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Nondegeneracy for Lie Triple Systems and
Kantor Pairs

Dedicated to the memory of Issai Kantor (1936–2006)

Esther Garcı́a, Miguel Gómez Lozano, and Erhard Neher

Abstract. We study the transfer of nondegeneracy between Lie triple systems and their standard Lie

algebra envelopes as well as between Kantor pairs, their associated Lie triple systems, and their Lie

algebra envelopes. We also show that simple Kantor pairs and Lie triple systems in characteristic 0 are

nondegenerate.

Introduction

Kantor pairs are generalizations of Jordan pairs where the symmetry of the Jordan

triple product in the outer variables is replaced by some weaker condition (Defini-

tion 1.4). This looks like a minor generalization. It is therefore all the more surprising

that there are few general published results on Kantor pairs, despite a rather elaborate

structure theory of Jordan pairs. For example, a list of all simple Kantor pairs does

not seem to exist.

The purpose of this paper is to initiate the structure theory of Kantor pairs. Our

reason for doing so goes beyond a pure generalization for the sake of generalization.

Rather, we expect that Kantor pairs will play an important role in the general struc-

ture theory of Lie algebras because of the close connection between Kantor pairs and

Lie algebras.

An example of a Kantor pair is the pair V = (L1, L−1) obtained from a Lie algebra

L with a 5-grading, i.e., a Z-grading L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, together with

the triple products {. . .} : V σ × V−σ × V σ → V σ , σ = ±, induced by the Lie al-

gebra bracket {x y z} = [[x, y], z]. This is in fact not really an “example”, since any

Kantor pair arises in this way from a 5-graded Lie algebra. There is a natural choice

for such a Lie algebra, the so-called standard Lie envelope LV . Because of this close

connection between Kantor pairs and Lie algebras, it is natural to study Kantor pairs

V via their Lie envelopes LV . Of course, this will only work if properties like sim-

plicity, (semi)primeness, or nondegeneracy of V are reflected by the corresponding
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properties of LV . We will prove that this is indeed the case; see Corollary 2.5 and

Propositions 2.6 and 2.7.

One can go from the Kantor pair V to its standard Lie envelope LV in two steps,

first from V to the associated polarized Lie triple system T(V ) and then from the Lie

triple system to its standard Lie envelope LT(V ):

Kantor pair ! Lie triple system ! Lie algebra.

The transfer of properties between V and T(V ) is straightforward (Prop. 1.7). The

heart of the matter lies in the relation between the Lie triple system T(V ) and its stan-

dard Lie envelope LT(V ). It turns out that our methods of dealing with this transfer

are general enough to deal with Lie triple systems per se, and not only those that arise

from Kantor pairs. In particular, we show in Theorem 2.4 that a Lie triple system T

is nondegenerate if and only of its standard embedding LT is nondegenerate. We can

even go one step further, and simply consider Z2-graded Lie algebras. The connec-

tion to Lie triple systems is given by the fact that the standard Lie envelope of a Lie

triple system is a Z2-graded Lie algebra. We show in Theorem 2.3 that a Z2-graded

Lie algebra is graded-nondegenerate if and only if it is nondegenerate.

One of the important questions in any structure theory is that of the nondegen-

eracy of a simple object. Since there are prime degenerate Jordan pairs, there are

of course prime degenerate Kantor pairs. However, we are able to prove in Theo-

rem 3.1 that this cannot happen for simple Kantor pairs as considered in this paper,

namely over a ring Φ of scalars containing 1/2, 1/3, 1/5. The basis for this is a re-

sult of Zelmanov [16], which says that the subalgebra generated by all absolute zero

divisors of a Lie algebra L over a ring of scalars with 1/6 is locally nilpotent. This

can be applied in our study of Kantor pairs, since it is easy to show that the subal-

gebra generated by all absolute zero divisors of a simple short Z-graded Lie algebra

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 is in fact an ideal.

We also consider the corresponding question for Lie triple systems: Is a simple

Lie triple system T nondegenerate? Our answer is yes, if T is defined over a field of

characteristic 0 (Theorem 3.1). Our proof uses a result of Grishkov [8] that implies

that simple Lie algebras in characteristic zero are always nondegenerate, i.e., do not

have nonzero absolute zero divisors.

The final section of our paper contains some consequences of these results. We

obtain a nice characterization of annihilators of ideals in nondegenerate Lie triple

systems (Theorem 3.2) and Kantor pairs (Corollary 3.3), which easily implies the

inheritance of nondegeneracy by ideals of Lie triple systems and Kantor pairs (Corol-

lary 3.4). We also study when Kantor pairs are Jordan pairs, and we do so by defin-

ing the biggest ideal of a Kantor pair that is a Jordan pair. For nondegenerate Kan-

tor pairs, this ideal is essential if and only if the Kantor pair is in fact a Jordan pair

(Proposition 3.7).

1 Preliminaries on Lie triple systems and Kantor pairs

Throughout this paper we will be dealing with Lie triple systems, Kantor pairs, and

Lie algebras over a ring of scalars Φ with 1/6 ∈ Φ.
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Definition 1.1 We first recall some concepts for Lie algebras. An absolute zero di-

visor in a Lie algebra L is an element x ∈ L satisfying [x, [x, L]] = 0. A Lie algebra is

called nondegenerate if 0 is its only absolute zero divisor. We note that any ideal of a

nondegenerate Lie algebra is again nondegenerate; see [17, Lemma 4]. The annihila-

tor of an ideal I in a Lie algebra L is defined as AnnL(I) = {x ∈ L | [x, I] = 0}. If L

is nondegenerate, one knows ([4, 2.5]) that

(1.1) AnnL(I) = {x ∈ L | [x, [I, x]] = 0}.

