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Abstract

In this paper we are proposing a theory of Jordan superpairs defined over (super)comm
superrings. Our framework has two novelties: we allow scalars of even and odd parity and we
assume that12 lies in our base superring. To demonstrate that it is possible to work in this gene
we classify Jordan superpairs covered by a grid.
 2003 Elsevier Inc. All rights reserved.

There has recently been a lot of interest in linear Jordan superstructures. O
the major advances in this area is the classification of simple finite-dimensional J
superalgebras over algebraically closed fields of characteristic�= 2, due to Racine an
Zelmanov [39,40] and Martínez and Zelmanov [25], extending Kac’s classification
15,16] of the characteristic 0 case. Another important achievement is the classifi
of infinite-dimensional graded-simple Jordan superalgebras whose graded compon
uniformly bounded, due to Kac, Martínez, and Zelmanov [14]. Most of the recent res
has been devoted to Jordan superalgebras, but one now has a classification of
finite-dimensional Jordan superpairs over algebraically closed fields of characteri
due to Krutelevich [18] and based on Kac’s determination ofZ-gradings of simple finite
dimensional Lie superalgebras [15].

It is remarkable that most (probably all) examples of linear Jordan superalgebra
superpairs in the papers mentioned above can in fact be defined over arbitrary sup
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For some of them this was verified in the recent preprint [17] by King, for others like
Kantor double with a bracket of vector field type or the Cheng and Kac Jordan supera
one can use the speciality results of McCrimmon [27] and Martínez, Shestakov
Zelmanov [24] to give a model over superrings. To the best of my knowledge, K
preprint [17], which I received after the research for this paper had been finished,
only publication devoted to quadratic Jordan superstructures. In this paper King intro
a notion of quadratic Jordan superalgebras. Apart from the fact that King works
commutative rings while we work over commutative superrings, there is also a diffe
in “characteristic 2”: King’s Jordan triple product is only skew-symmetric in the outer
odd variables, hence 2{x1̄yx1̄} = 0 for an oddx1̄, while we require that it is even alternatin
and hence{x1̄yx1̄} = 0 always holds in our setting. Our reasons for imposing the stro
condition is that it holds for all reasonable Jordan superstructures we know of, for ex
for special Jordan superstructures (see Example 2.14) or for King’s quadratic vers
Kac’s 10-dimensional Jordan superalgebra K10. (There is a small exception for Jord
superalgebras associated to quadratic forms since King requires the form on the o
to be only skew symmetric and not necessarily alternating, as we do.)

Why Jordan superstructures over superrings? It is of course true that any J
superpair over a superring is also a Jordan superpair over a ring, for example o
even part of the base superring. Nevertheless, there are good reasons for workin
superrings. This setting naturally occurs in the class of Jordan superpairs classified
paper, Jordan superpairs covered by a grid (Section 4). For example, a Jordan supeV
covered by an even quadratic form grid is in a natural way a quadratic form superpa
a superring, even if one originally consideredV only over a ring (see 4.14).

A description of the paper’s contents follows. Due to a lack of an approp
reference, the following Section 1 provides the necessary background from the the
supermodules over superrings as far as this is needed later on. This section also con
fundamental and new definition of a quadratic map between supermodules over sup
In the next Section 2 we define (quadratic) Jordan superpairs, Jordan supertriples an
Jordan superalgebras over superrings. We develop some basic theory and give ex
This section could be considered as a super version of [20, §1]. In the following Sec
we introduce grids in Jordan superpairs and refined root gradings. The final Sec
gives the classification of Jordan superpairs covered by a grid, the super version of
from [35], and—more generally—the description of refined root gradings. This l
description is new even in the case of Jordan pairs. Our interest in Jordan superpa
a refined root grading comes from their connection to Lie (super)algebras which h
refined root grading, see [42] for the case of Lie algebras graded by a simply-lace
system.

There are three sequels to this paper, all jointly with E. García. Semiprime
primeness and simplicity of Jordan superpairs covered by grids are characterized
The corresponding Tits–Kantor–Koecher superalgebras are described in [9], wh
studies the Gelfand–Kirillov dimension of Jordan superpairs and their associate
superalgebras.
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1. Supermodules and their multilinear and quadratic maps

In this section we introduce our terminology regarding supermodules and multi
and quadratic maps. With the exception of quadratic maps, these concepts have
been introduced in the literature ([6, Chapter 1], [19, Chapter 1] and [23, Chapter 3
not in the form and generality suitable for this paper. One of the main differences i
our objects will be defined over a superring not necessarily containing1

2.

1.1. Base superrings.We writeZ2 = {0̄, 1̄} and use its standard field structure. We
(−1)0̄ = 1 and(−1)1̄ = −1. Most objects studied here will beZ2-graded in a natura
sense. For example, aZ2-graded abelian groupM is just a direct sumM =M0̄⊕M1̄ of
two subgroupsMα , α ∈ Z2. In this case, elements inM0̄ ∪M1̄ are calledhomogeneous.
For a homogeneousm ∈Mα , α ∈ Z2, its degreeis denoted by|m| = α ∈ Z2. We adopt
the convention that whenever the degree function occurs in a formula, the corresp
elements are assumed to be homogeneous.

An arbitrary (not necessarily associative) ringS is calledZ2-gradedor a superring
if S = S0̄ ⊕ S1̄ as abelian group andSαSβ ⊂ Sα+β for α,β ∈ Z2. A superring is called
commutativeif st = (−1)|s||t |ts holds for s, t ∈ S. Some authors would call such
superring supercommutative, but we have tried to minimize the use of the adj
“super.” In a commutative superringS we always have 2s2

1̄
= 0 for anys1̄ ∈ S1̄, creating a

sometimes exceptional situation if 2 is not invertible inS. (One could think of adding th
conditions2

1̄
= 0 for s1̄ ∈ S1̄ to the definition of a commutative superring. This, howev

would impose restrictions elsewhere: several of the natural examples of Jordan sup
e.g., quadratic form superpairs, are defined over a commutative superring not nece
satisfyings2

1̄
= 0.)

A superringS is calledunital if there exists 1∈ S0̄ such that 1s = s for all s ∈ S, and it
is calledassociativeif it is so as ungraded ring:(ab)c= a(bc) for all a, b, c ∈ S. We will
call S a base superringif S is a commutative associative unital superring. Analogous
base ringis a commutative associative unital ring.

Unless specified otherwise,S will always denote a base superring and all structu
considered here will be defined overS in a sense to be explained in the following.

1.2. Supermodules.An S-supermoduleis a left moduleM over (the associative ring)S
whose underlying abelian group isZ2-graded such thatSαMβ ⊂Mα+β for α,β ∈ Z2. It
will be convenient to considerS-supermodules also asS-bimodules by defining the righ
action as

ms = (−1)|s||m|sm (1)

for s ∈ S and m ∈ M. Alternatively, one can defineS-supermodules asS-bimodules
satisfying (1), or as rightS-modules and then define the left action by (1).

LetM be anS-supermodule. Asubmoduleof M is a submoduleN of the S-module
M which respects theZ2-grading, i.e.,N = (N ∩ M0̄) ⊕ (N ∩ M1̄). ThenN is an
S-supermodule with the induced actions. Thequotientof M by a submoduleN is again
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an S-supermodule with respect to the canonicalS-module structure andZ2-grading:
(M/N)α =Mα/Nα for α ∈ Z2. Thedirect sumof a family (Mi)i∈I of S-supermodules is
anS-supermodule, denoted

⊕
i∈I Mi , with homogeneous parts(

⊕
i∈I Mi)α =⊕

i∈I Mi
α

for α ∈ Z2. In case allMi =M this supermodule is denotedM(I).
A new S-supermodule

∏
M is obtained fromM by interchanging the parity o

M:
∏
M =M as abelian groups, but(

∏
M)α =Mα+1̄ for α ∈ Z2 and(

∏
m)s =∏

(ms)

wheres ∈ S and
∏
m is the element of

∏
M corresponding tom ∈ M. It follows that

s(
∏
m)= (−1)|s|

∏
(sm) indicating that

∏
can be viewed as an entity of degree1̄, called

theparity change functor. A freeS-supermodule is anS-supermodule isomorphic (in th
sense of 1.3) to

S(I0̄|I1̄) := S(I0̄) ⊕
(∏

S
)(I1̄)

for suitable setsIα . Thus,M is free if and only ifM is free as a module over the ringS
and has a homogeneous basis.

1.3. Multilinear maps. LetM1, . . . ,Mn andN beS-supermodules, and letα ∈ Z2. An
S-multilinear map of degreeα fromM1, . . . ,Mn to N is a mapf :M1× · · · ×Mn→ N

satisfying

(i) f (M1
β1
, . . . ,Mn

βn
)⊂Nα+β1+···+βn for all βi ∈ Z2,

(ii) f is additive in each variable, and
(iii) for s ∈ S, mj ∈Mj and 1< i � n we have

f (m1, . . . ,mi−1s,mi, . . . ,mn)= f (m1, . . . ,mi−1, smi, . . . ,mn) and

f (m1, . . . ,mns)= f (m1, . . . ,mn)s.

For readers preferring left modules we note that the conditions (iii) are equivalent to

f (m1, . . . ,mi−1, smi, . . . ,mn)

= (−1)|s|(|f |+|m1|+···+|mi−1|)sf (m1, . . . ,mi−1,mi, . . . ,mn).

We denote byLS(M1, . . . ,Mn;N)α the abelian group ofS-multilinear maps of degreeα
and put

LS
(
M1, . . . ,Mn;N) :=LS

(
M1, . . . ,Mn;N)

0̄⊕LS
(
M1, . . . ,Mn;N)

1̄.

We endowLS(M
1, . . . ,Mn;N) with anS-supermodule structure by(s.f )(m1, . . . ,mn)=

sf (m1, . . . ,mn).
As usual, the elements ofLS(M1,M2;S) are calledbilinear forms. We will use the

abbreviation HomS(M,N)=LS(M;N), and call its elementshomomorphismsorS-linear
maps. Specializing the definition above, an additive mapf :M→ N is a homomorphism
of supermodules iff (ms) = f (m)s for m ∈ M and s ∈ S or, equivalently,sf (m) =
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(−1)|s||f |f (sm). The concept of an isomorphism is then just the usual one. It is e
verified thatS-supermodules together withS-linear maps form a category. It is in fact
tensor category with respect to the tensor product defined in 1.4 [23, Chapter 3, §2]

1.4. Tensor products.For two S-supermodulesM andN we denote byM ⊗S N the
tensor product ofM andN in the category ofS-bimodules. To recognizeM ⊗S N as an
S-supermodule we recall the construction ofM⊗S N (see, e.g., [4, §11.5]). TheS0̄-module
M ⊗S0̄

N has aZ2-grading given by

(M ⊗S0̄
N)0̄= (M0̄⊗S0̄

N0̄)⊕ (M1̄⊗S0̄
N1̄),

(M ⊗S0̄
N)1̄= (M0̄⊗S0̄

N1̄)⊕ (M1̄⊗S0̄
N0̄).

By definition,

M ⊗S N = (M ⊗S0̄
N)/Q= (

(M ⊗S0̄
N)0̄/Q0̄

)⊕ (
(M ⊗S0̄

N)1̄/Q1̄

)
, (2)

whereQ=Q0̄⊕Q1̄ is theS0̄-submodule ofM⊗S0̄
N spanned by homogeneous eleme

of typems1̄⊗S0̄
n−m⊗S0̄

s1̄n with s1̄ ∈ S1̄. We denote bym⊗S n the image ofm⊗S0̄
n

inM ⊗S N under the quotient mapM ⊗S0̄
N→M ⊗S N of (2). ThenS acts onM ⊗S N

by s.(m ⊗S n) = (sm) ⊗S n, ms ⊗S n = m ⊗S sn and (m ⊗S n)s = m ⊗S (ns). This
action fulfills the condition (1) with respect to theZ2-grading (2), thus givingM ⊗S N
the structure of anS-supermodule. By abuse of notation, we will occasionally w
Mα ⊗S Nβ (α,β ∈ Z2) for the span of allmα ⊗S nβ wheremα ∈Mα andnβ ∈ Nβ . We
then have(M ⊗S N)0̄ =M0̄⊗S N0̄+M1̄⊗S N1̄, which is in general not a direct sum
S0̄-supermodules, and similarly for(M ⊗S N)1̄.

