

Université d'Ottawa • University of Ottawa

Faculté des sciences Mathématiques et de statistique Faculty of Science Mathematics and Statistics

MAT 2322A Calculus III for Engineers Final exam December 9, 2003, 9:30-12:30

Name:	Solution	
Student number:		

No texbooks, notes, graphing calculators allowed Show all your work!

Marking table:

1	2	3	4	5	6	7	8	9	Total

1. (10 points) Find the critical points of the function $f(x,y) = x^4 + y^4 - 4xy$ and use the second derivative test to classify them.

$$f_x$$
 $4x^3 - 4y = 0$
 f_y $4y^3 - 4x = 0$

=
$$x = y^3, (y^3)^3 = y$$

 $y^9 = y$

$$y = 0$$
 $y = 1$ $y = -1$

$$D = \left| \begin{array}{c|c} f_{xx} & f_{xy} \\ f_{yy} & f_{yy} \end{array} \right| = \left| \begin{array}{c|c} 12x^2 & -4 \\ -4 & 12y^2 \end{array} \right| = 144x^2y^2 - 16$$

(U,V)

2. (10 points) Find the points on the cone $z^2 = x^2 + y^2$ which are closest to the point (1,1,0).

$$dist^{2} = \frac{(x-y)^{2} + (y-1)^{2} + z^{2}}{8ubj}$$
, to $x^{2} + y^{2} = z^{2}$

replace:

$$(x-1)^{2} + (y-1)^{2} + x^{2} + y^{2} \rightarrow min$$

$$f(x,y) = 2x^{2} - 2x + 2y^{2} - 2y + 2 \rightarrow min$$

Crit. pts:

$$4x-2=0$$

$$4y-2=0$$

$$x=\frac{1}{2} \quad y=\frac{1}{2}$$

$$z=\pm\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}=\pm\sqrt{2}$$

$$2p+s: (\frac{1}{2},\frac{1}{2},\frac{1}{12}), (\frac{1}{2},\frac{1}{2},-\frac{1}{12})$$

3. (10 points) Find the mass of the solid bounded by the xz-plane, the yz-plane, the plane z = 1, and the plane x + y + z = 2, if the density of the solid is given by $\delta(x, y, z) = 12(z - 1)^2$.

$$m = \int_{0}^{1-x} \int_{0}^{2-x-y} |2(2-1)^{2} dz dy dx =$$

$$= \int_{0}^{1-x} |4(2-1)^{3}|_{z=1}^{2=2-x-y} dy dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{z=1}^{3} dy dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{y=0}^{3} dy dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{y=0}^{3} dx = \int_{0}^{1-x} |4(1-x)|_{y=0}^{3} dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{y=0}^{3} dx = \int_{0}^{1-x} |4(1-x)|_{y=0}^{3} dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{y=0}^{3} dy dx =$$

$$= \int_{0}^{1-x-y} |4(1-x-y)|_{y=0}^{3} dy dx =$$

$$= \int_{0}^{1-x} |4(1-x-y)|_{$$

4. (10 points) Consider the vector field
$$\vec{F} = (2x + aye^{-x})\vec{i} + e^{-x}\vec{y}$$
,

- (a) For which value of a does \vec{F} have a potential function?
- (b) Find the potential function for the vector field in part (a).
- (c) Calculate $\int_C \vec{F} \cdot d\vec{r}$, where C is given by:

$$x = \cos t, \ y = \sin t, \qquad \frac{\pi}{4} \le t \le \pi.$$

(a)
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

 $-e^{-x} = ae^{-x}, \quad a = -1$

(6)
$$f_{x} = 2x - ye^{-x} =$$

$$\Rightarrow f = x^{2} + ye^{-x} + g(y)$$

$$\begin{cases} x^{2} + ye^{-x} \end{cases} \leftarrow f(x,y)$$

(c)
$$\int_{C} \vec{F} \cdot dr = f(-1,0) - f(\frac{1}{6},\frac{1}{6}) =$$

$$= 1 - \frac{1}{6} - \frac{1}{6}e^{-\frac{1}{6}} = \frac{1}{2} - \frac{1}{6}e^{-\frac{1}{6}}$$

