Chapter 2

Single-particle states in typical

quantum-dot confinements

Before I can move on to describing the many-particle properties of QDs, I first need
to understand their single-particle spectra. In Chapter 1 I have shown that QDs can
be fabricated in a variety of sizes and shapes, and the lateral confinement produced by
each of them possesses its own characteristic symmetry properties. Detailed calculations,
fully accounting for all the details of particular structures, are complicated and require
large computational effort [26, 28, 70, 99, 112]. In this work, however, I shall approxi-
mate the complicated QD confinements by model potentials, capturing the fundamental
physics, but at the same time making it possible to understand it in simple terms. I
shall consider three fundamental classes of “ideal” QD geometries: (i) parabolic QDs, (ii)
disk-shaped QDs, and (iii) quantum rings. It turns out, in fact, that these potentials are
reasonably good approximations of the real QD potentials, so much so that in most cases
it is sufficient to treat the peculiarities of each QD as small perturbations to the ideal
shape [34, 70]. The two-dimensional parabolic potential is commonly used in modelling

of gated quantum dot devices, both vertical [92, 121, 122] and lateral [31, 32, 33|. It has
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also been successfully applied to lens-shaped self-assembled QDs (obtained without using
the indium-flush technique) [34, 50, 57]. In this work, however, when talking about SADs
I shall refer to the indium-flushed structures, whose geometry is approximated better by
the disk-shaped potential. Finally, when discussing the quantum ring geometry I shall
assume that this ring is of infinitesimal thickness, i.e., it is a one-dimensional circular
system. This Chapter is devoted to describing and comparing the single-particle energy

spectra of these three fundamental lateral confinements.

2.1 Parabolic lateral confinement

First I consider two-dimensional parabolic confinement in the presence of an external
magnetic field B = [0, 0, B] perpendicular to the plane in which the potential is defined
(by default, the XY plane). The Hamiltonian of a single electron in this case attains the

following form:
1
2m*

H=

(f) -+ SA)Q + %m*w%rQ — gupBo, (2.1)
where m* and e is the electron’s effective mass and charge, respectively (e > 0; the
negative sign of the charge is accounted for by the “+” sign in the first term), ¢ is the
velocity of light, and wy is the characteristic frequency of the confining potential (CGS
units are used). The last term of this Hamiltonian is the Zeeman term, with g being the
Landé factor, ug = eh/2m, - the Bohr magneton, and o = :I:% - the z component of
the electronic spin. Since the Zeeman term depends only on the spin component of the
electronic wave function, I shall neglect it in the following calculations, and return to it
in the discussion of results.

The problem at hand has been solved by Fock [44] and Darwin [37], and this is why
the single-particle energy spectrum of such a parabolic potential is called the Fock-Darwin
spectrum. The cited authors solved the Schrédinger equation with the Hamiltonian (2.1)

in real space. I shall follow a different path, involving the harmonic-oscillator raising and
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lowering operators. My description is similar to that given in Refs. [51, 62, 127].
To proceed I must first define the form of the vector potential A. I choose the sym-
metric gauge: A = [—By/2, Bx/2,0]. To prove that this potential indeed corresponds to

the vertical magnetic field B as specified above, I calculate

PGk
VxA=| & 2 &|=kB+B)2=0005 (22)

—By/2 Bz/2 0

A\ 2
Let us expand the expression (f) + ﬁA) using the above vector potential:

. e:\> ., eB eB e?B?
(p + EA> =p’+ 2—6(—p$y +pyz) + Q—C(—ypx + zp,) + e (2% + 7).

Let us now define the cyclotron frequency w. = eB/m*c (for GaAs, the cyclotron energy

hw. ~ 1.728 meV for the magnetic field B = 1 T, and scales linearly with the field).

Taking into account that yp, = p,y and zp, = pyz, I get

~

e\ . 1
(p + EA> =p°+ Z(m*)%?r2 + m*wel,,

where l; = pyx — pgY is the z-th component of the angular momentum operator. The
Hamiltonian can be now written in the following form:

1 1 1 1 -
p>+-m* (wg + —wf) r’ + 5%5:5- (2.3)

H=
2m* 2 4

Using the notation (wg + iwf) = w? (“hybrid frequency”), I get

1, 1 1.
H= 5 p? + 3™ wir? + Ewclz. (2.4)

Let us further introduce complex variables:
z=x— 1y, ¥ =z +1y;
0, = 0y + 10y, 0 = 0 —10y;
and write the position and gradient in their terms:
(z42%), y=5("—2);
0y =3(0,+0;), 0= 2%(82 —03).