A Lie algebra L is called prime (respectively semiprime) if for all ideals I, J of L we

have [I, J] = 0 ⇒ I = 0 or J = 0 (resp. [I, I] = 0 ⇒ I = 0), and it is called strongly

prime if L is prime and nondegenerate.

Definition 1.2 A Lie triple system T is a Φ-module with a trilinear product T ×T ×
T → T satisfying

(LTS1) 0 = [x, x, y],
(LTS2) 0 = [x, y, z] + [y, z, x] + [z, x, y],
(LTS3) [x, y, [z, w, u]] = [[x, y, z], w, u] + [z, [x, y, w], u] + [z, w, [x, y, u]].

A map d : T → T is a derivation of T if d[x, y, z] = [dx, y, z]+[x, dy, z]+[x, y, dz]

for every x, y, z ∈ T. We denote by Der(T) the set of all derivations of T, which is a

Lie subalgebra of End(T)(−). For every x, y ∈ T, the map L(x, y) : T → T defined by

L(x, y)(z) := [x, y, z] is an (inner) derivation of T. The subalgebra generated by all

inner derivations of T is denoted by L(T, T).

Every Lie algebra L can be viewed as a Lie triple system if we define the product by

[x, y, z] := [[x, y], z] for every x, y, z ∈ L. Thus every submodule T of L such that

[[T, T], T] ⊂ T is an example of Lie triple system. In particular, if L is a Z2-graded Lie

algebra, L = L0⊕L1, then L1 with product [x, y, z] := [[x, y], z] is a Lie triple system.

Note that under our assumptions on Φ, a Z2-grading is the same as the eigenspace

decomposition of an automorphism of L of period 2. In fact, T is a Lie triple system if

and only if there exists a Z2-graded Lie algebra L = L0 ⊕L1 with T = L1. Indeed, if T

is a Lie triple system and D is a Lie algebra of derivations of T such that L(T, T) ⊂ D,

then D⊕T with product [d1⊕x1, d2⊕x2] = [d1, d2]+L(x1, x2)⊕(d1x2−d2x1) is a Lie

algebra. In particular, LT = L(T, T)⊕T is a Z2-graded Lie algebra, which is called the

standard embedding of T; see for example [9, p. 309] or [14, IV]. The automorphism

θ of LT defining the Z2-grading of LT is also called the main involution of LT .

An ideal I of a Lie triple system T is a Φ-submodule of T satisfying [I, T, T] ⊂ T

(note that then [T, I, T] + [T, T, I] ⊂ I by (LTS1) and (LTS2)). A Lie triple system

T is simple if it has nontrivial product and contains no nontrivial ideals. An element

in a Lie triple system T is an absolute zero divisor if [x, T, x] = 0. A Lie triple system

without nonzero absolute zero divisors is called nondegenerate. We will say that a

Lie triple system T is semiprime if [I, T, I] 6= 0 for every nonzero ideal I of T, and

that T is prime if every two nonzero ideals I, J of T give [I, T, J] 6= 0. Note that a

Lie triple system is prime if and only if it is semiprime and every pair of nonzero

ideals of T have nonzero intersection. If I is an ideal of a Lie triple system T, we

define the annihilator of I in T as AnnT(I) = {x ∈ T | [x, I, T] = [T, I, x] = 0} =
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T ∩ AnnLT
([T, I] ⊕ I), where [T, I] ⊕ I is the ideal of LT generated by T. It follows

that AnnT(I) is an ideal of T. Analogous to the case of Lie algebras, T is semiprime if

and only if I ∩ AnnT(I) = 0 for every ideal I of T.

Remark 1.3 Concerning the transfer of properties between T and its standard em-

bedding LT , T is (semi)prime if and only if (LT , θ) is (semi)prime as algebra with

involution; see [3, 3.1]. It also known ([12, Th. 2.13], [14, VI, Th. 2 and Th. 3]) that

a Lie triple system is simple if and only if its standard embedding is either simple or

a direct sum of two simple Lie algebras. In particular, this implies that the standard

embedding of a prime Lie triple system need not be simple.

Definition 1.4 Recall that a Kantor pair V = (V +,V−) consists of two Φ-modules

with trilinear products { , , } : V σ ×V−σ ×V σ → V σ , σ = ±, that satisfy

(KP1) [Vx,y ,Vz,w] = V{x,y,z},w −Vz,{y,x,w},
(KP2) KKz,wx,y = Kz,wVx,y + V y,xKz,w,

where [A, B] := AB − BA, Vx,yz := {x, y, z} and Ka,bz := {a, z, b} − {b, z, a} ([1,

p. 533]).

Note that the opposite V op := (V−,V +) of a Kantor pair is again a Kantor pair.

Also, a Jordan pair is a Kantor pair with Ka,b = 0 ([13, 2.2]). Thus, Kantor pairs are

generalizations of Jordan pairs.

If L is a Z-graded Lie algebra of the form L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, then the

pair of Φ-modules (L1, L−1) with product {x, y, z} := [[x, y], z], for every x, z ∈ Lσ ,

y ∈ L−σ , is a Kantor pair. Conversely, it follows from [1] or [2, Th. 4.3 and Cor. 4.6]

that for any Kantor pair V = (V +,V−) there exists a unique up to isomorphism

5-graded Lie algebra L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 with the following properties:

(i) V isomorphic to the Kantor pair (L1, L−1),

(ii) L2σ = [Lσ, Lσ], L0 = [Lσ, L−σ] for σ = ±, and

(iii) if [x−2 + x0 + x2, L1 ⊕ L−1] = 0, then x−2 + x0 + x2 = 0.

