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ABSTRACT

In this paper we show that a Lie superalgebra L graded by a 3-graded irreducible
root system has Gelfand—Kirillov dimension equal to the Gelfand—Kirillov
dimension of its coordinate superalgebra A, and that L is locally finite if and only
A is so. Since these Lie superalgebras are coverings of Tits—Kantor-Koecher
superalgebras of Jordan superpairs covered by a connected grid, we obtain our
theorem by combining two other results. Firstly, we study the transfer of the
Gelfand—Kirillov dimension and of local finiteness between these Lie super-
algebras and their associated Jordan superpairs, and secondly, we prove the
analogous result for Jordan superpairs: the Gelfand—Kirillov dimension of a
Jordan superpair V covered by a connected grid coincides with the Gelfand-
Kirillov dimension of its coordinate superalgebra A, and V is locally finite if
and only if A is so.
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INTRODUCTION

The Gelfand-Kirillov dimension is an interesting invariant for any algebraic
structure. For a nonassociative superalgebra A over an arbitrary field k it is defined
as follows. For any subspace B of A and any n € N we put B) =B, B" =
>irjon BYBY, B =37 BY. Then the Gelfand—Kirillov dimension of A is
defined as

In(dim B!
GKdim A = sup <lim sup —n(dlm )> , (1)
B n Inn

where the supremum is taken over all finite dimensional subspaces B of A. The
Gelfand-Kirillov dimension has been widely considered for Lie algebras. Concerning
Jordan algebras the main advances in this area are the investigation of Jordan
algebras of Gelfand—Kirillov dimension one by Martinez and Zelmanov (1996)
based on earlier work of Martinez (1996) and the recent classification of graded
simple Jordan superalgebras of growth one by Kac et al. (2001). The motivation
for the paper (Kac et al., 2001) is a conjecture on the structure of Z-graded
simple Lie superalgebras, and it confirms this conjecture in the special case
that the Lie superalgebra is the Tits—Kantor-Koecher superalgebra of a Jordan
superalgebra.

In this paper we study both varieties of superalgebras mentioned above, Jordan
and Lie. Our preference is with Jordan structures, and we will use the superversion of
the fundamental Tits—Kantor-Koecher construction to translate our results from
“Jordan to Lie.”” For Lie algebraists, Jordan superpairs over a field of characteristic
#2,3 can be introduced as follows: We call a Lie superalgebra L over k Jordan
3-graded if

(i) L=L1®Ly®L_; is a so-called short Z-grading, ie., [L;,L;] C Liy;
for i,j € {0, £1}, and
(i) Lo=I[Ly,L_q].

Here the L; are Z,-graded subspaces and [.,.] denotes the product of L. In this case,
we have well-defined trilinear maps on V = (L, L_1), namely

Ly XL gXLs— Ly : (x,y,2) = [[x,¥],2] =: {xyz}
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for ¢ = +1, satisfying two basic identities, one of which is

{xyz} = (_1)\X\|y\+\XHZ\+\yHZ\{Zyx}

for homogeneous x,y,z of degree |x|,|y| and |z|, respectively. Taking these two
identities as axioms one arrives at the definition of a Jordan superpair (see Loos,
1975 or Finston, 1987; Neher, 2003 for the supersetting). There are in general
many Jordan 3-graded Lie superalgebras with a given Jordan superpair, but all
are central extensions of a “minimal’’ one, the so-called Tits—Kantor-Koecher
superalgebra K(V) of the Jordan superpair V. Thus, the importance of the
Tits—Kantor-Koecher construction lies in the fact that every abstractly defined
Jordan superpair V = (V*, V™) arises in this way from a Jordan 3-graded Lie
superalgebra.

The interplay between Jordan superpairs and Jordan 3-graded Lie superalgebras
has been very fruitful, and there are many papers where this is used, for example in
Zelmanov’s fundamental paper on the classification of finite gradings of simple Lie
algebras (Zelmanov, 1985), or see Neher (1996), Garcia (2001b), Garcia (2001a),
Garcia and Neher (2003) for more recent examples. Generalizing a result of
Martinez for Jordan 3-graded Lie algebras (Martinez, 1993, Theorem 3.2) to the
supercase we prove:

Transfer Proposition (2.6). Let L =L ®[Ly,L_11® L_| be a Jordan 3-graded Lie
superalgebra over a field of characteristic different from 2. Then the Gelfand-
Kirillov dimension of L and the Gelfand-Kirillov dimension of its associated
Jordan superpair V.= (Ly,L_1) coincide.

As the class of Jordan superpairs for which we want to study the Gelfand—
Kirillov dimension, we have chosen Jordan superpairs covered by a connected grid.
This is at present the only class of arbitrary dimensional Jordan superpairs for which
one has a structure theory (Garcia and Neher, 2004; Neher, 2003). Two features of
this class of Jordan superpairs are important for the following:

(1) There exists a 3-graded irreducible locally finite root system
R = R{URyUR_y, the root system associated to the connected grid covering the
Jordan superpair V, such that V has a grading V = P,z Vs Locally finite root
systems, simply called root systems in the following, are the direct limits of finite root
systems, and therefore include not only the usual finite root systems but also the
canonical infinite rank analogues of the finite root systems (see Loos and Neher
(To appear), for an exposition of this theory including a classification). Imposing
the condition of a 3-grading excludes R = Eg, F4 and G,.

(2) One can associate a supercoordinate system % to V which together with R
in (1) above completely determines V. This supercoordinate system always consists
of a unital superalgebra A, called coordinate superalgebra, which is either Jordan
(R = Ay, By) or alternative in the other cases (even associative for R = Ay, || > 3,
and R =Cj, |I| >4, and supercommutative associative for R =By, |I| >3, R =
Dy, E¢ and E7). If R is simply laced then ¥ = A but in the other cases some additional
data, e.g., an involution of A, are part of ¥. We can now state our main result.
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Theorem A (2.5). Let V be a Jordan superpair covered by a connected grid and
let A be the associated coordinate superalgebra. Then the Gelfand—Kirillov
dimensions of V and of A coincide.

Combining now the Theorem A above and the Transfer Proposition determines
the Gelfand—Kirillov dimension of the Jordan 3-graded Lie superalgebras whose
associated Jordan superpairs are covered by a connected grid. In Garcia and Neher
(2003, 2.9) we have given a characterization of these Lie superalgebras which
does not use Jordan theory: they are exactly the Lie superalgebras graded by a
3-graded irreducible root system. Lie superalgebras graded by a root system are a
superversion of the concept of a Lie algebra graded by a root system. These
Lie algebras were introduced and classified by Berman and Moody (1992) in the
simply-laced cases #A; and for the other cases by Benkart and Zelmanov (1996).
Our description for the case of 3-graded root systems is the superversion of a result
from Neher (1996). We define the coordinate superalgebra A associated to L as
the coordinate superalgebra of the Jordan superpair V. Summarizing the above,
we now have:

Corollary A (2.7). Let L be a Lie superalgebra over a field of characteristic #2,3
graded by a 3-graded root system. Let V be the associated Jordan superpair which,
as we know, is covered by a connected grid and let A be the coordinate superalgebra
of L. Then L and A have the same Gel fand—Kirillov dimension.

The last part of this paper is devoted to the study of local finiteness of the
superstructures mentioned above. Recall that a nonassociative algebra over a field
is locally finite if every finitely generated subalgebra is finite dimensional, and this
definition makes also sense for superalgebras and other algebraic superstructures
like Jordan superpairs. We prove the analogues of Theorem A and Corollary A
above:

Theorem B (3.6). Let V be a Jordan superpair covered by a connected grid and let
A be the associated coordinate superalgebra. Then V is locally finite if and only if A
is so.

Corollary B (3.14). Let L be a Lie superalgebra over a field of characteristic #2,3
graded by a 3-graded root system, and let A be the coordinate superalgebra of L.
Then L is locally finite if and only if A is so.