N [—

T =
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It is straightforward to see that 22+1% = 2z2* and 32—%85 = 0,0;. Since p? = —77,2(33-1-85),

the Hamiltonian in the new coordinates attains the form:

] h2 * 1 * * 1 * Ok
H = —Q—W(azaz) + g™ wi(z2*) — Zhwc(zaz — 2°03). (2.5)
Next step is to define a unit length characteristic for this potential. I take ¢ = Zm)zwh'
Note that in zero magnetic field w, = wy and flp_y = ﬁ In the absence of the
parabolic confinement, but in the presence of the magnetic field, I get /g = mf‘wc (the

magnetic length). Let us now insert this unit length into the Hamiltonian. The new,

dimensionless variables are: Znew = Zoi¢/f and O,new) = Ou(aiq)f- Dropping the label
“new” I get:
Aee (0.0 + b2 (o) — Lhaon(o, — 2 07) (2.6)
= =5, (0:0; 5" Wil (22 3 we(20; — 270; .

(in the last term no new factors appear, since ¢ crosses out). If I insert the explicit forms
of 7, T obtain

N 1 1
H= hwh(zzz* —0,0%) — Zhwc(zﬁz — 2°0}). (2.7)

z

Let us now introduce the raising and lowering operators:

a=3(5+0:v2), ot =5 (5 -0.v2),
b=1(5+0.v2), bt =1(5-0:v2).

To examine their properties I check two out of six of their possible commutators.

1. Commutator [a,a™].

la,at] = % { (%zz 20, 48— 26;‘62> _ (%zz Y N 2828:)} .

But z commutes with z* and 0, commutes with 0}, so the respective “pure” products

cross out. Further, the commutator [0, z] = 2 and [0}, 2*] = 2, so
[a,a™] = 1.

Similarly one can prove that

[b,b%] = 1.
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2. Commutator [a, b*].

1 1 1
0,6 = 4 {(§z2 R 2(3;)2) - (§z2 ot 20— 2(3;)2)} .

Again, the respective “pure” products cross out. Moreover, the commutator [0}, z| =
0 and [0,,2*] =0, so
[a,b7] = 0.

Similarly one can prove that any commutator of a (a™) with b (b™) is zero.

Thus I have shown that the pairs of operators (a, a™) and (b, b") are independent.
I shall express the Hamiltonian in terms of these operators. To this end I need to

perform the inverse transformation:

z=+2(a+b"), z*=+2(at+b),

(2.9)
0, = (b—a"), 0= s5(a—10").
Upon substitution into the Hamiltonian I obtain:
- 1
H = Shw, ((@+b")(at +b) = (b—a®)(a—b"))
1
— e ((@+b*)(b—a®) = (a* +b)(a—1b")), (2.10)
and, after reduction,
H=h ( + +1> +h (b+b+1) + Lho (a+a+ 1) ~ L (b+b+ 1) (2.11)
TR\ T ATy ) T 9) Tl 2) 2" 2) \*©
I can now define a pair of oscillator frequencies
1
wy =wp SWe: (2.12)
and, in terms of these frequencies,
~ i 1 n 1
H = hwy (a a+ §)+hw_ (b b+ 5) (2.13)

Thus I have obtained a Hamiltonian of two harmonic oscillators. In analogy to the linear

harmonic oscillator [35], the eigenstates of this Hamiltonian can be written as

Inm) = nl!m! (a*)" (5)" o0y, (2.14)
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with n, m being quantum numbers (n, m = 0, 1,2,...). The lowering and raising operators

acting on such state give

aln,m) = Viiln = 1,m), a*[n,m) = Va+1ln+1,m);

(2.15)
bln,m) =+/mln,m —1), b*|n,m) =+vm+ 1jn,m+ 1).
I am now ready to write the formula for the energy of the eigenstate |n, m):
1 1
e(n,m) = hw; (n + 5) + hw_ (m + 5) . (2.16)

Let us now include the Zeeman term, introduced in the beginning of this Section, but
neglected afterwards. This term accounts for the fact that the electron also has the spin
degree of freedom, and its eigenstate should be identified by three quantum numbers:
Inmao), where o = +1 is the quantum number describing the z spin component. In this

case the electronic eigenenergies are
1 1
g(n,m,0) = hwy (n + 5) + hw_ (m + 5) — gupBo. (2.17)

In Figure 2.1 I show a few lowest-lying energies £(n, m, o) as a function of the magnetic
field. In this calculation I take hwy = 6 meV and the Landé factor ¢ = —4.4. This
value of hwy is characteristic for the vertical dots in GaAs, but my Landé factor is one
order of magnitude larger than that of GaAs (ggeas = —0.44). Thus the Zeeman energy
E; = |gupB| is artificially enhanced; I have done so in order to make the spin splitting
visible on this energy scale.

