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ABSTRACT

In this paper we show that a Lie superalgebra L graded by a 3-graded irreducible
root system has Gelfand–Kirillov dimension equal to the Gelfand–Kirillov

dimension of its coordinate superalgebra A, and that L is locally finite if and only
A is so. Since these Lie superalgebras are coverings of Tits–Kantor–Koecher
superalgebras of Jordan superpairs covered by a connected grid, we obtain our
theorem by combining two other results. Firstly, we study the transfer of the

Gelfand–Kirillov dimension and of local finiteness between these Lie super-
algebras and their associated Jordan superpairs, and secondly, we prove the
analogous result for Jordan superpairs: the Gelfand–Kirillov dimension of a

Jordan superpair V covered by a connected grid coincides with the Gelfand–
Kirillov dimension of its coordinate superalgebra A, and V is locally finite if
and only if A is so.
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INTRODUCTION

The Gelfand–Kirillov dimension is an interesting invariant for any algebraic
structure. For a nonassociative superalgebra A over an arbitrary field k it is defined
as follows. For any subspace B of A and any n 2 N we put Bð1Þ ¼ B, BðnÞ ¼P

iþj¼n B
ðiÞBðjÞ, B½n� ¼ P

1�i�n B
ðiÞ. Then the Gelfand–Kirillov dimension of A is

defined as

GKdimA ¼ sup
B

lim sup
n

lnðdimB½n�Þ
ln n

� �
; ð1Þ

where the supremum is taken over all finite dimensional subspaces B of A. The
Gelfand–Kirillov dimension has been widely considered for Lie algebras. Concerning
Jordan algebras the main advances in this area are the investigation of Jordan
algebras of Gelfand–Kirillov dimension one by Martinez and Zelmanov (1996)
based on earlier work of Martinez (1996) and the recent classification of graded
simple Jordan superalgebras of growth one by Kac et al. (2001). The motivation
for the paper (Kac et al., 2001) is a conjecture on the structure of Z-graded
simple Lie superalgebras, and it confirms this conjecture in the special case
that the Lie superalgebra is the Tits–Kantor–Koecher superalgebra of a Jordan
superalgebra.

In this paper we study both varieties of superalgebras mentioned above, Jordan
and Lie. Our preference is with Jordan structures, and we will use the superversion of
the fundamental Tits–Kantor–Koecher construction to translate our results from
‘‘Jordan to Lie.’’ For Lie algebraists, Jordan superpairs over a field of characteristic
6¼2; 3 can be introduced as follows: We call a Lie superalgebra L over k Jordan
3-graded if

(i) L ¼ L1 � L0 � L�1 is a so-called short Z-grading, i.e., ½Li;Lj� � Liþj

for i; j 2 f0;�1g, and
(ii) L0 ¼ ½L1;L�1�.

Here the Li are Z2-graded subspaces and ½:; :� denotes the product of L. In this case,
we have well-defined trilinear maps on V ¼ ðL1;L�1Þ, namely

Ls � L�s � Ls ! Ls : ðx; y; zÞ 7! ½½x; y�; z� ¼: fx y zg
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for s ¼ �1, satisfying two basic identities, one of which is

fx y zg ¼ ð�1Þjxjjyjþjxjjzjþjyjjzjfz y xg

for homogeneous x; y; z of degree jxj; jyj and jzj, respectively. Taking these two
identities as axioms one arrives at the definition of a Jordan superpair (see Loos,
1975 or Finston, 1987; Neher, 2003 for the supersetting). There are in general
many Jordan 3-graded Lie superalgebras with a given Jordan superpair, but all
are central extensions of a ‘‘minimal’’ one, the so-called Tits–Kantor–Koecher
superalgebra KðVÞ of the Jordan superpair V . Thus, the importance of the
Tits–Kantor–Koecher construction lies in the fact that every abstractly defined
Jordan superpair V ¼ ðVþ;V�Þ arises in this way from a Jordan 3-graded Lie
superalgebra.

The interplay between Jordan superpairs and Jordan 3-graded Lie superalgebras
has been very fruitful, and there are many papers where this is used, for example in
Zelmanov’s fundamental paper on the classification of finite gradings of simple Lie
algebras (Zelmanov, 1985), or see Neher (1996), Garcı́a (2001b), Garcı́a (2001a),
Garcı́a and Neher (2003) for more recent examples. Generalizing a result of
Martinez for Jordan 3-graded Lie algebras (Martinez, 1993, Theorem 3.2) to the
supercase we prove:

Transfer Proposition (2.6). Let L ¼ L1 � ½L1;L�1� � L�1 be a Jordan 3-graded Lie
superalgebra over a field of characteristic different from 2. Then the Gelfand–
Kirillov dimension of L and the Gelfand–Kirillov dimension of its associated
Jordan superpair V ¼ ðL1;L�1Þ coincide.

As the class of Jordan superpairs for which we want to study the Gelfand–
Kirillov dimension, we have chosen Jordan superpairs covered by a connected grid.
This is at present the only class of arbitrary dimensional Jordan superpairs for which
one has a structure theory (Garcı́a and Neher, 2004; Neher, 2003). Two features of
this class of Jordan superpairs are important for the following:

(1) There exists a 3-graded irreducible locally finite root system
R ¼ R1 _[[R0 _[[R�1, the root system associated to the connected grid covering the
Jordan superpair V , such that V has a grading V ¼ L

a2R1
Va. Locally finite root

systems, simply called root systems in the following, are the direct limits of finite root
systems, and therefore include not only the usual finite root systems but also the
canonical infinite rank analogues of the finite root systems (see Loos and Neher
(To appear), for an exposition of this theory including a classification). Imposing
the condition of a 3-grading excludes R ¼ E8;F4 and G2.

(2) One can associate a supercoordinate system C to V which together with R

in (1) above completely determines V . This supercoordinate system always consists
of a unital superalgebra A, called coordinate superalgebra, which is either Jordan
(R ¼ A1;B2) or alternative in the other cases (even associative for R ¼ AI , jIj � 3,
and R ¼ CI , jIj � 4, and supercommutative associative for R ¼ BI ; jIj � 3, R ¼
DI ;E6 and E7Þ. If R is simply laced then C ¼ A but in the other cases some additional
data, e.g., an involution of A, are part of C. We can now state our main result.
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Theorem A (2.5). Let V be a Jordan superpair covered by a connected grid and
let A be the associated coordinate superalgebra. Then the Gelfand–Kirillov
dimensions of V and of A coincide.

Combining now the Theorem A above and the Transfer Proposition determines
the Gelfand–Kirillov dimension of the Jordan 3-graded Lie superalgebras whose
associated Jordan superpairs are covered by a connected grid. In Garcı́a and Neher
(2003, 2.9) we have given a characterization of these Lie superalgebras which
does not use Jordan theory: they are exactly the Lie superalgebras graded by a
3-graded irreducible root system. Lie superalgebras graded by a root system are a
superversion of the concept of a Lie algebra graded by a root system. These
Lie algebras were introduced and classified by Berman and Moody (1992) in the
simply-laced cases 6¼A1 and for the other cases by Benkart and Zelmanov (1996).
Our description for the case of 3-graded root systems is the superversion of a result
from Neher (1996). We define the coordinate superalgebra A associated to L as
the coordinate superalgebra of the Jordan superpair V . Summarizing the above,
we now have:

Corollary A (2.7). Let L be a Lie superalgebra over a field of characteristic 6¼2; 3
graded by a 3-graded root system. Let V be the associated Jordan superpair which,
as we know, is covered by a connected grid and let A be the coordinate superalgebra
of L. Then L and A have the same Gelfand–Kirillov dimension.

The last part of this paper is devoted to the study of local finiteness of the
superstructures mentioned above. Recall that a nonassociative algebra over a field k

is locally finite if every finitely generated subalgebra is finite dimensional, and this
definition makes also sense for superalgebras and other algebraic superstructures
like Jordan superpairs. We prove the analogues of Theorem A and Corollary A
above:

Theorem B (3.6). Let V be a Jordan superpair covered by a connected grid and let
A be the associated coordinate superalgebra. Then V is locally finite if and only if A
is so.

Corollary B (3.14). Let L be a Lie superalgebra over a field of characteristic 6¼2; 3
graded by a 3-graded root system, and let A be the coordinate superalgebra of L.
Then L is locally finite if and only if A is so.