ForS-supermodulesM,N andP there are canonical isomorphisms ofS-supermodules

(M ⊗S N)⊗S P
∼=−→M ⊗S (N ⊗S P ), (3)

L(M,N;P) ∼=−→HomS(M ⊗S N,P ), (4)

ψM,N :M ⊗S N
∼=−→N ⊗S M, (5)

S ⊗S M
∼=−→M, (6)

given by the maps(m ⊗S n) ⊗S p �→ m ⊗S (n ⊗S p), b �→ [(m ⊗S n) �→ b(m,n)],
m⊗S n �→ (−1)|m||n|n⊗S m ands ⊗S m �→ sm.

1.5. Superalgebras.An S-superalgebra, also called asuperalgebra overS, is an
S-supermoduleA together with anS-bilinear mapm :A × A→ A of degree0̄. It is
usual to abbreviatem(a,b) =: ab and callab the product of A. A homomorphismof
S-superalgebras is anS-linear mapf :A→ B of degreē0 such thatf (aa′)= f (a)f (a′)
for all a, a′ ∈A.

Let A be anS-superalgebra. It is in particular a superring as defined in 1.1, h
the concepts defined there (commutative, associative and unital) apply toA. Let Λ be
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an abelian group. AΛ-grading of A is a family (Aλ: λ ∈ Λ) of S-submodules ofA
satisfyingA=⊕

λ∈Λ Aλ andAλAµ ⊂ Aλ+µ for all λ,µ ∈Λ. Note that theΛ-grading is
compatible with theZ2-grading ofA by our definition ofS-submodules. Theoppositeof an
S-superalgebraA is theS-superalgebraAop with product· defined on theS-supermodule
underlyingA by the formulaa · b = (−1)|a||b|ba where the product on the right side
calculated inA.

The tensor productA⊗S B of two S-superalgebrasA andB is again anS-superalgebra
with respect to the product

(a⊗S b)
(
a′ ⊗S b′

)= (−1)|a′||b|aa′ ⊗S bb′. (7)

To see that this is indeed a well-defined product, one can, for example, use (4).
following, tensor products of superalgebras will always be equipped with the produ
We note that theS-supermodule isomorphism

ψA,B :A⊗S B→ B ⊗S A :a⊗S b �→ (−1)|a||b|b⊗S b

of (5) is an isomorphism ofS-superalgebras. The following lemma is easily verified.

1.6. Lemma. Let P be one of the properties commutative, associative or unital, and lA
andB beS-superalgebras. If bothA andB have propertyP, then so doesA⊗S B.

1.7. Superextensions.An S-superextensionis a commutative, associative and uni
S-superalgebra. Superextensions ofS form a category whose morphisms are the su
algebra homomorphisms preserving the unit elements. It is tensor category by Lemm
A⊗S B is anS-superextension ifA andA areS-superextension.

An example of aZ-superextension is the algebra of dual numbersZ[ε] = Z⊕Zε where
ε is a homogeneous element satisfyingε2 = 0. It gives rise to theS-superalgebra of dua
numbersS[ε] = S ⊗Z Z[ε]. We have

S[ε]0̄=
{
S0̄⊕ S0̄ε if |ε| = 0̄,
S0̄⊕ S1̄ε if |ε| = 1̄,

and S[ε]1̄=
{
S1̄⊕ S1̄ε if |ε| = 0̄,
S1̄⊕ S0̄ε if |ε| = 1̄.

(8)

Another example is the Grassmann algebra overS, to be discussed in 1.11.
We note that anS-superextensionT can serve as a new base superring. IfA is

an S-superalgebra, the tensor product superalgebraAT := T ⊗S A (1.5) becomes a
T -superalgebra, called thebase superring extension. In particular,AT is aT -superexten
sion ifA is anS-superextension.

1.8. Superextensions of supermodules and multilinear maps.Let T be anS-superexten
sion, and letM be anS-supermodule. Then theT -superextension ofM

MT := T ⊗S M
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has a canonical leftT -module, namelyt (t ′ ⊗S m)= (tt ′)⊗S m) for t, t ′ ∈ T andm ∈M,
with respect to which it is aT -supermodule.

Taking extensions of supermodules is transitive: IfU is a T -superextension, the
because of (3) and (6) we have(MT )U ∼=MU . Moreover, using the isomorphisms for⊗S
exhibited in 1.4 one easily verifies that there is an isomorphism ofT -supermodules

MT ⊗T NT
∼=−→ (M ⊗S N)T

given by(t ⊗S m)⊗T (t ′ ⊗S n) �→ (−1)|m||t ′|t t ′ ⊗S (m⊗S n).
Let M1, . . . ,Mn andN be S-supermodules. Fort ∈ T andf ∈ LS(M

1, . . . ,Mn;N)
there exists a uniqueT -multilinear mapt̃ ⊗S f :M1

T × · · · ×Mn
T → NT satisfying, with

obvious notation,(
t̃ ⊗ f )

(t1⊗S m1, . . . , tn⊗S mn)
= (−1)|f ||t1···tn|+

∑n
i=2 |ti ||m1⊗···⊗mi−1|t t1 · · · tn ⊗S f (m1, . . . ,mn),

where of course|t1 · · · tn| =∑n
i=1 |ti | and|m1⊗ · · · ⊗mi−1| =∑i−1

j=1 |mj |. Moreover,

˜ :T ⊗S LS
(
M1, . . . ,Mn;N)→LT

(
M1
T , . . . ,M

n
T ;NT

)
: t ⊗S f �→ t̃ ⊗S f (9)

is a T -linear map of the correspondingT -supermodules. We callfT := 1̃⊗S f the
T -superextension off ∈LS(M

1, . . . ,Mn;N).
In particular, for everyt ∈ T andf ∈HomS(M,N) there exists a uniqueT -linear map

t̃ ⊗S f :MT →NT :
(
t ′ ⊗S m

) �→ (−1)|f ||t ′|t t ′ ⊗S f (m).

This gives rise to aT -linear map of degreē0

˜ :T ⊗S HomS(M,N)→HomT (MT ,NT ) : t ⊗S f �→ t̃ ⊗S f . (10)

1.9. Quadratic maps. LetM andN beS-supermodules. A homogeneousS-bilinear map
b :M ×M→N is calledsymmetric-alternatingif

b
(
m,m′

)= (−1)|m||m′|b
(
m′,m

)
and b(m1̄,m1̄)= 0

for m,m′ ∈M andm1̄ ∈M1̄. We note that the second condition onb follows from the first
as soon as it holds for a spanning set ofM1̄. It is of course implied by the first if12 ∈ S.

An S-quadratic map fromM toN , written in the formq :M→N , is a pairq = (q0̄, b),
whereq0̄ :M0̄→ N0̄ is anS0̄-quadratic map and whereb :M ×M→ N is a symmetric-
alternatingS-bilinear map of degreē0 such that

b
(
m¯ ,m′̄

)= q¯(m¯ +m′̄ )− q¯(m¯)− q¯(m′̄ ) (11)
0 0 0 0 0 0 0 0 0
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for all m0̄,m
′̄
0
∈M0̄, i.e.,b|M0̄×M0̄ is polar ofq0̄ in the usual sense. We therefore calb

thepolar ofq . An S-quadratic mapq :M→ S will be called anS-quadratic form.
We note that 2q0̄(m0̄) = b(m0̄,m0̄) and henceq0̄ is determined byb if 1

2 ∈ S. Also
2q0̄(s1̄m1̄) = b(s1̄m1̄, s1̄m1̄) = −s1̄b(m1̄,m1̄)s1̄ = 0 sinceb(m1̄,m1̄) = 0. For a finite
family (si ,mi)i∈F ⊂ (S0̄×M0̄)∪ (S1̄×M1̄) we have

q0̄

(∑
i∈F
simi

)
=

∑
|mi |=0̄

s2i q0̄(mi)+
∑
|mi |=1̄

q0̄(simi)

+
∑

|{i,j}|=2

(−1)|sj ||mi |sisj b(mi,mj ), (12)

where
∑
|{i,j}|=2 is the sum over all two-element subsets ofF . This makes sense since

(−1)|sj ||mi |sisj b(mi,mj )= (−1)|si ||mj |sj sib(mj ,mi)

is symmetric oni andj .

1.10. Examples of quadratic maps.(a) (O. Loos) For anS-bilinear mapa :M×M→N

of degreē0 define

qa
0̄
(m0̄)= a(m0̄,m0̄) and ba

(
m,m′

)= a(m,m′)+ (−1)|m||m′|a
(
m′,m

)
.

Thenqa = (qa
0̄
, ba) :M→ N is anS-quadratic map, called thequadratic map associate

to a. Over a free supermodule every quadratic form is obtained in this way (cf. [3,
Proposition 2] for the classical case).

(b) Let q :M → N be anS-quadratic map and letf :N → P be anS-linear map of
degree0̄. Thenf ◦ q = (f ◦ q0̄, f ◦ b) :M → P is an S-quadratic map. Similarly, i
g :L→M is anS-linear map of degreē0 thenq ◦ g = (q0̄ ◦ g,b ◦ (g × g)) :L→ N is
anS-quadratic map.

(c) For an S-quadratic mapq :M → N define Radq = {m ∈ M: q0̄(m0̄) = 0 =
b(m,M)} wherem0̄ denotes theM0̄-component ofm. Then Radq is anS-submodule of
M. If F is a submodule of Radq thenq induces anS-quadratic map̄q :M/F →N given
by q̄0̄(m0̄+ F)= q0̄(m0̄) andb̄(m+F,m′ + F)= b(m,m′).

1.11. Grassmann algebras.We letGZ be the exterior algebra of the freeZ-moduleZ(N),
i.e., the unitalZ-algebra generated by the odd generatorsξi , i ∈ N, and subject to the
relationsξ2

i = 0= ξiξj + ξj ξi for i, j ∈ N. For a finite non-empty subsetI of N, written
in the form I = {i1, i2, . . . , ir}, i1 < i2 < · · · < ir , we put ξI = ξi1ξi2 · · ·ξir , and recall
ξ∅ = 1GZ

. Then(ξI : I ⊂N finite) is aZ-basis ofGZ, satisfying

ξI ξJ = (−1)|I ||J |ξJ ξI =
{±ξI∪J I ∩ J = ∅

0 I ∩ J �= ∅
}

(13)
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3)

of
(the sign on the right hand side is described explicitly in [5, §7.8, (19)]). LetG
Z0̄

(respectivelyG
Z1̄) be theZ-span of allξI with |I | even (respectively odd). Using (1

it follows easily thatGZ =GZ0̄⊕GZ1̄ is a superextension ofZ.
For a base superringS we put

GS =GZ⊗Z S =
⊕
α,β∈Z2

GZα ⊗Z Sβ.

GS is a free S-supermodule with basis(ξI : I ⊂ N finite). By 1.7, GS is also an
S-superextension with respect to theZ2-grading

GS0̄= (GZ0̄⊗Z S0̄)⊕ (GZ1̄⊗Z S1̄) and GS1̄= (GZ0̄⊗Z S1̄)⊕ (GZ1̄⊗Z S0̄)

(direct sum ofS0̄-modules). In particular,

G(S) :=GS0̄

is a commutative associative unitalS0̄-algebra with aZ2-grading (note:G(S) is in general
not a commutative superalgebra).

1.12. Grassmann envelopes of supermodules.LetM be anS-supermodule. Because
(3) and (6) we have

GS ⊗S M =GZ ⊗Z S ⊗S M ∼=GZ ⊗ZM =
⊕
α,β∈Z2

GZα ⊗ZMβ.

In the future we will consider the isomorphism above as an equality. TheGS -action on
GS ⊗S M is then given by

(g⊗Z s)
(
g′ ⊗Z m

)= (−1)|s||g′|gg′ ⊗Z sm. (14)

TheGrassmann envelope of anS-supermoduleM is defined as theG(S)-module

GS(M) := (GS ⊗S M)0̄= (GZ0̄⊗ZM0̄)⊕ (GZ1̄⊗ZM1̄)

with G(S)-module action given by (14).