Theorems A and B and their corollaries are very similar, not only in their state-
ments but also in the method of their proofs. Moreover, under the additional
assumption that the base field has characteristic #2, Theorem B actually becomes
a special case of Theorem A. Indeed, we prove that in this case local finiteness is
equivalent to Gelfand—Kirillov dimension equal to 0 for the varieties of associative,
Lie, unital alternative or Jordan superalgebras and also Jordan superpairs (3.7,
3.12, 3.13).
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1. REVIEW: DEFINITIONS AND GENERAL RESULTS

1.1. Superalgebras. Unless specified otherwise, all algebraic structures are defined
over an arbitrary base field k, and everything is Z,-graded in the natural sense.
In particular this is so for vector spaces, called superspaces, subalgebras of super-
algebras, etc. For a superspace M = Mz & M7 we will denote by M and My the even —
respectively odd — part of M. For m € M,, u € Z, = {0,1}, we put |m| = u the
degree (or parity) of m. We denote by G the Grassmann algebra over k in a count-
able number of generators. It is Z,-graded, G = Gy ® G; where Gj and Gy are
spanned by monomials in an even — respectively odd — number of generators.
The term “algebra’” or “superalgebra’’ without further specification will always mean
an arbitrary nonassociative, i.c., not necessarily associative, algebra or superalgebra
over k.

Let A= A;® A; be a superalgebra. The Grassmann envelope G(A) =
(G ® Ap) ® (G ® A7) C G ® A is an algebra with respect to the product (g, ® a)
(gp ® b) = gu.gp, ® ab for homogeneous elements g,,g, € G, a,b € A satisfying
|g.| = |a| and |g,| = |b|. One can then define varieties of superalgebras by requiring
that the Grassmann envelopes lie in a specific variety of algebra. For example, A is
an alternative or associative or commutative or Lie superalgebra if and only if
its Grassmann envelope G(A) is, respectively, an alternative, associative, commutative
or Lie algebra. For example, commutativity simply means ab = (—1)‘““b‘ba for
homogeneous a,b € A. For a superspace M the Grassmann envelope G(M) is
defined as for superalgebras.

This approach to defining varieties of superalgebras also works for Jordan
superalgebras in case % € k, because then Jordan superalgebras can be defined via
a bilinear product. However, since several of our results do not need the assumption
chark # 2, we will use the approach to Jordan superalgebras via quadratic maps
(King, 2001; Neher, 2003). For those readers who are happily willing to assume
1€k, the relations between the bilinear product and the quadratic product
U = (U;,U(.,.)) are given by the formulas

Up(ag)b = 2aq(agh) — agh (2)

(=D (b, dye = 2(b(cd) + (be)d — (=) (bd)e) =: {b ¢ d} (3)

where a5 € Ag and b, c,d € A are homogeneous. Note that Uj is a quadratic map in
the usual sense and that we do not have a U(aj) for odd aj.

A superextension of k is a commutative associative unital superalgebra over
k. For example, G is a superextension of k. A basic recipe to create super-
algebras in a given variety is to take an algebra B in the variety and a superextension
S of k, and form the superalgebra S ® B. Its product is given by

(51 ®D1) - (52 ® b2) = (5182) ® (b1b2). “4)

We will call S ® B the S-extension of B.
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1.2. Jordan Superpairs. We now come to the main object of this paper:
Jordan superpairs over k. Suppose we have a pair V = (V*, V™) of superspaces
together with a pair Q = (Q%, Q) of quadratic maps Q7: V° — Hom,(V~7,V?),
6 = +. By definition (Neher, 2003, 2.1), we therefore have symmetric k-bilinear
maps Q%(.,.):V° x V2 — Hom(V~?,V?) of degree 0 and k-quadratic maps
Qg : Vg — Homy (V~7,V?)5 which are related by Q7 (u,w) = Qf (u+w) — Qf (u) — QF (w)
for u,w € V§. Since 2Qf(u) = Q7 (u,u) the maps Qf are determined by Q7 in
case chark # 2. These quadratic maps induce canonical G-quadratic maps
Q°: G(V?) = Homg(G(V™7?), G(V)), and one calls V a Jordan superpair if its
Grassmann envelope G(V) = (G(V*'),G(V™)) together with Q = (QT,Q") is a
Jordan pair in the usual sense (Neher, 2003, 2.2). We will follow common
practice in Jordan theory and leave out the superscripts ¢ if no confusion
can arise.

It is sometimes easier to define a Jordan superpair via the supertriple products,
which are k-trilinear maps {...}: V? x V7% x V% — V° related to the maps Q by
{fuvw} = (=D Q(u, wv (in the introduction we have explained how these maps
arise in the setting of Jordan 3-graded Lie superalgebras). Subpairs of Jordan
superpairs are defined in the obvious way (Neher, 2003, 2.3).

For a Jordan superpair V = (V*, V™) we define dimV =dimV*t +dim V-,
where by dim we mean dim;.

1.3. Jordan Supertriple Systems. Jordan superpairs are closely related to the
so-called Jordan supertriple systems (or Jordan supertriples for short) which have
the sometimes useful advantage of being defined on a single vector space (or
k-module in the general setting). In the classical theory this is well-known and
can for example be found in Loos (1975, Sec. 1) (for the supercase see Neher,
2003, 2.7).

For the convenience of the reader we shortly review the basic construction with-
out however giving all details. Let T be a superspace together with a quadratic map
P: T — End; T. As in the definition of Jordan superpairs, one then has a quadratic
map P on the Grassmann envelope P: G(T) — Endg(G(T)) and one defines T to be
a Jordan supertriple if G(T) together with P is a Jordan triple in the classical sense.
In particular, we then have a trilinear map {..}: Tx T xT — T given by
{fuvw} = (=) P(u, w)v. This so-called supertriple product is symmetric in the
outer variables,

(uvw} = (= 1)l gy )

for homogeneous u,v,w € T. It also satisfies the superversion of the so-called
S-linear identity (JP15), (Loos, 1975, 2.1).

If k has characteristic #2,3 then Jordan supertriples can be defined by (5)
and this 5-linear identity. In our set-up, a unital Jordan superalgebra is the same
as a Jordan supertriple containing an invertible element (Neher, 2003, 2.11).

To explain the connection between Jordan superpairs and Jordan supertriples
let us first define an involution of a Jordan superpair V to be a homomorphism

Copyright © Marcel Dekker, Inc. All rights reserved.
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n=0",n"): V=V from V to the opposite Jordan superpair V°P satisfying
n%on® =1d on V7, (Loos, 1975, 1.5) for Jordan pairs or (Neher, 2003, 2.7) for
superpairs. Any Jordan supertriple 7 gives rise to a Jordan superpair
V(T) = (T,T) with involution (Id,Id). Conversely, if V is a Jordan superpair
with an involution » one can define a Jordan supertriple 7, on V* by
Py(ug)v = Qg(ug)n™(v) and P(u,v) = Q(u, w)nt(v) for u,v,w € V*. The associated
Jordan superpair V(7)) is then canonically isomorphic to V. In this way, Jordan
superpairs with involutions are the “same’’ as Jordan triple systems. Subtriples of
Jordan supertriples are defined in the obvious way.

1.4. Jordan Superalgebras Associated to Alternative Superalgebras. An important
source of examples for Jordan superalgebras, hence Jordan supertriples and
Jordan pairs, are the so-called special Jordan superalgebras, i.e., the subalgebras
of A®) for A an associative superalgebra. We will need a slight generalization
of this class of Jordan superalgebras, which is associated to alternative super-
algebras.

Thus, let A be an alternative unital superalgebra. For aj € Az and homogeneous
a,b,c € A define

Us(ag)b = aphag and {abc} = a(bc) + (—1)llbHalleHblel o pq) (6)

Then A together with the operations (6) form a unital Jordan superalgebra,
denoted A™). Indeed, this can either be seen by considering the Grassmann
envelopes of A and A®) (or by observing that A is the McCrimmon—Meyberg
algebra of the collinear pair e, f in IMj2(A), see 1.6).

1.5. Jordan Superpairs Covered by Grids. A grid ¢ in a Jordan superpair V is a
family of idempotents g € Vj satisfying certain properties which we are going to
explain now.