Theorems A and B and their corollaries are very similar, not only in their state-
ments but also in the method of their proofs. Moreover, under the additional
assumption that the base field has characteristic 6¼2, Theorem B actually becomes
a special case of Theorem A. Indeed, we prove that in this case local finiteness is
equivalent to Gelfand–Kirillov dimension equal to 0 for the varieties of associative,
Lie, unital alternative or Jordan superalgebras and also Jordan superpairs (3.7,
3.12, 3.13).
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1. REVIEW: DEFINITIONS AND GENERAL RESULTS

1.1. Superalgebras. Unless specified otherwise, all algebraic structures are defined
over an arbitrary base field k, and everything is Z2-graded in the natural sense.
In particular this is so for vector spaces, called superspaces, subalgebras of super-
algebras, etc. For a superspace M ¼ M�00 �M�11 we will denote by M�00 and M�11 the even –
respectively odd – part of M. For m 2 Mm, m 2 Z2 ¼ f�00; �11g, we put jmj ¼ m the
degree (or parity) of m. We denote by G the Grassmann algebra over k in a count-
able number of generators. It is Z2-graded, G ¼ G�00 �G�11 where G�00 and G�11 are
spanned by monomials in an even – respectively odd – number of generators.
The term ‘‘algebra’’ or ‘‘superalgebra’’ without further specification will always mean
an arbitrary nonassociative, i.e., not necessarily associative, algebra or superalgebra
over k.

Let A ¼ A�00 � A�11 be a superalgebra. The Grassmann envelope GðAÞ ¼
ðG�00 	 A�00Þ � ðG�11 	 A�11Þ � G	 A is an algebra with respect to the product ðga 	 aÞ
ðgb 	 bÞ ¼ gagb 	 ab for homogeneous elements ga; gb 2 G, a; b 2 A satisfying
jgaj ¼ jaj and jgbj ¼ jbj. One can then define varieties of superalgebras by requiring
that the Grassmann envelopes lie in a specific variety of algebra. For example, A is
an alternative or associative or commutative or Lie superalgebra if and only if
its Grassmann envelopeGðAÞ is, respectively, an alternative, associative, commutative
or Lie algebra. For example, commutativity simply means ab ¼ ð�1Þjajjbjba for
homogeneous a; b 2 A. For a superspace M the Grassmann envelope GðMÞ is
defined as for superalgebras.

This approach to defining varieties of superalgebras also works for Jordan
superalgebras in case 1

2 2 k, because then Jordan superalgebras can be defined via
a bilinear product. However, since several of our results do not need the assumption
char k 6¼ 2, we will use the approach to Jordan superalgebras via quadratic maps
(King, 2001; Neher, 2003). For those readers who are happily willing to assume
1
2 2 k, the relations between the bilinear product and the quadratic product
U ¼ ðU�00;Uð:; :ÞÞ are given by the formulas

U�00ða�00Þb ¼ 2a�00ða�00bÞ � a2�00b ð2Þ

ð�1ÞjcjjdjUðb;dÞc ¼ 2ðbðcdÞ þ ðbcÞd� ð�1ÞjcjjdjðbdÞcÞ ¼: fb c dg ð3Þ

where a�00 2 A�00 and b; c;d 2 A are homogeneous. Note that U�00 is a quadratic map in
the usual sense and that we do not have a Uða�11Þ for odd a�11.

A superextension of k is a commutative associative unital superalgebra over
k. For example, G is a superextension of k. A basic recipe to create super-
algebras in a given variety is to take an algebra B in the variety and a superextension
S of k, and form the superalgebra S 	 B. Its product is given by

ðs1 	 b1Þ 
 ðs2 	 b2Þ ¼ ðs1s2Þ 	 ðb1b2Þ: ð4Þ

We will call S 	 B the S-extension of B.
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1.2. Jordan Superpairs. We now come to the main object of this paper:
Jordan superpairs over k. Suppose we have a pair V ¼ ðVþ;V�Þ of superspaces
together with a pair Q ¼ ðQþ;Q�Þ of quadratic maps Qs : Vs ! HomkðV�s;VsÞ,
s ¼ �. By definition (Neher, 2003, 2.1), we therefore have symmetric k-bilinear
maps Qsð:; :Þ :V s � V s ! HomkðV�s;V sÞ of degree 0 and k-quadratic maps
Qs

�00
:Vs

�00
!HomkðV�s;V sÞ�00 which are related by Qsðu;wÞ¼Qs

�00
ðuþwÞ�Qs

�00
ðuÞ�Qs

�00
ðwÞ

for u;w 2 V s
�00
. Since 2Qs

�00
ðuÞ ¼ Qsðu; uÞ the maps Qs

�00
are determined by Qs in

case char k 6¼ 2. These quadratic maps induce canonical G-quadratic mapseQQs : GðV sÞ ! HomGðGðV�sÞ; GðV sÞÞ, and one calls V a Jordan superpair if its

Grassmann envelope GðV Þ ¼ ðGðVþÞ;GðV�ÞÞ together with eQQ ¼ ðeQQþ; eQQ�Þ is a
Jordan pair in the usual sense (Neher, 2003, 2.2). We will follow common
practice in Jordan theory and leave out the superscripts s if no confusion
can arise.

It is sometimes easier to define a Jordan superpair via the supertriple products,
which are k-trilinear maps f. . .g: Vs � V�s � V s ! V s related to the maps Q by
fu vwg ¼ ð�1ÞjvjjwjQðu;wÞv (in the introduction we have explained how these maps
arise in the setting of Jordan 3-graded Lie superalgebras). Subpairs of Jordan
superpairs are defined in the obvious way (Neher, 2003, 2.3).

For a Jordan superpair V ¼ ðVþ;V�Þ we define dimV ¼ dimVþ þ dimV�,
where by dim we mean dimk.

1.3. Jordan Supertriple Systems. Jordan superpairs are closely related to the
so-called Jordan supertriple systems (or Jordan supertriples for short) which have
the sometimes useful advantage of being defined on a single vector space (or
k-module in the general setting). In the classical theory this is well-known and
can for example be found in Loos (1975, Sec. 1) (for the supercase see Neher,
2003, 2.7).

For the convenience of the reader we shortly review the basic construction with-
out however giving all details. Let T be a superspace together with a quadratic map
P : T ! Endk T . As in the definition of Jordan superpairs, one then has a quadratic
map ePP on the Grassmann envelope ePP : GðTÞ ! EndGðGðTÞÞ and one defines T to be
a Jordan supertriple if GðTÞ together with ePP is a Jordan triple in the classical sense.
In particular, we then have a trilinear map f:::g : T � T � T ! T given by
fu vwg ¼ ð�1ÞjvjjwjPðu;wÞv. This so-called supertriple product is symmetric in the
outer variables,

fu vwg ¼ ð�1Þjujjvjþjujjwjþjvjjwjfwv ug ð5Þ

for homogeneous u; v;w 2 T . It also satisfies the superversion of the so-called
5-linear identity (JP15), (Loos, 1975, 2.1).

If k has characteristic 6¼2; 3 then Jordan supertriples can be defined by (5)
and this 5-linear identity. In our set-up, a unital Jordan superalgebra is the same
as a Jordan supertriple containing an invertible element (Neher, 2003, 2.11).

To explain the connection between Jordan superpairs and Jordan supertriples
let us first define an involution of a Jordan superpair V to be a homomorphism
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Z ¼ ðZþ; Z�Þ : V ! Vop from V to the opposite Jordan superpair Vop satisfying
Z�s � Zs ¼ Id on V s, (Loos, 1975, 1.5) for Jordan pairs or (Neher, 2003, 2.7) for
superpairs. Any Jordan supertriple T gives rise to a Jordan superpair
V ðTÞ ¼ ðT ;TÞ with involution ðId; IdÞ. Conversely, if V is a Jordan superpair
with an involution Z one can define a Jordan supertriple TZ on Vþ by
P�00ðu�00Þv ¼ Q�00ðu�00ÞZþðvÞ and Pðu; vÞ ¼ Qðu;wÞZþðvÞ for u; v;w 2 Vþ. The associated
Jordan superpair VðTZÞ is then canonically isomorphic to V . In this way, Jordan
superpairs with involutions are the ‘‘same’’ as Jordan triple systems. Subtriples of
Jordan supertriples are defined in the obvious way.

1.4. Jordan Superalgebras Associated to Alternative Superalgebras. An important
source of examples for Jordan superalgebras, hence Jordan supertriples and
Jordan pairs, are the so-called special Jordan superalgebras, i.e., the subalgebras
of AðþÞ for A an associative superalgebra. We will need a slight generalization
of this class of Jordan superalgebras, which is associated to alternative super-
algebras.

Thus, let A be an alternative unital superalgebra. For a�00 2 A�00 and homogeneous
a; b; c 2 A define

U�00ða�00Þb ¼ a0ba�00 and fa b cg ¼ aðbcÞ þ ð�1Þjajjbjþjajjcjþjbjjcj
cðbaÞ: ð6Þ

Then A together with the operations (6) form a unital Jordan superalgebra,
denoted AðþÞ. Indeed, this can either be seen by considering the Grassmann
envelopes of A and AðþÞ (or by observing that AðþÞ is the McCrimmon–Meyberg
algebra of the collinear pair e; f in M12ðAÞ, see 1.6).

1.5. Jordan Superpairs Covered by Grids. A grid G in a Jordan superpair V is a
family of idempotents g 2 V�00 satisfying certain properties which we are going to
explain now.

