice and do not interact noticeably with other far-away
atoms. Therefore, their wavefunctions may be constructed as a linear combination of
the atomic orbitals, which represents the linear combination of atomic orbitals (LCAO)
approximation. The main assumption of the model is that these orbitals are modified
only slightly by other atoms in the solid and this modification may be viewed as a small
perturbation.

Let us consider electrons in a solid, where atomic orbitals of a free atom are affected
by the presence of other atoms. Because of a translational symmetry of a crystal lattice,
its wavefunction must be an eigenstate of a translation operator:

T̂Rψ
k(r) = ψk(r + R), (2.1)

where k is wave vector and R is a vector of translation operation. Also, from the Bloch’s
theorem, wavefunctions of electrons in periodic system are Bloch waves:

ψk(r −R) = eikRu(r)
(2.2)

and form a basis of eigenstates of the Hamiltonian. In the expression above u(r) has the
periodicity of the lattice. We may therefore express the wavefunction of our system as
follows:

ψk(r) = 1√
N

∑
R,α

eikRφα(r −R) = 1√
N
eikr

∑
R,α

e−ik(r−R)φα(r −R) (2.3)

where φ(r−R) are atomic orbitals localised on an atom in the cell located at R and the
wave function has a Bloch form. We may determine the electron energy:
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E(k) = 〈ψk| Ĥ |ψk〉

= 1
N

∑
R,R′,α,β

eik(R−R′) 〈φα(r −R′)| Ĥ |φβ(r −R)〉

= 〈φ(r)| Ĥ |φ(r)〉+
′∑

R,α,β

eikR 〈φα(r)| Ĥ |φβ(r −R)〉 ,

(2.4)

where ∑′R,α,β means summing over all lattice sites at R 6= 0, α, β are the orbital indices
and

Ĥ = Êkin + V̂ . (2.5)

The first term in (2.4) corresponds to electron’s onsite energy. The second term of
this expression describes effects of an electron tunnelling to other atoms in the lattice.
Sometimes the nearest-neighbour approximation is taken, which neglects the contributions
from atoms farther than the nearest-neighbours.

Let us examine the second term in (2.4) in the nearest-neighbour approximation:

′∑
R,α,β

eikR 〈φα(r)| Ĥ |φβ(r −R)〉 =

=
′∑
α,β

〈ψk,α(r)| ˆEkin |ψk,β(r − ra)〉+
′∑
α,β

〈ψk,α(r)| ˆV (r) |ψk,β(r − ra)〉

= ek

′∑
α,β

〈ψk,α(r)|ψk,β(r − ra)〉+
′∑
α,β

〈ψk,α(r)| ˆV (r) |ψk,β(r − ra)〉

, (2.6)

where ra is the lattice vector. The first term of the expression in (2.6) depends on the
orbitals overlap and for orthogonal orbitals

〈ψk,α(r)|ψk,β(r − ra)〉 =
{

1 if α = β
0 if α 6= β.

(2.7)

The second term of the expression in (2.6) is the hopping integral, which determines the
probability of an electron tunnelling to other atoms.

In a second quantisation form the Hamiltonian reads:

Ĥ =
∑
i,α

εiαĉ
†
iαĉiα +

∑
<i,j>,α,β

tijαβ ĉ
†
iαĉjβ, (2.8)

where tij is the hopping integral and often we can simplify: tijαβ = tαβ for all tunneling
processes between atomic sites i and j, εiα is an onsite energy for orbital α and atomic
site denoted by i and ĉ†i (ĉj) is a creation (annihilation) operator at the atomic site i(j).
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2.1.2 Three-band approximation.

Three-band approximation to the tight-binding model assumes that the calculations
are performed in the basis of only three atomic orbitals

|φ1〉 = dz2 , |φ2〉 = dxy, |φ3〉 = dx2−y2 . (2.9)

of the metal atom in TMDC structures. The wavefunction of the system is then a linear
combination of these atomic orbitals:

|Ψk(r)〉 =
∑
R

eikR |Φ(r −R)〉 , (2.10)

where
|Φ(r)〉 =

3∑
i=1

ci |φi(r)〉 . (2.11)

(a) (b)

Figure 16 – (a) The basis of the three-band approximation of tight-binding model for
TMDC nanocrystals, consisting of three d metal orbitals given in (2.9). (b) The band
structure of MoS2 with the contribution of certain orbitals for each band marked with the
variable-size and -color circles. The three d orbitals yield the most significant contribution
to the low energy band structure. [39]

This is a reasonable assumption since the Bloch states near the band edges for mono-
layer MoS2 and other TMDCs mostly consist of Mo d orbitals, especially dz2 , dxy and
dx2−y2 (shown in Fig. 16a), therefore we neglect the contribution from other d orbitals,
p and s orbitals. We perform calculations of band structure of MoS2 and other TMDC
nanostructures considering only the nearest-neighbours (NN) d-d hoppings and express
the Hamiltonian of the system in the three-band basis given by (2.9) (shown in Fig. 16b).

We calculate the matrix elements of our Hamiltonian as hopping integrals expressed
in the second term of (2.6). The value of the integral depends on the type of orbital and
on their relative position, i.e. their mutual distance as well as the angle of rotaion of an
orbital in the frame of the other (this is shown in 17). Due to this, all such integrals can
be expressed as a linear combination of three atomic bonds for orbitals in their unrotated
position where the coefficients are determined by the direction cosines [104].
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(a)

(b)

(c)

Figure 17 – Determining the hopping integrals of d metal orbitals. (a) Intuitive picture for
determining the d-d orbital hopping integral: the integral between two orbitals dx2−y2 at
rotated crystal sites (middle) are distinguishable from the integral of orbitals at unrotated
positions (left). It can viewed as rotating the orbitals themselves (right), which gives in
this case a bond between the orbitals dxy and thus, produces a different integral. (b) Every
hopping integral of d-d orbitals may be expressed as a linear combination of hopping integrals
of the three d-d bonds: σ, π, δ (ingredients of the sum from left to right). (c) Citation after
J.C.Slater: the highlighted line states the dx2−y2 − dx2−y2 hopping integral and is expressed
with the use of the direction cosines. [104]

2.2 Density functional theory.
In this section the background for density functional theory calculations is described

in detail. The theoretical approach is first presented [105] and it is followed by the
computational aspects of the calculations performed.