As in the classical theory (Loos, 1975, 5.4) every idempotent ¢ = (c¢™,c™) € V;
gives rise to a Peirce decomposition V = Va(c) @ Vi(c) ® Vo(c). A family € of
idempotents is called a cog if for two distinct ¢, ¢’ € @ we have exactly one of the
following possibilities:

(1) c e Vo(c') or, equivalently, ¢’ € Vy(c) (one says that ¢ and ¢ are ortho-
gonal).
(i) ce Vi(d) and ¢ € Vi(c) (one calls ¢ and ¢’ collinear).
(i) c € Va(c) and ¢ € Vi(c) (one says that ¢’ governs c); c € Vi(¢) and
' € Vy(c), ie., ¢ governs ¢

For any family & of idempotents we have simultaneous Peirce spaces

Vi(®) = () Vi (@), 1= (i(0)eess

ce¥
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a family of numbers in {0, 1,2}. The sum of all V;(%) is direct but in general not all
of V. In case of a cog %, every c € ¥ lies in a certain V;(%) and one calls ¢ a
covering cog if V is the sum of the simultaneous Peirce spaces V;(%) with
ENVi(6)#0.

It turns out that every cog % can be enlarged to a so-called closed cog which has
the same simultaneous Peirce spaces (Neher, 1987, 4.11). These closed cogs can be
defined in terms of closure properties with respect to forming idempotents (Neher,
1987, 4.1) or, equivalently, with the help of (locally finite) root systems (Loos and
Neher, to appear; Neher, 1990). We will review the latter definition. A 3-grading
of a root system R is a partition R = Ry URyUR_; such that (R; + R;)) "R C R;y;
for i,j =0,%1 and (R; + R_1) N Ry = Ry. Then a cog ¥ is defined to be closed if
there exist a 3-graded root system R = R;URyUR_; and a bijection R; — % :
o ¢y such that ¢, € V,, gy(cp) for all o, f € Ry where (o, ) denotes the Cartan
integer in R. In this case we abbreviate V, = V(%) if ¢, € V;(%), and then have the
simultaneous Peirce decomposition

V=@p V. (7)

aER

Finally, a covering closed cog ¥ is called a covering grid, and in this case V is
said to be covered by ¢4. (One can also define grids in general, see Neher, 2003,
3.3.) A covering grid whose associated 3-graded root system R is irreducible is called
connected.

Every locally finite root system R is a direct sum of irreducible locally finite
root systems R, i € I. If R is 3-graded, every irreducible component R® is 3-graded
too. Suppose V is covered by a grid ¥ with associated 3-graded root system R.
Corresponding to the decomposition R = |J,.; R"” in irreducible components R®
is the decomposition of V in a direct sum of ideals

V= @ V(i)7 v — @ v, 8)

icl 2RO

where each ideal V) is now covered by the connected grid ¥ = ¥ N V®. The
decomposition allows one to reduce questions on V to the case where ¥ is connected,
see for example 2.1 and 3.1.

The classification of connected grids (Neher, 1987), or equivalently 3-graded root
systems, shows that there are the following seven types of connected grids (for a
definition see e.g., Garcia, preprint, 2001b; Neher, 2003, Sec. 4, I,J and K are
arbitrary sets):

(i) Rectangular grid Z(J,K),1 < |J| < |K|, (R, Ry) is the rectangular grading
AJX where JUK = I1U{0} for some element 0 ¢/ and R is a root system
of type A and rank |I|.

(i) Hermitian grid #(I), 2 < |I], (R, R;) is the hermitian grading of R = C;.

(iii) Even quadratic form grid 2.(I), 3 < |I|, (R, Ry) is the even quadratic form
grading of R = D g

Copyright © Marcel Dekker, Inc. All rights reserved.
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(iv) Odd quadratic form grid 2,(I), 2 < |I], (R, R;) is the odd quadratic form
grading of R = By
(v) Alternating grid «/(I), 5<|I|, (R,R;) is the alternating grading of
R=D,.
(vi) Bi-Cayley grid 4, R = Eg.
(vil) Albert grid ./, R = E;.

Corresponding to each type of covering grid is a coordinatization theorem which
describes the corresponding Jordan superpair up to isomorphism. These so-called
standard examples will be described in 1.7 below.

1.6. McCrimmon-Meyberg Superalgebras and Supercoordinate Systems. Let V be
a Jordan superpair over k covered by a connected standard grid 4 with associated
3-graded root system (R,R;). For the further development the concept of a
McCrimmon-Meyberg superalgebra (Neher, 2003, 3.2) is important. This is
an alternative superalgebra defined for every collinear pair (g,,gp) on V, =
V) (g.) NV (gp) by the product formula ab={{ag, g;}g;zb}. Modulo iso-
morphisms and taking the opposite algebra, the McCrimmon-Meyberg super-
algebra does not depend on the chosen collinear pair g,,gs (see Garcia and Neher,
2004, 1.4).

We will associate to V a supercoordinate system €. Its definition depends
on the type of R. However, for a simply-laced R of rank R > 2, equivalently
9 is an ortho-collinear family with |¥4| > 2, we have the following uniform
description

% = McCrimmon— Meyberg superalgebra of some collinear pair g,,85 € 9.
()

This superalgebra is associative for rank R > 3 and even associative commutative,
i.e., a superextension of k, for R of type D or E. For non-simply-laced root
systems, ¥ will have more structure and will be defined in the review of the
coordinatization theorems below 1.7.

1.7. Standard Examples. The coordinatization theorems of Neher (2003, Sec. 4)
described in (a)—(i) below can be summarized by saying that a Jordan superpair V
is covered by a grid ¢ if and only if V is isomorphic to a standard example
V(%,%) depending on ¢4 and a supercoordinate system %.

(a) For the rectangular grading of R = A; with |J| = |K| = 1, we have |[R| = 1
and ¥ just consists of a single idempotent ¥ = {g} which covers V in the sense that
V = V3(g). Any such Jordan superpair is isomorphic to the superpair J = (J,J) of a
unital Jordan superalgebra J over k. In this case ¢ = J.

(b) The standard examples for the remaining rectangular grids #£(J, K),
|J| + |K| >3, are the rectangular matrix superpairs M (A) = (Mat(J, K; A),
Mat(K,J; A)), where Mat(J, K; A) denotes the J x K-matrices with finitely many
non-zero entries from the unital superalgebra A which is alternative in case

Marcer DekkER, Inc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

) 1



ORDER | _=*_[Il REPRINTS

2158 Garcia and Neher

R = Ay, ie., |J|+|K| =3, and associative otherwise. In the alternative case the
product is described in Neher (2003, 4.4). In the associative case IMx(A) is a
special Jordan superpair canonically imbedded in (Mat(J U K; A), Mat(J U K; A)),
hence has Jordan supertriple product

{uvw} = wow + (— 1)y,

The Z,-grading of Mat(J, K; A) — respectively, of Mat(K,J;A) — is the one
induced from A: Mat(/, K; A), = Mat(J,K; A,) for u € Z,. Here ¢ = A.

(¢) The Jordan superpairs covered by a hermitian grid #(1I),|I| =2, are
exactly the J = (J,J) where J is a Jordan superalgebra with two strongly connected
supplementary idempotents giving rise to a Peirce decomposition P of J in the
form P:J=J; ®Jip D Jrn. In this case, the supercoordinate system of V is

G =(,P).

(d) Examples of Jordan superpairs covered by hermitian grids #(I) are the
hermitian Jordan superpairs H;(A, Ao, ) = (H;(A, Ao, ), H;(A, Ag, 7)), where
H;(A, Ag,m) = {x = (x;j) € Mat(I,I; A) : x = x",all x;; € Ag}, A is an alternative
superalgebra which is associative for |I| > 4 and = is a nuclear involution with ample
subspace Ay (Neher, 2003, 4.10). We have A9 C H(A,7) = {a € A : @™ = a} and this
is an equality if % € S. For an associative A these are special Jordan superpairs and in
the alternative case the product is described in Neher (2003, 4.11). The Z,-grading of
H; (A, Ap, ) is induced from the Z,-grading of A (see (b)). Conversely, any Jordan
superpair covered by a hermitian grid #(I), || > 3, is isomorphic to some hermitian
matrix superpair IH;(A, Ap, n) as soon as the extreme radical of V vanishes (this is
always the case if chark # 2). In the following we always assume this additional
assumption when we consider Jordan superpairs covered by a hermitian grid. We
put € = (A, Ao, 7).