As in the classical theory (Loos, 1975, 5.4) every idempotent c ¼ ðcþ; c�Þ 2 V�00

gives rise to a Peirce decomposition V ¼ V2ðcÞ � V1ðcÞ � V0ðcÞ. A family C of
idempotents is called a cog if for two distinct c; c0 2 C we have exactly one of the
following possibilities:

(i) c 2 V0ðc0Þ or, equivalently, c0 2 V0ðcÞ (one says that c and c0 are ortho-
gonal).

(ii) c 2 V1ðc0Þ and c0 2 V1ðcÞ (one calls c and c0 collinear).
(iii) c 2 V2ðc0Þ and c0 2 V1ðcÞ (one says that c0 governs c); c 2 V1ðc0Þ and

c0 2 V2ðcÞ, i.e., c governs c0.

For any family C of idempotents we have simultaneous Peirce spaces

VIðCÞ ¼
\
c2C

ViðcÞðcÞ; I ¼ ðiðcÞÞc2C
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a family of numbers in f0; 1; 2g. The sum of all VIðCÞ is direct but in general not all
of V . In case of a cog C, every c 2 C lies in a certain VIðCÞ and one calls C a
covering cog if V is the sum of the simultaneous Peirce spaces VIðCÞ with
C \ VIðCÞ 6¼ ;.

It turns out that every cog C can be enlarged to a so-called closed cog which has
the same simultaneous Peirce spaces (Neher, 1987, 4.11). These closed cogs can be
defined in terms of closure properties with respect to forming idempotents (Neher,
1987, 4.1) or, equivalently, with the help of (locally finite) root systems (Loos and
Neher, to appear; Neher, 1990). We will review the latter definition. A 3-grading
of a root system R is a partition R ¼ R1 _[[R0 _[[R�1 such that ðRi þ RjÞ \ R � Riþj

for i; j ¼ 0;�1 and ðR1 þ R�1Þ \ R0 ¼ R0. Then a cog C is defined to be closed if
there exist a 3-graded root system R ¼ R1 _[[R0 _[[R�1 and a bijection R1 ! C :
a 7! ca such that ca 2 Vha;b_iðcbÞ for all a; b 2 R1 where ha; b_i denotes the Cartan
integer in R. In this case we abbreviate Va ¼ VIðCÞ if ca 2 VIðCÞ, and then have the
simultaneous Peirce decomposition

V ¼
M
a2R1

Va: ð7Þ

Finally, a covering closed cogG is called a covering grid, and in this case V is
said to be covered by G. (One can also define grids in general, see Neher, 2003,
3.3.) A covering grid whose associated 3-graded root system R is irreducible is called
connected.

Every locally finite root system R is a direct sum of irreducible locally finite
root systems RðiÞ, i 2 I. If R is 3-graded, every irreducible component RðiÞ is 3-graded
too. Suppose V is covered by a grid G with associated 3-graded root system R.
Corresponding to the decomposition R ¼ S

i2I R
ðiÞ in irreducible components RðiÞ

is the decomposition of V in a direct sum of ideals

V ¼
M
i2I

V ðiÞ; V ðiÞ ¼
M
a2RðiÞ

Va ð8Þ

where each ideal V ðiÞ is now covered by the connected grid GðiÞ ¼ G \ V ðiÞ. The
decomposition allows one to reduce questions on V to the case where G is connected,
see for example 2.1 and 3.1.

The classification of connected grids (Neher, 1987), or equivalently 3-graded root
systems, shows that there are the following seven types of connected grids (for a
definition see e.g., Garcı́a, preprint, 2001b; Neher, 2003, Sec. 4, I; J and K are
arbitrary sets):

(i) Rectangular grid RðJ ;KÞ; 1 � jJj � jKj, ðR;R1Þ is the rectangular grading
AJ ;K

I where J _[[K ¼ I _[[f0g for some element 0 62 I and R is a root system
of type A and rank jIj.

(ii) Hermitian grid HðIÞ; 2 � jIj, ðR;R1Þ is the hermitian grading of R ¼ CI .
(iii) Even quadratic form grid QeðIÞ; 3 � jIj, ðR;R1Þ is the even quadratic form

grading of R ¼ DI _[[f0g.
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(iv) Odd quadratic form grid QoðIÞ; 2 � jIj, ðR;R1Þ is the odd quadratic form
grading of R ¼ BI _[[f0g.

(v) Alternating grid AðIÞ; 5 � jIj, ðR;R1Þ is the alternating grading of
R ¼ DI .

(vi) Bi–Cayley grid B, R ¼ E6.
(vii) Albert grid A, R ¼ E7.

Corresponding to each type of covering grid is a coordinatization theorem which
describes the corresponding Jordan superpair up to isomorphism. These so-called
standard examples will be described in 1.7 below.

1.6. McCrimmon–Meyberg Superalgebras and Supercoordinate Systems. Let V be
a Jordan superpair over k covered by a connected standard grid G with associated
3-graded root system ðR;R1Þ. For the further development the concept of a
McCrimmon–Meyberg superalgebra (Neher, 2003, 3.2) is important. This is
an alternative superalgebra defined for every collinear pair ðga; gbÞ on Vþ

a ¼
Vþ
2 ðgaÞ \ Vþ

1 ðgbÞ by the product formula ab ¼ ffa g�a gþb g g�b bg. Modulo iso-
morphisms and taking the opposite algebra, the McCrimmon–Meyberg super-
algebra does not depend on the chosen collinear pair ga; gb (see Garcı́a and Neher,
2004, 1.4).

We will associate to V a supercoordinate system C. Its definition depends
on the type of R. However, for a simply-laced R of rankR � 2, equivalently
G is an ortho-collinear family with jGj � 2, we have the following uniform
description

C ¼ McCrimmon�Meyberg superalgebra of some collinear pair ga; gb 2 G:

ð9Þ

This superalgebra is associative for rankR � 3 and even associative commutative,
i.e., a superextension of k, for R of type D or E. For non-simply-laced root
systems, C will have more structure and will be defined in the review of the
coordinatization theorems below 1.7.

1.7. Standard Examples. The coordinatization theorems of Neher (2003, Sec. 4)
described in (a)–(i) below can be summarized by saying that a Jordan superpair V
is covered by a grid G if and only if V is isomorphic to a standard example
V ðG;CÞ depending on G and a supercoordinate system C.

(a) For the rectangular grading of R ¼ A1 with jJj ¼ jKj ¼ 1, we have jR1j ¼ 1
and G just consists of a single idempotent G ¼ fgg which covers V in the sense that
V ¼ V2ðgÞ. Any such Jordan superpair is isomorphic to the superpair J ¼ ðJ ; JÞ of a
unital Jordan superalgebra J over k. In this case C ¼ J .

(b) The standard examples for the remaining rectangular grids RðJ ;KÞ,
jJj þ jKj � 3, are the rectangular matrix superpairs MJKðAÞ ¼ ðMatðJ ;K;AÞ;
MatðK; J ;AÞÞ, where MatðJ ;K;AÞ denotes the J � K-matrices with finitely many
non-zero entries from the unital superalgebra A which is alternative in case
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R ¼ A2, i.e., jJj þ jKj ¼ 3, and associative otherwise. In the alternative case the
product is described in Neher (2003, 4.4). In the associative case MJKðAÞ is a
special Jordan superpair canonically imbedded in ðMatðJ [ K;AÞ;MatðJ [ K;AÞÞ,
hence has Jordan supertriple product

fu vwg ¼ uvwþ ð�1Þjujjvjþjujjwjþjvjjwj
wvu:

The Z2-grading of MatðJ ;K;AÞ – respectively, of MatðK; J ;AÞ – is the one
induced from A: MatðJ ;K;AÞm ¼ MatðJ ;K;AmÞ for m 2 Z2. Here C ¼ A.

(c) The Jordan superpairs covered by a hermitian grid HðIÞ; jIj ¼ 2, are
exactly the J ¼ ðJ ; JÞ where J is a Jordan superalgebra with two strongly connected
supplementary idempotents giving rise to a Peirce decomposition P of J in the
form P : J ¼ J11 � J12 � J22. In this case, the supercoordinate system of V is
C ¼ ðJ ;PÞ.

(d) Examples of Jordan superpairs covered by hermitian grids HðIÞ are the
hermitian Jordan superpairs HIðA;A0; pÞ ¼ ðHIðA;A0; pÞ;HIðA;A0; pÞÞ, where
HIðA;A0; pÞ ¼ fx ¼ ðxijÞ 2 MatðI; I;AÞ : x ¼ xpT; all xii 2 A0g, A is an alternative
superalgebra which is associative for jIj � 4 and p is a nuclear involution with ample
subspace A0 (Neher, 2003, 4.10). We have A0 � HðA;pÞ ¼ fa 2 A : ap ¼ ag and this
is an equality if 1

2 2 S. For an associative A these are special Jordan superpairs and in
the alternative case the product is described in Neher (2003, 4.11). The Z2-grading of
HIðA;A0; pÞ is induced from the Z2-grading of A (see (b)). Conversely, any Jordan
superpair covered by a hermitian grid HðIÞ; jIj � 3, is isomorphic to some hermitian
matrix superpair HIðA;A0; pÞ as soon as the extreme radical of V vanishes (this is
always the case if char k 6¼ 2). In the following we always assume this additional
assumption when we consider Jordan superpairs covered by a hermitian grid. We
put C ¼ ðA;A0; pÞ.