2.2.1 Overview of the method.

When dealing with solids we must consider a system of heavy, positively charged nuclei
and lighter, negatively charged electrons. In order to desribe the system’s properties we
need to solve a quantum many-body problem of NN + Ne interacting particles, where
NN(e) is the number of nuclei (electrons). The Hamiltonian for the system reads:
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Ĥ =
(
NN∑
i

(
− h̄2

2Mi

∇2
Ri

)
+

Ne∑
i

(
− h̄2

2mi

∇2
ri

)
+
∑
i,j

(
− 1

4πε0

e2Zi
|Ri − rj|

)

+
∑
i 6=j

(
− 1

8πε0

e2

|ri − rj|
)

+
∑
i 6=j

(
− 1

8πε0

e2ZiZj
|Ri −Rj|

)
. (2.12)

It is impossible to solve this problem exactly. Let us take the Born-Oppenheimer
approximation, which states that the nuclei are much heavier and slower than the electrons
and thus they stay at fixed positions. Then, the first term of (2.12) vanishes and the last
term shifts the solution by a constant value. As a result we obtain:

Ĥ = T̂ + V̂ + Û , (2.13)

where V̂ is system-specific and describves the crystal potential and Û is an electron-
electron interaction term.

As this does not make the problem exactly solvable, it may be treated further on the
basis of the Hohenberg-Kohn theorems. The first Hohenberg-Kohn theorem states that the
external potential V (r), and hence the total energy of the system, is a unique functional
of the electron density n(r). Therefore, the energy functional E[n(r)] may be expressed
as:

E[n(r)] = 〈Ψ| Ĥ |Ψ〉 =
∫
n(r)V (r)dr + F [n(r)], (2.14)

where the universal functional F [n(r)] is given by

F̂ = T̂ + Û . (2.15)

The second Hohenberg-Kohn theorem states that the electronic density minimising the
total energy is the groundstate density and therefore, the groundstate energy can be
obtained variationally. This means that, if only the functional F [n(r)] is known, by
minimising the total energy we may obtain the groundstate density n(r) corresponding
to the external potential V (r).

Since the exact expression for F [n(r)] is not known, the real calculations are deter-
mined by the Kohn-Sham equations. In the Kohn-Sham approach we imagine a system of
non-interacting electrons yielding the same density as the studied physical system. The
groundstate functional F [n(r)] can be then expressed as

F [n] = Ts[n] + UH [n] + EXC [n], (2.16)

where the functional Ts[n] is the kinetic energy of the non-interacting system and the
second part of the expression is the Hartree energy - a classical interacting term, corre-
sponding to the wavefunction constructed as a product of single-particle states. The last
term of the expression given by (2.16) is the exchange-correlation energy, which takes
into account the quantum electron-electron repulsion due to Pauli’s exclusion principle
(exchange energy) and the correlation energy being the remaining unkown part of the
functional F [n]:

Ec = F [n]− Ts[n]− UH [n]− EX . (2.17)

Finding a reliable approximation of the exchange-correlation functional is the goal of the
practical density functional theory methods.
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We now can solve the problem of non-interacting particles in some potential vs(r)
described by the Kohn-Sham (K-S) equation :(

− 1
2∇

2 + vs(r)
)
φi(r) = εiφi(r), (2.18)

where
vs(r) = V (r) +

∫
d3r′

n(r′)
|r − r′|

+ vXC [n](r) (2.19)

and
UH [n] =

∫
d3r′

n(r′)
|r − r′|

. (2.20)

It is important to note that the variational solving of the equation (2.18) requires a
self-consistent procedure. It begins with the initial density guess for the non-interacting
system, which determines the potential vs[n]. Then, the K-S equation can be solved and
the obtained density is compared with the last step. If no changes are detected in the
following cycles, the density is taken to be the ground-state density, minimising the energy
functional for the physical-system:

E[n] = 〈Ψ[n]| T̂ + V̂s |Ψ[n]〉 . (2.21)

There exist many approximations to the exchange-correlation functional. One of them
is the local denisty approximation (LDA) which takes:

ELDA
XC =

∫
drf(n(r)), (2.22)

where f(n) is some function of n. In this work the local spin density approximation
(LSDA) is used, which is the spin-scaled generalisation of LDA and allows for spin-resolved
calculations. Some other approximations include the generalised gradient approximation
(GGA) expressing the EXC as depending also on the gradients of the density n, altough
it is not considered here.

2.2.2 Computational details.

The results of calculations of the electronic and magnetic properties of TMDCs nanos-
tructures shown in section 3.2 are based on the first-principle plane-wave calculations
obtained with the Abinit package.

An essesntial element in every DFT calculation is the usage of effective core potntials
for atoms, called pseudopotnetials. In this work, Hartwigsen-Goedecker-Hutter (HGH)
pseudopotentials [106] and projector augmented wave (PAW) potentials have been used
[107]. The HGH pseudopotentials represent the norm-conserving class of pseudopotentials
created in the context of the LDA approximation, while the PAWs are obtained with the
Projector-Augmented Wave transformation and provide much gain in the efficiency of the
calculations [107,108].

A plane-wave basis set with the energy cutoff of 2200 eV is used with the norm-
conserving pseudopotentials [109] and of 600 eV - with the PAWs [108]. This parameter
determines the size of the basis set by inlcuding only the waves of the energy lower than
the set energy cutoff. Detailed convergence studies of this parameter were performed
prior to the calculations (example run shown in 18a). The exchange-correlation potential
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is approximated in the LDA approximation both for spin-polarised and spin-unpolarised
cases.

All structures are treated with the periodic boundary conditions with 10 Å of spac-
ing between the planes in z and x direction to prevent their interaction. In the self-
consistent total energy calculations BZ is sampled by 14 x 1 x 1 special k-points within
the Monkhorst-Pack scheme [110], and number of these k-points was identified in the
convergence studies (example run shown in 18b).
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Figure 18 – Convergence studies of MoS2 monolayer in the Abinit package. (a) The
convergence of the energy cutoff parameter. (b) The convergence of the number of k-point
samples of the Brillouin zone. All energies are shown with respect to the first-iteration total
energy.
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3 Results.
In this chapter all the results obtained for nanostructures of TMDCs are presented.