Thus, after identifying V ≡ (L1, L−1), the products in L are [[x, z], y] = Kx,z y,

[[x, y], z] = Vx,yz and [[y, x], z] = −Vx,yz for x, z ∈ Lσ , y ∈ L−σ . We will call

this Lie algebra the standard embedding of V and denote it LV . In the setting of what

are now called Kantor triple systems, the construction of LV goes back to Kantor’s

fundamental papers [10, 11]. Notice also that V is a Jordan pair if and only if L2 and

L−2 in the above construction are both zero. In this case, LV is the Tits–Kantor–

Koecher algebra of V .

Let V be a Kantor pair. A pair I = (I+, I−) of Φ-submodules of V is an ideal of V

if {Iσ,V−σ,V σ}+ {V σ, I−σ,V σ}+ {V σ,V−σ, Iσ} ⊂ Iσ for σ = ±. A Kantor pair V

is simple if it has nontrivial product and V contains no nontrivial ideals. An element

x ∈ V σ is an absolute zero divisor of V if {x,V−σ, x} = 0. A Kantor pair without

nonzero absolute zero divisors is called nondegenerate. A Kantor pair V is semiprime if

every nonzero ideal I = (I+, I−) of V has {I+,V−, I+} 6= 0 or {I−,V +, I−} 6= 0. We

will say that a Kantor pair is prime if for any two ideals I and J of V , {Iσ,V−σ, Jσ} =

0, σ = ±, implies I = 0 or J = 0. Note that a Kantor pair is prime if and only if it is

semiprime and every two nonzero ideals of V have nonzero intersection.



446 E. Garcı́a, M. Gómez Lozano, and E. Neher

Let V be a Kantor pair and I = (I+, I−) and ideal of V . We define the annihilator

of I in V as (AnnV (I)+, AnnV (I)−) with

AnnV (I)σ
= {x ∈ V σ | {V σ, I−σ, x} = {Iσ,V−σ, x} = {x, I−σ,V σ}

= {V−σ, x, I−σ} = {I−σ, x,V−σ} = {x,V−σ, Iσ} = 0}

As for Lie triple systems, we have that AnnV (I) = (AnnV (I)+, AnnV (I)−) is an ideal

of V . If I is the ideal of LV generated by I, then AnnV (I) = V ∩ AnnLV
(I).

Remark 1.5 By [1, Th. 7] each Kantor pair V gives rise to a Lie triple system T(V ) =

V + ⊕V− whose product is given by

[ x+ + x−, y+ + y−, z+ + z−]

=
(
{x+, y−, z+} + {x+, z−, y+} − {y+, z−, x+} − {y+, x−, z+}

)

⊕
(
{x−, y+, z−} + {x−, z+, y−} − {y−, z+, x−} − {y−, x+, z−}

)

for x+ +x−, y+ + y−, z+ +z− ∈ T(V ), called the associated Lie triple system. Moreover,

if V is a Kantor pair and T(V ) its associated Lie triple system, their standard envelopes

LV and LT(V ) are isomorphic as Lie algebras. If LV = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 is

the standard envelope of V given in Definition 1.2, then LT(V ) = (LT(V ))0⊕ (LT(V ))1

with (LT(V ))0 = L−2 ⊕ L0 ⊕ L2 and (LT(V ))1 = L−1 ⊕ L1.

There are close relations between ideals of a Kantor pair V and ideals of T(V ).

Lemma 1.6 Let V be a Kantor pair and T(V ) its associated Lie triple system.

(i) If I = (I+, I−) is an ideal V , then I+ ⊕ I− is an ideal of T(V ).

(ii) If Ĩ is an ideal of T(V ), then Ĩ∩V := (Ĩ∩V +, Ĩ∩V−) and π(Ĩ) := (π+(Ĩ), π−(I))

are ideals of V , where πσ : V + ⊕V− → V σ denotes the projection onto V σ along

V−σ .

(iii) If I = (I+, I−) is an ideal V , AnnT(V )(I+ ⊕ I−) = AnnV (I)+ ⊕ AnnV (I)−.

Proof Part (i) is trivial.

(ii) That π̃(I) is an ideal follows from the following product rules with obvious

notations:

πσ([x, y−σ, zσ]) = πσ
(
{xσ, y−σ, zσ} ⊕ {x−σ, zσ, y−σ} − {y−σ, zσ, x−σ}

)

= {πσ(x), y−σ, zσ}

and, similarly,

πσ([xσ, y, zσ]) = {xσ, π−σ(y), zσ} and πσ([xσ, y−σ, z]) = {xσ, y−σ, πσ(z)}.

(iii) It is clear that AnnV (I)+ ⊕ AnnV (I)− ⊂ AnnT(V )(I+ ⊕ I−). Moreover, by

the formulas above, if z ∈ AnnT(V )(I+ ⊕ I−), then πσ(z) ∈ AnnT(V )(I+ ⊕ I−). Now

AnnT(V )(I+ ⊕ I−) ∩V σ ⊂ AnnV (I)σ implies (iii).
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The last lemma allows us to relate regularity properties of a Kantor pair with those

of its associated Lie triple system T(V ).

Proposition 1.7 Let V be a Kantor pair and T(V ) its associated Lie triple system.

(i) Every absolute zero divisor of V is an absolute zero divisor of T(V ). Moreover, if

x+ + x− ∈ T(V ) is an absolute zero divisor of T(V ), then x+ and x− are absolute

zero divisors of V .