(e) For a superextension A of k and a set I 6¼ ; we denote by HðI;AÞ the free
A-module with even basis fh�i : i 2 Ig equipped with the hyperbolic superform qI
satisfying qIðhþi;h�iÞ ¼ 1 and qIðh�i;h�jÞ ¼ 0 for i 6¼ j. One can make HðI;AÞ
into a Jordan supertriple with quadratic maps given by P�00ðm�00Þn ¼ qIðm�00; nÞm�00

� qIðm�00Þn and fmnpg ¼ qIðm; nÞpþmqIðn;pÞ � ð�1ÞjnjjpjqIðm;pÞn. The correspon-
ding quadratic form superpair EQIðA; qIÞ ¼ ðHðI;AÞ;HðI;AÞÞ is covered by an even
quadratic form grid QeðIÞ. Conversely, any Jordan superpair covered by an even
quadratic form grid QeðIÞ, jIj � 3, is isomorphic to some EQIðA; qIÞ (Neher,
2003, 4.14). Here C ¼ A.

(f) We let again A be a superextension of k and suppose that X is an A-module
with an A-quadratic form qX with a base point e 2 X�00 satisfying qXðeÞ ¼ 1. For I 6¼ ;
we put M ¼ HðI;AÞ � X, q ¼ qI � qX. The corresponding quadratic form superpair
ðM;MÞ ¼ OQIðA; qXÞ is covered by an odd quadratic form grid QoðIÞ. Conversely,
any Jordan superpair covered by an odd quadratic form grid QoðIÞ, jIj � 2, is
isomorphic to some OQIðA; qXÞ (Neher, 2003, 4.16). In this case we put
C ¼ ðA;X; qXÞ.

(g) For a superextension A of k we denote by AltðI;AÞ the A-module of all
alternating matrices x 2 MatðI; I;AÞ, i.e., xT ¼ �x and all diagonal entries xii ¼ 0.
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The alternating matrix superpair AIðAÞ ¼ ðAltðI;AÞ;AltðI;AÞÞ is a subpair of
MIIðAÞ; it is covered by an alternating grid AðIÞ. Conversely, any Jordan superpair
covered by an alternating grid AðIÞ, jIj � 4, is isomorphic to some AIðAÞ (Neher,
2003, 4.18). We put C ¼ A.

(h) The examples (e) and (g) are superextensions of a Jordan pair U , i.e., have
the form A	 U where A is a superextension of k and U is a Jordan pair, cf. 1.1.
Moreover, U is split of type G, i.e., Us ¼ L

g2G k 
 gs. This is also so for the remain-
ing two standard examples. A Jordan superpair over k is covered by a Bi–Cayley grid
B if and only if it is isomorphic to the Bi–Cayley superpair BðAÞ ¼ A	k M12ðOkÞ,
the A-extension of the rectangular matrix superpair BðkÞ ¼ M12ðOkÞ for Ok the split
Cayley algebra over k (Neher, 2003, 4.20). Here C ¼ A.

(i) A Jordan superpair V over k is covered by an Albert grid A if and
only if there exists a superextension A of k such that V is isomorphic to the Albert
superpair ABðAÞ ¼ A	k ABðkÞ, the A-extension of the split Jordan pair
ABðkÞ ¼ H3ðOk; k 
 1; pÞ where Ok is the split Cayley algebra over k with canonical
involution p (Neher, 2003, 4.22). Here again C ¼ A.

1.8. 3-Graded Lie Superalgebras. There is an important connection between Jordan
superpairs and so-called Jordan 3-graded Lie superalgebras. This sometimes allows
one to transfer results from the category of Jordan superpairs to Lie superalgebras.
We will review the basic constructions.

A 3-grading of a Lie superalgebra L over k is a decomposition
L ¼ L1 � L0 � L�1 where each Li is a k-superspace, hence Li ¼ Li�00 � Li�11 for
i ¼ 0;�1 satisfies ½Li;Lj� � Liþj with the understanding that Liþj ¼ 0 if
iþ j 6¼ 0;�1. In other words, L ¼ L1 � L0 � L�1 is a Z-grading with at most three
non-zero homogeneous spaces. Because of this, 3-gradings are sometimes also called
short Z-gradings, e.g., in Zelmanov (1985). A Lie superalgebra is called 3-graded if
it has a 3-grading. If L is a 3-graded Lie superalgebra, its Grassmann envelope is a
3-graded Lie algebra in the sense of Neher (1996, 1.5).

A 3-graded Lie superalgebra L ¼ L1 � L0 � L�1 will be called Jordan 3-graded if

(i) ½L1;L�1� ¼ L0, and
(ii) There exists a Jordan superpair structure on ðL1;L�1Þ whose Jordan triple

product is related to the Lie product by

fx y zg ¼ ½½xy�z� for all x; z 2 Ls1; y 2 L�s1; s ¼ �: ð10Þ

In this case, V ¼ ðL1;L�1Þ will be called the associated Jordan superpair.
If char k 6¼ 2 the associated Jordan superpair is unique: its product is given by (10)
and by Q�00ðx�00Þy ¼ 1

2 ½½x�00; y�x�00�. Conversely, these two formulas define a pair
structure on ðL1;L�1Þ which will be a Jordan superpair in any situation where Jordan
superpairs are defined by linear identities. For example, by Neher (2003, (32)) a
3-graded Lie superalgebra L over k with ½L1;L�1� ¼ L0 is Jordan 3-graded as soon as
char k 6¼ 2; 3.

So far we have associated a Jordan superpair to any Jordan 3-graded Lie super-
algebra. Even more important is the fact that every Jordan superpair V arises in this
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way. Without going into details let us just recall that one can define a Lie superalgebra
product on KðVÞ ¼ Vþ � IDerV � V� where IDerV denotes the Lie superalgebra of
inner derivations of V . This so-called Tits–Kantor–Koecher superalgebra KðV Þ is a
3-graded Lie algebra with KðVÞ�1 ¼ V� and KðVÞ0 ¼ IDerV . It is obviously Jordan
3-graded. For more details, see Garcı́a and Neher (2003).

1.9. Root Graded Lie Superalgebras. Jordan 3-graded Lie superalgebras whose
associated Jordan superpairs are covered by a grid are precisely the Lie super-
algebras graded by a 3-graded root system (Garcı́a and Neher, 2003). For the
convenience of the reader we review here the basic definitions.

Let R be a reduced (possibly infinite) root system in the sense of Neher (1990)
(so 0 62R), and let QðRÞ ¼ Z½R� be the Z-span of R (the root lattice). Let L be a
Lie superalgebra over k. We say L is R-graded if there exists a decomposition
L ¼ L

a2R[f0g La into subspaces La ¼ La�00 � La�11 and subalgebras h � g � L�00 such
that the following conditions are satisfied:

(i) The decomposition L ¼ L
a2R1

La is a QðRÞ-grading.
(ii) L0 ¼

P
a2R ½La;L�a�.

(iii) There exists a family ðxa : a 2 RÞ of non-zero elements xa 2 La�00 such that,
putting ha ¼ �½xa; x�a�, we have

h ¼P
a2R k 
 ha ; g ¼ h�L

a2R k 
 xa and

½ha; yb� ¼ hb; a_iyb for all a 2 R and yb 2 Lb; b 2 R [ f0g:

This definition is a straightforward generalization of the notion of a root-graded
Lie algebra studied in Neher (1996). In case L is a Lie algebra, k is a field of char-
acteristic 0 and R is finite, it is equivalent to the one considered by Berman and
Moody (1992) and Benkart and Zelmanov (1996). In this case R can be identified
with a set of linear forms on h, the superspaces La are then given by
La ¼ fx 2 L : ½h; x� ¼ aðhÞx for all h 2 hg, fha : a 2 Rg is isomorphic to the dual
root system of R and h is a splitting Cartan subalgebra of the finite-dimensional
semisimple Lie algebra g.

2. GELFAND–KIRILLOV DIMENSION

2.1. Gelfand–Kirillov Dimension of Jordan Superstructures. Let V be a Jordan
superpair over a field k. For any subspace U ¼ U�00 � U�11 of V we define
U ðnÞ ¼ ðUþðnÞ;U�ðnÞÞ and U ½n� ¼ ðUþ½n�;U�½n�Þ for odd n 2 N inductively by

Usð1Þ ¼ Us;

UsðnÞ ¼
X

lþkþm¼n

fUsðlÞ ; U�sðkÞ ; UsðmÞg þ
X

2lþk¼n

Q�00ðUsðlÞ
�00

ÞU�sðkÞ;

Us½n� ¼
X
1�i�n

UsðiÞ:

ð11Þ
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The Gelfand–Kirillov dimension of a Jordan superpair V , called the GK-
dimension for short, is defined as

GKdimV ¼ sup
U

lim sup
odd n

lnðdimUþ½n� þ dimU�½n�Þ
ln n

� �
; ð12Þ

where the supremum is taken over all finite dimensional subspaces U of V . Here and
in the following we write dim for dimk. Obviously, the GK-dimension of any subpair
of V is less than or equal to the GK-dimension of V .