Section 3.1 includes the analysis of monolayers and nanoribbons of various TMDCs with
the three-band tight-binding model, details for which are provided in the section 2.1.2. We
consider also spin-orbit coupling (SOC) effects. Later, properties of MoSSe nanoribbons
(NRs) are discussed and the results produced within density functional methods are given
in the second section of this chapter. Details of these calculations are listed in the section
3.2.

3.1 Tight-binding model for TMDC nanostructures.
The calculations have been performed for various TMDC monolayers and for MoS2

nanoribbons in order to obtain their band structures and determine the validity of the
model simplifications.

3.1.1 2D TMDC monolayers.

The studies of TMDC monolayers in three-band TB model include implementation of
Hamiltonian derived for single-layer MX2 crystal lattice and expressed in the three-band
basis for only nearest-neighbours (NN) d-d hoppings. Initially we do not consiter SOC.
For a infinite MoS2 monolayer we obtain the following Hamiltonian

HNN(kx, ky)2D =

h0 h1 h2

h†1 h11 h12

h†2 h†12 h22

 , (3.1)

where hij = hij(kx, ky) are angle-dependent hopping integrals for orbitals i, j. The NN
Hamiltonian has dimensions 3×3 as we take 3 orbitals from one metal atom in every unit
cell into account (shown in Fig. 19).

Following G.B.Liu et al. [39], the expressions for matrix elements hij(α,k) have been
derived:

h0 = 2t0(cos 2α + 2 cosα cos β) + ε1, (3.2)

h1 = −2
√

3t2 sinα sin β + 2it1(sin 2α + sinα cos β), (3.3)

h2 = 2t2(cos 2α− cosα cos β) + 2
√

3it1 cosα sin β, (3.4)

h11 = 2t11 cos 2α + (t11 + 3t22) cosα cos β + ε2, (3.5)

h22 = 2t22 cos 2α + (3t11 + t22) cosα cos β + ε3, (3.6)

h12 =
√

3(t22 − t11) sinα sin β + 4it12 sinα(cosα− cos β), (3.7)

where
(α, β) =

(
1
2kxa,

√
3

2 kya

)
(3.8)

and εj is an on-site energy for an atomic orbital |φj〉 (and ε2 = ε3) and the hopping
integrals between the atomic orbitals are given by

t0 = 〈φ0(0)| Ĥ |φ0(R1)〉 , (3.9)
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Figure 19 – Top view of a monolayer TMDC crystal’s honeycomb lattice. Blue balls
denote metal atoms and yellow balls - chalcogen atoms. The unit cell consisting of three
atoms (one metal atom and three chalcogen atoms) is shown in green. In fact, only metal
atom contribution is taken into account in the three-band model from every unit cell, while
chalcogen atoms contribution is neglected. Relative positions of nearest-neighbouring metal
atoms are shown in red and denoted Ri.

t1 = 〈φ0(0)| Ĥ |φ1(R1)〉 , (3.10)
t2 = 〈φ1(0)| Ĥ |φ1(R1)〉 , (3.11)
t11 = 〈φ0(0)| Ĥ |φ2(R1)〉 , (3.12)
t12 = 〈φ1(0)| Ĥ |φ2(R1)〉 , (3.13)
t22 = 〈φ2(0)| Ĥ |φ2(R1)〉 , (3.14)

atomic site R1 is shown in Fig. 19 and the values of t are given in Tab. 1:

Table 1 – Values of the parameters used in the NN TB model [39].

Hopping integrals to other neighbouring sites can be generated on the basis on the
crystal symmetry resulting in the Hamiltonian form given by (3.1). The hopping integrals
t are parameters of this model and their values from ref. [39] are taken in the calculations.

By diagonalisation of the Hamiltonian (3.1) in the three-band basis given by (2.9)
for varying k we obtain the band structures for MX2 (M=Mo,W; X=S,Se,Te) shown in
Fig. 20, with the band gaps equal to: 1.656 eV , 1.806 eV , 1.436 eV , 1.540 eV , 1.070 eV ,
1.067 eV for MoS2, WS2, MoSe2, WSe2, MoTe2 and WTe2 respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 20 – Band structures obtained for monolayer TMDC crystals: MoS2, MoSe2,
MoTe2,WS2,WSe2 andWTe2 in (a-f) respectively. Colors denote the three bands obtained
within the model.

In order to obtain more accurate model for calculating the band structure we include
the third-nearest-neighbour (TNN) hoppings. The resulting Hamiltonian reads:

HTNN(kx, ky)2D =

v0 v1 v2

v†1 v11 v12

v†2 v†12 v22

 , (3.15)

where vij = vij(kx, ky) are angle-dependent hopping integral matrices for orbitals i, j.
Following G.B.Liu et al. [39], the expressions for matrix elements vij(α,k) have been
derived:

v0 = ε1 + 2t0(cos 2α + 2 cosα cos β) + 2r0(2 cos 3α cos β
+ cos 2β) + 2u0(2 cos 2α cos 2β + cos 3α), (3.16)

Re(v1) = −2
√

3t2 sinα sin β + 2(r1 + r2) sin 3α sin β − 2
√

3u2 sin 2α sin 2β, (3.17)

Im(v1) = 2t1 sinα(2 cosα + cos β) + 2(r1 − r2) sin 3α cos β
+ 2u1 sin 2α(2 cos 2α + cos 2β) (3.18)

Re(v2) = 2t2(cos 2α− cosα cos β)− 2√
3

(r1 + r2) cos 3α cos β − cos 2α)

+ 2u2(cos 4α− cos 2α cos 2β), (3.19)
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Im(v2) = 2
√

3t1 cosα sin β + 2√
3

sin β(r1 − r2)(cos 2α + 2 cos β), (3.20)

v11 = ε2 + 2t11 cos 2α + (t11 + 3t22) cosα cos β + 2t11 cos 2α + 4r11 cos 3α cos β
+ 2(r11 +