(e) For a superextension A of k and a set I # () we denote by H(I, A) the free
A-module with even basis {h; : i € I'} equipped with the hyperbolic superform g,
satisfying g;(h4i, h—;) =1 and q(h+i, hej) =0 for i # j. One can make H(I,A)
into a Jordan supertriple with quadratic maps given by Pg(mg)n = g;(mg, n)mg
— gi(mg)n and {mn p} = q;(m,n)p + mq;(n, p) — (—=1)/"""lg;(m, p)n. The correspon-
ding quadratic form superpair [EQ, (A, gq;) = (H(I,A), H(I, A)) is covered by an even
quadratic form grid 2.(I). Conversely, any Jordan superpair covered by an even
quadratic form grid 2.(I), |I| > 3, is isomorphic to some E®,;(A,q;) (Neher,
2003, 4.14). Here % = A.

(f) We let again A be a superextension of k and suppose that X is an A-module
with an A-quadratic form gy with a base point e € Xj satisfying gx(e) = 1. For I # )
weput M = H(I,A) ® X, g = q; ® qx. The corresponding quadratic form superpair
(M, M) = 0OQ,;(A, gx) is covered by an odd quadratic form grid 2,(I). Conversely,
any Jordan superpair covered by an odd quadratic form grid 2,(1), |I| > 2, is
isomorphic to some OQ;(A,qgx) (Neher, 2003, 4.16). In this case we put
% = (A, X, qx).

(g) For a superextension A of k we denote by Alt(Z, A) the A-module of all
alternating matrices x € Mat(I,I; A), i.e., x| = —x and all diagonal entries x;; = 0.
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The alternating matrix superpair A;(A) = (Alt(l, A),Alt(l, A)) is a subpair of
My (A); it is covered by an alternating grid .«/(I). Conversely, any Jordan superpair
covered by an alternating grid /(I), |I| > 4, is isomorphic to some A;(A) (Neher,
2003, 4.18). We put 4 = A.

(h) The examples (e) and (g) are superextensions of a Jordan pair U, i.e., have
the form A ® U where A is a superextension of k and U is a Jordan pair, cf. 1.1.
Moreover, U is split of type 9, i.e., U’ = @geg k - g°. This is also so for the remain-
ing two standard examples. A Jordan superpair over k is covered by a Bi—Cayley grid
4 if and only if it is isomorphic to the Bi-Cayley superpair B(A) = A ®; IM(0y),
the A-extension of the rectangular matrix superpair B(k) = IM,(Oy) for O, the split
Cayley algebra over k (Neher, 2003, 4.20). Here ¢ = A.

(1) A Jordan superpair V over k is covered by an Albert grid ./ if and
only if there exists a superextension A of k such that V is isomorphic to the Albert
superpair AB(A) = A ®; AB(k), the A-extension of the split Jordan pair
AB(k) = H3(Oy, k - 1,7) where Oy is the split Cayley algebra over k& with canonical
involution 7 (Neher, 2003, 4.22). Here again ¢ = A.

1.8. 3-Graded Lie Superalgebras. There is an important connection between Jordan
superpairs and so-called Jordan 3-graded Lie superalgebras. This sometimes allows
one to transfer results from the category of Jordan superpairs to Lie superalgebras.
We will review the basic constructions.

A 3-grading of a Lie superalgebra L over k is a decomposition
L=L ®&Ly$®L_, where each L; is a k-superspace, hence L, = L% L for
i=0,x1 satisfies [L; L;]C Li;; with the understanding that L; ;=0 if
i+ j#0,£1. In other words, L = L} ® Lo & L_; is a Z-grading with at most three
non-zero homogeneous spaces. Because of this, 3-gradings are sometimes also called
short Z-gradings, e.g., in Zelmanov (1985). A Lie superalgebra is called 3-graded if
it has a 3-grading. If L is a 3-graded Lie superalgebra, its Grassmann envelope is a
3-graded Lie algebra in the sense of Neher (1996, 1.5).

A 3-graded Lie superalgebra L = L} & Lo & L_; will be called Jordan 3-graded if

(i) [Li,L_1]1= Ly, and
(i) There exists a Jordan superpair structure on (L1, L_;) whose Jordan triple
product is related to the Lie product by

{xyz} =I[[xylz] forall x,z€ Ly, y€ L_4, 0 ==. (10)

In this case, V= (L;,L_1) will be called the associated Jordan superpair.
If char k # 2 the associated Jordan superpair is unique: its product is given by (10)
and by Qg(x5)y = %[[x(), vlxgl. Conversely, these two formulas define a pair
structure on (L, L_;) which will be a Jordan superpair in any situation where Jordan
superpairs are defined by linear identities. For example, by Neher (2003, (32)) a
3-graded Lie superalgebra L over k with [L,L_;] = L is Jordan 3-graded as soon as
chark # 2, 3.

So far we have associated a Jordan superpair to any Jordan 3-graded Lie super-
algebra. Even more important is the fact that every Jordan superpair V arises in this
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way. Without going into details let us just recall that one can define a Lie superalgebra
product on K(V) = Vt @ IDer V @ V~ where IDer V denotes the Lie superalgebra of
inner derivations of V. This so-called Tits—Kantor-Koecher superalgebra K(V) is a
3-graded Lie algebra with {(V),, = V* and K(V), = IDer V. It is obviously Jordan
3-graded. For more details, see Garcia and Neher (2003).

1.9. Root Graded Lie Superalgebras. Jordan 3-graded Lie superalgebras whose
associated Jordan superpairs are covered by a grid are precisely the Lie super-
algebras graded by a 3-graded root system (Garcia and Neher, 2003). For the
convenience of the reader we review here the basic definitions.

Let R be a reduced (possibly infinite) root system in the sense of Neher (1990)
(so 0 R), and let 2(R) = Z[R] be the Z-span of R (the root lattice). Let L be a
Lie superalgebra over k. We say L is R-graded if there exists a decomposition
L = €D,cpuqoy L+ into subspaces L, = L,; ® L,; and subalgebras ) C g C Lg such
that the following conditions are satisfied:

(1) The decomposition L =
(i) Lo=)_,ep Ly Lyl
(iii) There exists a family (x, : « € R) of non-zero elements x, € L such that,
putting h, = —[x,, x_,], we have

L, is a 2(R)-grading.

aER)

b:ZaeRk'hoﬁ Q:b@@“elgk-x“ and
[hy,ypl = (B,a")yp forallae R and yge Lg, f € RU{0}.

This definition is a straightforward generalization of the notion of a root-graded
Lie algebra studied in Neher (1996). In case L is a Lie algebra, & is a field of char-
acteristic 0 and R is finite, it is equivalent to the one considered by Berman and
Moody (1992) and Benkart and Zelmanov (1996). In this case R can be identified
with a set of linear forms on b, the superspaces L, are then given by
Ly, ={x€ L:[h,x]=a(h)x for all h € b}, {h, : o € R} is isomorphic to the dual
root system of R and [ is a splitting Cartan subalgebra of the finite-dimensional
semisimple Lie algebra g.

2. GELFAND-KIRILLOV DIMENSION
2.1. Gelfand—Kirillov Dimension of Jordan Superstructures. Let V be a Jordan

superpair over a field k. For any subspace U=U;® U; of V we define
U™ = (Ut y=-M) and UM = (U, U~") for odd n € N inductively by

U(T(l) — IJ(T7
Ua(n) — Z {UU(1)7 Ufa(k)7 Uzr(m)} + Z Q()(U(f)f(l))Uﬂr(k)7

I+k+m=n 2l+k=n (1 1)
yen — Z Ug(i).

