
Solution to Sample Final #1

Question 1.
The region is bounded by two paraboloids.
Their intersection is x2 + y2 = 4, which is a circle of radius 2.
So the region can be described in cylindrical coordinates:

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 8− r2.

So

volume =
∫ 2

0

∫ 2π

0

∫ 8−r2

r2
1 dV

=
∫ 2

0

∫ 2π

0

∫ 8−r2

r2
r dz dθ dr

= 16π.

Question 2.
Compute the curl of each vector fields. If you get a nonzero vector field,

then it is not a gradient field, and vice versa.

curl ~F = (1− x)ey ~k,

curl ~G = ~0,

curl ~H = ey ~k.

Thus, ~G = ey~i + xey ~j is the only gradient vector field.
Now find the potential:

f(x, y) =
∫

ey dx = xey + C(y),

fy(x, y) = xey + C ′(y) = xey,

C ′(y) = 0.

Thus, f(x, y) = xey + C for any constant C is a potential function for ~G.

Question 3.
S is a graph of the function z = f(x, y) =

√
x2 + y2.

The domain W , according to the question, is the ring 1 ≤
√

x2 + y2 ≤ 4.
Using the formula for flux through graphs, we get:

flux =
∫

D

~F · (−fx
~i− fy

~j + ~k)dA,
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where, in our case,

~F = 2x
√

x2 + y2~i− y
√

x2 + y2~j + (
√

x2 + y2 − 3y2)~k,

and

fx =
x√

x2 + y2

fy =
y√

x2 + y2
.

Plugging everything in, we get

flux =
∫

D

(
−2x2 + y2 +

√
x2 + y2 − 3y2

)
dA

=
∫

D

(
−2(x2 + y2) +

√
x2 + y2

)
dA.

In polar coordinates, this becomes

flux =
∫ 2π

0

∫ 4

1

(−2r2 + r)r dr dθ

= −213π.

Question 4.
a) Use the formula for flux through spherical surfaces:

flux =
∫

S

~F · ~r

‖~r‖
dA =

∫
S

~r · ~r
‖~r‖

dA =
∫

S

‖~r‖ dA,

where S is the sphere of radius R. Note that, in this case, ‖~r‖ = R.
Thus,

flux =
∫

S

R dA = R

∫
S

dA = R · (area of S) = 4πR3.

b) Let V be the ball of radius R.
Since div ~F = 1+1+1 = 3, by the Divergence Theorem,

flux =
∫

V

3 dV = 3 · (volume of V ) = 4πR3.

Question 5.
a) Parametrize C: ~r(t) = 2 cos t~i + 2 sin t~j, 0 ≤ t ≤ 2 ∗ π.
Then

~F (~r(t)) = −2 sin t~i + 2 cos t~j,

~r′(t) = − sin t~i + cos t~j,

2



so ∫
C

~F · d~r =
∫ 2π

0

~F (~r(t)) · ~r′(t)dt

=
∫ 2π

0

(2 sin2 t + 2 cos2 t)dt =
∫ 2π

0

2 dt

= 4π.

b) Upon computation, we get: curl ~F = 4~k.
By Stokes’ Theorem, ∫

C

~F · ~r =
∫

S

curl ~F · d ~A,

where S is the disc in xy-plane bounded by C.
Since S is inside the xy-plane, and since C is oriented as decribed in the

question, the normal vector ~n at any point on S is ~k.
So, ∫

S

curl ~F · d ~A =
∫

S

~F · ~ndA

=
∫

S

4~k · ~kdA = 4
∫

S

dA = 4 · (area of S)

= 4π.

Question 6.
Note that we CANNOT use the Divergence Test here.
Use the formula for flux through cylindrical surfaces.
The surface described in the question is parametrized by:

R = 3, π/2 ≤ θ ≤ 3π/2, 0 ≤ z ≤ 1.

Call this surface S. Then

flux =
∫ 3π/2

π/2

∫ 1

0

~F · 3(cos θ~i + sin θ~j) dz dθ

= 3
∫ 3π/2

π/2

∫ 1

0

(2z sin2 θ~i− z cos θ sin θ~j + z3 cos2 θ sin θ~k) · (cos θ~i + sin θ~j) dz dθ

= 6
∫ 3π/2

π/2

∫ 1

0

z sin2 θ cos θ dz dθ − 3
∫ 3π/2

π/2

∫ 1

0

z cos θ sin2 θ dz dθ

=
3
2

∫ 3π/2

π/2

sin2 θ cos θ dθ.

Use u substitution and get:
flux = −1.
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Question 7.
a) Upon computation, we get: div ~F = 0. Therefore, by Divergence Test, ~F

must be a curl vector field.
b) Upon computation, we DON’T get curl ~F = ~0. Therefore, Curl Test will

say that ~F is NOT a gradient vector field.
Question 8.

There is the easy way and there is the not-so-easy way.

Not-so-easy way
Note that we CANNOT use Stokes’ Theorem here.
Call the straight line segment C1 and the circular arc C2.
C1 is parametrized by

~r(t) = −3t~i, 0 ≤ t ≤ 1.

Then
~F (~r(t)) = (1− 6t)~i,

~r′(t) = −3~i,
~F (~r(t)) · ~r′(t) = −3(1− 6t),

so ∫
C1

~F · d~r =
∫ 1

0

−3(1− 6t) dt = −3 + 9 = 6.

C2 is parametrized by

~r(t) = 3(cos t~i + sin t~j), π ≤ t ≤ 3π/2.

Then
~F (~r(t)) = (1 + 6 cos t)~i + 6 sin t~j,

~r′(t) = 3(− sin t~i + cos t~j),
~F (~r(t)) · ~r′(t) = −3 sin t,

so ∫
C2

~F · d~r =
∫ 3π/2

π

−3 sin t dt = 3.

Thus, the total line integral is∫
C

~F · d~r =
∫

C1

~F · d~r +
∫

C2

~F · d~r = 6 + 3 = 9.

The easy way

Notice that ~F is the gradient of f(x, y) = x + x2 + y2.
Then, by the Fundamental Theorem of Calculus for Line Integrals, we get:∫

C

~F · d~r = f(0,−3)− f(0, 0) = (−3)2 = 9.
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