√
3r12) cos 2β + (u11 + 3u22 cos 2α cos 2β + 2u11 cos 4α), (3.21)

v22 = ε3 + 2t22 cos 2α + (3t11 + t22) cosα cos β + 2t22 cos 2α

+ 2r11(2 cos 3α cos β + cos 2β) + 2√
3
r12(4 cos 3α cos β − cos 2β)

+ (3u11 + u22 cos 2α cos 2β + 2u22 cos 4α), (3.22)

Re(v12) =
√

3(t22 − t11) sinα sin β + 4r12 sin 3α sin β
+
√

3(u22 − u11 sin 2α sin 2β), (3.23)

Im(v12) = 4t12 sinα(cosα − cos β) + 4u12 sin 2α(cos 2α − cos 2β), (3.24)

where (α, β) and εj are defined by (3.8) and the hopping integrals between the atomic
orbitals (for R1 and R2 shown in Fig. 19) are given by:

r0 = 〈φ0(0)| Ĥ |φ0(R1 + R2)〉 , (3.25)

r1 = 〈φ0(0)| Ĥ |φ1(R1 + R2)〉 , (3.26)

r2 = 〈φ1(0)| Ĥ |φ1(R1 + R2)〉 , (3.27)

r11 = 〈φ0(0)| Ĥ |φ2(R1 + R2)〉 , (3.28)

r12 = 〈φ1(0)| Ĥ |φ2(R1 + R2)〉 , (3.29)

r22 = 〈φ2(0)| Ĥ |φ2(R1 + R2)〉 , (3.30)

u0 = 〈φ0(0)| Ĥ |φ0(2R1)〉 , (3.31)

u1 = 〈φ0(0)| Ĥ |φ1(2R1)〉 , (3.32)

u2 = 〈φ1(0)| Ĥ |φ1(2R1)〉 , (3.33)

u11 = 〈φ0(0)| Ĥ |φ2(2R1)〉 , (3.34)

u12 = 〈φ1(0)| Ĥ |φ2(2R1)〉 , (3.35)

u22 = 〈φ2(0)| Ĥ |φ2(2R1)〉 (3.36)

and the expressions for t are given by 3.9-3.14 (with values of all parameters t, u, r listed
in Tab. 2).
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Table 2 – Values of parameters used in the TNN TB model [39].

The TNN Hamiltonian is diagonalised for varying k in the three-band basis given again
by (2.9) and the resulting band structure for MoS2 is shown in Fig. 21a in comaprison to
the NN band structure. They differ in most of the Brillouin zone (BZ) except for the K
point where the bands reach their extrema. Band curvatures and band gaps there are very
similar. The band gap obtained in this approximation for MoS2 is 1.598 eV . The band
structure and the band gap value compare well to the result given in literature [111,112].
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Figure 21 – (a) A comparison of the NN (green) and TNN (blue) three-band TB model
results of band structure of MoS2 monolayer. (b) A comparison of the band structure of
MoS2 obtained in the TNN three-band TB model (color lines) and with DFT methods in
Abinit package (black lines).

Additionally, in order to obtain detailed comparison of the results of the model dis-
cussed here, calculations with density functional theory (DFT) methods have been per-
formed with the use of the Abinit package. A comparison of these results to the band
structure obtained within the three-band model is shown in Fig. 21b. There is no perfect
agreement between these results, although the model reproduces the valence band (espe-
cially in the K point) and captures reasonably well the curvatures of the other bands. The
band gap mismatch may be originated both in the TB model faults and the inaccuracy of
the LDA approximation to DFT methods. This proves that the model investigated here
is fairly sufficient to capture the low-energy properties of TMDC monolayers, if only the
third-nearest-neighbour contributions are taken into account.
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3.1.2 Effect of spin-orbit coupling.

While investigating a TB model for TMDC nanostructures it is important to consider
the valley properties of these materials. Such a model should take into account the
spin splitting of the bands that is reversed in the two inequvalent valleys of BZ. This
is especially vital due to the large SOC observed in TMDCs. In order to study this
effect we incorporate the SOC term in our effective Hamiltonian, considering only the
on-site contributions, namely including only terms originated at Mo atoms. We express
the Hamiltonian in the basis

{|dz2 , ↑〉 , |dxy, ↑〉 , |dx2−y2 , ↑〉 , |dz2 , ↓〉 , |dxy, ↓〉 , |dx2−y2 , ↓〉} (3.37)

and the SOC term in the Hamiltonian has the form [39]:

Ĥ ′ = λL · S = λ

2

(
Lz 0
0 Lz

)
, where Lz =

0 0 0
0 0 2i
0 −2i 0

 (3.38)

and Lz is the matrix of z component of the orbital angular momentum and λ charac-
terises the strength of the SOC. Therefore, the full Hamiltonian has the form:

ˆHSOC = I ⊗ Ĥ(k) + Ĥ ′ =
(
Ĥ(k + λ

2Lz) 0
0 Ĥ(k − λ

2Lz)

)
, (3.39)

where I is identity matrix and Ĥ(k) is a NN or TNN Hamiltonian. The Hamiltonian
given by 3.39 is block-diagonal, therefore the z components of spin sz are not mixed and
hence this a good quantum number. From the SOC Hamiltonian we can predict the
spin-splitting of the bands. Because the SOC Hamiltonian affects only bands formed of
|φ2〉 and |φ3〉, that is of |dxy〉 and |dx2−y2〉 orbitals - we might expect a large splitting of
the valence band (VB) in K point (equal to 2λ [19, 39]) but since the conduction band
(CB) is formed of the |dz2〉 orbitals - there will be no splitting in its minimum in K point.
There is no spin splitting in the Γ or M points for any band. This is comparable to the
spin-splitting studies given in literature [19].
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Figure 22 – Band structure of MoS2 monolayer with spin-orbit coupling implemented in
the (a) NN and (b) TNN TB model. Spin splitting of the bands exists only in the K and
K′ points, where the spin valence bands are flipped for the opposite valleys.
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The band structure obtained with the SOC Hamiltonian given by (3.39) is shown in
Fig. 22 and the splitting in the two K and K’ points is shown as well. We can observe
the SOC splitting of the VB and the flip of the spin bands is apparent for the K’ valley
with respect to K point.