(ii) V is nondegenerate, semiprime, prime, or simple if and only if T(V ) is so.

Proof (i) On the one hand, if [x+ + x−,V + ⊕ V−, x+ + x−] = 0, then, for every

a ∈ V +,

0 = [x+ + x−, a, x+ + x−] = ({x+, x−, a} − 2{a, x−, x+}) ⊕ {x−, a, x−},

whence {x−,V +, x−} = 0. Similarly, {x+,V−, x+} = 0. On the other hand, if

{xσ,V−σ, xσ} = 0, then [xσ,V + ⊕V−, xσ] = {xσ,V−σ, xσ} = 0.

(ii) That V is nondegenerate if and only if T(V ) is so follows from (i). To show

that V (semi)prime implies T(V ) (semi)prime, let Ĩ, J̃ be two nonzero ideals of T(V )

(I = J for semiprimeness) and suppose that [Ĩ, T(V ), J̃] = 0. Then π(Ĩ), π( J̃) are

nonzero ideals of V such that {πσ(Ĩ),V−σ, πσ( J̃)} ⊂ πσ[Ĩ,V−σ, J̃] = 0, σ = ±, a

contradiction.

Conversely, suppose that T(V ) is semiprime, but V is not. We claim that there

exists a nonzero ideal I of V such that

(1.2) {Iσ,V−σ, Iσ} = {Iσ, I−σ,V σ} = {V σ, I−σ, Iσ} = 0, σ = ±.

Indeed, by assumption there exists a nonzero ideal J of V with { Jσ,V−σ, Jσ} = 0,

σ = ±. If {V σ, J−σ,V σ} = 0, then J satisfies (1.2). Otherwise, the non-zero ideal

I = ({V +, J−,V +}, {V−, J+,V−}) ⊂ J of V satisfies (1.2), since for y ∈ Jσ , a, b ∈
V−σ and x or z belonging to Jσ we have, by (KP1),

{x, {a, y, b}, z} = −{y, a, {x, b, z}} + {{y, a, x}, b, z} + {x, b, {y, a, z}} = 0,

and so { Jσ, {V−σ, Jσ,V−σ},V σ} = 0 = {V σ, {V−σ, Jσ,V−σ}, Jσ}. Now let I be

a nonzero ideal of V satisfying (1.2). Then I+ ⊕ I− is a nonzero ideal of T(V ) such

that [I+ ⊕ I−, T(V ), I+ ⊕ I−] = 0 because [Iσ,V + ⊕ V−, Iσ] ⊂ {Iσ,V−σ, Iσ} = 0

and [Iσ,V + ⊕V−σ, I−σ] ⊂ {Iσ, I−σ,V σ} + {V σ, I−σ, Iσ} + {V−σ, Iσ, I−σ} = 0 for

σ = ±. Thus T(V ) semiprime implies V semiprime. If T(V ) is prime, then V is

semiprime. Hence to show that in this case V is actually prime, it suffices to prove

that every two nonzero ideals of V have nonzero intersection. But this is clear, since

it holds in T(V ).

If T(V ) is simple, V is simple by Lemma 1.6(i). Conversely, let us suppose that V is

simple, and let Ĩ be a nonzero ideal of T(V ). Then, by Lemma 1.6(ii), (π+(Ĩ), π−(Ĩ))

is a nonzero ideal of V , so it is equal to V . It now follows that

0 6= {V σ,V−σ,V σ} = {V σ, π−σ(Ĩ),V σ} = {V σ, Ĩ,V σ} ⊂ V σ ∩ Ĩ.

The ideal Ĩ ∩V is therefore nonzero, hence equal to V , which implies Ĩ = T(V ).
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2 Relations with Standard Lie Envelopes

The main result of this paragraph is the transfer of nondegeneracy between Lie triple

systems and their standard envelopes. As a corollary we then get the analogous re-

sult for Kantor pairs. For the sake of completeness, we also include results about

the transfer of simplicity between Kantor pairs and Lie envelopes, which are due to

Allison and Smirnov.

In the following lemma, capital letters denote adjoint maps of elements of L, i.e.,

X = adx, A = ad a, for x, a ∈ L.

Lemma 2.1 Let L be a Lie algebra, and let x, y ∈ L absolute zero divisors of L. Then

(i) [x, y] and, for every a ∈ L, [[x, a], [[x, a], a]] are absolute zero divisors of L;

(ii) for every a1, a2, a3 ∈ L and σ ∈ S3 we have

[[x, a1], [[x, a2], a3]] = [[x, aσ(1)], [[x, aσ(2)], aσ(3)]].

Proof (i) That [x, y] is an absolute zero divisor follows from (XY−Y X)2
= XY XY−

XYY X − Y XXY + Y XY X = 0. Let us consider b = [[x, a], [[x, a], a]]. Then ad2
b =

9XA2XA2XA2XA2X = 0 by [6, Prop. 1.7(3)], so b is an absolute zero divisor of L.

(ii) First notice that for any a1, a2 ∈ L, [[x, a1], [x, a2]] = 0, because

[
[x, a1], [x, a2]

]
=

[[
[x, a1], x

]
, a2

]
−

[
x,

[
a2, [x, a1]

]]
= 0.

Therefore, [[x, a1], [[x, a2], a3]] = [[x, a2], [[x, a1], a3]]. Moreover,

[[x, a1], [[x, a2], a3]] = [[x, a1], [[x, a3], a2]] + [[x, a1], [x, [a2, a3]]]

= [[x, a1], [[x, a3], a2]].

The formulae above prove (ii).