As in the proof of Krause and Lenagan (1985, 1.1) it can be shown that
for a finitely generated superpair V the GK-dimension of V is independent of the
particular choice of the generating subspace U . Thus in this case

GKdimV ¼ lim sup
oddn

lnðdimUþ½n� þ dimU�½n�Þ
ln n

; ð13Þ

where U is any finite dimensional generating subspace of V . In the general situation it
is of course not necessary to take the supremum over all subspaces. Rather, it is
sufficient to consider a class of ‘‘special’’ subspaces, adapted to the Jordan superpair
under investigation, with the property that every finite dimensional subspace is
contained in a special one. Moreover, we have the following obvious reduction
principle. Suppose V ¼ S

i V
ðiÞ is the union of subpairs such that

(a) Every finite dimensional subspace of V lies in some V ðiÞ,
(b) GKdimV ðiÞ ¼ c is constant. Then

GKdimV ¼ c: ð14Þ

2.1. Remarks. (a) It will follow from our results in 3.7 and 3.11 that the
GK-dimension of a Jordan superpair over a field of characteristic 6¼2 is either 0
or �1.

(b) If V is the direct sum of ideals Ui, i 2 I, the GK-dimension of V equals the
supremum of the GK-dimensions of the ideals Ui:

GKdim
�M

i2I
Ui

�
¼ sup

i2I

�
GKdimUi

�
:

Indeed, since GKdimUi � GKdimV for any i 2 I, we have supi2IðGKdimUiÞ
� GKdimV . Conversely, if B is a fixed finite dimensional subspace of V , then B lies
in an ideal

L
j2J Uj of U , where now J is a finite subset of I. Arguing as in Krause

and Lenagan (1985, 3.2), we have that GKdimðLj2J UjÞ ¼ maxj2JðGKdimUjÞ, hence

lim sup
odd n

lnðdimBþ½n� þ dimB�½n�Þ
ln n

� max
j2J

ðGKdimUjÞ � sup
i2I

ðGKdimUiÞ;

so GKdimV � supi2IðGKdimUiÞ.
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2.2. GK-Dimension of Jordan Supertriples and Superalgebras. Now let T be a
Jordan supertriple. Any subspace U of T gives rise to a subspace U ¼ ðU ;UÞ
of the associated Jordan superpair V ¼ ðT ;TÞ, and we define U ðnÞ and U ½n� for
odd n by

UðnÞ ¼ ðU ðnÞ;U ðnÞÞ and U½n� ¼ ðU ½n�;U ½n�Þ: ð15Þ

The Gelfand–Kirillov dimension of T is then defined in analogy to 2.1.2 as

GKdimT ¼ sup
U

lim sup
odd n

lnðdimU ½n�Þ
ln n

� �

where the supremum is taken over all finite dimensional subspaces of T . For a
(quadratic) unital Jordan superalgebra J we put

GKdim J ¼ GKdim JT

where JT is the underlying Jordan supertriple, see Neher (2003, 2.11).

2.2. Lemma.

(a) Let V ¼ ðT ;TÞ be the Jordan superpair associated to a Jordan super-
triple T . Then GKdimV ¼ GKdimT .

(b) Let V ¼ ðVþ;V�Þ be a Jordan superpair, and let TðVÞ ¼ Vþ � V� be
the associated polarized Jordan supertriple with quadratic map P

given by

P�00ðxþ�00 � x��00 Þðyþ � y�Þ ¼ Q�00ðxþ�00 Þy� �Q�00ðx��00 Þyþ and

fxþ � x� ; yþ � y� ; zþ � z�g ¼ fxþ ; y� ; zþg � fx� ; yþ ; z�g:

Then GKdimV ¼ GKdimTðV Þ.

Proof. (a) Let U be a finite dimensional subspace of T . Then U ¼ ðU ;UÞ is a
finite dimensional subspace of V with U½n� ¼ ðU ½n�;U ½n�Þ, so GKdimV � GKdim T

follows from

GKdimV � lim sup
odd n

lnðdimU ½n� þ dimU ½n�Þ
ln n

¼ lim sup
odd n

lnð2 dimU ½n�Þ
ln n

¼ lim sup
odd n

lnðdimU ½n�Þ
ln n

:
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On the other hand, if ðUþ;U�Þ is a finite dimensional subspace of V then Uþ �U�

is a finite dimensional subspace of T with ðUþ �U�Þ½n� ¼ Uþ½n� � U�½n�. Then
GKdimT � GKdimV in view of

GKdim T � lim sup
oddn

lnðdimðUþ�þ U�Þ½n�Þ
ln n

¼ lim sup
oddn

lnðdimUþ½n� þ dimU�½n�Þ
ln n

:

(b) Since any finite dimensional subspace of TðV Þ imbeds in a finite dimen-
sional subspace of the form Uþ � U� for U ¼ ðUþ;U�Þ � V , the assertion is
immediate from the definitions. &

2.3. Gelfand–Kirillov Dimension of Nonassociative Superalgebras. Let A be a non-
associative superalgebra over k. For any subspace B of A and any n 2 N we put
Bð1Þ ¼ B, BðnÞ ¼ P

iþj¼n B
ðiÞBðjÞ, B½n� ¼ P

1�i�n B
ðiÞ. Then the Gelfand–Kirillov

dimension of A is defined as

GKdimA ¼ sup
B

lim sup
n

lnðdimB½n�Þ
ln n

� �
; ð16Þ

where the supremum is taken over all finite dimensional subspaces B of A. It is
well-known that in case of a finitely generated superalgebra A, the GK-dimension
of A is independent of the particular choice of the generating subspace B, thus the
analogous formula to (13) holds.

For Jordan superalgebras over fields of characteristic 6¼2 we now have two defi-
nitions for the Gelfand–Kirillov dimension. That they in fact coincide can be proven
in the same way as the corresponding result in the non-supercase (Martinez, 1996,
Theorem 3.1):

2.3. Lemma. Let J be a Jordan superalgebra over k with 1
2 2 k, and denote by Jlin

the underlying linear Jordan superalgebra structure. then

GKdim J ¼ GKdim Jlin

where GKdim J is defined in 2.1 while GKdim Jlin is given in 2.3.

We will determine the GK-dimension of Jordan superpairs covered by a grid.
For doing so, the following general result will be useful.

2.4. Lemma. Let A be a superextension of k and let X be a finite dimensional
Jordan pair. The GK-dimension of the Jordan superpair A	k X ¼
ðA	 Xþ;A	 X�Þ, the A-extension of X, then satisfies the inequality

Gelfand–Kirillov Dimension and Local Finiteness of Jordan Superpairs 2163



ORDER                        REPRINTS

GKdimðA	 XÞ � GKdimA and this is an equality if X is linearly perfect in the
sense that X ¼ fX ; X ; Xg:

GKdimðA	k XÞ ¼ GKdimA:

Proof. We will first establish the inequality GKdimðA	 XÞ � GKdimA. Any
finite-dimensional subspace of A	 X is contained in one of the form B	 X where
B is a finite dimensional subspace of A containing 1. Hence for the calculation of
GKdimðA	 XÞ it is sufficient to consider these special subspaces B	 X. We will
prove by induction

ðB	 XÞsðnÞ � BðnÞ 	 Xs: ð17Þ
Indeed, for odd j; l;m 2 N with j þ lþm ¼ n we have, using the definition of

the product in A	 X and associativity of A,

fðB	 XÞsðjÞ ; ðB	 XÞ�sðlÞ ; ðB	 XÞsðmÞg
� fBðjÞ 	 Xs ; BðlÞ 	 X�s ; BðmÞ 	 Xsg
¼ BðjÞBðlÞBðmÞ 	 fXs ; X�s ; Xsg � BðnÞ 	 Xs:

Moreover, arguing in a similar way, for 2lþ k ¼ n we have Q�00ððB�00 	 XÞsðlÞÞ
ðB	 XÞ�sðkÞÞ � BðnÞ 	 Xs. Hence we have proven the inclusion (17), and this easily
implies ðB	 XÞs½n� � B½n� 	 Xs. For the special subspace U ¼ B	 X we then obtain,
using dimX ¼ dimXþ þ dimX�,

lim sup
odd n

lnðdimUþ½n� þ dimU�½n�Þ
ln n

� lim sup
oddn

lnðdimB½n� dimXÞ
ln n

¼ lim sup
oddn

lnðdimB½n�Þ
ln n

� lim sup
n

lnðdimB½n�Þ
ln n

� GKdimA;

which implies GKdimA	 X � GKdimA.
Now suppose that X is linearly perfect. For the other inequality,

GKdimA � GKdimA	 X, we take B again to be a finite-dimensional subspace of
A containing 1. Because of this and associativity, we have B½n� ¼ BðnÞ ¼ BðiÞBðn�iÞ

for 1 � i � n. Using perfectness of X it then follows that B½2� 	 Xs ¼
fB	Xs ; 1	X�s ; B	Xsg� ðB	XÞs½3�, and by induction B½n� 	Xs � ðB	XÞs½2n�1�.
But then

limsup
n

lndimB½n�

lnn
¼ limsup

n

lndimðB½n� 	XsÞ
lnn

� limsup
n

lndimðB	XÞs½2n�1�

lnn
�GKdimA	X

hence GKdimA�GKdimA	X. &
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2.4. GK-Dimension of Jordan Superpairs Covered by Grids. Let V be a Jordan
superpair covered by a grid with associated root system ðR;R1Þ. We know from
1.5.8 that V is a direct sum of ideals V ¼ L

i2I V
ðiÞ, each covered by a connected grid,

and hence by Remark 2.1(b)

GKdimV ¼ GKdim
�M

i2I
V ðiÞ

�
¼ sup

i2I
ðGKdimV ðiÞÞ: ð18Þ

In view of the formula above we will from now on consider Jordan superpairs
covered by a connected grid.