3.1.3 TMDC nanoribbons.

Since the three-band model has proven to give reasonable results for TMDCmonolayers,
it is important to study its ability to describe the properties of TMDC NRs. Therefore,
Hamiltonians for zigzag- and armchair-edged NRs have been derived and expressed in the
three-band basis given by (2.9). Only nearest-neighbour hopping terms between metal
atoms were included as shown in Fig. 23.

We analyse zigzag-edged and armchair-edged NRs (shown in Fig. 19 and 23). In fact,
since we consider only contribution from metal atoms, any effects associated with edge
passivation will not be fully described. It is so as in such analysis we would have to include
the orbitals of an atom that would passivate the Mo-edge, like sulphur or hydrogen. The
S-edge on the other hand needs no passivation but its contribution is also neglected.

Figure 23 – Top view of the crystal structure of a MoS2 nanoribbon. At the top of the
picture the zigzag Mo-edge passivated with S atoms is shown. At the bottom of the picutre
the zigzag S-edge is illustrated. Zigzag-edged (armchair-edged) NR extends infinitely to left
and right (up and down) - the horizontal (vertical) edges are its zigzag (armchair) edges.
The unit cells of a zigzag-edged (armchair-edged) NR is shown in green (grey). Distances
to nearest neighbour metal atoms are shown in red.

For zigzag-edged nanoribbon (ZNR) we obtain:

HNN
1D,zigzag(kx) =



h′1 h′†2
h′2 h′1 h′†2

h′2 h′1
. . .

. . . . . . h′†2
h′2 h′1


(3.40)

and the hopping matrices h1 and h2 have been derived, following G.B.Liu et al. [39]:
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h′1 = εi + eikR1 〈φi(0)| Ĥ |φj(R1)〉+ eikR4 〈φi(0)| Ĥ |φj(R4)〉

=

ε1 + 2 cos (kxa)t0 2i sin (kxa)t1 2 cos (kxa)t2
−2i sin (kxa)t1 ε2 + 2 cos (kxa)t11 2i sin (kxa)t12
2 cos (kxa)t2 −2i sin (kxa)t12 ε3 + 2 cos (kxa)t22

 , (3.41)

h′2 = eikR2 〈φi(0)| Ĥ |φj(R2)〉+ eikR3 〈φi(0)| Ĥ |φj(R3)〉

=

s0 s+
1 s−2

s−1 s11 s+
12

s+
2 s−12 s22

 , (3.42)

where Ri have been marked in Fig. 23, |φi(r)〉 are given by (2.9) and

s0 = 2 cos (1
2kxa)t0, (3.43)

s±1 = ±i sin (1
2kxa)(t1 ∓

√
3t2), (3.44)

s±2 = ±1
2 cos (1

2kxa)(
√

3t1 ∓ t2) (3.45)

s11 = 1
2 cos (1

2kxa)(t11 + 3t22), (3.46)

s±12 = −i sin (1
2kxa)(

√
3

2 t11 ± 2t12 −
√

3
2 t22), (3.47)

s22 = 1
2 cos (1

2kxa)(3t11 + t22) (3.48)

and t, εj are given by 3.9-3.14 and listed in Tab. 1.
The Hamiltonian matrix for zigzag-edged NR has dimensions 3n× 3n where n is the

number of metal atoms in the lattice cell of a ZNR and 3 stands for the three-band
basis. The elementary cell for a ZNR has been marked with green colour in Fig. 23. It
is convenient to refer to NRs of different width using this number n: n-ZNR will be a
zigzag-edged nanoribbon with n atoms in the elementary cell.

We obtain the band structure of ZNRs by diagonalising the Hamiltonian matrix in
the three-band basis. Results for 15-ZNR are shown in Fig. 24 in comparison with the
results from ref. [39]. It is apparent that the band gap in Γ or in the X point are not
comparable. We also may conclude that some of the edge states appearing in the energy
gap are reasonably well reproduced, whereas some other - are missing from the picture
entirely. This is due to the fact that these states are formed of different orbitals, not
taken into account in the three-band model [39].

For armchair nanoribbons (ANR) the Hamiltonian reads:

HNN
1D,armchair(ky) =



E y1 T †

y†1 E y†2 T †

T y2 E y1 T †

T y†1 E
. . . . . .

T
. . . . . . . . . T †

. . . . . . E y†2
T y2 E


, (3.49)
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(a) (b)

Figure 24 – Band structure of a zigzag-edged MoS2 nanoribbon of 15 metal atoms in the
unit cell. (a) Results of NN three-band TB calculation and (b) comparison of the TB model
results (dotted red lines) to bands obtained from DFT methods (solid lines) [39]. Blue colour
denotes the bands formed of the orbitals taken in to account in the three-band TB model,
while green denotes neglected orbitals. States in the gap numbered by 1-2 are reasonably
well reproduced but states denoted by 3-4 are absent. This because they are formed of the
orbitals other than ones considered in the threeband approximation.

where y1, y2 and T are hopping matrices and E is matrix of onsite energies of the form:

y1 = eikR3 〈φi(0)| Ĥ |φj(R3)〉+ eikR5 〈φi(0)| Ĥ |φj(R5)〉

=

 f0 f−1 f+
2

f+
1 f11 f+

12
f−2 f−12 f22

 (3.50)

and
f0 = 2t0 cos (kya), (3.51)

f±1 = ±t1 cos (kya)− it2
√

3 sin (kya), (3.52)

f±2 = ±i sin (kya)(
√

3t1 − t2), (3.53)

f11 = 1
2(t11 + 3t22) cos (kya), (3.54)

f±12 = ±2t12 cos (kya) + i

√
3

2 (t22 − t11) sin (kya), (3.55)

f22 = 2(3t11 + t22) cos (kya) (3.56)

and

y2 = eikR2 〈φi(0)| Ĥ |φj(R2)〉+ eikR6 〈φi(0)| Ĥ |φj(R6)〉

=

g0 g+
1 g

+
2

g−1 g11 g−12
g−2 g+

12 g22

 , (3.57)
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where Ri have been marked in 23 and