In the following we will use a generalization of the Jordan algebras of Lie algebras

given in [5]. Let L be a Lie subalgebra of a Lie algebra L ′. We will say that an element

x ∈ L ′ is a L-Jordan element if ad3
x L = 0 and [[L, x], L] ⊂ L.

Theorem 2.2 Let L be a Lie subalgebra of a Lie algebra L ′ and x ∈ L ′ a L-Jordan

element. Then L with the new product defined by a ·b := 1
2
[[a, x], b] is a nonassociative

algebra, denoted by L(x), such that:

(i) kerL(x) := {a ∈ L | [x, [x, a]] = 0} is an ideal of L(x).

(ii) Lx := L(x)/ kerL(x) is a Jordan algebra, with U -operator given by Uab =

1
8
ad2

a ad2
x b, for all a, b ∈ I, where a denotes the coset of a with respect to kerI(x).

This Jordan algebra is called the generalized Jordan algebra of L at x.

(ii) If L is nondegenerate or strongly prime, so is Lx.

Proof The proofs of (i) and (ii) are identical to [5, 2.4 (1)(2)], taking into account

that [5, 2.3] can be rewritten under the conditions of this theorem and that the iden-

tities given there are true over L; (iii) follows in the same way as [5, 2.15(1)] and

[7, 2.2].
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We say that a Z2-graded Lie algebra L = L0 ⊕ L1 is graded-nondegenerate if it has

no absolute zero divisors in L0 ∪ L1. In the following result we will show that the

notions of nondegeneracy and graded-nondegeneracy are equivalent.

Theorem 2.3 Let L = L0 ⊕ L1 be a Z2-graded Lie algebra. Then L is graded-

nondegenerate if and only if it is nondegenerate.

Proof It is of course sufficient to show that a graded-nondegenerate Z2-graded Lie

algebra L cannot have nonzero absolute zero divisors. Suppose that x0 + x1 is an

absolute zero divisor of L. Then, for i = 0, 1,

0 = [x0 +x1, [x0 +x1, Li]] = [x0, [x0, Li]] +[x0, [x1, Li]] +[x1, [x0, Li]] +[x1, [x1, Li]].

Considering homogeneous components,

ad2
x0

+ ad2
x1

= 0,(2.1)

adx0
adx1

+ adx1
adx0

= 0.(2.2)

Therefore,

[x0 − x1, [x0 − x1, L]] = [x0, [x0, L]] − [x0, [x1, L]] − [x1, [x0, L]] + [x1, [x1, L]] = 0,

and x0 − x1 is an absolute zero divisor of L. Now, [x0 + x1, x0 − x1] = −[x0, x1] +

[x1, x0] = 2[x1, x0] ∈ L1, which implies [x1, x0] = 0, because, by Lemma 2.1(i),

[x0 + x1, x0 − x1] is an absolute zero divisor. Then adx0
adx1

= adx1
adx0

, and by (2.2)

(2.3) adx0
adx1

= adx1
adx0

= 0.

Finally, we have ad3
x1

= − ad2
x0

adx1
= 0 and for any z, t ∈ L, using (2.1) and (2.3),

−[[x1, [x1, z]], [x1, t]] = [[x0, [x0, z]], [x1, t]]

= [[[x0, [x0, z]], x1], t] + [x1, [[x0, [x0, z]], t]]

= [x1, [[x0, t], [x0, z]]] + [x1, [x0, [[x0, z], t]]] = 0.

So, for y = [x1, [x1, z]] we get [y, [x1, t]] = 0, and then

[y, [y, t]] = [y, [[x1, [x1, z]], t]](2.4)

= [y, [[x1, t], [x1, z]]] + [y, [x1, [[x1, z], t]]] = 0,

since [y, [[x1, t], [x1z]]] = [([y, [x1, t]]), [x1, t]] + [[x1, t], ([y, [x1, z]])] = 0. If we

take any z ∈ Li , i = 0, 1, then y = [x1, [x1, z]] ∈ Li is an absolute zero divisor of

L by (2.4). By hypothesis, [x1, [x1, z]] = 0 for any z ∈ L0 ∪ L1, so [x1, [x1, L]] =

0, which implies that x1 = 0 because L has no absolute zero divisors in L1. Then

x0 + x1 = x0 ∈ L0 is an absolute zero divisor of L, so it must be zero.

Now we show that nondegeneracy is an equivalent condition for a Lie triple system

and its standard envelope.



450 E. Garcı́a, M. Gómez Lozano, and E. Neher

Theorem 2.4 Let T be a Lie triple system, and let LT = L0 ⊕ L1 be its standard

envelope. Then LT is nondegenerate if and only if T is nondegenerate.

Proof Let us suppose that LT is nondegenerate and that there exists x ∈ L1 with

[x, [x, L1]] = 0. Then, ad3
x(LT) = ad3

x(L0) ⊂ ad2
x(L1) = 0. So x is ad-nilpotent

in LT of index ≤ 3, and we can consider the Jordan algebra (LT)x of LT at x as in

Theorem 2.2. By hypothesis, [x, [x, L1]] = 0, so we can assume that all elements of

(LT)x are of the form a + kerLT
x, with a ∈ L0. Now,

[x, [x, [[L0, x], L0]]] ⊂ [x, [x, L1]] = 0

which implies that the Jordan algebra (LT)x has trivial (Jordan) product and, since

(LT)x is nondegenerate by Theorem 2.2(iii), (LT)x = 0, i.e., [x, [x,LT]] = 0. Hence

x = 0 because LT is nondegenerate.