Example. Letk be a base ring,M ak-module andS ak-superextension. ThenGS⊗SMS =
(GZ ⊗Z S)⊗S (S ⊗k M)= GZ ⊗Z (S ⊗S (S ⊗k M)) =GZ ⊗Z (S ⊗k M) = (GZ ⊗Z S)

⊗k M = GS ⊗k M. Hence the Grassmann envelope of theS-superextensionMS can be
identified with theG(S)-extension ofM:

GS(MS)= (GZ⊗Z S)0̄⊗k M =G(S)⊗k M. (15)
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1.13. Grassmann envelopes of multilinear maps.Let M1, . . . ,Mn andN be S-super-
modules. Restricting the map (9) to the Grassmann envelopes, yields aG(S)-linear map

˜ :GS
(
LS

(
M1, . . . ,Mn;N))→LG(S)

(
GS

(
M1), . . . ,GS(Mn

);GS(N)). (16)

In particular, forf ∈ L(M1, . . . ,Mn;N)0̄ the restriction of theGS -superextensionfGS
(see 1.8) to the Grassmann envelopesG(Mi) is aG(S)-multilinear map

GS(f ) :GS
(
M1)× · · · ×GS(Mn

)→GS(N),

called theGrassmann envelope off . For example, the Grassmann envelope of anf ∈
HomS(M,N)0̄ is theG(S)-linear map

G(f ) :G(M)→G(N) :g⊗Z m �→ g⊗Z f (m), (17)

and by restricting of the map (10) we obtain aG(S)-linear map

˜ :GS
(
HomS(M,N)

)→HomG(S)
(
GS(M),GS(N)

)
: t ⊗S f �→ t̃ ⊗S f . (18)

If f ∈ HomS(M,N)0̄ is invertible it is immediate from (17) thatG(f ) is invertible too.
More precisely, we have

f is invertible ⇐⇒ G(f ) is invertible. (19)

Indeed, ifG(f ) is invertible its inverse leaves all spacesξI ⊗Z N|I | invariant. SinceGZ is
free we have an imbedding

M|I | ↪→GS(M) :m �→ ξI ⊗Z m (20)

for any finiteI ⊂N. Now invertibility of f follows fromM ∼=M0̄⊕ (ξ1⊗M1̄).

1.14. Grassmann envelopes of quadratic maps.TheGrassmann envelope of anS-quad-
ratic map q = (q0̄, b) :M → N is theG(S)-quadratic mapGS(q) :GS(M)→ GS(N)

defined as follows:

GS(q)

(∑
I

ξI ⊗Z mI

)
= 1G ⊗Z q0̄(m∅)

+
∑

|{I,J }|=2

(−1)|ξJ ||mI |ξI ξJ ⊗Z b(mI ,mJ ), (21)

where the second sum is taken over all sets consisting of two distinct finite subsetsN,
including the possibilityI = ∅. It has the following properties:

(i) The polar ofGS(q) is the Grassmann envelope of the bilinear formb.
(ii) GS(q)|G ¯ ⊗ZM¯ is theG ¯ -extension of theS¯ -quadratic formq¯ .
Z0 0 S0 0 0
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Example. Let k be a base ring,M and N k-modules andq :M → N a k-quadratic
map. Assume further thatS is a k-superextension. As explained in (15), the Grassm
envelopes ofMS andNS can be identified with theG(S)-extensions ofM andN . It is
well known (see, e.g., [3, §3.4, Proposition 3]) that there exists a unique extensioq
to aG(S)-quadratic mapqG(S) :G(S)⊗k M→G(S)⊗k N . We claim that there exists
uniqueS-quadratic mapqS :MS → NS whose Grassmann envelope makes the follow
diagram commutative:

G(MS)

G(qS)

G(S)⊗M
qG(S)

G(NS) G(S)⊗M
(22)

Indeed, the mapqS = (bS, q0̄S) is given as follows:q0̄S :S0̄ ⊗ M → S0̄ ⊗ N is the
S0̄-extension ofq , while bS is theS-extension ofb.

Remark. The definition of the Grassmann envelope of anS-quadratic map and th
definition of qS in (22) are special cases of the general fact that everyS-quadratic map
q :M→N can be extended to aT -quadratic mapqT :MT →NT for everyS-extensionT .
Since this result is not needed in the paper, we omit its proof which can be given
the lines of the corresponding extension result for quadratic forms over rings [3,
Proposition 3].

1.15. Varieties of superalgebras.Let A be anS-superalgebra. It follows from (16) tha
the Grassmann envelopeGS(A) is aG(S)-algebra. Moreover, (20) allows one to comp
identities inA andG(A). For example, it is easily seen (and well-known) that

A is associative (commutative)⇐⇒ GS(A) is associative (commutative). (2

In general, letV be a homogeneous variety of algebras, i.e., a variety of algebras w
T -ideal is generated by homogeneous elements [43, 1.3]. AnS-superalgebraA is called a
V-superalgebraif GS(A) belongs toV. Because of (20),V-superalgebras can be defin
by a set of homogeneous identities obtained from the defining identities ofV. Rather than
doing the precise transfer fromGS(A) to A one can simply apply thesign ruleto obtain
the super version of an identity: Whenever the order of two symbolsx, y is changed from
x . . . y to y . . . x, one must introduce a sign(−1)|x||y| in front of y . . . x.

Let T be anS-superextension and letA be aV-superalgebra overS. If A satisfies the
super version of a homogeneous identityf definingV, theT -superextensionAT will also
satisfyf , because of the uniqueness of superextensions of multilinear maps (1.8).

Example (alternative superalgebras). Recall that an algebraA is alternative if(a, a, b)=
0= (b, a, a) for all a, b ∈A where(a, b, c)= (ab)c− a(bc) is theassociator, which can
of course be defined in anyS-superalgebra. Hence, anS-superalgebraA is analternative
superalgebraif it satisfies the following identities:
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(i) (a0̄, a0̄, b)= 0= (b, a0̄, a0̄) for all a0̄ ∈A0̄, b ∈A, and
(ii) (a, b, c)+ (−1)|a||b| (b, a, c)= 0= (a, b, c)+ (−1)|b||c|(a, c, b) for all a, b, c ∈A.

2. Quadratic Jordan superpairs and supertriple systems

2.1. Quadratic maps and supertriple products.The notation introduced here will be us
throughout the paper.

Let V = (V+,V−) be a pair ofS-supermodules and letQσ :V σ → HomS(V −σ ,V σ )
be a pair ofS-quadratic maps. We writeQσ = (Qσ

0̄
,Qσ (. , .)) and recall thatQσ is

S-quadratic if and only if the following holds:

(a) Qσ(. , .) :V σ × V σ →HomS(V −σ ,V σ ) : (u,w) �→Qσ(u,w) is a map that is
(a.1) additive in each variable,
(a.2) of degreē0, i.e.,Qσ (V σα ,V

σ
β )⊂HomS(V −σ ,V σ )α+β for α,β ∈ Z2,

(a.3) symmetric-alternating:Qσ(u,w) = (−1)|u||w|Qσ (w,u) andQ(u1̄, u1̄) = 0 for
u,w ∈ V σ , u1̄ ∈ V1̄, and

(a.4) S-bilinear:Qσ (su,w)= sQσ (u,w) for s ∈ S.
(b) The mapQσ

0̄
:V σ

0̄
→ (HomS(V −σ ,V σ ))0̄ has the following properties:

(b.1) Qσ
0̄
(s0̄u0̄)= s20̄Qσ0̄ (u0̄) for s ∈ S0̄, u0̄ ∈ V σ0̄ ,

(b.2) Qσ
0̄
(u+w)−Qσ

0̄
(u)−Qσ

0̄
(w)=Qσ(u,w) for u,w ∈ V σ

0̄
.

Given such mapsQσ we define asupertriple product

{. . .} :V σ × V −σ × V σ → V σ : (u, v,w) �→ {uvw} (24)

and anS-bilinear map of degree 0

Dσ (. , .) :V σ × V −σ → EndS V σ

by the formula

{uvw} =Dσ (u, v)w = (−1)|v||w|Qσ (u,w)v. (25)

The triple product{. . .} is anS-trilinear map of degree 0 which satisfies

{uvw} = (−1)|u||v|+|u||w|+|v||w|{wv u} and {u1̄v u1̄} = 0. (26)

We note that, conversely, givenS-trilinear maps{. . .} :V σ × V −σ × V σ → V σ of degree
0̄ satisfying (26), one can defineS-bilinear symmetric mapsQσ(. , .) of degreē0 by (25).

In the situation above we consider the Grassmann envelopes ofQσ , see 1.12
AbbreviatingG(.)=GS(.), we have aG(S)-quadratic map

G
(
Qσ

)
:G

(
V σ

)→G
(
HomS

(
V−σ ,V σ

))
,
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which we compose with theG(S)-linear map (see (18))

˜ :G
(
HomS

(
V −σ ,V σ

))→HomG(S)
(
G

(
V −σ

)
,G

(
V σ

))
to obtain, by Example 1.10(b), aG(S)-quadratic map

Q̃σ := G̃(
Qσ

)
:G

(
V σ

)→HomG(S)
(
G

(
V −σ

)
,G

(
V σ

))
. (27)

Let Q̃σ (. , .) be its polar. As usual, we associate to the pair(Q̃+, Q̃−) a G(S)-
trilinear triple productG(V σ ) × G(V −σ ) × G(V σ )→ G(V σ ) andG(S)-bilinear maps
D̃σ (. , .) :G(V σ )×G(V −σ )→ EndS G(V σ ) . (We leave out thẽ in the notation for the
triple product since this will most likely not lead to confusion with the triple product ofV .)
We then have the following formulas for homogeneousu,w ∈ V σ , v ∈ V −σ andg ∈GS
such thatgu ⊗ u ∈G(V σ ) etc.

Q̃σ (ξI ⊗ u)=
{

0 for I �= ∅
Id⊗Qσ

0̄
(u) for I = ∅

}
, (28)

Q̃σ (gu ⊗ u,gw ⊗w)= (−1)|u||w|gugw ⊗Qσ (u,w), (29)

D̃σ (gu ⊗ u,gv ⊗ v)= (−1)|u||v|gugv ⊗Dσ (u, v), (30){
(gu ⊗ u)(gv ⊗ v)(gw ⊗w)

}= (−1)|u||v|+|u||w|+|v||w|gugvgw ⊗ {uvw}. (31)

Of course,⊗=⊗Z in the formulas above. In particular, it follows from (31) that the tri
product on the Grassmann envelope

GS(V ) :=G(V ) :=
(
G

(
V+

)
,G

(
V −

))
is just the Grassmann envelope of the triple product ofV (1.12).In the following we will
omit the superscriptσ if it can be inferred from the context or if it is unimportant.

2.2. Jordan superpairs. A JordanS-superpair, also called aJordan superpair overS,
is a pairV = (V+,V−) of S-supermodules together with a pair(Q+,Q−) of S-quadratic
mapsQσ :V σ →HomS(V −σ ,V σ ) such that its Grassmann envelopeGS(V ) together with
the quadratic maps(Q̃+, Q̃−) of (27) is a Jordan pair overG(S).

The condition thatG(V ) be a Jordan pair can be expressed in terms of identitie
follows. Using the notation of [20],G(V ) is a Jordan pair if and only if the identitie
(JP1)–(JP3) and all their linearizations hold when substituting elements from the spa
setξI ⊗ vσ (ξI ∈GZ, v ∈ V σ|I |) of G(V ) (a total of 15 identities). Sincev �→ ξI ⊗Z v is
an embedding, we can pull back the identities toV . It follows thatV is a Jordan superpa
if and only if the super versions of (JP1)–(JP3) and all their linearizations hold inV . One
obtains the super version (JSPx) of the Jordan identity (JPx) by using the sign rule
and by replacing any quadratic operatorQ(x) byQ¯ (x¯ ) with an evenx¯ . For example,
0 0 0
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D(x,y)D(u, v)− (−1)(|x|+|y|)(|u|+|v|)D(u, v)D(x, y)

=D({x y u}, v)− (−1)|x||y|+|x||u|+|y||u|D
(
u, {y x v}). (JSP15)

As in the classical theory the definition of a Jordan superpair simplifies if1
2,

1
3 ∈ S.