g0 = f0 = 2t0 cos (kya), (3.58)

g±1 = ±t1 cos (kya) + it2
√

3 sin (kya), (3.59)

g±2 = f±2 = ±i sin (kya)(
√

3t1 − t2), (3.60)

g11 = f11 = 1
2(t11 + 3t22) cos (kya), (3.61)

g±12 = ±2t12 cos (kya)− i
√

3
2 (t22 − t11) sin (kya), (3.62)

g22 = f22 = 2(3t11 + t22) cos (kya) (3.63)

and

T = eikR1 〈φi(0)| Ĥ |φj(R1)〉+ eikR4 〈φi(0)| Ĥ |φj(R4)〉

=

t0 −t1 t2
t1 t11 −t12
t2 t12 t22

 , (3.64)

where the hopping integrals t are listed in Tab. 1 and

E =

ε1 0 0
0 ε2 0
0 0 ε3

 , (3.65)

where ε2 = ε3 and their values are given in Tab. 1 as well.

(a) (b) (c)

Figure 25 – Band structure of an armchair-edged MoS2 nanoribbon of 15 metal atoms
in the unit cell. (a) Results obtained in the three-band approximation to NN TB model.
(b) a detailed fragment of (a) suited to comparison with (c). (c) Band structure obtained
within DFT methods from ref. [93]. The state denoted by 2 is well reproduced by the TB
calculations, but other states in the band gap are absent from the picture and the valence
and conduction bands were not correctly reproduced in TB results either.
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The Hamiltonian matrix for armchair-edged NR has dimensions 3m× 3m where m is
the number of metal atoms in the lattice cell of an ANR and 3 stands for the three-band
basis. The elementary cell for an ANR has been marked with grey colour in Fig. 23.
It is convenient to refer to NRs of different width using this number m: m-ANR will
be a armchair-edged nanoribbon with m atoms in the elementary cell. We obtain the
band structure of ANRs by diagonalising the Hamiltonian matrix in the three-band basis.
Results for 15-ANR are shown in Fig. 25.

The results for three-band TB calculations for ANRs are shown in Fig. 24. The
band structure for a 15-ANR has been shown in detail in order to compare to the results
obtained in [93]. It is clearly visible that while some edge states apparent in the band
gap are well reproduced (states marked with number 2 in Fig. 25), others - are absent
from the figure. It is probably because of different orbitals forming the bands than the
ones we have taken in the three-band model, as it was in case of ZNR. With this model
the proper band curvatures or band gaps cannot be produced either.

3.1.4 Discussion.

The three-band TB model has been used in order to investigate the electronic properties
of nanostructured TMDCs. It has been shown in section 3.1.1 that the model is sufficient
to describe many important features of band structure of TMDC monolayers. In addition
to similar band curvatures and existance of minima in K and K ′ points, it was possible
to obtain the reverse-spin-split behaviour of the bands in the valleys with SOC taken into
account in this model. In case of any low-energy calculations for TMDC monolayers the
model is therefore adequate.

As for studies of TMDC NRs, although several edge states have been well reproduced,
the model has proven to lack important contributions from other, non-metal and metallic
(s, p) orbitals. This is concluded based on the absence of some edge states in the band gap
that are crucial for understanding the properties of the NRs. Additionally, calculations
performed within the model have not produced the correct band gaps or band curvatures.
This is true for both ANRs and ZNRs. This suggests the necessity to include contributions
from more orbitals in an extended model, which were neglected in this case. This way it
might be possible to capture the differences between NRs with variable edge passivation,
which is predicted to affects their studied properties considerably.

Also, since the three-band tight-binding model takes only three orbitals of metal atom
into account and this has proven insufficient for the studies of NRs, it is predicted to fail
to produce correct results for any 0-dimensional structures, such as quantum dots. This
is due to immense importance of all-atom contribution in in the edge states, which very
much determine their low energy properties. Therefore any calculations of such objects
are not included in this work.
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3.2 Density functional theory calculations of MoSSe nanorib-
bons.

This section provides the results of density functional theory calculations in Abinit
package for various MoSSe nanoribbons. Detailed description of the NRs studied is given
first and a geometry optimisation is presented in the following subsections. Later, the
electronic and magnetic properties of chosen structures are discussed.

3.2.1 MoSSe nanoribbons under investigation.

The nanribbons studied include zigzag-edged narrowMoS2, MoSe2 and MoSSe nanorib-
bons of 2 and 4 metal atoms in the elementary cell (shown in Fig. 26). They will be refered
to as 2-ZNR and 4-ZNR of the appropriate compounds. In calculations, the structures
are defined with the elementary cell of 6 or 12 atoms, when chalcogen atoms need to be
identified as well. Top and side views of the crytals analysed are shown in Fig. 26-27.

(a) (b)

(c) (d)

Figure 26 – Crystal structure of the zigzag-edged unpassivated MoS2 nanoribbons under
study. Top and 3D views include nanoribbons consisting of 2 (a-b) and 4 (c-d) Mo atoms
in the unit cell. Unit cell is shown in green. Blue (yellow) balls represent Mo (S) atoms.

Figure 27 – Zigzag-edged unpassivated MoS2 nanoribbons. Top left (right) picture repre-
sents a crosssection of a 4-Mo-atom wide (2-Mo-atom wide) NR. Bottom illustration shows
a side view along the edge of a zigzag-edged NR. Blue (yellow) balls represent Mo (S) atoms.
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Main factor of investigation has been the chalcogen coverage influence on the crystals’
properties. 50% and 100% of S/Se coverage was considered, with different arrangement of
atoms (shown in Fig. 29e). For distinction, in case of the two arrangements of chalcogens
taken into consideration for 4-MoSSe-ZNRs we assign: 4a-MoSSe-ZNR for a structure
shown in Fig. 28c with sulphur atoms near the edges and 4b-MoSSe-ZNR for a structure
shown in Fig. 28d with selenium atoms near the edges.

(a)

(b) (c)

(d) (e)

Figure 28 – Arrangement of S and Se atoms in the NRs under study. (a) From the left:
2 −MoS2, 2 −MoSSe, 2 −MoSe2 NR. (b-e) From (b) to (e): 4 −MoS2, 4a −MoSSe,
4b −MoSSe, 4 −MoSe2 NR. Blue balls represent Mo atoms and yellow (green) ones - S
(Se) atoms.