2.5. Theorem. Let V be a Jordan superpair covered by a connected grid G. If G
contains a pair of collinear idempotents let A be the associated McCrimmon–
Meyberg algebra. Otherwise let A ¼ J where V ffi J ¼ ðJ ; JÞ. Then

GKdimV ¼ GKdimA: ð19Þ

Proof. If V is covered by a connected grid G which does not contain collinear
idempotents then either G is a single idempotent or it is associated to a triangle of
idempotents. In both cases V ffi ðJ ; JÞ for a unital Jordan superalgebra J and so
GKdimV ¼ GKdim J by 2.2 and the definition of GKdim J .

We can now assume that G contains a pair of collinear idempotents. We will first
show that it is enough to consider Jordan superpairs covered by a finite grid G.
Indeed, if G or, equivalently, its associated irreducible 3-graded root system
ðR;R1Þ is infinite, it is obvious from the classification of 3-graded root systems that
R is a union of finite subsystems RðiÞ of the same type containing a given collinear
pair. (In fact, this is part of the classification proof as given in Loos and Neher, to
appear.) Correspondingly, we have V ¼ S

i V
ðiÞ where V ðiÞ ¼ L

a2RðiÞVa is covered
by the grid fga : a 2 RðiÞg. Because of 2.1.14 it then suffices to prove (19) for a finite
G. Our next aim is to show

GKdimV � GKdimA: ð20Þ

For the calculation of GKdimV it is sufficient to consider a class of special subspaces
with the property that any finite dimensional subspace of V is contained in one of
them. These special subspaces U will be defined below. They all have the following
two properties. Firstly, U is split with respect to the root grading V ¼ L

a2R1
Va, i.e.,

U ¼ L
a2R1

Ua; Ua ¼ U \ Va. Clearly all U ðnÞ and hence also all U ½n� are then split
too. Secondly, if we define B ¼ Uþ \ A (keeping in mind that A is defined on some
Vþ
b ), then there exists a constant cU depending on U such that for all odd n and all

a 2 R1

dimUsðnÞ
a � cU dimBðnÞ: ð21Þ
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We claim that this is sufficient to establish (20). Indeed, for a special U we have

lim sup
oddn

lnðdimUþ½n� þ dimU�½n�Þ
ln n

� lim sup
odd n

lnð2cU jGj dimB½n�Þ
ln n

¼ lim sup
odd n

lnðdimB½n�Þ
ln n

� lim sup
n

lnðdimB½n�Þ
ln n

� GKdimA;

which implies (20). The class of special subspaces satisfying (21) will be defined by
making use of the coordinatization theorems. Since by Lemma 2.4 the inequality
(20) holds for superextensions of finite-dimensional Jordan pairs and since we
assumed the covering grid to contain a pair of collinear idempotents, we only have
to consider the cases (b), (d) and (f) of 1.7.

Case (b). R is of type A, so V ffi MJKðAÞ for jJj þ jKj � 3. The special subspaces
are MJKðBÞ where B is a subspace of A. It follows from the multiplication rules in
MJKðAÞ, (Neher, 2003, 4.4) for A alternative, jJj þ jKj ¼ 3, or (Neher, 2003, 4.6)
for A associative and jJj þ jKj � 3, that U ðnÞ � MJKðBðnÞÞ which proves (21)
with cU ¼ 1. More precisely, if A is associative then, using BðnÞ ¼ BBðn�1Þ, we even
have

MJKðBÞðnÞ ¼ MJKðBðnÞÞ (A associative): ð22Þ

Case (d). V is a hermitian matrix superpair HIðA;A0; pÞ, jIj � 3. Thus R is of
type CI . Here the special subspaces are U ¼ HIðB;B \ A0; pÞ where B is a p-invariant
subspace of A. It follows from the multiplication rules in (Neher, 2003, 4.11)
that U ðnÞ � HIðBðnÞ;BðnÞ \ A0; pÞ whence (21) holds (with cU ¼ 1).

Case (f). V ¼ OQIðA; qXÞ is an odd quadratic form superpair with jIj � 2, thus
R is of type B1þjIj. In this case, using the notation of (Neher, 2003, 5.13 and 5.15), the
special subspaces are U ¼ ðY ; Y Þ �EQIðBÞ where Y � X and B � A are finite dimen-
sional (Z2-graded) subspaces satisfying h0 2 Y and k 
 1þ bXðY ; Y Þ þ qXðY�00Þ � B for
bX the polar of qX. The condition 1 2 B implies that B½n� ¼ BðnÞ for all n and
U ðnÞ � ðBðnÞY ;BðnÞY Þ �EQIðBðnÞÞ for odd n, whence also U ½n� � ðBðnÞY ;BðnÞY Þ �
EQIðBðnÞÞ. (In fact, it can be proven by induction that U ðnÞ ¼ ðBðn�1ÞY ;Bðn�1ÞY Þ �
EQIðBðnÞÞ but we will not need this.) It follows that (21) holds with cU ¼ dim Y .

We have now established (21) in all cases and hence (20) holds. For the proof
of the other inequality, GKdimA � GKdimV , we observe that G contains a pair
of collinear idempotents, say ga; gb, and it is further no harm to assume that A is
the McCrimmon–Meyberg superalgebra of ga; gb. We claim that U ¼ Va � Vb is a
subpair. Indeed, this follows from the following facts: Va and Vb are subpairs,
fVa Va;Vbg � Vb (since a� aþ b ¼ b), fVaVbVag ¼ 0 (since for collinear a, 2a� b
is not a root), and the analogous formulas for a and b exchanged. The subpair U

is covered by the grid fga; gbg. The rectangular Coordinatization Theorem (Neher,
2003, 4.5) then implies that Va � Vb ffi M12ðAÞ, hence V contains a subpair
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U ffi M12ðAÞ. Because GKdimU � GKdimV it is then sufficient to prove
GKdimA � GKdimM12ðAÞ. To this end, let B be a finite dimensional subspace of
A. It is no harm to assume that B contains the identity element of A. It then follows
by induction, using the product formula of the McCrimmon–Meyberg algebra
(see 1.6), that M12ðBðnÞÞ � M12ðBÞð2n�1Þ. Therefore, dimBðnÞ ¼ 1

2 dimM12ðBðnÞÞs �
1
2 dimM12ðBÞsð2n�1Þ, and

lim sup
n

ln dimBðnÞ

ln n
� lim sup

n

ln dimM12ðBÞsð2n�1Þ

ln n

¼ lim sup
odd n

ln dimM12ðBÞsðnÞ
ln n

� GKdimM12ðAÞ;

hence GKdimA � GKdimV . &

2.6. Proposition. The Gelfand–Kirillov dimension of a Jordan 3-graded Lie super-
algebra L ¼ L1 � ½L1;L�1� � L�1 over a field of characteristic different from 2
coincides with the Gelfand–Kirillov dimension of its associated Jordan superpair
V ¼ ðL1;L�1Þ.

The special case of a finitely generated Jordan pair V , which by (Garcı́a and
Neher, 2003, 2.4(b)) is equivalent to L being finitely generated, has been proven in
Martinez (1996, Theorem. 3.2). Our proof is more elaborate since we do not assume
finite generation.

Proof. Let U be a finite dimensional subspace of V and put W ¼ Uþ � U� �L.
Since 1

2 2 k, we have Us½n� ¼ P
lþkþm�nfUsðlÞ ; U�sðkÞ ; UsðmÞg for odd l; k;m and n,

so Uþ½n� � U�½n� � W ½n� for all odd n. Therefore

lim sup
odd n

lnðdimUþ½n� þ dimU�½n�Þ
ln n

� lim sup
odd n

lnðdimW ½n�Þ
ln n

� lim sup
n

lnðdimW ½n�Þ
ln n

� GKdimL;

whence GKdimV � GKdimL. Conversely, if B is a finite dimensional subspace
of L, then there exists a finite dimensional subspace W ¼ Uþ � U� such that
B � W þ ½W ;W� ¼ Uþ � ½Uþ;U�� � U� ¼ W ½2�. Then, for all n 2 N, B½n� �
ðW ½2�Þ½n� � W ½2n�.