Indeed, assuming this, letV = (V +,V −) be a pair ofS-supermodules with a pair of tripl
products (24) satisfying (26). DefineD(. , .) by (25). Since (JSP15) forV is equivalent to
(JP15) forG(V ) it follows from [20, 2.2] that

If 1
2,

1
3 ∈ S thenV is a Jordan superpair if and only if(JSP15)holds forV. (32)

This characterization is taken as the definition in Krutelevich’s paper [18] which con
a classification of simple finite-dimensional Jordan superpairs over algebraically c
fields of characteristic 0.

2.3. Basic concepts.A homomorphismf :V → W of JordanS-superpairs is a pai
f = (f+, f−) of S-linear mapsf σ :V σ →Wσ of degree0̄ satisfying forx0̄ ∈ V σ0̄ and

arbitraryu,w ∈ V σ andv ∈ V −σ

f σ
(
Q0̄(x0̄)v

)=Q0̄

(
f σ x0̄

)
f−σ v and f σ

({uvw})= {
f σ (u)f−σ (v) f σ (w)

}
. (33)

There is a usefulhomomorphism criterion. Supposef :V →W is a pair ofS-linear maps
of degree 0 and letG(f ) :G(V )→G(W) be its Grassmann envelope (17). Then

f is a homomorphism ⇐⇒ G(f ) is a homomorphism. (34)

The definition of anisomorphismrespectivelyautomorphismbetween Jordan superpairs
obvious, and clearly (34) also holds for them.

A pairU = (U+,U−) of Z2-gradedS-submodules of a Jordan superpairV overS is a
subpairof V if

Q0̄

(
Uσ

0̄

)
U−σ ⊂Uσ and

{
Uσ U−σ Uσ

}⊂Uσ . (35)

In this caseGS(U) imbeds as a subpair ofGS(V ) and henceU is a JordanS-superpair
with the induced grading and the induced quadratic maps. In particular,V0̄ is a subpair
of V , whereV is considered as Jordan superpair overS0̄. Similarly, a pairU = (U+,U−)
of Z2-graded submodules is anidealof V if

Q0̄

(
Uσ

0̄

)
V−σ +Q0̄

(
V σ

0̄

)
U−σ + {

V σ V−σ Uσ
}+ {

V σ U−σ V σ
}⊂Uσ .

In this case,V/U = (V +/U+,V −/U−) is a Jordan superpair with the induced operatio
It is clear thatU ⊂ V is a subpair (respectively ideal) if and only ifGS(U) ⊂ GS(V ) is
a subpair (respectively ideal). Once callsV simpleif V has only the trivial ideals and
Qσ �= 0.
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Let Γ be an abelian group. AΓ -grading of a JordanS-superpairV = (V +,V −) is a
family (V σ [α];σ =±, α ∈ Γ ) of S-submodules such that

V σ =
⊕
γ∈Γ

V σ [γ ]

and the following multiplications rules hold for allα,β, γ ∈ Γ

Q0̄

(
V σ

0̄
[α])V −σ [β] ⊂ V σ [2α+ β], and (36){

V σ [α],V−σ [β],V σ [γ ]}⊂ V σ [α+ β + γ ], (37)

see [21] for the classical situation. In this case,V will be called Γ -graded and the
V [α] = (V +[α],V −[α]) will be referred to ashomogeneous spaces. If V andW are
Γ -graded Jordan superpairs we will say that they aregraded-isomorphicand denote this
by V ∼=Γ W , if there exists an isomorphismf :V →W with f σ (V σ [γ ]) =Wσ [γ ] for
σ =± and allγ ∈ Γ .

We call u0̄ ∈ V σ0̄ invertible if Qσ
0̄
(u) ∈ HomS(V−σ ,V σ ) is invertible. In this case

its inverseis defined byu−1 = Qσ
0̄
(u)−1(u) ∈ V −σ

0̄
. SinceQ̃σ (1⊗ u) is the Grassman

envelope ofQ0̄(u), it follows from (19) thatu is invertible if and only if 1⊗ u is invertible
in the Jordan pairG(V ). In this case, 1⊗ u−1 = (1⊗ u)−1, Q−σ

0̄
(u−1) =Qσ

0̄
(u)−1 and

u−1 is again invertible and has inverseu.
For (x, y) ∈ V σ

0̄
× V −σ

0̄
theBergman operatoris defined as

B(x, y)= Id−Dσ (x, y)+Qσ
0̄
(x)Q−σ

0̄
(y) ∈ EndS

(
V σ

)
.

Observe that the Grassmann envelope ofB(x, y) is the Bergman operator of the pa
(1⊗ x,1⊗ y). Hence, by (19) and the elemental characterization of quasi-inverti
in Jordan pairs we see that the following conditions are equivalent:

(i) B(x, y) is invertible;
(ii) (1⊗ x,1⊗ y) is quasi-invertible in the Jordan pairG(V );
(iii) (x, y) is quasi-invertible in the Jordan pairV0̄;

In this case, we call(x, y) ∈ V quasi-invertible, and note that

β(x, y)= (
B(x, y),B(y, x)−1) is an automorphism ofV, (38)

called theinner automorphismdefined by(x, y). Indeed, this follows from the homomo
phism criterion (34) and the corresponding fact for Jordan pairs [20, 3.9].

2.4. Proposition (split null extensions).LetU be a Jordan pair overk, M = (M+,M−)
a pair of k-modules,dσ :Uσ × U−σ → Endk(Mσ ) bilinear maps andqσ :Uσ →
Homk(M−σ ,Mσ ) quadratic maps. OnV = U ⊕M = (U+ ⊕M+,U− ⊕M−) we define
quadratic mapsQσ :V σ →Homk(V −σ ,V σ ) by
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Qσ (x ⊕m)(y ⊕ n)=Qσ (x)y ⊕ qσ (x)n+ dσ (x, y)m. (39)

Then the following are equivalent:

(i) V is a Jordan pair with respect toQ defined in(39).
(ii) V is a Jordan superpair overk with homogeneous partsV0̄ = U , V1̄ = M and

quadratic maps(Qσ |Uσ ,Qσ (. , .)) whereQσ(. , .) is the polar ofQσ .
(iii) (M,d, q) is aU -module in the sense of[20, 2.3].

One callsV the split null extension ofU byM [20, 2.7].

Proof. We start out with a general observation. For a fixed Grassmann generator, sξ1,
the pairW = (W+,W−)⊂G(V ) given byWσ = (1⊗ Uσ )⊕ (ξi ⊗Mσ) is a subpair of
G(V ), i.e., (35) holds which makes sense even ifG(V ) is not necessarily a Jordan pa
Moreover, the canonical map

V →W :u⊕m �→ (1⊗ u)⊕ (ξi ⊗m) (40)

is an isomorphism of pairs in the sense that (33) holds which, again, makes sen
arbitrary pairs.

(i) ⇒ (ii) To prove thatG(V ) is a Jordan pair we have to verify that the Jordan p
identities and all their linearizations hold for elements from the spanning setξI ⊗ uσI of
G(V ). The product formula (39) implies that inG(V ) all products with more than on
factor fromG1̄⊗M vanish. Thus, it is sufficient to check that the identity holds inW . But
this is indeed the case, sinceW ≈ V by (40) and sinceV is a Jordan pair by assumption

(ii) ⇒ (iii) By the observation above,W is a subpair of the Jordan pairG(V ) and hence
itself a Jordan pair. Using the enumeration of [20, 2.3], the defining identities (1), (3
and (5) of a representation, follow by evaluating the Jordan pair identities (JP1)–(JP
W while (2) is a consequence of (JP12).

(iii) ⇒ (i) this is [20, 2.7]. ✷
2.5. Corollary (first approximation of Jordan superpairs).Let V be a Jordan superpai
over a base superringS. ThenV1̄ is aV0̄-module, and hence the split null extensionV ′ of
V0̄ by V1̄ is a Jordan superpair overS as well as a Jordan pair overS0̄, called the first
approximation ofV .

Proof. Let V ′ be the pair obtained fromV by putting all products with more than on
factor from V1̄ equal to zero. By (40) the pairsV ′ andW are isomorphic. Since b
assumptionG(V ) is a Jordan pair, so isW ≈ V ′. By Proposition 2.4 we then know thatV ′̄

1
is aV ′̄

0
-module with respect to the canonical maps which, by definition ofV ′, means tha

V1̄ is aV0̄-module. ✷
2.6. Proposition (superextensions of Jordan pairs).Let V be a Jordan pair over a bas
ring k and letS be a k-superextension. We putVS = (S ⊗k V +, S ⊗k V −) and denote
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by VG(S) = G(S) ⊗k V the base ring extension ofV by G(S). By (15) we can identify
G(V σS )=G(S)⊗k V σ = V σG(S) asG(S)-modules.

There exist a unique JordanS-superpair structure onVS = (S ⊗ V +, S ⊗ V −), called
theS-extension ofV , such thatG(VS)= VG(S).

Proof. We letQS = (Q+S ,Q−S ) be theS-extensions of the structure mapsQσ (see Exam-
ple in 1.14) followed by theS-linear mapη :S ⊗k Homk(V −σ ,V σ )→ HomS(V

−σ
S ,V σS )

of (10). It is then straightforward to verify thatG(VS)= VG(S). ✷
2.7. Jordan supertriples. Let T be anS-supermodule with anS-quadratic mapP :T →
EndS(T ). As in (27) this gives rise to aG(S)-quadratic map̃P :G(T )→ EndG(S)(G(T )).
We callT aJordan supertriple overS if G(T ) together withP̃ is a Jordan triple (system
as, for example, defined in [20, 1.13]. Homomorphisms of Jordan supertriples, idea
simplicity are defined in the obvious way.

The relation between Jordan supertriples and Jordan superpairs is the same a
classical theory. To explain this, we need some more definitions. Theoppositeof a Jordan
S-superpairV = (V+,V−) is the Jordan superpairV op= (V −,V +) with quadratic maps
(Q−,Q+). ThatV op is indeed a Jordan superpair follows fromG(V op) = G(V )op. An
involution of V is a homomorphismη :V → V op such that(η− ◦ η+, η+ ◦ η−) = IdV .
It is clear thatη is an involution ofV if and only if its Grassmann envelopeG(η) is an
involution ofG(V ). One can now easily verify:

(a) If (T ,P ) is a Jordan supertriple thenV (T )= (T ,T ) with the quadratic maps(P,P )
is a Jordan superpair with involutionη= (Id, Id).

(b) Conversely, ifV is a Jordan superpair with involutionη thenT = V+ together withP
defined byP(x)=Q+(x)η+ is a Jordan supertriple whose associated Jordan supe
(T ,T ) is isomorphic toV via (Id, η+) : (T ,T )→ V .

As in the classical theory one can, conversely, imbed the category of Jordan sup
in the category of Jordan supertriples by associating to a Jordan superpairV = (V+,V−)
the Jordan supertripleT (V )= V + ⊕ V − with quadratic maps determined by

P0̄

(
x+

0̄
⊕ x−

0̄

)(
y+ ⊕ y−)=Q+

0̄

(
x+

0̄

)
y− ⊕Q−

0̄

(
x−0

)(
y+

)
and{

x+ ⊕ x−, y+ ⊕ y−, z+ ⊕ z−}= {
x+ y− z+

}⊕ {
x− y+ z−

}
.

That T (V ) is indeed a Jordan supertriple follows fromG(T (V )) = T (G(V )) and the
corresponding fact for Jordan pairs [20, 1.14]. One then has the super version of th
known simplicity transfer (see, for example, [30, 1.5]):

2.8. Lemma.

(a) A Jordan superpairV is simple if and only if the Jordan supertripleT (V ) is simple.
(b) A Jordan supertripleT is simple if and only the Jordan superpairV (T ) is either simple

or a direct sum of two simple ideals,V (T )=W ⊕Wop, such thatT = T (W).
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2.9. Example (quadratic form supertriples). To motivate the definition below we first reca
quadratic form triples. Letk be a base ring,X a k-module andq :X→ k a quadratic form
with polarb. ThenX becomes a Jordan triple system overk, called aquadratic form triple,
with quadratic mapP(x)y = b(x, y)x− q(x)y.