At zero magnetic field I have w, = w_ = wy and
ep=o(n,m,o) = hwg(n +m+ 1), (2.18)

i.e., the energy of all eigenstates with the same value of n + m is the same. These are
the degenerate shells; let us name a few of them here. The lowest one, called the s shell,
consists of two states, both with n = m = 0, but with different o (i.e., the s shell is

doubly degenerate with respect to spin). The second one, called the p shell, consists of
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Figure 2.1: Energy spectrum of a single particle in a two-dimensional parabolic potential
versus the magnetic field. I show the energies of twenty eigenstates which in the absence
of the magnetic field form four lowest shells (see text for details). In this figure, the

parabolic frequency hAwy = 6 meV, and the Landé factor g = —4.4.
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states (n,m) = (0,1) and (n,m) = (1,0), both of them doubly degenerate with respect to
spin. The third - d shell consists of states (n,m) = (0,2), (1,1), and (2,0), each of them
spin-degenerate. Subsequent shells can be generated in analogous manner; the degeneracy
of each next shell is greater by 2 than that of the previous shell (that includes the spin
degeneracy). Moreover, the energy distance between consecutive shells is constant and
equal to hwg.

As the magnetic field is increased, the frequency w, increases, and the frequency w_
decreases. Also, the Zeeman factor starts playing a role, causing the states with different
spin orientations to differ in energies; this gap grows linearly with the magnetic field.
Therefore, all degeneracies are removed, as seen in Fig. 2.1. In this Figure, in the lowest
part of the spectrum I denote the spin-down states in red, and the spin-up states - in blue.
This spin splitting occurs also for all higher states (accounted for in the graph, but not
indicated with colours). Note that at certain values of the magnetic field (e.g., about 2 T
and about 4 T) one sees crossings of levels belonging to different shells. In the absence of
the Zeeman energy, this effect is observed whenever the ratio of frequencies w, /w_ = p/q,
where p > ¢ are nonzero integers.

For very large magnetic fields the frequency w_ is very small (approaches zero), and
the frequency w, approaches the cyclotron frequency w.. At these fields the Landau level
(LL) structure of the spectrum becomes particularly clear. The lowest Landau level (LLL)
is composed of one pair of states from each shell (differing only by spin); these states are
plotted in Fig. 2.1 in red and blue for spin down and up, respectively. A characteristic
feature of all of these states is that all of them have the quantum number n = 0. The
second LL (plotted in green) is composed again of one pair of states from each shell, but
now with the exception of the s shell, whose states have already appeared in the LLL. All
states here have the quantum number n = 1. In the Figure, one can also see a few lowest
energies of states belonging to the third and fourth LLs, whose quantum numbers n are

equal to 2 and 3, respectively. Each higher shell contributes to all LLs; I have presented
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only four lowest shells for clarity. Since in the unmodified parabolic potential the number
of shells is infinite, in reality each LL is composed of an infinite number of states. In this
context let us note that the operators a, at are associated with the frequency w,, and
therefore they are respectively inter-Landau-level lowering and raising operators. The
difference of energies of two corresponding states (i.e., with the same m and o) belonging
to two consecutive LLs is thus equal to hw,. Analogously, b, b" are associated with
the frequency w_, and are respectively intra-Landau-level lowering and raising operators.
The splitting between two consecutive levels in one LL, neglecting the Zeeman splitting,
is equal to hw_.

Finally let us express the z component of the angular momentum operator in the

language of the lowering and raising operators:

L= _g (20, — 2°0%) = —h(b*b — a*a). (2.19)

The states |nmo) are thus also eigenstates of the operator [, with eigenvalues Al =
h(n —m). The z component of the angular momentum is thus a good quantum number
(the corresponding operator [, commutes with the Hamiltonian, and thus can be diago-
nalised together with it). In this context the degenerate structure of the p shell at zero
magnetic field becomes more clear: the two doubly-spin-degenerate states have opposite
angular momenta (1 and —1, respectively), and their degeneracy simply reflects the axial
symmetry of the potential. In the d shell, however, there are three doubly-spin-degenerate
levels. The degeneracy of two of them, with angular momenta 2 and —2, respectively,
can be accounted for similarly to the states in the p shell. However, the third state, with
angular momentum 0, does not fall into this category. Its degeneracy with the other two
states in the d shell results from dynamical symmetries of the parabolic potential. These
symmetries are similar to those in real atoms: atomic shells exhibit degeneracy which is
higher than that due to the spherical symmetry of the system [35]. This is reflected in the
fact that the energy of atomic levels depends only on one quantum number (the principal