5. (10 points) Let C be the contour of the triangle with vertices (1,0,0), (0,1,0), (0,0,2), oriented counter-clockwise if viewed from above. Let \vec{F} be the vector field

$$\vec{F}(x,y,z) = (e^{x^2} + z)\vec{i} + (\sin y + x)\vec{j} + (\ln z + y)\vec{k}.$$

Use Stokes' Theorem to evaluate the integral

$$\int_C \vec{F} \cdot d\vec{r}.$$

curl
$$\vec{F} = \nabla \times \vec{F} = \langle 1, 1, 1 \rangle$$

$$2 = 2 - 2x - 2y$$

= 2-2x-2y
Use f-la
$$\iint_{R} \vec{F} \cdot d\vec{A} = \iint_{R} - P_{1}f_{x} - P_{2}f_{y} + B_{3}d$$

$$f_{x} = -2$$

$$f_{y} = -2$$

$$\iint_{S} \vec{F} \cdot d\vec{A} = \iint_{R} -1(-2) - 1(-2) + 1 \, dx \, dy = \iint_{R} 5 \, dx \, dy$$

$$= 5 \cdot \text{area} \, (R) = \frac{5}{2}$$

$$R: 4$$

$$= 5 \cdot \text{area } (R) = \frac{5}{2}$$

6. (10 points) Consider a particle whose motion is given by the vector function

$$\vec{r}(t) = (4t^2 - 1)\vec{i} + 2\vec{j} + (3t^2 + 2)\vec{k}.$$

- (a) Find the velocity, speed, and acceleration of the particle at the moment of time t=1.
- (b) This particle moved from the point (3, 2, 5) to the point (35, 2, 29) along its trajectory. Find the distance traveled by the particle.

(a)
$$\vec{F}'(t) = \langle 8t, 0, 6t \rangle$$

 $\vec{F}'(t)) = \langle 8t, 0, 6 \rangle$ vel.
 $||\vec{F}'(t)|| = \sqrt{8^2 + 6^2} = 10$ \leq speed
 $|\vec{A}(t)| = \vec{F}''(t) = \langle 8, 0, 6 \rangle$ \leq acc.

(b) distance =
$$\int_{t_1}^{t_2} ||r'|t|| ||dt|$$

 $(3,2,5) \rightarrow t_1 = 1$
 $(3,2,5) \rightarrow t_2 = 3$
 $(3,2,4) \rightarrow t_2 = 3$
 $(3,2,4) \rightarrow t_2 = 3$

7. (10 points) Let $\vec{F} = (x + \cos y)\vec{i} + (y + \sin z)\vec{j} + (z + e^z)\vec{k}$, and let W be the solid bounded by the planes z=0, y=0, y=2 and the parabolic cylinder $z=1-x^2$. If the surface S, which is the boundary of W, is oriented towards the exterior of the solid, compute

$$\int_{\mathcal{S}} \vec{F} \cdot d\vec{A}.$$

$$\iint_{S} F \cdot dA = \iint_{W} 3 dV = \iint_{Y} 3 dV$$

$$= 3 \int_{0}^{2} \frac{1}{3} \frac{1}{3} dy = 4 \cdot \int_{0}^{2} \frac{1}{3} dy = 8$$

8. (10 points) Find the flux of the vector field $\vec{F} = x\vec{i} + y\vec{j} + 3\vec{k}$ through the surface S consisting of the part of the paraboloid $z = x^2 + y^2$ below the plane z = 4. The surface S has the upward orientation.

$$\iint_{S} \vec{F} d\vec{A} = \iint_{R} - P_{1}f_{x} - P_{2}f_{y} + P_{3} dxdy$$

$$f(x,y) = x^{2}ty^{2}$$

$$= \iint_{R} - x(2x) - y(2y) + 3 dxdy =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy = \int_{R} 3 \frac{r^{2}}{2} - \frac{r^{4}}{2} \int_{0}^{2} d\theta =$$

$$= \iint_{R} 3 - 2(x^{2}ty^{2}) dxdy =$$

$$= \iint_{R} 3 - 2(x^{2$$

9. (10 points) Use Green's Theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where ρ Q $\vec{F} = (x + xy^2)\vec{i} + 2(x^2y - y^2\sin y)\vec{j}$,

and C is the curve from the origin to (1, 1) along $y = x^2$, from (1, 1) to (0, 1) along y = 1 and from (0, 1) to the origin along x = 0 in that order.