By the Jacobi identity we have W ðnÞ ¼ ½W ;W ðn�1Þ� for all n � 2, whence
W ½n� ¼ W þ ½W ;W ½n�1��. Using this, one shows by induction that

W ½2n� � Uþ½2n�1� � ð½Uþ;U�½2n�1�� þ ½Uþ½2n�1�;U��Þ � U�½2n�1�;

W ½2nþ1� � Uþ½2nþ1� � ð½Uþ;U�½2n�1�� þ ½Uþ½2n�1�;U��Þ � U�½2nþ1�:
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In particular, dimW ½2n� � ð1þ dimUþ þ dimU�ÞðdimUþ½2n�1� þ dimU�½2n�1�Þ, and
hence

lim sup
n

ln dimB½n�

ln n
� lim sup

n

ln dimW ½2n�

ln n

� lim sup
n

ln
�ð1þ dimUþ þ dimU�ÞðdimUþ½2n�1� þ dimU�½2n�1�Þ�

ln n

¼ lim sup
n

lnðdimUþ½2n�1� þ dimU�½2n�1�Þ
ln n

¼ lim sup
n

lnðdimUþ½2n�1� þ dimU�½2n�1�Þ
lnð2n� 1Þ

¼ lim sup
oddn

lnðdimUþ½n� þ dimU�½n�Þ
ln n

:

So we have the other inequality GKdimL � GKdimV . &

Coming back to the general case, we have shown in Garcı́a and Neher (2003, 2,
9) that a Lie superalgebra graded by a 3-graded root system R is a central extension
of the Tits–Kantor–Koecher superalgebra of a Jordan superpair V covered by a grid
with associated root system R. In particular, assuming that R is irreducible we can
associate to L the coordinate superalgebra A of V as in 2.5. Using 2.6 we thus arrive
at the following.

2.7. Corollary. Suppose k has characteristic 6¼2; 3, and let L be a Lie superalgebra
over k which is graded by an irreducible 3-graded root system R. Then
GKdimL ¼ GKdimA where A is the associated coordinate superalgebra.

3. LOCAL FINITENESS

3.1. Definition. A nonassociative superalgebra is called locally finite if every
finitely generated subalgebra is finite dimensional. The concept of a subalgebra of
a ‘‘linear’’ superalgebra, given by a bilinear product, is of course obvious. For a
unital quadratic Jordan superalgebra J , a subalgebra of J is defined as
a subspace invariant under U ¼ ðU�00;Uð:; :ÞÞ and the squaring operation x2�00 ¼
U�00ðx�00Þ1. Similarly, a Jordan superpair or Jordan supertriple is called locally finite
if every finitely generated subpair, respectively subsystem, is finite dimensional.

The following lemmata 3.2–3.4 give some preliminary results on locally finite
superalgebras and Jordan superpairs. Some of them may be known, but we could
not find a suitable reference. Most of the proofs are straightforward and will
therefore be left to the reader.
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3.2. Lemma. (a) A subalgebra of a locally finite superalgebra is locally finite.

(b) Assume the superalgebra A ¼ L
i2I A

ðiÞ is a direct sum of ideals AðiÞ. Then
A is locally finite if and only if every ideal AðiÞ is so. The analogous result holds for
Jordan superpairs.

(c) Let S be a unital k-superalgebra (e.g., a superextension of k) and let B be a
finite dimensional algebra. Then the superalgebra A ¼ S 	 B with product 1.1.4 is
locally finite if and only if S is so.

Proof. For the proof of (c), let U be a finitely generated subalgebra of A. Since any
element of A ¼ S 	 B is a finite sum of pure tensors s	 b 2 S 	 B, there exist finitely
many homogeneous s1; . . . ; sn 2 S and b1; . . . ; bn 2 B such that U is a subalgebra
of the subalgebra T 	 C of A where T � S is the subalgebra generated by the si,
1 � i � n, while the subalgebra C � B is generated by the bi. Hence, if S is locally
finite then so is A. Conversely, let A be locally finite and let T � S be a subalgebra
generated by finitely many s1; . . . ; sn 2 S. The subalgebra of A generated by
fsi 	 B : 1 � i � ng is finite dimensional and equals T 	 B, whence T is finite
dimensional too. &

3.3. Lemma. (a) Let V ¼ ðT ;TÞ be the Jordan superpair associated to a Jordan
supertriple T . Then V is locally finite if and only if T is so.

(b) Let V ¼ ðVþ;V�Þ be a Jordan superpair and denote by TðVÞ the polarized
supertriple with product defined in 2.2b. Then V is locally finite if and only if TðV Þ
is so.

(c) Let J be a unital Jordan superalgebra and denote by JT the underlying
Jordan supertriple. Then J is locally finite if and only if JT is so.

3.4. Lemma. Let A be an alternative unital superalgebra. If A is locally finite then
so is the Jordan superalgebra AðþÞ.

3.1. Local Finiteness of Jordan Superpairs Covered by a Grid. Recall from 1.5.8
that a Jordan superpair V covered by a grid is a direct sum of ideals, each covered
by a connected grid. Because of Lemma 3.2(b), it is therefore enough to study
local finiteness in the case of connected grids. For our characterization of local
finiteness for these Jordan superpairs in 3.7 below, the following is a useful
preliminary result.

3.5. Lemma. Let J and K be finite index sets with 2 � jKj and let A be a unital
alternative superalgebra which we assume to be associative if jJj þ jKj � 4. Then
the rectangular matrix superpair MJKðAÞ is locally finite if and only if A is so.

Proof. Let X be a subspace of A and let B be the subalgebra of A generated by X.
We then claim that the subpair U of MJKðAÞ generated by the subspace MJKðXÞ is
U ¼ MJKðBÞ. Indeed, since the multiplication rules of MJKðAÞ are expressed in
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terms of the multiplication in A, it follows that MJKðBÞ is a subpair
containing the generators of U , hence U is contained in MJKðBÞ. To prove the
converse, note that the product of A can be expressed as a product in MJKðAÞ.
Namely, denoting by Ejk, j 2 J ; k 2 K the canonical matrix units we have for
a; a0 2 A the formula aa0Ejk ¼ faEjk0 ; Ek0j ; a

0Ejkg where k; k0 are two distinct
elements of K. As a consequence, any bEjk for b 2 B of the form b ¼ x1 
 
 
 xn with
xi 2 X is then a product with factors in MJKðXÞ, hence lies in U , which implies
MJKðBÞ � U .

Now suppose that MJKðAÞ is locally finite, and let X;B and U be as above. If X
is finite-dimensional, the subspace MJKðXÞ is finite-dimensional, hence U is
finite-dimensional, hence B is finite-dimensional, proving that A is locally finite.
Conversely, let A be locally finite and let W � MJKðAÞ be a finite dimensional
subspace. Then W � MJKðXÞ for X � A of finite dimension. The subalgebra B of
A generated by X is then finite dimensional, hence so is MJKðBÞ. But by the above,
MJKðBÞ contains the subpair generated by W , proving that MJKðAÞ is locally
finite. &

3.6. Theorem. Let V be a Jordan superpair covered by a connected grid G and, as
in 2.5, let A be the associated coordinate superalgebra. Then V is locally finite if
and only if A is so.

Proof. In case G does not contain a pair of collinear idempotents and hence V ffi J,
the claim follows from 3.3. Thus in the following we can assume that G does contain
a pair of collinear idempotents, hence A is alternative.

That local finiteness of V implies local finiteness of A is easy: we have seen in the
proof of Theorem 2.5 that V contains a subpair U ffi M12ðAÞ which is locally finite if
V is so. But then A is locally finite by Lemma 3.5.

Let now A be locally finite, and let U be a finitely generated subpair of V .
Decomposing each generator with respect to the Peirce decomposition 1.5.7, it is
no harm to assume that U is generated by finitely many elements in joint Peirce
spaces Va, thus involving only a finite number of roots in R. It is obvious from
the classification of 3-graded root systems in Neher (1990) that any finite number
of roots in R lie in a finite subsystem of the same type (see Loos and Neher, to
appear for a classification-free proof), and replacing G by the subfamily indexed
by this subsystem shows that we can without loss of generality assume that G is
finite.

We will now consider the different types arising in the coordinatization theorems
1.7 above. Because of our assumption that G contains a pair of collinear idem-
potents, these are the types (b) and (d)–(i) where, however, case (b) has already
been dealt with in Lemma 3.5.

Case (d). V ffiHIðA;A0;pÞ for 3� jIj<1. Then there exists a finitely generated
subalgebra B of A such that U � HIðB;B \ A0; pÞ. We know that B has finite dimen-
sion since A is locally finite, whence dimU � dimHIðB;B\A0;pÞ � 2jIj2 dimB <1.