quantum number n).
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The notion of angular momentum also allows for an interpretation of the raising and
lowering operators: in acting on a state [nm) the operators a and a™ respectively decrease
and increase the angular momentum, thus they control the “counterclockwise” motion
of an electron (to use a classical analogy). They also work against the magnetic field,
which, in classical terms, accelerates the electron in the “clockwise” motion via the Lorenz
force (this is because the magnetic field B = [0,0, B] is parallel to the z axis and the
electronic charge is negative). This is why Landau levels are composed of states with the
same quantum number n: upon application of the operator a™ the electron acquires one

quantum of the “counterclockwise motion”, which transfers it one LL up.

2.2 Confinement of the quantum disk

In this Section I shall find the single-particle energy spectrum of an electron confined in
a potential of a quantum disk with infinite walls. Let us denote the disk thickness by W
and the disk radius by R. The Hamiltonian of the system in an external magnetic field

B = [0, 0, B] takes the form

1
2m*

H=

~ 2 ~
(f) + SA) +V(z,y,2) — gupBo, (2.20)

with all the symbols defined in Section 2.1. The potential V(z,y,2) equals zero inside
the disk, and infinity outside it. When expressed in cylindrical coordinates (g, 6, z), this

potential does not depend on the angle . Moreover, it can be separated into two parts:

V(e z) = Vr(o) + Vz(2), (2.21)

each part dependent on one coordinate only. The potential V5 is that of a square quantum
well with infinite walls, and the potential Vj is that of a two-dimensional circular quantum
well, also with infinite walls. Here I have assumed that the z axis coincides with the axis

of rotational symmetry of the system.
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At this point one can analytically obtain the energies and wave functions of an electron
in the absence of the magnetic field, and this is what I shall do in the first part of
this Section. The symmetry introduced by the magnetic field, however, turns out to be
different than that of the disk potential, which makes it difficult to obtain an analytical
solution in the presence of the magnetic field in a closed form. I shall therefore calculate
the full single-particle energy spectrum as a function of the magnetic field using numerical

methods. This procedure will be described in detail in the second part of this Section.

2.2.1 Quantum disk in the absence of the magnetic field

To simplify the notation, I will express all energies in units of the effective Rydberg,
R = m*e*/2¢2h?, and all lengths in the units of the effective Bohr radius ap = eh*/m*e?
(¢ is the dielectric constant of the QD material). For example, for GaAs ¢ = 12.4 and the
effective mass of an electron m* = 0.067 my, which yields 1 R & 5.93 meV and 1 ag =~ 97.9
A. In these units the Hamiltonian (2.20) with B = 0 and written in cylindrical coordinates

attains the following form:

. 1/ 0 0 0 0?
H = [_E (Qa—gga—g + ﬁ) - @] + Vr(o) + Vz(2) (2.22)

(note that the coordinates p and z are now dimensionless). The above Hamiltonian can
be separated into two parts, one describing the motion in z direction, and one describing
the radial and angular motion. To take advantage of this fact, I shall seek the full wave

function in the form
U(o,0,2) = ®(0,0)&(2),

i.e., as a product of the in-plane and the z-dependent parts. In this case the Schrédinger

equation written with the Hamiltonian (2.22) splits into two equations:

l—% (Qa%ga% + g—;ﬂ ®(0,0) + Vr(0)®(0,0) = Er®(0,0), (2.23)

~52 (2) + Vz(2)§(2) = Ez&(2), (2.24)
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and the total energy £ = Er + E.

Let us solve the equation (2.24) first. As I have already established, Vz(z) is the
potential of a square quantum well with infinite walls. This problem is considered in
many textbooks on quantum mechanics (see e.g. Ref [35]), and here I shall just write
out its solution. For simplicity let us assume that the left wall of the well is positioned
at z = 0, and the right wall - at z = W. In this case the normalised eigenstates of the
equation (2.24) can be expressed by sines only (the wave functions do not contain cosine

terms as they attain nonzero values at z = 0, i.e., at the edge of the well):

&i(z) = \/%sin (%z> : (2.25)

