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1. (10 points) Find the critical points of the function f (:é, y) = % + y* — 4zy and use
the second derivative test to classify them.
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2. (10 points) Find the points on the cone 22 = z2 + y® which are closest to the point
(1,1,0). '
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3. (10 points} Find the mass of the solid bounded by the zz-plane, the yz-plane, the
plane z = 1, and the plane x + y + z = 2, if the density of the solid is given by
8z, y,2) = 12(z - 1)2.
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4. (10 points) Consider the vector field F=(2c+ aye"jf.+ e~%g,
(a) For which value of a does F have a potential function?

(b) Find the potential function for the vector field in part (a).
(¢) Calculate [ F - dF, where C is given by:
o

T
T =cost, y = sint, ZStS_?r.




5. (10 points) Let C be the contour of the triangle with vertices (1,0,0), {0, 1,0),
(0,0,2), oriented counter-clockwise if viewed from asbove. Let F be the vector field

Flz,y,2) = (ez‘Icz + z)§+ (siny + z)7 + (In z + y)E.

Use Stokes’ Theorem to evaluste the integral



6. (10 points) Consider a particle whose motion is given by the vector function
7(t) = (42 ~ )i + 27 + (3t + 2)k.

(a) Find the velocity, speed, and acceleration of the particle at the moment of time
t=1.

(b) This particle moved from the point (3,2,5) to the point (35,2,29) along its
trajectory. Find the distance traveled by the particle.

(@) T') = <8t,0,6
T 4 =<%8,0, 6y < vel.
) = T =l0 < spad
Fel-Ti) = LB, 0,6 £ A
€2

@) disdance =S Il ottt
<4 -
) >
éﬂﬁ) — 4= \ S 0t Jt = 40

65,2,29) — +.=2 ,



7. (10 points) Let F = (z + cos y)i + (v +sin 2)5 + (2 + &%)k, and let W be the solid
bounded by the planes z = 0, y = 0, ¥y = 2 and the parabolic cylinder 2 = 1 - z2, If
the surface S, which is the boundary of W, is oriented towards the exterior of the

solid, compute ‘
f F.dA
s

Use Hhe Div. Theorem
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8. (10 points) Find the flux of the vector field ' = 21 + yj + 3% through the surface
S consisting of the part of the paraboloid z = z2 + y? below the plane z = 4.
The surface S has the upward orientation.
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9. (10 points) Use Green’s Theorem to evaluate §. F . dF where

P
F S (:1: -+ :I:“_lﬁ);ﬁ- 2(12?} - y2 sin y).;:

and C is the curve from the origin to (1, 1) along y = z2, from (1, 1) to (0, 1} along
¥ = 1 and from (0, 1) to the origin along z = 0 in that order.