Case (f). V ffi OQIðA; qXÞ for jIj � 2. Here U is contained in a subpair of the
form ðBY ;BY Þ �EQIðBÞ, where Y is a finite dimensional subspace of X and B is a
finitely generated subalgebra of A. By local finiteness of A, dimB < 1, so
dimU � dimððBY ;BY Þ �EQIðBÞÞ � 2 dimB dim Y þ dimEQIðBÞ < 1.
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Cases (e), (g)–(i). Here V is the A-extension of a split Jordan pair
W ¼ L

a2R1
ðkgþa ; kg�a Þ of type G and one can argue as in the proof of Lemma 3.2(c).

Thus, in all cases we have proven that V is locally finite as soon as A is so.
&

3.2. Local Finiteness and Gelfand–Kirillov Dimension. It is immediate from the
definition that a locally finite superalgebra or a locally finite Jordan superpair
has GK-dimension 0. The goal of the remaining part of this section is to prove
the converse for certain varieties of superalgebras and Jordan superstructures, see
3.7, 3.11 and 3.13. This will also provide an alternative (and quicker) proof of
Theorem 3.6 and Corollary 3.14 below in case our base field has characteristic 6¼2.

It is important to note here that a nonassociative algebra of GK-dimension 0
need not be locally-finite as the following example, due to Finston (1987),
shows. Let A be the commutative algebra defined on the linear span of yi; i 2 N
by the rule:

yiyj ¼ dijyiþ1:

Thus A only has squares: y2i ¼ yiþ1 while yiyj ¼ 0 for i 6¼ j. This algebra is not
locally finite since it has infinite dimension yet it is ‘‘finitely generated’’ by y1, but
it can be shown (Finston, 1987, p. 537) that its GK-dimension is 0.

The following lemma provides a sufficient condition under which GK-dimension
0 does imply local finiteness.

3.7. Lemma. Let A be a linear superalgebra such that there exists a k 2 N, k � 1,
such that for all n � k and for any subspace B of A we have

BðnÞ ¼ BBðn�1Þ þ Bð2ÞBðn�2Þ þ 
 
 
 þ BðkÞBðn�kÞ: ð23Þ

then either A is locally finite and hence has GK-dimension 0, or GKdimA � 1.
In particular, our assumption holds with k ¼ 1 for an associative or Lie

superalgebra A, which is therefore locally finite if and only if GKdimA ¼ 0.

That a Lie algebra is locally finite if and only if it has GK-dimension 0 is also
proven in Rashkova, (1993, Theorem 1).

Proof. We first prove for a subspace B of A that

B½m� ¼ B½mþk� for some m ¼) B½m� ¼ B½mþl� for all l 2 N: ð24Þ

Indeed, since the B½n� form an ascending chain, our assumption implies
B½m� ¼ B½mþ1� ¼ 
 
 
 ¼ B½mþk�, and hence BðpÞ � B½m� for all p � mþ k. For l ¼ kþ 1
we obtain

B½mþkþ1� ¼ B½m� þ Bðmþkþ1Þ ¼ B½m� þ
Xk
i¼1

BðiÞBðmþkþ1�iÞ;
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using (23). In the last sum each term satisfies BðiÞBðmþkþ1�iÞ � BðiÞB½m� � B½iþm� ¼ B½m�

since 1 � i � k, whence B½m� ¼ B½mþkþ1�. An induction then proves (24). Observe that
in this case B½m� is in fact a subalgebra of A.

There are now the following alternatives: either all finite dimensional subspaces
satisfy (24) and hence A is locally finite, or there exists a subspace B such that
B½n� � B½nþk� is a proper inclusion for all n 2 N. For such a B we have
dimB½nþk� � 1þ dimB½n� which implies dimB½n� � n=k. But then

lim sup
n

lnðdimB½n�Þ
ln n

� lim sup
n

lnðn=kÞ
ln n

¼ 1;

and therefore GKdimA � 1.
We have AðnÞ ¼ AAðn�1Þ if A is associative, and this also holds in the Lie case by

the Jacobi identity. &

We will show below in Proposition 3.11 that for a Jordan superpair over a field
of characteristic 6¼2 local finiteness is equivalent to GK-dimension zero. It is an
open problem to extend this result to the case of characteristic 2. However, we
can at least show this in the non-super setting. Our proof uses the following folklore
lemma, proven in McCrimmon (1971, Corollary 3 of Theorem 1) for quadratic
Jordan algebras.

3.8. Lemma. Let J be a Jordan triple system generated by a subspace B. Then the
multiplication algebra of J is generated by the identity and by operators of the
form Pa;Lb;c;Pd;e for a; b; c;d; e 2 B.

From this lemma one easily obtains the following.

3.9. Corollary. Let J be a Jordan triple system and let B be any subspace of T .
Then for any odd n 2 N greater than 2 we have

B½n� ¼ PBB
½n�2� þ fB;B;B½n�2�g þ fB;B½n�2�;Bg:

3.10. Proposition. Let J denote a Jordan system (algebra, pair or triple system)
over k. Then J is locally finite if and only if the GK-dimension of J is zero.

Proof. If J is a Jordan triple system, the proof follows from 3.9 arguing as in 3.7.
If J is a Jordan pair, it suffices to consider the associated polarized triple system
TðVÞ ¼ Vþ � V� and to use 2.2b and 3.3b.

Finally, if J is a Jordan algebra, let bJJ ¼ J � k 
 1 be its unital hull. It is immediate
to see that local finiteness is equivalent for J and for bJJ and that GKdim J ¼
GKdim bJJ . We may therefore assume that J is unital. By Lemma 3.3c and the
definition of GKdim J , we then have J is locally finite , JT is locally finite
, GKdim JT ¼ GKdim J ¼ 0. &
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3.11. Proposition. For a Jordan 3-graded Lie superalgebra L ¼ L1 � ½L1;L�1�
�L�1 over a field of characteristic different from 2 the following are equivalent:

(i) L is locally finite.
(ii) GKdimL ¼ 0.
(iii) The associated Jordan superpair V ¼ ðL1;L�1Þ is locally finite.
(iv) GKdimV ¼ 0.

Proof. We know (i) , (ii) from 3.7, (ii) , (iv) from 2.6 and (iii) ) (iv) from 3.1. It
therefore suffices to prove (i) ) (iii) which is immediate: if L is locally finite and
U � V is a finitely generated subpair of V then Uþ � U� � Uþ � ½Uþ;U�� � U�

which is a finitely generated, hence finite dimensional, subalgebra of L, whence U

is finite dimensional. &

3.12. Corollary. A Jordan superpair over a field of characteristic 6¼2 is locally
finite if and only if it has GK-dimension 0. The same holds for Jordan super-
algebras.

Proof. Since every Jordan superpair is the associated Jordan superpair of some
Jordan 3-graded Lie superalgebra, e.g., the Tits–Kantor–Koecher superalgebra,
the equivalence for Jordan superpairs is immediate from 3.11. For a Jordan
superalgebra J we have the equivalences: J is locally finite if and only if V ¼ ðJ ; JÞ
is locally finite (by 3.3a) if and only if GKdimV ¼ 0 if and only if GKdim J ¼ 0
(by 2.2a). &

3.13. Corollary. Let A be a unital alternative superalgebra over a field of
characteristic 6¼2. Then A is locally finite if and only if GKdimA ¼ 0.

Proof. Indeed, we have the following equivalences: A is locally finite if and only if
M12ðAÞ is locally finite (by 3.5) if and only if GKdimM12ðAÞ ¼ 0 (by 3.13) if and
only if GKdimA ¼ 0 (by 2.5). &

We note that this result allows us to give a quicker proof of Theorem 3.6 in case
the base field has characteristic 6¼2 and the coordinate superalgebra A is alternative:
V is locally finite if and only if GKdimV ¼ 0 (by Proposition 3.11) if and only if
GKdimA ¼ 0 (by Theorem 2.5) if and only if A is locally finite.

The following corollary can now be obtained by the same argument used in the
proof of Corollary 2.7. Another proof can be given by combining 2.7 with 3.11, 3.12
and 3.13.

3.14. Corollary. Let L be a Lie superalgebra over a field k of characteristic 6¼2; 3
which is graded by an irreducible 3-graded root system, and let A be the associated
coordinate superalgebra. Then L is locally finite if and only if A is so.

Remark. Even for Lie algebras this is a new result. With the appropriate concept of
a coordinate algebra it is likely to be true in all cases. Indeed, if the irreducible root
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system R is not 3-graded we have R ¼ E8;F4 or G2. A Lie algebra L over a field of
characteristic 0 graded by the root system E8 has the form L ffi A	 g where A is a
unital associative commutative k-algebra and g is the split simple Lie algebra of type
E8 over k (Berman and Moody, 1992). Hence Lemma 3.2(c) implies that L is locally
finite if and only if A is so. This leaves open the two cases R ¼ F4 and R ¼ G2 for
which the corresponding R-graded Lie algebras were described in Benkart and
Zelmanov (1996).
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