1<i<n
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The Gelfand—Kirillov dimension of a Jordan superpair V, called the GK-
dimension for short, is defined as

i +[n] i —[n]
GKdim V = sup <lim sup Indim UT* + dim U )> ; (12)

U odd n Inn

where the supremum is taken over all finite dimensional subspaces U of V. Here and
in the following we write dim for dim,. Obviously, the GK-dimension of any subpair
of V is less than or equal to the GK-dimension of V.

As in the proof of Krause and Lenagan (1985, 1.1) it can be shown that
for a finitely generated superpair V the GK-dimension of V is independent of the
particular choice of the generating subspace U. Thus in this case

o +[n : —[n

GKdim V = lim sup In(dim U™ + dim U] , (13)

oddn Inn
where U is any finite dimensional generating subspace of V. In the general situation it
is of course not necessary to take the supremum over all subspaces. Rather, it is
sufficient to consider a class of “special’’ subspaces, adapted to the Jordan superpair
under investigation, with the property that every finite dimensional subspace is
contained in a special one. Moreover, we have the following obvious reduction
principle. Suppose V = |J; V® is the union of subpairs such that

(a) Every finite dimensional subspace of V lies in some V),
(b) GKdim V® = ¢ is constant. Then

GKdimV = c. (14)

2.1. Remarks. (a) It will follow from our results in 3.7 and 3.11 that the
GK-dimension of a Jordan superpair over a field of characteristic #2 is either 0
or >1.

(b) If V is the direct sum of ideals U;, i € I, the GK-dimension of V equals the
supremum of the GK-dimensions of the ideals U;:

GKdim( @ U,) = sup( GKdim U;).
=7 icl
Indeed, since GKdimU; < GKdimV for any i€ I, we have sup,.,(GKdim U;)
< GKdim V. Conversely, if B is a fixed finite dimensional subspace of V, then B lies

in an ideal @jej U; of U, where now J is a finite subset of I. Arguing as in Krause
and Lenagan (1985, 3.2), we have that GKdim(6P ., U;) = maxc;(GKdim U;), hence

jes

. In(dim B + dim B~1")
lim sup

< GKdim U;) < sup(GKdimU,),
odd n Inn _I?Eafx( m ])_silg)( mU)

so GKdim V < sup;;(GKdim U;).

Marcer DekkER, Inc.
270 Madison Avenue, New York, New York 10016

Copyright © Marcel Dekker, Inc. All rights reserved.

) 1



ORDER | _=*_[Il REPRINTS

2162 Garcia and Neher
2.2. GK-Dimension of Jordan Supertriples and Superalgebras. Now let T be a
Jordan supertriple. Any subspace U of T gives rise to a subspace # = (U, U)

of the associated Jordan superpair V = (T, T), and we define U® and U" for
odd n by

@/(") — (l](”)7 U(")) and %[n] = (U[n]’ U[n]) (15)

The Gelfand-Kirillov dimension of T is then defined in analogy to 2.1.2 as

i [n]
GKdim 7 = sup <lim sup ln(dlmU))
U oddn Inn

where the supremum is taken over all finite dimensional subspaces of T. For a
(quadratic) unital Jordan superalgebra J we put

GKdim J = GKdim J”

where JT is the underlying Jordan supertriple, see Neher (2003, 2.11).
2.2. Lemma.

(@) Let V= (T,T) be the Jordan superpair associated to a Jordan super-
triple T. Then GKdimV = GKdim 7.

(b) Let V=(Vt, V") be a Jordan superpair, and let T(V) =Vt &V~ be
the associated polarized Jordan supertriple with quadratic map P
given by

Po(xg @ xg) v @ y7) = Qp(x))y” @ Qpxg)y™  and
rex yrey , fezt={"y , te{x y o}
Then GKdim V = GKdim T'(V).
Proof. (a) Let U be a finite dimensional subspace of 7. Then % = (U, U) is a

finite dimensional subspace of V with ™ = (U™, U"), so GKdim V > GKdim T
follows from

i [n] i [n] i [n]
GKdim V > lim sup In(dim U™ 4 dim U'™) _ limsup In(2 dim U'"™)

oddn Inn oddn Inn
) In(dim U™
— lim sup @M U™)
odd n Inn
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On the other hand, if (U, U™) is a finite dimensional subspace of V then Ut @& U~

is a finite dimensional subspace of T with (Ut @ U")" = Ut @ U~1"l. Then
GKdim T > GKdim V in view of

In(dim(Utg 4+ U)")

GKdim T > lim sup

oddn Inn
, In(dim U 4 dim U~1")
= lim sup .
oddn Inn

(b) Since any finite dimensional subspace of 7(V) imbeds in a finite dimen-
sional subspace of the form Ut ® U~ for U= (U"T,U") C V, the assertion is
immediate from the definitions. O

2.3. Gelfand—Kirillov Dimension of Nonassociative Superalgebras. Let A be a non-
associative superalgebra over k. For any subspace B of A and any n € N we put
BD =B, B"W =%, BYBY, B"=%__ BY. Then the Gelfand-Kirillov
dimension of A is defined as

(16)

i [n]
GKdim A = sup <lim sup Mnﬂ?)) ,
B n

Inn

where the supremum is taken over all finite dimensional subspaces B of A. It is
well-known that in case of a finitely generated superalgebra A, the GK-dimension
of A is independent of the particular choice of the generating subspace B, thus the
analogous formula to (13) holds.

For Jordan superalgebras over fields of characteristic 2 we now have two defi-
nitions for the Gelfand—Kirillov dimension. That they in fact coincide can be proven
in the same way as the corresponding result in the non-supercase (Martinez, 1996,
Theorem 3.1):

2.3. Lemma. Let J be a Jordan superalgebra over k with % € k, and denote by Jyy,
the underlying linear Jordan superalgebra structure. then

GKdim J = GKdim Jji,

where GKdim J is defined in 2.1 while GKdim Jy, is given in 2.3.

We will determine the GK-dimension of Jordan superpairs covered by a grid.
For doing so, the following general result will be useful.

2.4, Lemma. Let A be a superextension of k and let X be a finite dimensional
Jordan pair. The GK-dimension of the Jordan superpair A QX =
(A® X", A® X™), the A-extension of X, then satisfies the inequality
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GKdim(A ® X) < GKdim A and this is an equality if X is linearly perfect in the
sense that X = {X, X, X}:

GKdim(A @ X) = GKdim A.

Proof. We will first establish the inequality GKdim(A ® X) < GKdim A. Any
finite-dimensional subspace of A ® X is contained in one of the form B ® X where
B is a finite dimensional subspace of A containing 1. Hence for the calculation of
GKdim(A ® X) it is sufficient to consider these special subspaces B® X. We will
prove by induction

(B® X)"™ c B™ @ X°. (17)

Indeed, for odd j,/,m € N with j+ [+ m = n we have, using the definition of
the product in A ® X and associativity of A,

{(Bex)™, BoX) ", (BoX)"™}
C {B(j) ® X°, BV & X, B & X7}
=BYBYB™ @ (X7, X7, X°} C B" @ X°.
Moreover, arguing in a similar way, for 2/+k =n we have Qj((B5® X)°)y
(B® X)°®) c B" @ X, Hence we have proven the inclusion (17), and this easily

implies (B ® X)’"! ¢ B" © X°. For the special subspace U = B ® X we then obtain,
using dim X = dim X+ 4+ dim X,

In(dim U™ 4 dim U~1")

b In(dim B! dim X)

lim su < limsu
oddn P Inn " oddn Inn
. In(dim B! . In(dim B .
= lim sup In(dim B) < lim sup In(dim B) < GKdim A,
odd n Inn n Inn

which implies GKdim A ® X < GKdim A.