Conversely, suppose that T is nondegenerate and that x ∈ L0 ∪ L1 is an absolute

zero divisor of LT . By nondegeneracy of T, we can suppose that x ∈ L0. For any

y, y ′ ∈ L1 and any λ ∈ Φ, we have by Lemma 2.1(i) that

[[x, y + λy ′], [[x, y + λy ′], y + λy ′]]

is an absolute zero divisor of LT contained in L1. It is therefore zero, since T is

nondegenerate. Linearizing and using Lemma 2.1(ii)

0 = [[[x, y + λy ′], [[x, y + λy ′], y + λy ′]]

= [[x, y], [[x, y], y]] + 3λ[[x, y], [[x, y], y ′]]

+ 3λ2[[x, y], [[x, y ′], y ′]] + λ3[[x, y ′], [[x, y ′], y ′]].

Evaluating this for λ = 1, 2, 3 ∈ Φ, shows 0 = [[x, y], [[x, y], y ′]] for any y ′ ∈
L1, i.e., [x, y] ∈ T is an absolute zero divisor, whence [x, y] = 0. Now x = 0 follows

because the map L0 → ad L0|L1 is injective. Thus LT is graded-nondegenerate, which

by Theorem 2.3 is equivalent to being nondegenerate.

Since the standard envelope of a Kantor pair V is isomorphic as a Lie algebra to

the standard envelope of T(V ) and since by Proposition 1.7(ii) V is nondegenerate if

and only if T(V ) is nondegenerate, we get the following.

Corollary 2.5 A Kantor pair V is nondegenerate if and only if its standard envelope

LV is a nondegenerate Lie algebra.

Proposition 2.6 (Allison–Smirnov) Let V be a Kantor pair, and let LV = L2 ⊕ L1 ⊕
L0 ⊕ L−1 ⊕ L−2 be its standard envelope.

(i) For any ideal (I+, I−) of V , the ideal of LV generated by I+∪I− is idLV
(I+∪I−) =

[I+, L1] ⊕ I+ ⊕ ([I+, L−1] + [L1, I−]) ⊕ I− ⊕ [I−, L−1].
(ii) L2 ⊕ L0 ⊕ L−2 does not contain nonzero ideals of LV .

(iii) If LV is graded-semiprime, every nonzero ideal I of LV contains a nonzero graded

ideal. In particular, I has nonzero intersection with L1 ⊕ L−1.
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(iv) LV is (semi)prime if and only if LV is graded-(semi)prime.

Proof (i) and (ii) can easily be checked by the reader.

(iii) Let 0 6= x ∈ I ⊳ LV and write x = x2 + x1 + x0 + x−1 + x−2 with xi ∈ Li . Let

i0 be the maximal index such that xi0
6= 0. The Lie algebra L̄V = LV /I is pregraded

in the sense of [15], i.e., denoting by L̄i ⊂ LV the canonical images of Li we have

L̄V =
∑2

i=−2 L̄i and [L̄i , L̄ j] ⊂ L̄i+ j . Note that x̄i0
∈ B(L̄V ) =

∑2
k=−2 (L̄k∩

∑
i<k L̄i).

By [15, 2.1], B(L̄V ) is a nilpotent ideal. In particular, id
L̄V

(x̄i0
) is nilpotent in L̄V ,

i.e., there exists m ∈ N such that (idLV
(xi0

))(m) ⊂ I. Moreover, since LV is graded-

semiprime and idLV
(xi0

) is graded, (idLV
(xi0

))(m) is a nonzero graded ideal contained

in I. That I has nonzero intersection with L1 ⊕ L−1 now follows from (i). (iv) is

immediate from (iii).

Proposition 2.7 Let V be a Kantor pair, and let LV be its standard envelope.

(i) If V is semiprime, then LV is semiprime.

(ii) V is prime if and only if LV is prime and V is semiprime.

(iii) (Allison–Smirnov) LV is a simple Lie algebra if and only if V is a simple Kantor

pair.

Proof (i) and (ii). Since by Proposition 2.6(ii) graded ideals of LV have a nonzero

intersection with V , it follows that V (semi)prime implies LV graded-(semi)prime,

hence (semi)prime by Proposition 2.6(iii).

Conversely, if V is semiprime, LV is prime, and I = (I+, I−) and J = ( J+, J−) are

nonzero ideals of V , it suffices to show that I ∩ J 6= 0. Let K := [idLV
(I), idLV

( J)],

which is a nonzero graded ideal of LV . So it has nonzero intersection with L1 ⊕ L−1.

One can check that

K ∩ L1 = [[I+, L1], J−] + [I+, [ J+, L−1]] + [I+, [ J−, L1]]

+ [[I+, L−1], J+] + [[I−, L1], J+] + [[ J+, L1], I−] ⊂ I+ ∩ J+,

and similarly K ∩ L−1 ⊂ I− ∩ J−.

(iii) If LV is simple and (I+, I−) is a nonzero ideal of V , then idLV
(I+ ∪ I−) = LV ,

so by Proposition 2.6(i) (I+, I−) = V . Conversely, let I be a nonzero ideal of LV . If

V is simple, then V is semiprime, so by (i) and Proposition 2.6(iii) 0 6= (I ∩ L1, I ∩
L−1) ⊳ V . Simplicity of V implies (I ∩ L1, I ∩ L−1) = V . Since V generates LV as

algebra, I = LV .

3 Some Consequences

Theorem 3.1 (i) A simple Kantor pair over a ring of scalars Φ containing 1
2
, 1

3
, 1

5
is

nondegenerate.

(ii) A simple Lie triple system over a field of characteristic zero is nondegenerate.

Proof (i) The standard enveloping algebra L = LV is simple by Proposition 2.7(iii).