The corresponding eigenenergies are:
E; () = —=1?, (2.26)

and the vertical quantum number [ =1,2,.. ..
Let us now move on to the equation (2.23). In this case one usually attempts to write

the eigenfunction in the form

®(0,0) = R(p)e'™, (2.27)

since the Hamiltonian of the planar motion contains elements of the z component of the
angular momentum operator (m is the angular momentum quantum number). If one
substitutes this wave function to Eq. (2.23), performs the differentiation and reduces the

exponent on both sides, one obtains

[—é (ga%ga% - m)] R(0) + V(o) R(0) = FR(0) (225)

This equation becomes the Bessel equation if V(g) = 0. Let us assume so, and include the
potential Vx later on. In this case the analytical solution of this equation is possible [1],

and the resulting unnormalised wave functions attain the form

Rin(0) = Jm(y/ Ero), (2.29)
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where J,,, are the Bessel functions of order m, and m is the angular momentum quantum
number.

Let us now include the potential Vz(g). This potential is equal to zero inside the disk
(i.e., for p < R, where R is the disk radius), and infinity on the outside (i.e., for o > R).

Therefore the acceptable wave functions must have a node at p = R, i.e.,
R.(\/ErR) = 0.

This gives the quantisation condition for energy, which is

Fn(n,m) = (%)2. (2.30)

Here o], denotes the n-th node of the Bessel function J of order m. In other words, one
obtains an additional radial (or nodal) quantum number n =1, 2, 3, ..., which, together
with the angular momentum quantum number m, defines modes of the planar motion.
The nodes o), are obtained numerically.

The eigenenergies and normalised eigenfunctions of the total Hamiltonian (2.22) can

now be written as:

n o\ 2 2
E(n,m,l) = (%m) + = p (2.31)

(Flnml) = gm‘]’" (%Q) : \/12—7Teima . \/%sin (%Z) . (232)

Note that the quantum numbers n, m defining the eigenenergies and eigenvectors of the

disk potential, although named with the same letters, have a different interpretation than
the numbers n, m used in the case of parabolic confinements. Here, ng,. can be considered
as the number of nodes in the radial direction, and Amyg;,, is the angular momentum of a
given single particle state. In the parabolic case, n and m denoted the number of quanta of
the “counterclockwise” and “clockwise” motion, respectively, and the angular momentum
of a given state had to be calculated as hl = h(n — m).

To complete the description of the case of zero magnetic field, let us briefly discuss the

obtained energy spectrum. The formula (2.31) consists of two parts: first, corresponding
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to the radial confinement, and second, corresponding to the vertical confinement. The first
part scales as B2, and the second part as W 2. Since the disk height W is usually much
smaller than the disk radius R (for typical disk-shaped InAs/GaAs QDs, R ~ 80 A and
W 20 A), the energy gaps between states with different numbers [, but the same n,m
are much larger than the gaps between states with different numbers n, m, but the same [.
Thus the spectrum consists of widely-spaced subbands, corresponding to different values
of [, on top of which there are different modes of lateral motion, spaced much more closely.
These modes are also organised in degenerate shells, and to demonstrate this let us write
out values of Eg(n, m) for several sets of quantum numbers (n,m). Assuming that the
disk radius R = 1 ag, and using the values of Bessel zeros available in literature [1],
one obtains: Eg(0,0) = 5.783 R (s shell); Eg(0,1) = Eg(0,—1) = 14.682 R (p shell);
Er(0,2) = ER(0,—2) = 26.375 R and Eg(1,0) = 30.471 R (d shell). All these states
are doubly degenerate with respect to spin. Note that here the p shell is also orbitally
degenerate, as is the case with the parabolic potential. The d shell, on the other hand,
is only partially orbitally degenerate. I shall discuss this and other properties of this
spectrum at the end of this Section, together with effects introduced by the magnetic

field.

2.2.2 Quantum disk in finite magnetic fields

Let us now consider the Hamiltonian (2.20) in nonzero magnetic field, but for now omitting
the Zeeman term. If the vector potential A is chosen in the symmetric gauge: A =

[-By/2, Bz/2,0], this Hamiltonian can be written as a sum

N - 1 1
H(B) = H(0) + gm*wfr2 + Swelz, (2.33)

where H(0) denotes the Hamiltonian (2.22) in the absence of the magnetic field, and the
meaning of all other symbols is identical to that introduced in the case of the parabolic

potential in Section 2.1. Thus, there are two terms dependent upon the magnetic field:
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the first one depends on B quadratically, and the second one - linearly. To proceed further,

let us write the above Hamiltonian in dimensionless units:

. N 1 1 .0
H(B) = H(0) + 1_69392 — §Qc%,

(2.34)
where Q. = hiw./R is the dimensionless cyclotron energy. Note that the terms dependent
upon the magnetic field directed along the z axis do not depend on the z coordinate, but
affect only the planar motion of the particle.