Now suppose that X is linearly perfect. For the other inequality,
GKdim A < GKdim A ® X, we take B again to be a finite-dimensional subspace of
A containing 1. Because of this and associativity, we have Bl = B = B() p(n=0)
for 1<i<n. Using perfectness of X it then follows that B ® X° =
{Bo X, 10X 7, Bo X} C (B®X)"™, and by induction B @ X? ¢ (B X)"1#"~ 11,
But then

. IndimB" Indim(B"™ @ X7)
lim sup— ———=limsup——— ———

o Indim(B® X)“1>*~ 1

<GKdimA® X
Inn

<limsu
n

hence GKdimA < GKdimA ® X. O
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2.4. GK-Dimension of Jordan Superpairs Covered by Grids. Let V be a Jordan
superpair covered by a grid with associated root system (R, R;). We know from
1.5.8 that V is a direct sum of ideals V = €9, V), each covered by a connected grid,
and hence by Remark 2.1(b)

GKdim V = GKdim ) V?) = sup(GKdim V). (18)

icl icl

In view of the formula above we will from now on consider Jordan superpairs
covered by a connected grid.

2.5. Theorem. Let V be a Jordan superpair covered by a connected grid 4. If 4
contains a pair of collinear idempotents let A be the associated McCrimmon—
Meyberg algebra. Otherwise let A = J where V=1 = (J,J). Then

GKdim V = GKdim A. (19)

Proof. 1If V is covered by a connected grid ¢ which does not contain collinear
idempotents then either ¢ is a single idempotent or it is associated to a triangle of
idempotents. In both cases V = (J,J) for a unital Jordan superalgebra J and so
GKdim V = GKdim J by 2.2 and the definition of GKdim J.

We can now assume that ¢ contains a pair of collinear idempotents. We will first
show that it is enough to consider Jordan superpairs covered by a finite grid ¥.
Indeed, if ¥ or, equivalently, its associated irreducible 3-graded root system
(R, Ry) is infinite, it is obvious from the classification of 3-graded root systems that
R is a union of finite subsystems R® of the same type containing a given collinear
pair. (In fact, this is part of the classification proof as given in Loos and Neher, to
appear.) Correspondingly, we have V = (J;, V) where V) =@, zoV, is covered
by the grid {g, : « € R?V}. Because of 2.1.14 it then suffices to prove (19) for a finite
%. Our next aim is to show

GKdim V < GKdim A. (20)

For the calculation of GKdim V it is sufficient to consider a class of special subspaces
with the property that any finite dimensional subspace of V is contained in one of
them. These special subspaces U will be defined below. They all have the following
two properties. Firstly, U is split with respect to the root grading V = P, Vi i€,
U=@,cx, Us, Uy =UNV,. Clearly all U™ and hence also all U""! are then split
too. Secondly, if we define B= U™ N A (keeping in mind that A is defined on some
V[;+ ), then there exists a constant ¢y depending on U such that for all odd » and all
o€ Ry

dim U?™ < ¢y dim B™. (21)
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We claim that this is sufficient to establish (20). Indeed, for a special U we have

. In(dim U+ 4 dim U~I"1) . In(2cy|%| dim BI"T)
lim sup < lim sup
oddn Inn odd n Inn

. In(dim B") In(dim B'"1)
=limsup—————= < limsup———
oddn Inn n Inn

< GKdim A,

which implies (20). The class of special subspaces satisfying (21) will be defined by
making use of the coordinatization theorems. Since by Lemma 2.4 the inequality
(20) holds for superextensions of finite-dimensional Jordan pairs and since we
assumed the covering grid to contain a pair of collinear idempotents, we only have
to consider the cases (b), (d) and (f) of 1.7.

Case (b). RisoftypeA,soV = M k(A) for |J| + |K| > 3. The special subspaces
are M x(B) where B is a subspace of A. It follows from the multiplication rules in
Mk (A), (Neher, 2003, 4.4) for A alternative, |J| + |K| = 3, or (Neher, 2003, 4.6)
for A associative and |J|+ |K| >3, that U™ C M(B™) which proves (21)
with ¢y = 1. More precisely, if A is associative then, using B") = BB~ we even
have

M,k (B)™ = M, (B™) (A associative). (22)

Case (d). V is a hermitian matrix superpair H,(A, Ao, ), |[I| > 3. Thus R is of
type C;. Here the special subspaces are U = IH;(B, BN Ay, n) where B is a n-invariant
subspace of A. It follows from the multiplication rules in (Neher, 2003, 4.11)
that U™ < H;(B™, B™ N Ay, ) whence (21) holds (with ¢y = 1).

Case (f). V= 0Q,(A, gx) is an odd quadratic form superpair with |7| > 2, thus
R is of type By ;. In this case, using the notation of (Neher, 2003, 5.13 and 5.15), the
special subspaces are U = (Y, Y) @ EQ;(B) where Y C X and B C A are finite dimen-
sional (Z,-graded) subspaces satisfying hy € Y and k - 1 + bx(Y,Y) + gx(¥;) C B for
bx the polar of gx. The condition 1 € B implies that B" = B™ for all n and
U™ c (BWy,BMY) @ EQ,(B™) for odd n, whence also U™ c (B™Y,B"Y) @
EQ,(B™). (In fact, it can be proven by induction that U™ = (B"- Dy, B"Dy) @
EQ,(B™) but we will not need this.) It follows that (21) holds with ¢y = dim Y.

We have now established (21) in all cases and hence (20) holds. For the proof
of the other inequality, GKdim A < GKdim V, we observe that ¥ contains a pair
of collinear idempotents, say g,, g, and it is further no harm to assume that A is
the McCrimmon-Meyberg superalgebra of g,,gs. We claim that U=V, @ Vp is a
subpair. Indeed, this follows from the following facts: V, and Vg are subpairs,
{Vy Vi, Vg} C Vg (since a — oo+ f = ), {V,VsV,} =0 (since for collinear o, 200 — f8
is not a root), and the analogous formulas for o« and f exchanged. The subpair U
is covered by the grid {g,, gs}. The rectangular Coordinatization Theorem (Neher,
2003, 4.5) then implies that V, ® Vp = IM;2(A), hence V contains a subpair
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U= M3(A). Because GKdimU < GKdimV it is then sufficient to prove
GKdim A < GKdim IM;(A). To this end, let B be a finite dimensional subspace of
A. Tt is no harm to assume that B contains the identity element of A. It then follows
by induction, using the product formula of the McCrimmon-Meyberg algebra
(see 1.6), that IM2(B™) € M»(B)*" V. Therefore, dim B") = Ldim IM;»(B™) <
LdimM»(B)"*""", and

. Indim B® In dim M, (B)”*" "
limsup——— < limsup
n Inn n Inn

. In dim IM(B)"™
= lim sup
odd n Inn

< GKdim Mlz(A),

hence GKdim A < GKdim V. O

2.6. Proposition. The Gelfand—Kirillov dimension of a Jordan 3-graded Lie super-
algebra L =L, ®[Li,L_1]1® L_| over a field of characteristic different from 2
coincides with the Gel fand—Kirillov dimension of its associated Jordan superpair
V= (Li,L-y).

The special case of a finitely generated Jordan pair V, which by (Garcia and
Neher, 2003, 2.4(b)) is equivalent to L being finitely generated, has been proven in
Martinez (1996, Theorem. 3.2). Our proof is more elaborate since we do not assume
finite generation.

Proof. Let U be a finite dimensional subspace of V and put W=U"® U™ C L.
Since § € k, we have UM =%, U U°® yom} for odd I, k,m and n,
so Ut @ U~ ¢ Wl for all odd n. Therefore

) 1 3 +[n] 1 —[n] ) 1 1 [n]
lim sup n(dim U™ 4 dim U~") < limsu n(dim W)
oddn Inn oddn Inn
. In(dim Wt .
< lim sup% < GKdim L,
n n

whence GKdimV < GKdim L. Conversely, if B is a finite dimensional subspace
of L, then there exists a finite dimensional subspace W = Ut @ U~ such that
BCWH+[W,Wl=Ut®[Ut, U 1®U =W, Then, for all neN, B" C
(W[2])[n] C W[Zn].