Let now S be a base superring and letq = (q0̄, b) :M→ S be anS-quadratic form.
Define form0̄ ∈M0̄ and arbitrary homogeneousm,n,p ∈M

P0̄(m0̄)n= b(m0̄, n)m0̄− q0̄(m0̄)n,

{mnp} = b(m,n)p+mb(n,p)− (−1)|n||p|b(m,p)n.

ThenM together with the quadratic map and triple products defined above is a J
supertriple overS, called theJordan supertriple associated toq or sometimes simply a
quadratic form supertriple. Indeed, the Grassmann envelope of the supertripleM is the
quadratic form triple onG(M) with respect to theG(S)-quadratic formG(q) of 1.14. The
Jordan superpair(M,M), see 2.7, will be called thequadratic form superpair associate
to q .

The radical Radq of q , see example 1.10(c), is an ideal of the quadratic form supert
M defined byq whose multiplication is trivial. Hence, a necessary condition for simpli
of M or (M,M) is thatq is nondegeneratein the sense that Radq = 0. The technique
to establish the following simplicity criterion are well-known, see, e.g., [13, Theorem
and [17, Theorem 6.1] for the case of Jordan algebras and superalgebras. Its pro
therefore be left to the reader, but we note that because of Lemma 2.8 it is suffic
consider the quadratic form superpair(M,M).

2.10. Lemma. LetS = S0̄ be a field, letM be a non-zeroS-supermodule and letq :M→ S

be a nondegenerateS-quadratic form. Exclude the following situation: S is a field of
characteristic2,M =M1̄ anddimS M = 2.

Then the quadratic form tripleM is simple, while the quadratic form pairV = (M,M)
is either simple orM =M0̄ has dimension2 andq is hyperbolic. In the latter case, ifh± is
a hyperbolic basis ofM, the Jordan pair(M,M)=W ⊕Wop is a direct sum of two ideal
W andWop for W = (Sh+, Sh−).

2.11. Unital Jordan superalgebras.A unital Jordan superalgebra overS is a triple
(J,U,1J ), whereJ is anS-supermodule,U :J → EndS(J ) is anS-quadratic map and
1J is a distinguished element inJ0̄ such that the Grassmann envelopeG(J ) together with

theG(S)-quadratic map̃G(U) :G(J )→ EndG(S)(G(J )) is a (quadratic) Jordan algeb
with unit element 1G⊗ 1J , as, for example, defined in [12, 1.3.4]. It follows that

U0̄(1J )= Id . (41)

Since a unital Jordan algebra is the same as a Jordan triple with an element satisfyin
unital Jordan superalgebras can also be characterized as Jordan supertriples conta
element 1J satisfying (41).



46 E. Neher / Journal of Algebra 269 (2003) 28–73

ogous
er use,

t

. As in
ve. The
is given

efinition
ssmann
ails can
andard

as in the
Basic concepts like homomorphism, ideal and simplicity are defined in an anal
manner as in 2.3 for Jordan superpairs. Details can be left to the reader but, for lat
we mention explicitly the definition of a grading. LetΛ be an abelian group. AΛ-grading
of a unital JordanS-superalgebraJ is a family (Jλ: λ ∈ Λ) of S-submodules such tha
J =⊕

λ∈Λ Jλ and the following multiplication rules hold forλ,µ, ν ∈Λ:

U0̄(Jλ)Jµ ⊂ J2λ+µ and {Jλ Jµ Jν} ⊂ Jλ+µ+ν, (42)

where{. . .} denotes the Jordan triple product of the Jordan supertriple underlyingJ .

Remarks. (a) If 1
2 ∈ S one can define alinear Jordan superalgebraas anS-superalge-

bra with the property that its Grassmann envelope is a linear Jordan algebra (1.15)
the classical case, they coincide with quadratic Jordan superalgebras defined abo
relation between the quadratic structure and the linear Jordan superalgebra product
by

U0̄(a0̄)b= 2a0̄(a0̄b)− a2
0̄
b, (43)

{a b c} = 2
(
a(bc)+ (ab)c− (−1)|b||c|(ac)b

)
. (44)

(b) The same approach that we have used to define Jordan superpairs leads to a d
of not necessarily unital (quadratic) Jordan superalgebras: one requires that the Gra
envelope is a non-unital quadratic Jordan algebra. For the case of base rings, det
be found in the recent paper [17] which also contains a discussion of some of the st
examples of Jordan superalgebras.

The relation between Jordan superalgebras and Jordan superpairs is the same
non-super case [20, 1.6, 1.11]:

2.12. Lemma (isotopes).

(a) Let J be a unital Jordan superalgebra overS. ThenV = (J, J ) with Qσ = U is a
Jordan superpair with invertible element1J ∈ V −0̄ and inverse1J ∈ V+0̄ . If J is simple
then so isV .

(b) Conversely, letV be a Jordan superpair overS and suppose thatv ∈ V −
0̄

is invertible

with inverseu ∈ V +
0̄

. Then J = V + together with1J = u and quadratic maps

given byU0̄(x) = Q+0̄ (x)Q−0̄ (v) andU(x,y) = Q+(x, y)Q−
0̄
(v) is a unital Jordan

superalgebra, called thev-isotope ofV . Moreover,(IdJ ,Q
−
0̄
(v)) : (J, J )→ V is an

isomorphism of Jordan superpairs. IfV is simple then so isJ .

2.13. Example (quadratic form superalgebras). Let V = (M,M) be the quadratic form
superpair associated to anS-quadratic formq = (b, q0̄) :M → S. If 1 ∈ M0̄ is a base
point, i.e.,q0̄(1)= 1, then 1∈ V− =M is invertible with inverse 1∈ V+ =M: the map
Q0̄(1)m= b(1,m)1−m=: m̄ satisfies ¯̄m=m. Hence, by Lemma 2.12(b), theS-module
M together with the quadratic map
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U0̄(m0̄)n= b
(
m0̄, n̄

)
m0̄− q0̄(m0̄)n̄,

{mnp} = b(m, n̄)p+mb(n̄, p)− (−1)|n||p|b(m,p)n̄.

is a unital Jordan superalgebra with identity element 1. ForS = S0̄ these superalgebras a
studied in [17, §6].

2.14. Example (special Jordan supertriples). Every associative algebraA becomes a
Jordan algebra, denotedA(+), with respect to the quadratic operationU(x)y = xyx,
where the product on the right hand side is calculated in the associative algebraA. The
corresponding triple product is{a b c} = abc + cba. We will describe the super versio
of this example but since we did not define non-unital Jordan superalgebras we wil
with Jordan supertriples instead.

Let A be an associative superalgebra over some base superringS with multiplication
ab for a, b ∈ A. For a ∈ A we define theleft multiplication L(a) respectivelyright
multiplicationR(a) by

L(a)b= ab, R(a)b= (−1)|a||b|ba.

ThenL(a),R(a) ∈ EndS(A) andL(a)R(b) = (−1)|a||b|R(b)L(a) for a, b ∈ A. We have
anS-quadratic mapP :A→ EndS(A) given by

P0̄(a0̄)= L(a0̄)R(a0̄) and

P(a, b)= L(a)R(b)+ (−1)|a||b|L(b)R(a)= L(a)R(b)+R(a)L(b).

Indeed,P is the quadratic map associated to theS-bilinear mapA×A→ EndS(A) defined
by (a, b) �→ L(a)R(b), see example 1.10(a). The corresponding triple product (25) is

{a b c} = abc+ (−1)|a||b|+|a||c|+|b||c|cba.

These formulas imply that the Grassmann envelope of(A,P ) is the Jordan triple system
G(A)(+), hence(A,P ) is a Jordan supertriple, denoted againA(+). Note thatA(+) is
a Jordan superalgebra ifA is unital. In any case, by 2.7(a),(A,A) is always a Jordan
superpair.

An involution of an S-superalgebraA is an S-linear mapπ :A→ A of degree 0
satisfying fora, b ∈A

(ab)π = (−1)|a||b|bπaπ and
(
aπ

)π = a.
Obviously,π is an involution if and only if its Grassmann envelopeG(π) is an involution
of the algebraG(A). Any involution π of an associativeA is also an involution of the
supertripleA(+) in the following sense(

P¯ (a¯ )b
)π = P¯(aπ¯ )

bπ , {a b c}π = {
aπ bπ cπ

}
, (45)
0 0 0 0
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and hence induces an involution of the associated Jordan superpair(A,A) as defined in 2.7
We denote by H(A,π)= {a ∈A: aπ = a} the symmetric elements and by Skew(A,π)=
{a ∈A: aπ =−a} the skew symmetric elements ofA. Then (45) implies that(

H(A,π),H(A,π)
)

and
(
Skew(A,π),Skew(A,π)

)
are subpairs of(A,A). (46)

Special quadratic Jordan superalgebras are also considered in [17]. For a descrip
involutions of simple or primitive associative superalgebras see [8, Theorem 2.10
[38].

3. Grids in Jordan superpairs

Unless stated otherwise,V = V0̄⊕ V1̄ will denote a Jordan superpair over some ba
superringS. We will writeQ forQσ andD forDσ if σ can be inferred from the context. W
will frequently consider elementse = (e+, e−), f = (f+, f−) or g = (g+, g−), in which
case it is often useful to employ the following abbreviations

Q0̄(e) :=
(
Q0̄

(
e+

)
,Q0̄

(
e−

))
(for evene),

D(e,f ) := (
D

(
e+, f−

)
,D

(
e−, f+

))
and

{e f g } := ({
e+ f− g+

}
,
{
e− f+ g−

})
.

3.1. Idempotents. This subsection is the super version of [20, 5.4]. All unexplai
results follow from there. Using the abbreviations above, anidempotent ofV is an
elemente = (e+, e−) ∈ V0̄ satisfyingQ0̄(e)e= e. To an idempotente we associatePeirce
projectionsEi = (E+i ,E−i ), i = 0,1,2, given by

Eσ2 =Q0̄

(
eσ

)
Q0̄

(
e−σ

)
, Eσ1 =D

(
eσ , e−σ

)− 2Eσ2 , Eσ0 = B
(
eσ , e−σ

)
.

Let V ′ be the first approximation ofV (2.5). Since theEi are the same forV and the
Jordan pairV ′, the classical theory implies that they form a complete system of orthog
projections onto thePeirce spacesof e,

Vi(e)=
(
V +i (e),V

−
i (e)

)
, V σi =Eσi

(
V σ

)
,

and hence give rise to thePeirce decompositionV = V2(e)⊕ V1(e) ⊕ V0(e). Of course
this direct sum has to be understood componentwise. We will abbreviateVi(e) by Vi if the
idempotente is clear from the context. The Peirce spaces areS-submodules, and they a
the same forV andV ′. Therefore we have the following characterizations:

V σ2 = Im
(
Q0̄

(
eσ

))
, V σ1 ⊕ V σ0 = Ker

(
Q0̄

(
e−σ

))
,

V σ1 = Ker
(
Id−D(

eσ , e−σ
))
,

V σ0 = Ker
(
Q¯

(
e−σ

))∩Ker
(
D

(
eσ , e−σ

))
,
0
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V σi ⊂
{
v ∈ V σ :

{
eσ e−σ v

}= iv} (i = 0,1,2),

where the inclusion above is an equality if eitheri = 1 or i = 0,2 andV has no 2-torsion
The element 1⊗ e= (1⊗ e+,1⊗ e−) is an idempotent of the Grassmann envelopeG(V ).
Since the Grassmann envelopes of the Peirce projectionsEi are the Peirce projections o
the idempotent 1⊗ e ∈G(V ) it follows that

G(Vi(e))=G(V )i(e) (i = 0,1,2). (47)

Using (47), the multiplication rules between the Peirce spaces of 1⊗ e can be pulled back
to V . SettingVi = 0 for i �= 0,1,2 we therefore have

Q0̄(Vi)Vj ⊂ V2i−j and {Vi Vj Vk} ⊂ Vi−j+k, (48)

D(V2,V0)= 0=D(V0,V2). (49)

In particular, (48) says that everyVi(e) is a subpair ofV .
For two idempotentse andf in Jordan superpairV we say

(i) e andf areassociated(e≈ f ) if e ∈ V2(f ) andf ∈ V2(e) or, equivalently, the Peirc
spaces ofe andf coincide,

(ii) e andf arecollinear (e�f ) if e ∈ V1(f ) andf ∈ V1(e),
(iii) e andf areorthogonal(e⊥ f ) if e ∈ V0(f ) or, equivalently,f ∈ V0(e),
(iv) e governsf (e ! f ) if e ∈ V1(f ) andf ∈ V2(e).