To find eigenenergies and eigenstates of the Hamiltonian (2.34), I shall use the exact
diagonalisation procedure. This procedure involves: (i) choosing a basis of single-particle
states, (ii) writing the Hamiltonian in matrix form in this basis, and (iii) diagonalising
this Hamiltonian matrix numerically.

As for the choice of basis, the eigenstates |[nml) (Eq. (2.32)) of the zero-field Hamilto-
nian H(0) seem to be natural candidates. But I do not have to build my basis out of states
with all possible values of n, m and [; I can divide my basis into subsets, containing func-
tions with defined m and [, but with various n. To see why I can do that, let us check how
the Hamiltonian (2.34) acts on a function |nml). 1 have H(0)|nml) = E(n,m,1)|nml),

with F(n,m,l) defined by Eq. (2.31), because these states are eigenstates of the zero-field

Hamiltonian. Further, for the last term of the Hamiltonian (2.34) I get
i, O m
__Qc_ = _Qc s
5 ae|nml) 5 |nml)
which is readily seen from the form of the function |nml) (Eq. (2.32)). Finally, the action

of the second term of H(B) on |nml) can be written in the operator form,

L2 o
16909 |nml).

Let us now analyse the three expressions. In all three cases the part of the function
describing the motion in z direction is left unchanged - in other words, the Hamiltonian
H(B) does not couple states with different quantum numbers . The angular part of the

~

wave function is not affected either - H(B) does not couple states with different quantum
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numbers m (in other words, the magnetic field directed along the z axis conserves the
z component of the angular momentum of the particle). The only part of |nml) not
conserved by H(B) is the radial part, and this is due only to the second term (the one
containing ¢?). Therefore in choosing my basis I can preset the desired angular momentum
m and the quantum number [, and take states with all possible radial quantum numbers
n. Thus, my basis consists of states {|1ml), |2ml), |3ml), ...}

In the second step of the procedure, I write the Hamiltonian H (B) in matrix form in

the chosen basis. The matrix elements of this Hamiltonian are

A 1
(Imny|H(B)|ngml) = E(n,m,1)6n, n, + EQ?(lmnﬂngle) + %Qcénl,nz, (2.35)

where 0§y, 5, is the Kronecker delta (d,,,, = 1 if ny = ny, and zero otherwise). This
expression is obtained by collecting all the terms considered earlier, when I analysed how
H(B) acts on |nml), and taking into account the fact that the functions |nml) form an
orthonormal set.

Note that the first and the third term appears only on the diagonal of the Hamiltonian
matrix, while the second term introduces both diagonal and off-diagonal matrix elements.

This term, written explicitely, has the form

2 1 R a™ a2
Imny| g2 ngml) = — /d SJm(m>Jm(—m>.
< mnl‘g |n2m > R2 ‘Jm—}—l(a%)e}m—}—l(a%)‘ 0 00 0 1Yy

This integration has to be carried out numerically.

Thus, I have defined my basis and I have calculated the Hamiltonian matrix elements
in this basis. Before I can proceed to the proper diagonalisation, note that my basis is
infinite, and therefore my Hamiltonian is also a matrix of infinite dimension. Thus, to be
able to carry out calculations I need to restrict my basis to a finite set, or, in other words,
limit the region of radial quantum numbers n. To decide how to do it, I invoke the rules of
perturbation analysis [35] defining the subsequent corrections to the energy coming from
mixing between basis states. These corrections are always in the form of a ratio, whose

numerator contains the matrix elements of the perturbed Hamiltonian, and the denomina-
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tor - respective differences of eigenenergies of the unperturbed Hamiltonian. This means
in practice that in calculating the ground state energy of the Hamiltonian H(B) it is ap-
propriate to choose a basis consisting of several low-lying levels [nml) of H(0); corrections
from higher energies should give small contribution to the energy. Therefore, I choose the
maximal quantum number n,,4,, which will be my cutoff, and the basis {|nml)} will now
be finite and will contain only states with 1 < n < n,,,,. There still remains a question of
how much should 7n,,,; be to guarantee a well-converged result. The most straightforward
method of establishing the cutoff value involves diagonalising the Hamiltonian in several
bases (with different values of 7,,,,) and performing the convergence study. This method
will be used in my case.

I am now ready for the third step of the procedure - the diagonalisation of the Hamilto-
nian matrix. This is a standard operation of linear algebra, and many software packages
capable of performing it are available. Calculations presented here are done using the
Linear Algebra Package (LAPACK) [71] prepared as a FORTRAN software library.