The span K1(L) of all absolute zero divisors of L is invariant under all automorphisms,

hence in particular under all inner automorphism exp ad x, x ∈ Li , i ∈ {±1,±2}
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(note that under our assumptions on Φ, these maps are indeed automorphisms). It

follows that K1(L) is an ideal. Since it is locally nilpotent by [16], it must be zero; i.e.,

LV is nondegenerate, whence V is nondegenerate by Corollary 2.5.

(ii) By Corollary 2.5 it suffices to show that the standard embedding L of a simple

Lie triple system is nondegenerate. As mentioned in Remark 1.3, L is either simple or

a direct sum of two simple ideals. Hence, it suffices to show that a simple Lie algebra

defined over a field of characteristic 0 is nondegenerate. But this follows as in (i),

since by [8] the ideal generated by all absolute zero divisors is locally nilpotent.

Recall from (1.1) that the annihilator of an ideal I of a nondegenerate Lie algebra

L is given by AnnI(L) = {x ∈ L | [x, [I, x]] = 0}. The following two results give

analogs of this fact for Lie triple systems and for Kantor pairs.

Theorem 3.2 Let T be a nondegenerate Lie triple system, and let I be an ideal of T.

Then AnnT(I) = {x ∈ T | [x, I, x] = 0}.

Proof The inclusion from left to right being obvious, let us consider x ∈ T satisfying

[x, I, x] = 0 and put I := [T, I]⊕ I, the ideal of LT generated by I. Then for y, y ′ ∈ I

and t ∈ T we have

[x, [x, [x, [y, t] + y ′]]] = [x, [x, [x, [y, t]]]]

= [x, [x, [[x, y], t] − [[x, t], y]]] ∈ [x, [x, I]]

= 0,

i.e., x is an I-Jordan element in LT . We can therefore consider the generalized Jordan

algebra Ix of I at x. Because LT is nondegenerate by Theorem 2.4, so is I by Def-

inition 1.1. Hence Ix is a nondegenerate Jordan algebra (Theorem 2.2(iii)). More-

over, since I is a Z2-graded Lie algebra and x is homogeneous, kerI(x) = {a ∈ I |
[x, [x, a]] = 0} is Z2-graded, and so then is Ix = I/ kerI(x). By the definition of

the Jordan algebra product, (Ix)0 = {a | a ∈ I} and (Ix)1 = {a | a ∈ [T, I]}. But

kerI(x) ∩ I = I by assumption, so that (Ix)0 = 0. By nondegeneracy we then get

Ix = 0, which says I = kerI(x). Hence x ∈ T ∩ AnnLT
(I) = AnnT(I).

From Theorem 3.2 and Lemma 1.6(iii) we now get the following.

Corollary 3.3 Let V be a nondegenerate Kantor pair, and let I = (I+, I−) be an ideal

of V . Then AnnV (I)σ
= {x ∈ V σ | {x, I, x} = 0}.

An easy consequence of Theorem 3.2 and Corollary 3.3 follows.

Corollary 3.4 Every ideal of a nondegenerate Kantor pair or Lie triple system is also

nondegenerate.

The remaining two results deal with Kantor pairs. First, we show that nonzero

ideals in nondegenerate Kantor pairs cannot have a zero side.

Proposition 3.5 Let V be a nondegenerate Kantor pair, and let I = (I+, I−) be

an ideal of V or V op. If Iσ
= 0, then I−σ

= 0. In particular, if x ∈ V σ satisfies

{V−σ, x,V−σ} = 0, then x = 0.
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Proof Let us suppose I = (I+, {0}). From Corollary 2.5 we know that LV is a

nondegenerate Lie algebra. By Proposition 2.6(i), the ideal of LV generated by I

is I := [V +, I+] ⊕ I+ ⊕ [V−, I+] ⊂ L2 ⊕ L1 ⊕ L0. Since I is nondegenerate by

Definition 1.1, I+
= 0 and so I = 0.

Lemma 3.6 Let V be a Kantor pair, and let Iσ be a submodule of V σ . Then

I = (Iσ, {V−σ, Iσ,V−σ}) is an ideal of V or V op if and only if {Iσ,V−σ,V σ} +

{V σ,V−σ, Iσ} ⊂ Iσ .

Proof The condition {Iσ,V−σ,V σ}+{V σ,V−σ, Iσ} ⊂ Iσ is obviously necessary for

I to be an ideal. Conversely, if it is fulfilled, it suffices to verify that {V−σ,V σ, I−σ}+

{I−σ,V σ,V−σ} ⊂ I−σ and {V σ, I−σ,V σ} ⊂ Iσ . These three conditions are estab-

lished below, where a, c, u, v ∈ V−σ , b, d ∈ V σ, and y ∈ Iσ :

{a, b, {u, y, v}} = {{a, b, u}, y, v} − {u, {b, a, y}, v} + {u, y, {a, b, v}}

∈ {V−σ, Iσ,V−σ} = I−σ,

{{u, y, v}, b, a} = {u, y, {v, b, a}} + {v, {y, u, b}, a} − {v, b, {u, y, a}}

∈ {V−σ, Iσ,V−σ} + {V−σ,V σ, {V−σ, Iσ,V−σ}}

⊂ {V−σ, Iσ,V−σ} = I−σ,

{b, {u, y, v}, d} = −{y, u, {b, v, d}} + {{y, u, b}, v, d} + {b, v, {y, u, d}} ∈ Iσ.

In the following result we characterize when Kantor pairs are Jordan pairs by

building the biggest Jordan ideal of a Kantor pair. We recall that an ideal of a Kantor

pair (or of any algebraic structure for that matter) is called essential if it has nonzero

intersection with any nonzero ideal. In a prime Kantor pair, any non-zero ideal is

essential.