3.2. McCrimmon–Meyberg superalgebras.Let e, f be two collinear idempotents i
a Jordan pairU . By a result of McCrimmon–Meyberg [28, 1.1] the pair(e+ + f+,
e− + f−) ∈ U is quasi-invertible and gives rise to theexchange automorphismte,f =
β(e+ + f+, e− + f−) which has period 2, and satisfieste,f (e)= f andte,f (f )= e. We
also recall from [28, 2.2] that the algebraA, defined onU+2 (e)∩U+1 (f ) by

A: ab= {{
a e− f+

}
f− b

} (
a, b ∈U+2 (e)∩U+1 (f )

)
, (50)

is an alternative algebra with identity elemente+. We will callA theMcCrimmon–Meyberg
algebra of the pair(e, f ).

These results immediately generalize to the setting of Jordan superpairs. IndeedV
be a Jordan superpair and assume thate, f ∈ V0̄ are two collinear idempotents. Applyin
the above to the Jordan pairV ′, the first approximation ofV , we have the exchang
automorphismte,f of order 2. Also,A= V +2 (e) ∩ V+1 (f ) together with the product (50
is anS-superalgebra. By (47) and the definition of the algebra respectively triple pr
in the Grassmann envelopes (7), (31) the Grassmann envelope ofA is the McCrimmon–
Meyberg algebra of the collinear pair(1⊗ e,1⊗ f ) in G(V ). Therefore, by 1.15,A is
an alternative superalgebra. It is unital with identity elemente+ and will be called the
McCrimmon–Meyberg superalgebra of the collinear pair(e, f ).
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3.3. Grids. Grids in Jordan triple systems have been studied in [31] and [33]
considering the polarized Jordan triple system associated to any Jordan pair, this
can be applied to Jordan pairs, see [35, §1] for a review of grids in Jordan pairs. Si
definition an idempotent in a Jordan superpairV lies in the Jordan pairV0̄, the theory of
grids is also available for Jordan superpairs, by considering the subpairV0̄ ⊂ V . For the
sake of completeness we give a short review below. We will use some concepts fro
theory of 3-graded root systems for which the reader is referred to [22, §17 and
A summary of some results is also given in [32], [33, §1] and [35, 1.1], but note
following changes: in [22] 0 is considered a root and the Cartan integers are de
〈α,β∨〉.

A cog in V is a family E ⊂ V of non-zero idempotents such that two distin
idempotentse, f ∈ E satisfy exactly one of thePeirce relationse�f, e ⊥ f, e ! f or
e % f . A cogE is closedif there exists a 3-graded root system(R,R1) and a bijection
R1→ E :α �→ eα which preserves the Peirce relations�, ⊥ and!. Such a 3-graded roo
system is uniquely determined up to isomorphism and called theassociated3-graded root
system ofE [33, 3.2]. We fix one such bijection and enumerateE = {eα; α ∈ R1}. Since
eα�eβ ⇔ α�β and similarly for⊥ and! we have

eα ∈ V〈α,β∨〉(eβ),
in particular, {eα eα eβ} =

〈
β,α∨

〉
eβ. (51)

A cogE in V is calledconnectedif every two idempotentse, f ∈ E can be connected by
finite chain(e= f1, f2, . . . , fn = f )⊂ E with fi /⊥ fi+1 for every 1� i < n. A closed cog
is connected if and only if its associated 3-graded root system is irreducible [33, 3.4
calls two cogsE andE′ associated(E≈ E′) if there exists a bijectionφ :E→ E′ such that
φ(e)≈ e for everye ∈ E. Two associated closed cogs have isomorphic associated 3-g
root systems [33, Theorem 3.4.a].

A closed cogG⊂ V is agrid if it has the following two properties:

(G1) whenever(g1, g2, g3) ⊂ G is a family of pairwise collinear idempotents such th
{g1g2, g3} �= 0 then there existsh ∈ G such thatg1 ! h % g3 andh ⊥ g2, i.e., the
Peirce relations in(h;g1, g2, g3) are the same as in a diamond of roots, and

(G2) if g1 % g2 ! g3�g1 then{g1g2g3} = 0.

For covering grids another characterization will be given in (53). Special examp
grids will be studied in detail in Section 4.

A collinear family is a family of pairwise collinear non-zero idempotents. A cogE is
calledpureif {e f g} = 0 for any collinear family(e, f, g)⊂ E. A collinear family is a grid
if and only if it is pure. It follows from the classification of grids in [31, Chapter II] th
any connected non-pure grid is associated to a so-called hermitian grid as defined i

3.4. Covering grids. For a closed cogG = {eα: α ∈ R1} ⊂ V andα ∈ R1 we define the
( joint) α-Peirce space ofG by
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Vα :=
⋂
β∈R1

V〈α,β∨〉(eβ),

where, of course, the intersection has to be taken componentwise. Observe thateα ∈ Vα ⊂
V2(eα). The sum of the joint Peirce spaces is always direct, and one saysG coversV if

V =
⊕
α∈R1

Vα. (52)

By [37, Proposition 3.7],

a covering cog is necessarily a grid, (53)

and hence in the future we will only speak of covering grids instead of covering c
cogs. Recall that two associated closed cogs have the same Peirce spaces [33, (3
particular, one is a covering grid if and only if both are covering grids.

In view of (47), the Grassmann envelope of the jointα-Peirce space of a gridG is the
α-Peirce space of the closed cog1⊗ G = {1⊗ g: g ∈ G} ⊂ G(V ), from which it easily
follows that

G coversV ⇐⇒ 1⊗ G coversG(V ). (54)

The Peirce multiplication rules (48) and (49) for a single idempotent imply

Q0̄(Vα)Vβ ⊂ V2α−β, {Vα Vβ Vγ } ⊂ Vα−β+γ and (55)

{Vα Vβ V } = 0 if α ⊥ β, (56)

whereQ0̄(Vα)Vβ = 0 if 2α − β /∈R1 and analogously for the triple product{Vα Vβ Vγ }.
Suppose thatG is a covering grid. The multiplication rule (55) can also be interpre

by saying that (52) is a grading ofV by the root latticeZ[R] of R. Indeed, (55) become
(36) if one defines

V σ [α] =
{
V+α σ =+, α ∈ R1,

V−−α σ =−, α ∈ R−1,

0 otherwise.
(57)

This grading will be denoted byR and called theroot grading induced byG.
Let (α,β) ⊂ R1 be a pair of collinear roots, henceeα, eβ are collinear idempotents

(Such a pair does not exist if and only ifR = Ȧ1 or R = B2). The McCrimmon–Meyberg
superalgebra of(eα, eβ), as defined in 3.2, is defined on the Peirce spaceV+α since

Vα = V2(eα) ∩ V1(eβ). (58)

Indeed,Vα ⊂ V2(eα)∩ V1(eβ) since〈α,α∨〉 = 2 and〈β,α∨〉 = 1. For the other inclusion
we note that alwaysV2(eα) ∩ V1(eβ) =⊕{Vγ : γ ∈ R1, 〈γ,α∨〉 = 2, 〈γ,β∨〉 = 1}. For
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anyγ ∈ R1 satisfyingγ �= α and〈γ,α∨〉 = 2 we haveγ % α�β and thereforeγ % β or
γ ⊥ β by length considerations [22, 18.6.b(ii)]. In particular,〈γ,β∨〉 �= 1 which implies
(58).

The following lemma is immediate from (56). It reduces the classification of Jo
superpairs covered by a grid to the case of connected grids.

3.5. Lemma (direct sums).Let V be a Jordan superpair with a covering gridG whose
associated3-graded root system(R,R1) is an orthogonal sum of3-graded root system
(R(i),R

(i)
1 ), e.g., the decomposition of(R,R1) into its irreducible components. PutV (i) =⊕

α∈R(i)1
Vα . ThenV =⊕

i V
(i) is a direct sum of ideals.

3.6. Standard grids. In an arbitrary gridG the relations between idempotents a
controlled by the associated 3-graded root system, but products of typeQ0̄(e)f or
{efg} for e, f, g ∈ G may fall outside ofG even ifQ0̄(e)f or {efg} are idempotents
Roughly speaking, standard grids are characterized by the condition that Jordan p
of idempotents inG which are idempotents lie in±G. To define standard grids, we ne
the following concepts.

A family (e0; e1, e2) of non-zero idempotents inV is a triangle of idempotentsif

(i) e0 ! e1⊥ e2 % e0, and
(ii) Q0̄(e0)e1 = e2, Q0̄(e0)e2 = e1 and {e1 e0 e2} = e0 (by [31, I.2.5], the first of these

three equations implies the remaining two).

A family (e1, e2, e3, e4) of non-zero idempotents in a Jordan superpairV is a
quadrangle of idempotentsif for all indices mod 4 we have

(i) ei�ei+1⊥ ei+3, and
(ii) {ei ei+1 ei+2} = ei+3.

A family (e0; e1, e2, e3) of non-zero idempotents inV is adiamond of idempotentsif

(i) (e1, e2, e3) is a collinear family ande1 ! e0 % e3, e0⊥ e2;
(ii) {e0 e1 e2} = e3, {e1 e2 e3} = 2e0, {e2 e3 e0} = e1, {e3e0 e1} = e2 (the first of these fou

equations actually implies the remaining three, see [31, I.2.8]).

In the three definitions above the conditions (i) coincide with the definition
triangle, quadrangle or diamond of roots [22, 18.3]. To distinguish them from tria
of idempotents etc., we will refer to the configurations of roots asroot triangle, root
quadrangleor root diamondrespectively.

A grid G= {eα: α ∈R1} in a Jordan superpair is astandard grid[33, 3.5] if

(SG1) the idempotents corresponding to a root triangle(α;β,γ )⊂ R1 form a triangle of
idempotents;
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(SG2) the idempotents corresponding to a root diamond(α;β,γ, δ)⊂R1 form a diamond
of idempotents;

(SG3) for every root quadrangle(α1, α2, α3, α4) ⊂ R1 there exists a signε ∈ {±1} such
that(eα1, eα2, eα3, εeα4) is a quadrangle of idempotents.

Clearly, triangles and quadrangles of idempotents are examples of standard
A diamond creates a standard grid, namely a hermitian gridH(3) as defined in 4.8, se
[31, Theorem I.2.11].

Every gridG is associated to a standard grid [33, 3.7 and 3.8]. Such a standard grid
unique, but one example can be constructed as follows. We choose a grid baseB of (R,R1)

(see [32] or [33, 1.5]) and definẽG= {g̃α : α ∈ R1} by induction on the height. Forβ ∈ B
we putg̃β = eβ . Forα ∈ R1 with ht(α)� 3 we choose a decompositionα = γ − β1+ β2
with βi ∈B andγ ∈R1,ht(γ )= ht(α)− 2, and definẽgα by

a) g̃α =Q0̄(eγ )eβ1 in caseγ = β2 and(γ ;β1, α) is a root triangle;
b) g̃α = {eγ eβ1 eβ2} in case(β1, β2, α, γ ) is a root quadrangle or(β1;β2, α, γ ) is a root

diamond.

Then G̃ is a standard grid with̃G ≈ G. It is called thestandard grid generated b
{eβ : β ∈ B}. It is unique in the following sense: ifG′ is another standard grid wit
{eβ : β ∈ B} ⊂ G′ and with the same 3-graded root system asG (and̃G) then the idempotent
in G̃ and inG′ differ by a sign only [33, 3.7].

3.7. Refined root gradings of Jordan superpairs.Suppose thatV is covered by a standar
grid G = {eα: α ∈ R1} with associated 3-graded root system(R,R1). We then have an
induced root gradingR of V with grading groupZ[R] as defined in (57).