By the Jacobi identity we have W = [W,W" D] for all n > 2, whence
Wil = W + [W, W11, Using this, one shows by induction that

W[Zn] cC U+[2n71] D ([(]-ﬁ-7 U*[anl]] 4 [U+[2n71], Uf]) ey U7[2n71],
W[ZYH-]] C U+[2n+l] @ ([U+, U*[anl]] + [U+[2n—]]7 U*]) @ U*[Zl’t-‘r]].
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In particular, dim W?"! < (1 4 dim U* + dim U~)(dim U+?"~1 4 dim U~*~1), and
hence

. Indim B In dim w"!
lim sup EETVES < lim sup —n

. In ((1 + dim U* 4 dim U~)(dim U™~ 4 dim y~-"~11))
< lim sup nn

 In(dim U 4 dim g2
= lim sup
n Inn

In(dim U+ 4 dim y~Br- 1)

= 1.
fm sup In(2n — 1)
. In(dim U 4 dim U~
= lim sup .
odd n Inn
So we have the other inequality GKdim L < GKdim V. ]

Coming back to the general case, we have shown in Garcia and Neher (2003, 2,
9) that a Lie superalgebra graded by a 3-graded root system R is a central extension
of the Tits—Kantor—Koecher superalgebra of a Jordan superpair V covered by a grid
with associated root system R. In particular, assuming that R is irreducible we can
associate to L the coordinate superalgebra A of V as in 2.5. Using 2.6 we thus arrive
at the following.

2.7. Corollary. Suppose k has characteristic #2,3, and let L be a Lie superalgebra
over k which is graded by an irreducible 3-graded root system R. Then
GKdim L = GKdim A where A is the associated coordinate superalgebra.

3. LOCAL FINITENESS

3.1. Definition. A nonassociative superalgebra is called locally finite if every
finitely generated subalgebra is finite dimensional. The concept of a subalgebra of
a “linear’” superalgebra, given by a bilinear product, is of course obvious. For a
unital quadratic Jordan superalgebra J, a subalgebra of J is defined as
a subspace invariant under U = (U, U(.,.)) and the squaring operation x% =
Us(xg)1. Similarly, a Jordan superpair or Jordan supertriple is called locally finite
if every finitely generated subpair, respectively subsystem, is finite dimensional.

The following lemmata 3.2-3.4 give some preliminary results on locally finite
superalgebras and Jordan superpairs. Some of them may be known, but we could
not find a suitable reference. Most of the proofs are straightforward and will
therefore be left to the reader.
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3.2. Lemma. (a) A subalgebra of a locally finite superalgebra is locally finite.

(b) Assume the superalgebra A = @, AY is a direct sum of ideals AY. Then
A is locally finite if and only if every ideal A® is so. The analogous result holds for
Jordan superpairs.

(c) Let S be aunital k-superalgebra (e.g., a superextension of k) and let B be a
finite dimensional algebra. Then the superalgebra A = S ® B with product 1.1.4 is
locally finite if and only if S is so.

Proof. For the proof of (c), let U be a finitely generated subalgebra of A. Since any
element of A = S ® B is a finite sum of pure tensors s ® b € S ® B, there exist finitely
many homogeneous sy,...,s, €S and by,...,b, € B such that U is a subalgebra
of the subalgebra T ® C of A where T C S is the subalgebra generated by the s,
1 <i < n, while the subalgebra C C B is generated by the b;. Hence, if S is locally
finite then so is A. Conversely, let A be locally finite and let 7 C S be a subalgebra
generated by finitely many sp,...,s, € S. The subalgebra of A generated by
{s;i® B:1<i<n} is finite dimensional and equals 7 ® B, whence T is finite
dimensional too. U

3.3. Lemma. (a) LetV =(T,T) be the Jordan superpair associated to a Jordan
supertriple T. Then V is locally finite if and only if T is so.

(b) LetV = (V*,V") be a Jordan superpair and denote by T(V) the polarized
supertriple with product defined in 2.2b. Then V is locally finite if and only if T(V)
is so.

(c) Let J be a unital Jordan superalgebra and denote by JT the underlying
Jordan supertriple. Then J is locally finite if and only if JT is so.

3.4. Lemma. Let A be an alternative unital superalgebra. If A is locally finite then
so is the Jordan superalgebra A,

3.1. Local Finiteness of Jordan Superpairs Covered by a Grid. Recall from 1.5.8
that a Jordan superpair V covered by a grid is a direct sum of ideals, each covered
by a connected grid. Because of Lemma 3.2(b), it is therefore enough to study
local finiteness in the case of connected grids. For our characterization of local
finiteness for these Jordan superpairs in 3.7 below, the following is a useful
preliminary result.

3.5. Lemma. Let J and K be finite index sets with 2 < |K| and let A be a unital
alternative superalgebra which we assume to be associative if |J| + |K| > 4. Then
the rectangular matrix superpair W x(A) is locally finite if and only if A is so.

Proof. Let X be a subspace of A and let B be the subalgebra of A generated by X.
We then claim that the subpair U of IMx(A) generated by the subspace IM jx(X) is
U = Mk (B). Indeed, since the multiplication rules of IMx(A) are expressed in
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terms of the multiplication in A, it follows that IM(B) is a subpair
containing the generators of U, hence U is contained in M k(B). To prove the
converse, note that the product of A can be expressed as a product in IMk(A).
Namely, denoting by Ejy, j€ J,k € K the canonical matrix units we have for
a,a’ € A the formula ad'Ej = {aEy , Evj, d'Ej} where k,k’ are two distinct
elements of K. As a consequence, any bEj for b € B of the form b = x; - - - x, with
x; € X is then a product with factors in Mk (X), hence lies in U, which implies
M,k (B) C U.

Now suppose that Mk (A) is locally finite, and let X, B and U be as above. If X
is finite-dimensional, the subspace IMx(X) is finite-dimensional, hence U is
finite-dimensional, hence B is finite-dimensional, proving that A is locally finite.
Conversely, let A be locally finite and let W C IMx(A) be a finite dimensional
subspace. Then W C IM x(X) for X C A of finite dimension. The subalgebra B of
A generated by X is then finite dimensional, hence so is IM x(B). But by the above,
M,k (B) contains the subpair generated by W, proving that M (A) is locally
finite. O

3.6. Theorem. Let V be a Jordan superpair covered by a connected grid ¥ and, as
in 2.5, let A be the associated coordinate superalgebra. Then V is locally finite if
and only if A is so.

Proof. In case ¢ does not contain a pair of collinear idempotents and hence V = J,
the claim follows from 3.3. Thus in the following we can assume that ¢ does contain
a pair of collinear idempotents, hence A is alternative.

That local finiteness of V implies local finiteness of A is easy: we have seen in the
proof of Theorem 2.5 that V contains a subpair U = IM,(A) which is locally finite if
V is so. But then A is locally finite by Lemma 3.5.

Let now A be locally finite, and let U be a finitely generated subpair of V.
Decomposing each generator with respect to the Peirce decomposition 1.5.7, it is
no harm to assume that U is generated by finitely many elements in joint Peirce
spaces V,, thus involving only a finite number of roots in R. It is obvious from
the classification of 3-graded root systems in Neher (1990) that any finite number
of roots in R lie in a finite subsystem of the same type (see Loos and Neher, to
appear for a classification-free proof), and replacing ¥ by the subfamily indexed
by this subsystem shows that we can without loss of generality assume that ¥ is
finite.

We will now consider the different types arising in the coordinatization theorems
1.7 above. Because of our assumption that % contains a pair of collinear idem-
potents, these are the types (b) and (d)-(i) where, however, case (b) has already
been dealt with in Lemma 3.5.

Case (d). V=IH;(A,Ao,n) for 3 <|I| < co. Then there exists a finitely generated
subalgebra B of A such that U C H;(B, BN Ag, 7). We know that B has finite dimen-
sion since A is locally finite, whence dim U < dimIH;(B, BN Ay, ) < 2|I|2 dim B < oo.