Proposition 3.7 Let V be a nondegenerate Kantor pair and define for σ = + and

σ = −,

Iσ := {x ∈ V σ | Kx,c a = 0 = Ka,b x, ∀ c ∈ V σ, a, b ∈ V−σ}.

(i) Then I := (I+, I−) is the biggest ideal of V that is a Jordan pair with respect to the

given triple product. Moreover, for σ = + and σ = −,

(a) Iσ
= {x ∈ V σ | Kx,c = 0 ∀ c ∈ V σ}.

(ii) V is a Jordan pair if and only if I is an essential ideal, in which case V = I. In

particular, if V 6= 0 is also prime, then V is a Jordan pair if and only if I 6= 0.

Proof (i) We first show that (Iσ, {V−σ, Iσ,V−σ}), σ = ±, are ideals of V (this does

not need the assumption that V is nondegenerate). By Lemma 3.6 and the definition

of Iσ it suffices to show that {V σ,V−σ, Iσ} ⊂ Iσ . Thus, let x ∈ Iσ , a, d ∈ V σ and
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b, c, e ∈ V−σ . Then

{{a, b, x}, c, d} = {a, b, {x, c, d}} + {x, {b, a, c}, d} − {x, c, {a, b, d}}

= {a, b, {d, c, x}} + {d, {b, a, c}, x} − {{a, b, d}, c, x}

= {{a, b, d}, c, x} − {d, {b, a, c}, x} + {d, c, {a, b, x}}

+ {d, {b, a, c}, x} − {{a, b, d}, c, x} = {d, c, {a, b, x}},

{c, {a, b, x}, e} − {e, {a, b, x}, c} = Kc,eVa,bx = −Vb,aKc,ex + KKc,ea,bx = 0,

so {V σ,V−σ, Iσ} ⊂ Iσ . In particular, J = ( J+, J−) = (I+, {V−, I+,V−}) is an ideal

of V . By Proposition 2.6(i),

J := [ J+,V +] ⊕ J+ ⊕ ([ J+,V−] + [V +, J−]) ⊕ J− ⊕ [ J−,V−]

is the ideal generated by J+ ∪ J− in LV = L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2. Now,

given y ∈ J+, x ∈ V + and z ∈ V−, we have [[y, x], z] = [[y, z], x] − [[x, z], y] =

Ky,xz = 0, which implies that 0 = [ J+,V +] = π2(J), where πi denotes the canonical

projection onto the Li-component of L. Since LV is nondegenerate by Theorem 2.4,

0 = π−2(J) = [ J−,V−], i.e., K J−,V−V +
= 0. Moreover, L2 ⊂ AnnLV

(J) by (1.1)

because J is 3-graded. Hence [[V +,V +], J−] = 0, i.e., KV +,V + J− = 0. Therefore,

{V−, I+,V−} = J− ⊂ I−, which implies that I = (I+, I−) is an ideal of V . Now

J ⊂ L−1 ⊕ L0 ⊕ L1, and every ideal K of V that generates in LV an ideal contained in

L1 ⊕ L0 ⊕ L−1 necessarily has K ⊂ I. Hence (a) holds.

To prove that I is the biggest ideal that is a Jordan pair, let K = (K+, K−) be an

ideal of V such that K is a Jordan pair. Again by Proposition 2.6(i),

K := [K+,V +] ⊕ K+ ⊕ [K+,V−] + [V +, K−] ⊕ K− ⊕ [K−,V−]

is the ideal of LV generated by K. We know that K is a nondegenerate Lie algebra.

Applying Proposition 2.6(i) one more time, it follows that the ideal of K generated

by K+ ∪ K− is

K′ := [K+, K+] ⊕ K+ ⊕ [K+, K−] ⊕ K− ⊕ [K−, K−].

Now, since K′ is nondegenerate and [[Kσ, Kσ], K−σ] = 0 (recall that K is a Jordan

pair), we have that [[Kσ, Kσ],K′] = 0. So [Kσ, Kσ] = 0 by nondegeneracy of K′,

and this implies, viewing [Kσ, Kσ] as elements of LV , that [[Kσ, Kσ],V−σ] = 0 and

Ky,y ′b = 0 for every y, y ∈ Kσ and b ∈ V−σ . Moreover, [Kσ, Kσ] = 0 implies

that K′ is 3-graded, and then by (1.1) that [V σ, Kσ] ⊂ AnnK(K′). In particular,

Ky,a y ′
= 0 for every y ∈ Kσ , a ∈ V σ and y ′ ∈ K−σ . Finally, for every y ∈ Kσ, y ′ ∈

K−σ, a ∈ V σ , and b ∈ V−σ we have:

{Ky,ab, y ′, Ky,ab} = VKy,ab,y ′Ky,ab = −Ky,aV y ′,Ky,abb + KKy,a y ′,Ky,abb = 0,

and since K′ is nondegenerate, Ky,ab = 0 for every y ∈ Kσ , a ∈ V σ and b ∈ V−σ .

Thus, by (i), K ⊂ I.
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(ii) Let I = I+⊕([I+,V−]+[V +, I−])⊕I− be the ideal of LV generated by I+∪I−,

and notice that L2 ∪ L−2 ⊂ AnnLV
(I) = 0 and I ⊂ L1 ⊕ L0 ⊕ L−1. Now, I is an

essential ideal of V if and only if I is an essential ideal of LV . Since the annihilator of

an essential ideal is zero, we get L2 = 0 = L−2. The converse is obvious.
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