For my model calculations I use a disk potential with thickness W = 20 A and radius
R =200 A. Note that the radius is taken to be more than two times larger than typical
radii of indium-flushed InAs QDs on GaAs substrate (for these structures typically R ~
80 A), but comparable to the radii of InAs QDs grown on InP substrate. I took such a
large radius of the structure to make the magnetic-field-induced effects more visible, since
for small disks the field-dependent corrections in H (B) are small compared to the energy
quantisation introduced by H(0).

First let us examine the convergence of the ground state energy in the channel m = 0,
[ =1 (i.e., zero angular momentum, lowest subband of the vertical motion) as a function
of the basis size. Since the magnetic terms in H(B) increase with increasing magnetic
field, I perform my control calculations for a large field, e.g., for B = 10 T if the result
has converged for this field, it will also be well-converged for smaller fields. For my model

structure at B = 10 T, I have performed calculations with n,,,, ranging from 1 to 20.
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Nmae | Eas(m =0,1l=1,B=10T) (eV)
1 1.41420722313
2 1.41406380561
3 1.41406291665
4 1.41406283691
) 1.41406282464
6 1.41406282195
7 1.41406282120
8 1.41406282095
9 1.41406282085
10 1.41406282081
15 1.41406282078
20 1.41406282077

Table 2.1: Convergence of the ground-state energy for angular momentum m = 0 and the

vertical quantum number | = 1 of a quantum disk with W = 20 Aand R = 200 A

The ground-state energies with m = 0 and [ = 1 obtained in each case are shown in
Table 2.1. As can be seen, the convergence is achieved very rapidly, so that the result
is fully converged already for n,,., = 20. I choose this cutoff of the basis in my further
calculations. Note that for a disk with W = 20 A and R = 80 A the convergence is
expected to occur for even smaller n,,,., since the quantisation introduced by the zero-
field Hamiltonian H (0) is more than four times stronger than that with R = 200 A (indeed,
the result is already fully converged for n,,.; = 5).

Using the exact diagonalisation procedure I have calculated several low-lying energy

levels for my disk structure as a function of the magnetic field for / = 1 and in angular
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momentum channels m = 0, £1, £2, +3. Results of my calculations are shown in Fig. 2.2.
I shall discuss the fundamental features seen in this graph by comparing it to Fig. 2.1,
where I presented the spectrum corresponding to the parabolic potential.

Let us first focus on the case of zero magnetic field. As I already mentioned, the
energy levels of the disk are organised in shells. The lowest shell - the s shell - is doubly
degenerate with respect to spin, and the next shell - p - consists of four states, degenerate
both orbitally and with respect to spin. These two shells behave identically as in the
parabolic case, and the degeneracy of the p shell can be traced to the axial symmetry of
the system. However, the d shell is only partially degenerate: the states with m = 42
form a quadruplet, with both orbital and spin degeneracy present, but the doubly-spin-
degenerate state with m = 0 lies at a slightly higher energy. Therefore, the disk potential
does not exhibit the dynamical symmetries apparent in the parabolic confinement. The
f shell is also split into two quadruplets: one with m = 43 and one with m = +1,
all spin-degenerate. As can be seen, at zero magnetic field states with opposite angular
momenta have the same energy, but there is no degeneracy of states with different angular
momenta. Note also that the energy distance between consecutive shells in the case of
my disk is larger than it is in the case of the parabolic system considered in Section 2.1.
This is due to the fact that in the case of the disk the radial quantisation is stronger than
that of the larger parabolic confinement. In fact, as I already mentioned, in more realistic
approximations of indium-flushed quantum disks the radii are usually taken to be a factor
of 2 smaller than the one I took. This makes the intershell gaps more than four times
larger than those seen in Fig. 2.2. Also, all the energy levels on this graph correspond to
states with the vertical quantum number [ = 1. The states from the second subband are
ignored, as their energies are much higher: due to the small disk width W one expects
the second subband (containing states with | = 2) to start at energies of order of 5.6 eV.