Case (f). V = 0Q;(A, gx) for |I| > 2. Here U is contained in a subpair of the
form (BY, BY) & [EQ,(B), where Y is a finite dimensional subspace of X and B is a
finitely generated subalgebra of A. By local finiteness of A, dimB < oo, so
dim U < dim((BY, BY) ® EQ,(B)) < 2dim Bdim Y + dim EQ,(B) < cc.
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Cases (e), (g)-(i). Here V 1is the A-extension of a split Jordan pair

W =@D,cr, (kg kg, ) of type ¥ and one can argue as in the proof of Lemma 3.2(c).
Thus, in all cases we have proven that V is locally finite as soon as A is so.

O

3.2. Local Finiteness and Gelfand—Kirillov Dimension. It is immediate from the
definition that a locally finite superalgebra or a locally finite Jordan superpair
has GK-dimension 0. The goal of the remaining part of this section is to prove
the converse for certain varieties of superalgebras and Jordan superstructures, see
3.7, 3.11 and 3.13. This will also provide an alternative (and quicker) proof of
Theorem 3.6 and Corollary 3.14 below in case our base field has characteristic #2.

It is important to note here that a nonassociative algebra of GK-dimension 0
need not be locally-finite as the following example, due to Finston (1987),
shows. Let A be the commutative algebra defined on the linear span of y;,i € N
by the rule:

Yiyi = 5ijyi+1.

Thus A only has squares: y?> = y;;1 while y;y; = 0 for i # j. This algebra is not
locally finite since it has infinite dimension yet it is “finitely generated’’ by y;, but
it can be shown (Finston, 1987, p. 537) that its GK-dimension is 0.

The following lemma provides a sufficient condition under which GK-dimension
0 does imply local finiteness.

3.7. Lemma. Let A be a linear superalgebra such that there exists a k € N, k > 1,
such that for all n > k and for any subspace B of A we have

B™ — -1  p@pn-2) o ... 4 gk gk (23)
then either A is locally finite and hence has GK-dimension 0, or GKdim A > 1.
In particular, our assumption holds with k =1 for an associative or Lie

superalgebra A, which is therefore locally finite if and only if GKdim A = 0.

That a Lie algebra is locally finite if and only if it has GK-dimension 0 is also
proven in Rashkova, (1993, Theorem 1).

Proof. We first prove for a subspace B of A that
B™ = Bk for some m = B = B for all I € N. (24)

Indeed, since the B! form an ascending chain, our assumption implies
Bl = Blmt1l — ... — Blm+kl and hence B C B"™! for all p < m + k. For | =k + 1
we obtain

k
Bim+k+11 _ plml + Bm+k+1) _ plml + ZB(z‘)B(nthJrl—i)7
i=1
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using (23). In the last sum each term satisfies B?) B0 +k+1-) < g giml — pli+ml — pglml
since 1 < i < k, whence B! = B+ +11_ An induction then proves (24). Observe that
in this case B™ is in fact a subalgebra of A.

There are now the following alternatives: either all finite dimensional subspaces
satisfy (24) and hence A is locally finite, or there exists a subspace B such that
B" c BI"*Kl s a proper inclusion for all n € N. For such a B we have
dim B"+* > 1 4 dim B" which implies dim B" > n/k. But then

i [n]
limsupM > lim suplnl(;1i =1,
n

n Inn n

and therefore GKdim A > 1.
We have A = AA~D if A is associative, and this also holds in the Lie case by
the Jacobi identity. O

We will show below in Proposition 3.11 that for a Jordan superpair over a field
of characteristic #2 local finiteness is equivalent to GK-dimension zero. It is an
open problem to extend this result to the case of characteristic 2. However, we
can at least show this in the non-super setting. Our proof uses the following folklore
lemma, proven in McCrimmon (1971, Corollary 3 of Theorem 1) for quadratic
Jordan algebras.

3.8. Lemma. Let J be a Jordan triple system generated by a subspace B. Then the
multiplication algebra of J is generated by the identity and by operators of the
form Py, Ly, Py, fora,b,c,d,e € B.

From this lemma one easily obtains the following.

3.9. Corollary. Let J be a Jordan triple system and let B be any subspace of T.
Then for any odd n € N greater than 2 we have

B™ = ppB"? + (B, B, B" ¥} + {B, B"? B}.

3.10. Proposition. Let J denote a Jordan system (algebra, pair or triple system)
over k. Then J is locally finite if and only if the GK-dimension of J is zero.

Proof. 1If J is a Jordan triple system, the proof follows from 3.9 arguing as in 3.7.
If J is a Jordan pair, it suffices to consider the associated polarized triple system
T(V)=V* @&V~ and to use 2.2b and 3.3b.

Finally, if J is a Jordan algebra, let J = J @ k- 1 beits unital hull. It is immediate
to see that local finiteness is equivalent for J and for J and that GKdimJ =
GKdimJ. We may therefore assume that J is unital. By Lemma 3.3c and the
definition of GKdimJ, we then have J is locally finite < J7 is locally finite
& GKdim JT = GKdim J = 0. O
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3.11. Proposition. For a Jordan 3-graded Lie superalgebra L = L; @ [L,L_{]
@ L_ over a field of characteristic different from 2 the following are equivalent:

(1) L is locally finite.

(i) GKdimL = 0.
(iii) The associated Jordan superpair V.= (L1, L_y) is locally finite.
(iv) GKdimV = 0.

Proof. We know (i) < (ii) from 3.7, (ii) < (iv) from 2.6 and (iii) = (iv) from 3.1. It
therefore suffices to prove (i) = (iii) which is immediate: if L is locally finite and
U C V is a finitely generated subpair of V then Ut @ U Cc Ut @ [UT, U 1@ U™
which is a finitely generated, hence finite dimensional, subalgebra of L, whence U
is finite dimensional. O

3.12. Corollary. A Jordan superpair over a field of characteristic #2 is locally
finite if and only if it has GK-dimension 0. The same holds for Jordan super-
algebras.

Proof. Since every Jordan superpair is the associated Jordan superpair of some
Jordan 3-graded Lie superalgebra, e.g., the Tits—Kantor—Koecher superalgebra,
the equivalence for Jordan superpairs is immediate from 3.11. For a Jordan
superalgebra J we have the equivalences: J is locally finite if and only if V = (J,J)
is locally finite (by 3.3a) if and only if GKdim V = 0 if and only if GKdimJ =0
(by 2.2a). O

3.13. Corollary. Let A be a unital alternative superalgebra over a field of
characteristic 2. Then A is locally finite if and only if GKdim A = 0.

Proof. Indeed, we have the following equivalences: A is locally finite if and only if
IM2(A) is locally finite (by 3.5) if and only if GKdim IM;(A) = 0 (by 3.13) if and
only if GKdim A = 0 (by 2.5). O

We note that this result allows us to give a quicker proof of Theorem 3.6 in case
the base field has characteristic #2 and the coordinate superalgebra A is alternative:
V is locally finite if and only if GKdim V = 0 (by Proposition 3.11) if and only if
GKdim A = 0 (by Theorem 2.5) if and only if A is locally finite.

The following corollary can now be obtained by the same argument used in the
proof of Corollary 2.7. Another proof can be given by combining 2.7 with 3.11, 3.12
and 3.13.

3.14. Corollary. Let L be a Lie superalgebra over a field k of characteristic 22,3
which is graded by an irreducible 3-graded root system, and let A be the associated
coordinate superalgebra. Then L is locally finite if and only if A is so.

Remark. Even for Lie algebras this is a new result. With the appropriate concept of
a coordinate algebra it is likely to be true in all cases. Indeed, if the irreducible root
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system R is not 3-graded we have R = Eg, F4 or G,. A Lie algebra L over a field of
characteristic 0 graded by the root system Eg has the form L = A ® g where A is a
unital associative commutative k-algebra and g is the split simple Lie algebra of type
Eg over k (Berman and Moody, 1992). Hence Lemma 3.2(c) implies that L is locally
finite if and only if A is so. This leaves open the two cases R = F4 and R = G, for
which the corresponding R-graded Lie algebras were described in Benkart and
Zelmanov (1996).
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