3.2.2 Geometry optimisation.

In order to perform any calculations of the NRs properties it was needed to obtain
their optimised geometry. The procedure was conducted with the minimisation of atomic
forces with all the atoms allowed to move into more optimal positions. The latter condition
proved necessary as such narrow NRs take forms much distorted with respect to ideal atom
positions.

The obtained geometries are shown in cross-section images of electronic densities for all
the studied structures in Fig. 29-30. Top and side views have been included to fully grasp
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the changes in the crystal lattice. We may notice that MoS2 NRs are the least distorted
among NRs studied, which is true for any size. Furthermore, the Mo-edges differ more
from the ideal shape than the S-edges, which occurs due to the lack of passivation. For
most distorted crystals it is apparent that the Mo atoms close to the edges of NRs form
a bond with each other.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 29 – Electronic densities of optimised 2-Mo-atom wide NRs. Columns show: from
left: 2−MoS2, 2−MoSSe, 2−MoSe2 NR. Rows show: from the top: top view, side view
along the NR, crossection through a NR. MoS2 NR shows the smallest distortion from the
ideal lattice. The atoms on the Mo-edges of all NRs show strongest tendency to distort due
to lack of passivation.
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(a) (b)

(c) (d)

Figure 30 – Electronic densities of optimised 4-Mo-atom wide NRs: (a) 4 −MoS2, (b)
4a−MoSSe, (c) 4b−MoSSe, (d) 4−MoSe2 NR. Optimised crystal lattice is shown for a
clear picture. Full (empty) circles represent Mo (S) atoms and triangles stand for Se atoms.

Below the lattice constants for all the structures studied have been shown in Fig.
31. They vary significantly among NRs with different sulphur and selenium coverage. It
is clear that for NRs of the same composition the lattice constant grows with size and
the most extreme change occurs for MoSe2 NRs. At the same time, NRs of the mixed
composition and different arrangements are characterised by similar lattice constants. For
the constants obtained we may analyse the Mo-Mo distances, which vary between 3.041Å
and 3.199Å, which is comparable to the results obtained in ref [77, 90]: 3.148 − 3.155Å
but for larger structures.
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Figure 31 – Optimised lattice constants for the studied nanoribbons: black (blue) symbols
denote 2-Mo-atom wide (4-Mo-atom wide) NRs. It can be seen that the MoS2 NRs have
smaller lattice constants and MoSe2 - the largest. Lattice parameters grow with the NRs
size, most rapidly - for MoSe2 NRs. Regardless of the width of the NR, MoSSe NRs do
not differ significantly in terms of the lattice constants.
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3.2.3 Electronic properties.

In order to investigate the electronic properties of the nanoribbons studied calculations
of their band structure have been performed. The results are shown in Fig. 32. The band
structures include a band gap of around 2.5 eV with edge states in the gap. The edge
states cross each other in various points of BZ. We observe the semimetallic properties of
the NR, as reported in literature [77,90].
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Figure 32 – Band structures of 4-atom wide nanoribbons: (a) 4−MoS2, (b) 4a−MoSSe,
(c) 4b−MoSSe, (d) 4−MoSe2 NR. The NRs are semimettalic and the band gap slightly
decreases for following NRs. Various edge states are apparent in the band gaps and their
curvature and crossings change for selenium contribution increasing.

In fact, the evolution of the entire band structure is apparent as the selenium atoms
contribution to edges increases. As sulphur atoms are replaced by selenium atoms the
energy gap slightly decreases. Also, the curvature of bands changes and some crossings
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of the edge states disappear when the selenium atoms are added. All of the nanoribbons
appear to be semimetallic despite the changes of the band structure.
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Figure 33 –MoS2 nanoribbon band structure comparison to known results [93]. The band
structure obtained here has been well reproduced. Important differences include several
crossings of the states in the gap near Γ and X points.

Band structure of MoS2 NR is in Fig. 33 in comparison with the results obtained
in [93]. The band structure obtained is with good agreement to the reports. However,
some differences include existence of some gap states crossings, which may occur due to
different exhcange-correlation functional used or the narrow size of the NR.

3.2.4 Magnetic properties.

It is highly important to include analysis of magnetic properties in the studies of TMDC
nanostructures. Therefore spin-resolved caluclations have been performed. They allow
for determination of spin-dependent electronic densities of NRs and their differences are
interpreted as local magnetisation of the crystals.

The projections of magnetisation on the crystal plane for MoS2, MoSSe and MoSe2
ZNRs are presented in Fig. 34. Colors represent its positive and negative values. We ob-
serve the highest magnetisation on the unpassivated Mo-edges, which consist of strongly
magnetic metal atoms. This magnetisation is diminished when selenium atom contribu-
tion to the edges increases. The S-edge magnetisation occuring due to sulphur atoms
contribution is not as greatly influenced by addition of selenium atoms.

Basing on the analysis of the color maps we may determine the spin-polarisation of
the edges of NRs. It is schematically shown in Fig. 35. It is clear that MoS2 4-ZNR
is ferromagnetic, which has been reported previously [77]. We observe that the MoSSe
4a-ZNR are also ferromagnetic on the edges, while the MoSSe 4b-ZNR and MoSe2 4-ZNR
are antiferromagnetic. Furthermore, the polarisation is the strongest for MoS2 NR and
substitution of selenium atoms reduces it significantly, especially on the Mo-edges.
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(a) (b)

(c) (d)

Figure 34 – Local magnetisation projected on the Mo-atom plane for 4-atom wide nanorib-
bons: (a) 4−MoS2, (b) 4a−MoSSe, (c) 4b−MoSSe, (d) 4−MoSe2 NR. Colors correspond
to positive and negative local magnetisations. The largest local magnetisation appears al-
ways on the unpassivated Mo-edge. MoS2 NR has the strongest magnetisations and it
decreases for NRs with Se atoms. Ferromagentic edge polarisation is visible in (a-b) and a
transition to anti-ferromagnetism can be seen for (c-d). Optimised crystal lattice have been
drawn schematically for a clear picture with full (empty) circles representing Mo (S) atoms
and triangles standing for Se atoms.