A refined root grading of(V ,G) is a grading(V σ [γ ]: σ =±, γ ∈ Γ ) of V with grading
groupΓ , written additively, such that the following two properties hold:

(i) There exists a group homomorphismφ :Γ → Z[R] such that for everyα ∈R1 we have

V σα =
⊕

γ∈φ−1(α)

V σ [σγ ].

(ii) Every eα is homogeneous:eα ∈ (V +[α̇+],V−[α̇−]) for suitableα̇± ∈ Γ .

Throughout we will use the following notation for a refined root grading with grad
group Γ . Since 0�= eσα = Q0̄(e

σ
α )e

−σ
α ∈ V σ [2α̇σ + α̇−σ ] it follows that α̇σ = −α̇−σ .

Hence, withα̇ := α̇+, we haveeα ∈ (V +[α̇],V−[−α̇]). We put

Γ̇ := the subgroup ofΓ generated by{α̇: α ∈R1},
Γ 0 := Kerφ.

We can therefore write
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V σα =
⊕
λ∈Γ 0

V σ
[
σ α̇ + λ]

for α ∈ R1. Our notation is influenced by the notations used in the theory of exte
affine Lie algebras, see, for example, [2] or [1]. Indeed, for suitable choices ofΓ andV
the TKK-algebra ofV is the core of an extended affine Lie algebra.

Remarks. (1) The definition above makes perfect sense for an arbitrary covering gG

which is not necessarily a standard grid. This will however not lead to a more ge
structure. Indeed, letB be a grid base of(R,R1) and let̃G be the standard grid generat
by {eβ : β ∈ B}, see 3.6. TheñG has the same root grading asG since G̃ ≈ G. By the
description of̃G given in 3.6, every idempotent of̃G is Γ -homogeneous. It is therefore n
loss of generality to assume in the definition of a refined root grading thatG is a standard
grid. In fact, we can even assume thatG is the standard grid generated by{eβ : β ∈ B} for
some grid baseB of (R,R1).

(2) Refined root gradings naturally occur in the following set-up. Suppose
simplicity, thatk is a field of characteristic 0. LethG denote the span of all inner derivatio
(D(e+α , e−α ),−D(e−α , e+α )),α ∈ R1. ThenZ[R] imbeds as a subgroup of the dual spa
of hG via α(∆(e+β , e

−
β )) = 〈α,β∨〉 [34, 3.2.c]. Assume further thath ⊂ (DerV )0̄ is an

subalgebra of the derivation algebra DerV which acts diagonalizably onV and contains
hG. The weight spaces ofh in V then define a refined root grading with grading grouph∗.
In this case the mapφ can be taken to be the restriction ofλ ∈ h∗ to Z[R] ⊂ h∗G.

(3) Generalizing (2), one can define refined root gradings of Lie algebras grade
root systemR [42, §2]. For the case of a 3-gradedR, refined root gradings are describ
in [9, 2.11].

(4) For an easy example of refined root grading see 3.9. We will describe refine
gradings in terms of graded supercoordinate systems in Section 4.

3.8. Lemma.

(a) Let (V±[γ ]: γ ∈ Γ ) be a refined root grading with grading groupΓ . Then:
(a.i) φ|Γ̇ is a group isomorphism ontoZ[R] andΓ = Γ̇ ⊕ Γ 0.
(a.ii) Put

V σ (λ) :=
⊕
α∈R1

V σ
[
σ α̇ + λ], σ =±.

Then(V±(λ);λ ∈ Γ 0) is aΓ 0-grading of the Jordan superpairV as defined in2.3. In
particular,V (0) is a subpair ofV containingG:

(b) Conversely, assume thatΛ is an abelian group and that(V ±〈λ∨〉: λ ∈ Λ) is a
Λ-grading ofV which is compatible with the root gradingR in the following sense:
(b.i) V σ 〈λ∨〉 =⊕

α∈R1
(V σ 〈λ∨〉 ∩ V σα ) for everyλ ∈Λ;

(b.ii) G⊂ V 〈0∨〉.
PutΓ = Z[R] ⊕Λ (direct sum of abelian groups), and forρ ∈ Z[R] andλ ∈Λ define
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V σ [ρ ⊕ λ] :=
{
V σα ∩ V σ 〈λ∨〉 if ρ = σα, α ∈ R1,

0 otherwise.

Then(V±[ρ ⊕ λ]: ρ ⊕ λ ∈ Γ ) is a refined root grading of(V ,G).

A refined root grading of(V ,G) with grading groupZ[R] ⊕Λ will be called arefined
root grading of type(R,Λ). We will sayV has a refined root grading of type(R,Λ) if
there exists a covering gridG with 3-graded root system(R,R1) = R such that(V ,G)
has a refined root grading of type(R,Λ). Because of the result above, every refined r
grading ofV is of type(R,Λ) for some suitableR andΛ.

Proof. (a.i) LetB be a grid base of(R,R1). Because of the uniqueness of standard g
we may assume thatG is the standard grid generated by{eβ : β ∈ R1}, see 3.6. Then a
induction on the height, using the formulas of [22, 18.4], shows thatΓ̇ is spanned by
{β̇: β ∈ B}. SinceZ[R] =⊕

β∈B Zβ , it follows thatφ|Γ̇ is an isomorphism ontoZ[R],
and this then implies the second claim.

(a.ii) It is clear thatV σ =⊕
λ∈Γ 0 V σ (λ). The multiplication rules (36) and (37) ho

because forα,β, γ ∈R1 andλ,µ, ν ∈ Γ 0 there existsδ ∈R1 such that

Q
(
V σ

[
σ α̇ + λ])V −σ [−σ β̇ +µ]⊂ V σ [σ δ̇+ 2λ+µ]

and (59){
V σ

[
σ α̇ + λ]V−σ [−σ β̇ +µ]

V σ [σγ + ν]}⊂ V σ [σ δ̇+ λ+µ+ ν]. (60)

Indeed, since we have aΓ -grading the left side of (59) lies inV σ [σ(2α̇ − β̇)+ 2λ+ µ].
We can assume that it is non-zero. Then, because of (55), we haveφ(2α̇− β̇)= 2α−β =:
δ ∈ R1 whence 2̇α − β̇ = δ̇ by injectivity of φ|Γ̇ . (60) is proven similarly.

(b) is a straightforward verification.✷
3.9. Split Jordan superpairs.Because of [31, Theorem I.4.3] and the defining proper
of standard grids, theZ-span of any standard gridG in V ,

Z[G] =
⊕
g∈G

(
Zg+,Zg−

)
is a subpair of the Jordan superpairV considered as a superpair over the integers. It foll
easily from the properties mentioned above that the following are equivalent for a J
superpairV over some base superringS:

(a) there exists a gridG⊂ V0̄ such that{gσ : g ∈ G} is a basis of theS-supermoduleV σ ;
(b) there exists a standard gridG ⊂ V0̄ such that {gσ : g ∈ G} is a basis of the

S-supermoduleV σ ;
(c) there exists a standard gridG⊂ V0̄ such thatV is isomorphic to theS-superextension

Z[G]S of Z[G] by S as defined in Proposition 2.6.

Generalizing a concept from [36, 3],V is calledsplit or split of typeG if the conditions
(a)–(c) are fulfilled. In this case,G is a covering grid ofV .
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Let G= {eα: α ∈ R1} be a standard grid and suppose thatS has aΛ-grading as defined
in 1.5. The split Jordan superpairV = Z[G]S then has aΛ-grading with homogeneou
partsSλ⊗Z[G] which is compatible with the root grading ofV . Hence, by Lemma 3.8(b
V has a refined root grading with grading groupZ[R] ⊕Λ.

4. Refined root gradings of Jordan superpairs

4.1. Preparation. Unless stated otherwise, in this sectionV will denote a Jordan
superpair over some base superringS. SupposeV is covered by a gridG with associated
3-graded root system(R,R1). Every grid is the union of connected, pairwise orthogo
grids or, equivalently, every 3-graded root system is the orthogonal sum of irreducib
systems. Hence, by Lemma 3.5,V is a direct sum of ideals each covered by a conne
subgrid. For the purpose of classification we may therefore assume thatG is connected, o
equivalently, thatR is irreducible.

Connected grids in Jordan triple systems are classified up to association in [31,
explained in 3.3, this can be applied toG ⊂ V0̄. Since idempotents are associated inV if
and only if they are associated inV0̄ and since a grid associated to a covering grid is
covering, it follows from the classification of grids that we may assume thatG is exactly
one of the seven types of grids listed in Table 1. For the convenience of the read
definition of these grids is given in the subsections indicated. All of these seven gri
connected standard grids. Their associated 3-graded root systems are the ones
corresponding names, see for example [22, 17.8, 17.9].

To classify Jordan superpairs covered by a grid now means to define for each o
seven types a so-calledstandard exampleof a Jordan superpair covered byG and to prove
a coordinatization theorem, i.e., to show that an abstract Jordan superpair covered byG is
isomorphic to a standard example. For the convenience of the reader the list of the v
coordinatization results is indicated in the column “coordinatization.”

Once one knows the structure of a Jordan superpairV covered by a gridG, i.e., a Jordan
superpair with a root gradingR, one can then easily describe the refined root grading
(V ,G). We will employ the terminology of Lemma 3.8 and study refined root grading
type(R,Λ) whereΛ is an abelian group.

Although refined root gradings are more general than root gradings, i.e., the gr
obtained from covering grids, we feel it is more natural to formulate our coordinatiz
results first for covering grids and then indicate the necessary “refinements” for re

Table 1

Name of grid Definition Coordinatization

rectangular gridR(M,N) (1� |M|� |N |) 4.2 4.3, 4.5, 4.7
hermitian gridH(I ) (2 � |I |) 4.8 4.9, 4.12
even quadratic form gridQe(I ) (3� |I |) 4.13 4.14
odd quadratic form gridQo(I ) (2� |I |) 4.15 4.16
alternating (= symplectic) gridA(I ) (5� |I |) 4.17 4.18
Bi-Cayley gridB 4.19 4.20
Albert gridA 4.21 4.22
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root gradings—after all, this is what the terminology suggests. Let us point out th
coordinatization theorems for refined root gradings are new even in the case of Jorda
Because of this they cannot be obtained by applying the Even Rules Principle [6, 1
course, with some good will this principle can be applied in the ungraded case, i.
coordinatization of Jordan superpairs covered by grids. However, since the proofs
various coordinatization theorems are quite similar, we will only present three of the
representative examples (Theorems 4.5, 4.9 and 4.16).

4.2. Rectangular grids. For arbitrary (possibly infinite) non-empty setsM,N with
|M| � |N | a family R(M,N) = {emn: m ∈M,n ∈ N} of non-zero idempotents inV is
called arectangular grid of sizeM ×N if it has the following properties:

(i) if |M| = 1 thenR(M,N) is a collinear family, 3.3,
(ii) for distinct m,m′ ∈ M and n,n′ ∈ N the subfamily (emn, emn′ , em′n′ , em′n) of

R(M,N) is a quadrangle of idempotents, 3.6, and
(iii) R(M,N) is pure, 3.3.

For finite M,N with |M| = m and |N | = n we will write R(M,N) = R(m,n). The
3-graded root system(R,R1) associated to a rectangular gridR(M,N) is the rectangula
gradingȦM,NI for I =M ∪̇ N as defined in [22, 17.8]. We haveR = {εi − εj : i, j ∈ I }
andR1= {εm− εn: m ∈M,n ∈N}.

The classification of Jordan superpairs covered by a rectangular grid naturally le
three subcases:(|M|, |N |) = (1,1), (|M|, |N |)= (1,2) and |M| + |N | � 4. The last one
will be dealt with in 4.6 and Theorem 4.7, for the second see 4.4 and Theorem 4.5.

In the first case we haveR = A1. The standard example for such a Jordan superpa
(J, J ) whereJ is a unital Jordan superalgebraJ , Lemma 2.12. Indeed,(J, J ) is covered
by the gridG = {e} for e = (1J ,1J ). A Λ-grading ofJ , as defined in 2.11, gives rise
a refined root grading of(J, J ) of type (A1,Λ). Conversely, ifV is a Jordan superpa
covered by a single idempotente thenV = V2(e). SinceQ0̄(e

σ )Q0̄(e
−σ ) projects onto

V σ2 (e) it follows that V = V2(e) if and only if eσ is invertible, and in this case w
have (eσ )−1 = e−σ . Hence we can apply Lemma 2.12 and obtainV ∼= (J, J ) via the
isomorphism(IdV+,Q0̄(e

−)) :V → (J, J ). In caseV has a refined root grading, th
isomorphism becomes a graded isomorphism, whereJ has the induced grading given b
Jλ = V +λ . These results are summarized below.