Let us now move on to finite magnetic fields. Here 1 shall explicitely include the

Zeeman term in the Hamiltonian, neglected up to now. Thus, I explicitely account for
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Figure 2.2: Energy spectrum of a single particle in a rigid-wall quantum disk potential
versus the magnetic field. The width of the disk is W = 20 A, and its radius is R = 200 A.
I show the energies of twenty eigenstates which in the absence of the magnetic field form
four lowest shells (see text for details). In this figure the Landé factor ¢ = —4.4. Inset

shows the geometry of the disk confinement
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the different possible values of electronic spin s,; the spin quantum number o becomes an
additional good quantum number. The qualitative behaviour of the levels in Fig. 2.2 is
similar to that in the parabolic confinement: the shell degeneracy - both orbital and spin
- is removed. As I did in Section 2.1, here also I artificially enhanced the Zeeman energy
to make it visible on this energy scale. Compared to the parabolic confinement, in the
case of quantum disk the magnetic field has a smaller effect: in Fig. 2.1, at B =11 T the
structure of Landau levels was already well established, while here the states belonging to
different Landau levels are still interspersed. In Fig. 2.2, the states forming the lowest LL
are drawn with red and blue lines (to denote the spin down and up, respectively), and the
states belonging to the second LL - with green lines. The weaker effect of the magnetic
field is due to the stronger zero-field quantisation of the disk confinement: the magnetic
corrections in the softer parabolic potential of large gated QDs contribute more strongly
to the energy spectrum. Calculations made for the more realistic disk potential (with
R =80 A, not shown here) show that there the magnetic field has even less effect: even
at fields as large as 12 T the structure of the spectrum resembles more the split zero-field

shells than Landau levels.

2.3 Confinement of the quantum ring

I shall now move on to discussing the last “ideal” single-particle potential - a quantum
ring. Let us write the Hamiltonian for this system in a general form:

1
2m*

H=

2
(f) + %A) + Vil y, 2). (2.36)

Henceforth I shall omit the Zeeman term, since, as I have already demonstrated, it
changes the single-particle spectra only in a minor way. As for the quantum-ring potential
Vr(z,y, 2), for simplicity I shall take it to be the ring-shaped quantum well with infinites-
imal thickness and width, and infinite walls. In other words, Vz(z,y,2) = Vg(p,0, 2)

restricts the motion of the electron only to the region defined by p = R and z = 0 (the
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circumference of a circle, where R is its radius). Moreover, as usual, I take the magnetic
field B to be directed along the z axis, and the corresponding vector potential A in the
symmetric gauge. In this situation it is natural to work in polar coordinates, in which
the electronic motion is described by only one independent coordinate - the angle 6.

If one expresses the Hamiltonian (2.36) in these coordinates, one obtains:

. K2 92 1 0
H= * 2R2——h .
+ m W 80

2.
" 2m*R2 092 (2.37)

I now define the magnetic length as ¢ = y/ii/m*w.. This allows me to write the Hamilto-

nian in the form

. % 0 2
— N 2.
H 2m* R2 < 59 + ¢> ’ (2.38)

where N, is the number of magnetic flux quanta threading the ring. This quantity is
defined as Ny = mR?/2m¢* and is the ratio of the area of the ring to the area defined by
the magnetic length. Since the magnetic length £ ~ B~'/2, the number of flux quanta
increases linearly with the magnetic field.

The eigenstates of the Hamiltonian (2.38) are

1

U,,(0) = em 2.39
0= er (239
where the angular momentum quantum number m = 0, 1, £2, .... The correspond-
ing eigenenergies are then E(m) = 2777*R2 (m+ N¢) , or in the effective Rydberg units,

E(m) = 35 (m + N,)? (now the ring radius R is expressed in the effective Bohr radii ap).
As can be seen from these formulae, the energy of a state with given angular momentum
m depends quadratically on the magnetic field. This is seen in Fig. 2.3, where I show
the quantity E,,R? as a function of the number of flux quanta Ny for several angular
momenta m. The colour lines show energies of states with definite angular momenta m
(the values of m for each curve are given by the number on the graph). I deal thus with a
series of parabolas, with minima at integer values of the number of flux quanta N4. These
parabolas cross at half-integer values of Ny. Therefore the single-electron ground-state

energy, denoted in the graph by the black line, exhibits oscillations as a function of the
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Figure 2.3: Energy of a single electron confined in a quantum-ring potential as a function
of the number of flux quanta. The colour lines show energies of states with definite angular

momenta m (given by numbers on the graph); the black line shows the ground-state energy
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magnetic field. This is the Aharonov-Bohm effect. Note that at each maximum of the
energy there is a transition in the ground state. At these points the angular momentum of
the ground state changes by one unit (in the case of electrons it becomes more negative).
This behaviour is fundamentally different from that observed in the energy spectra of the
parabolic and the disk confinements. There the ground state was always the same (it
was the state belonging to the s shell), and its energy depended monotonically on the

magnetic field (see Figs. 2.1 and 2.2).