3.2.5 Discussion.

In this section zigzag TMDC nanoribbons were investigated with Abinit package. The
DFT calculations have proven to provide information on some properties of MoS2 ZNR
that were impossible to describe with the three-band tight-binding model discussed in the
previous section. Band structures have been obtained for MoS2, which agree well with
other reports and the energy bands were calculated for MoSe2 and MoSSe NR as well.
Band gaps and edge states apearing in the band gaps have been investigated.

Distortions of the crystal lattices were analysed for ZNRs with 2 and 4 metal atoms
in the elementary cell. The largest displacements have been observed for MoSe2 and
MoSSe NRs. In particular, unpassivated Mo-edges proved most prone to the distortions.
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(a) (b)

(c) (d)

Figure 35 – Edge spin polarisation of 4-Mo-atom wide nanoribbons shown schematically
for: (a) 4 − MoS2, (b) 4a − MoSSe, (c) 4b − MoSSe, (d) 4 − MoSe2 NR. Red (blue)
arrows stand for positive (negative) magnetisation. Bigger arrows indicate higher values of
magnetisation. As Se atoms are added, the magnetisation of Mo-edge decreases and the
ferromagnetic spin polarisation of edges changes to antiferromagnetic.

Electronic densities for the optimised structures have been presented. These as well as the
low-energy band structures show the importance of the edges in the properties of NRs.

Apart from the electronic properties, the magnetism of the NRs is investigated as
well. Spin-dependent electronic densities have been analysed and local magentisation
of the NRS has been studied. On this basis the spin-polarisation of the edges of NRs
is discussed, which for the ferromagnetic MoS2 NR agrees well with the literature [77].
Imoprtantly, ferro-antiferromagnetic transtion is identified. Its occurence result from the
selenium atoms substitution in the NRs’ edges which reduces the Mo-edge magnetisation
and reverses the polarisation of the edges.
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4 Conlusions.
In this work various properties of several types of TMDC nanostructures have been

investigated. In section 3.1 the calculations within the three-band approximation to tight-
binding model have been performed, following G.B.Liu et al. [39]. The object of the study
was to obtain the band structures of TMDC monolayers and zigzag-edged nanoribbons.
Also, the Hamiltonian for a nanoribbon with armchair edge type has been derived and its
band structure has been analysed. For TMDC monolayers, the spin-orbit coupling effect
has been included in the calculations. The tight-binding results have been compared to
these obtained with DFT methods in Abinit package and with results from literature [39].

It has been concluded that the three-band approximation procudes more accurate
results for TMDC monolayers when the contribution from the third nearest neighbours
is taken into account. For monolayer TMDC, the reversed spin-split of the bands in the
K and K ′ valleys under spin-orbit coupling effect is reproduced well. This TB model is
however not sufficient to describe the properties of MoS2 nanoribbons as the obtained
band structres lack some important low energy states in the band gap. Because this is
most likely steming from the fact that the absent states are formed of orbitals neglected in
the model (as reported in ref. [39]), the necessity has been stated to develop an extended
model inlcuding more orbitals of metal and chalcogen atoms. In view of these conclusions,
the model is predicted to give incorrect results in case of any TMDC quantum dots, as
the properties of such nanostructures should depend strongly on the edge properties.

Section 3.2 provides the results of DFT calculations in the Abinit package. The pa-
rameters of the calculations have been chosen with accordance to literature [108, 109]
and have been found as a result of thorough convergence studies. With this method the
unpassivated zigzag-edged MoS2, MoSSe and MoSe2 narrow nanoribbons have been inves-
tigated. The geometry of the nanostructures have been optimised and the MoS2 crystals
have been found to distort the least out of the crystals studied. Greatest distortions
within nanoribbons have occured at the unpassivated Mo-edge due to unsaturated bonds.

The nanoribbons of optimised geometry have been then analysed in terms of their
electronic and magnetic properties. Their band structures have been obtained and anal-
ysed, identifying the nanoribbons as semimetallic. Results for the MoS2 nanoribbon
have been compared to literature [93], as this type of nanoribbon has been widely ex-
plored [83, 85, 87, 90, 91]. To our knowledge, calculations on MoSSe nanoribbons have
not yet been reported. Furthermore, the local magentisation of these nanoribbons have
been studied. MoS2 nanoribbon has been found to have the strongest magentisation,
localised mostly on the edges, especially the unpassivated Mo-edge. A transition from
ferromagnetic spin polarisation on the edges to antiferromagentically polarised spins has
been observed for nanoribbons with increasing selenium-based composition. The selenium
atoms have been identified to decrease the magentisation of the Mo-edges and finally in-
duce the anti-ferromagentic spin polarisation for MoSe2 nanoribbon.

From the two methods used in this work, the DFT approach has provided more in-
formation about the analysed structures due to the very character of the method, which
includes contributions from all atom orbitals. Additionally, the geometries have been op-
timised, which have affected mostly the edges of the structures, therefore determining to
large extent their low-energy properties. Also, as the three-band approximation to tight-
binding model does not take chalcogen orbitals into account, any differences between the
nanoribbons studied within DFT methods would not have been captured. It is so as they
all consist of only one type of metal atom and they differ only by chalcogen atoms. In
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effect, the results produced with the three-band tight-binding model would not be correct,
as the nanoribbons properties described in DFT methods are significantly different from
each other. This motivates again the development of an extended model based on a larger
orbital basis, which might then prove more efficient in case of studies of structures bigger
than reachable within the unit cell size limit of DFT calculations.

The result obtained in this work provide much insight in the properties of TMDC
nanoribbons and other TMDC nanostructures. It is especially valuable in view of recent
research in the area of nanodevices developped on the basis on TMDC crystals [65, 66,
69]. Also, since the first in-plane TMDC heterostructures have been reported and their
practical advantages have been predicted [63], it is important to emphasize the significance
of the results on MoSSe nanoribbons. It is expected that the future studies should focus
on larger sizes of similar structures and their more diverse compositions as well as on
development of an effective model for these nanostructures.
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