4.3. A1-Coordinatization. A Jordan superpairV overS is covered by a single idempote
if and only ifV is isomorphic to the superpair(J, J ) of a unital Jordan superalgebraJ
overS. More generally,V has a refined root grading of type(A1,Λ) if and only ifV is
graded-isomorphic to(J, J ) whereJ is a unital Jordan superalgebra with aΛ-grading.

4.4. R(1,2) and alternative1× 2-matrices. A rectangular gridR(1,2) is the same a
a collinear pair(e, f ). A collinear pair(e, f ) covers a Jordan superpairV if and only if
V = V2(e)⊕ V2(f ) andV2(e)= V1(f ),V2(f )= V1(e).

Before we describe Jordan superpairs covered by a collinear pair, let us rec
classical situation. One knows ([28, 2.2], [35, (3.2.3)]) that a Jordan pairU is covered
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by a collinear pair(e, f ) if and only if U is isomorphic to the Jordan pairM12(B) :=
(Mat(1,2;B),Mat(2,1;B)) whereB is a unital alternative algebra, which one can ta
to be the McCrimmon–Meyberg algebra of the collinear pair(e, f ). For (x, y) ∈M12(B)

written in the formx = (x1x2), yT = (y1y2) the Jordan pair products are

Q+(x)y = x(yx)= (
x1(y1x1)+ x2(y2x1), x1(y1x2)+ x2(y2x2)

)
,

Q−(y)x = (yx)x = (
(y1x1)y1+ (y1x2)y2, (y2x1)y1+ (y2x2)y2

)T
.

Of course, because of the Moufang identitya(ba)= (ab)a, some of the brackets above a
superfluous. They are included for easier comparison with the supercase discussed

In the supercase, we consider a unital alternative superalgebraA over S. For natural
numbersm,n we denote by Mat(m,n;A) them× n-matrices with entries fromA. This
becomes anS-supermodule whose even part is Mat(m,n;A0̄) and whose odd part consis
of thosem× n-matrices for which all entries lie inA1̄. (Warning: Matrices overA are also
defined in [19, §3] and [23, Chapter 3, §1.7]. The matrices considered here all hav
rows and columns in the terminology of [19] and [23].) In particular,

M12(A) :=
(
Mat(1,2;A),Mat(2,1;A))

is a pair ofS-supermodules. There are canonicalS-quadratic mapsQ = (Q+,Q−) on
M12(A) such that the Grassmann envelope of(M12(A),Q) is the Jordan pairM12(G(A)).
Namely, for x0̄ = (x0̄1x0̄2) ∈ Mat(1,2;A0̄), y ∈ Mat(2,1;A) with yT = (y1y2) and
arbitrary homogeneousx, z ∈Mat(1,2;A), y ∈Mat(2,1;A) we define

Q+
0̄
(x0̄)y =

(
x0̄1(y1x0̄1)+ x0̄2(y2x0̄1), x0̄1(y1x0̄2)+ x0̄2(y2x0̄2)

)
,

{x y z} = (
x1(y1z1)+ x2(y2z1)+ (−1)|x||y|+|x||z|+|y||z|

(
z1(y1x1)+ z2(y2x1)

)
,

x1(y1z2)+ x2(y2z2)+ (−1)|x||y|+|x||z|+|y||z|
(
z1(y1x2)+ z2(y2x2)

))
.

One obtainsQ−
0̄

and the other supertriple product{. . .} :V−×V +×V − → V − by shifting
the brackets in the expressions above one position to the left and taking the transpos
respect to this product

e=
(
(1 0),

(
1
0

))
and f =

(
(0 1),

(
0
1

))
are collinear idempotents which coverM12(A). Moreover, anyΛ-grading ofA, as defined
in 1.5, gives rise to a refined root grading ofM12(A) of type (A2,Λ) by defining the
homogeneousλ-space asM12(A)〈λ〉 = (Mat(1,2;Aλ),Mat(2,1;Aλ)).

4.5. A2-Coordinatization Theorem. A Jordan superpairV over S is covered by a
collinear pair (e, f ) if and only if V is isomorphic to a Jordan superpairM12(A) of a
unital alternative superalgebraA overS. One can takeA to be the McCrimmon–Meyber
superalgebra of(e, f ).
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In this case,(V , {e, f }) has a refined root grading of type(A2,Λ) if and if A is
Λ-graded. ThenV andM12(A) are graded-isomorphic.

Proof. SupposeV is covered by a collinear pair(e, f ), and letA be its McCrimmon–
Meyberg superalgebra. ThusV = V1⊕ V2 whereVi = Vi(f ) andA= V+1 asS-modules.
We defineφ :V →M12(A) by

φ+(x1⊕ x2)=
(
x1,

{
e+f−x2

})
, φ−(y1⊕ y2)=

(
Q0̄(e

+)y1

Q0̄(e
+){e−f+y2}

)
and claim thatφ is an isomorphism of Jordan superpairs overS. By the homomorphism
criterion (34) it suffices to show that the Grassmann envelopeG(φ) is an isomorphism. By
(54) we know thatG(V ) is covered by the collinear pair(1⊗ e,1⊗ f ), and by 3.2 the
Grassmann envelope ofA is the McCrimmon–Meyberg algebra of(1⊗ e,1⊗ f ). Since
(G(Mat(1,2;A)),G(Mat(2,1;A))) = (Mat(1,2;G(A)),Mat(2,1;G(A)) one then finds
thatG(φ) :G(V )→ M12(G(A)) is exactly the map used in the A2-coordinatization of
Jordan pairs ([28, 2.2] and [35, (3.2.3)]) and is therefore an isomorphism.

Now suppose that(V , {e, f }) has a refined root grading of type(A2,Λ) with
homogeneous spacesV σ 〈λ〉 in the notation of Lemma 3.8(b). DefineAλ = V +λ ∩ A.
Sincee, f ∈ V 〈0〉 it easily follows from the product formula (50) thatA = ⊕

λ∈Λ Aλ
is aΛ-grading ofA. Moreover, the isomorphismφ defined above is a graded isomorphi
sinceφ(V 〈λ〉) ⊂M12(A)λ. This proves one direction of the theorem, the other has b
established in 4.4. ✷
4.6. Rectangular matrix superpairs.Let A be a unital associative superalgebra o
S, and letM,N be arbitrary sets. Afinite matrix overA of sizeM × N is a matrix
x = (xmn)m∈M,n∈N where allxmn ∈A andxmn �= 0 for only a finite number of indicesm,n.
Generalizing the notation of 4.4 we denote by Mat(M,N;A) the leftA-module of all finite
matrices overA of sizeM ×N . By restriction of scalars, this becomes anS-supermodule
with even part Mat(M,N;A0̄) and odd part Mat(M,N;A1̄) (in obvious notation).

LetP be the disjoint unionP =M ∪̇N . With respect to the usual matrix multiplicatio
Mat(P,P ;A) is an associative superalgebra overS. By Example 2.14 we therefore have
Jordan superpair(Mat(P,P ;A),Mat(P,P ;A)) overS. Therectangular matrix superpai
of sizeM ×N and with coordinate algebraA is the pair

MMN(A)=
(
Mat(M,N;A),Mat(N,M;A)),

which we consider as a subpair of(Mat(P,P ;A),Mat(P,P ;A)) via the imbedding of
MMN(A) in MPP (A) given by

(x, y) �→
((

0 x

0 0

)
,

(
0 0
y 0

))
.

Thus, the structure maps ofMMN(A) are



60 E. Neher / Journal of Algebra 269 (2003) 28–73

n.
hen

p

.4:
4.7

.2.3)].

f of
.2.3)].

rg

es

graded
m
n

d
n
y

Qσ
0̄
(x0̄)y = x0̄yx0̄; {x y z} = xyz+ (−1)|x||y|+|x||z|+|y||z|zyx, (61)

where on the right hand side of the equations we have the usual matrix multiplicatio
Let Eij be the matrix whose(ij)-entry is 1 and whose other entries are zero. T

eij = (Eij ,Eji) ∈MMN(A) is an idempotent andR(M,N) = {emn: m ∈M, n ∈ N} is
a rectangular grid of sizeM ×N which coversMMN(A). If we choose the obvious ma
R1→R(M,N) which sendsεi − εj to eij , then the joint Peirce spaces ofR(M,N) are

MMN(A)εi−εj = (AEij ,AEji).

In particular, for (|M|, |N |) = (1,1) or (1,2) we obtain special cases of 4.3 and 4
J = A+ in the first case andA associative in the second. It follows from Theorem
below that associative coordinates are necessary and sufficient for|I | + |J | � 4. In the
ungraded case, this coordinatization result is the super version of [28, 3.4] and [35, (3

We have seen thatMMN(A) has a root grading of typėAMNI . If A =⊕
λ∈ΛAλ is a

Λ-grading, we obtain a refined root grading of type(ȦMNI ,Λ) by puttingMMN(A)〈λ〉
= (Mat(M,N;Aλ),Mat(N,M;Aλ)).

The proof of the following coordinatization theorem is analogous to the proo
Theorem 4.5, using the rectangular coordinatization theorems of Jordan pairs [35, (3

4.7. Rectangular Coordinatization Theorem. LetV be a Jordan superpair overS. Then
V is covered by a rectangular gridR(M,N) with |M|+ |N |� 4 if and only if, as a Jordan
superpair overS, V is isomorphic to a rectangular matrix superpairMMN(A) where
A is a unital associativeS-superalgebra. AsA we can take the McCrimmon–Meybe
superalgebra of a collinear pair(emn, emn′) for some choice ofm ∈ M and n,n′ ∈ N ,
n �= n′.

In this case,(V ,R(M,N)) has a refined root grading of type(ȦMNI ,Λ) if and only if
A isΛ-graded, and we then even have a graded isomorphismV ∼=Λ MMN(A).

4.8. Hermitian grids. Let I be an arbitrary set with|I |� 2. A hermitian grid of sizeI is
a family H(I) = {hij = hji : i, j ∈ I } ⊂ V of non-zero idempotents built out of triangl
and diamonds, as defined in 3.6: for distincti, j, k ∈ I we have

(i) (hij ;hii, hjj ) is a triangle of idempotents, and
(ii) (hii;hij , hjk, hki) is a diamond of idempotents.

A hermitian grid is a connected (in general non-pure) standard grid. Its associated 3-
root system is isomorphic to the hermitian grading Cher

I determined on the root syste
R =CI = {±ε± εj : i, j ∈ I } byR1= {εi + εj : i, j ∈ I }. The canonical bijection betwee
R1 andH(I) is given byεi + εj �→ hij .

As we will see, the description of Jordan superpairsV covered by a hermitian gri
naturally falls into two cases:|I | = 2 and|I | � 3. The latter case will be dealt with i
Theorem 4.12. In the first case,R = C2 = B2 andH(I) is a triangle of idempotents, sa
H(I)= (h12;h11, h22).
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The standard example of a Jordan superpair covered by such a triangle is(J, J )

whereJ is a unital Jordan superalgebra containing a pair(c1, c2) of orthogonal even
idempotents which are supplementary, i.e.,c1 + c2 = 1J , and strongly connected, i.e
there exists an even elementu in the Peirce spaceJ12 such thatu2 = c1+ c2. Indeed, in
this caseh12= (u,u), h11= (c1, c1), h22= (c2, c2) form a triangle which covers(J, J ).
For this example a refined root grading is obtained by taking aΛ-grading of the Jordan
superalgebraJ , 2.11, which is compatible with the C2-grading: we haveJ =⊕

λ∈Λ Jλ
such that eachJλ = (J11∩ Jλ)⊕ (J12∩ Jλ)⊕ (J22∩ Jλ). The following coordinatization
theorem says that this example is in fact the general case.

4.9. C2-Coordinatization Theorem. Let V be a Jordan superpair overS. ThenV is
covered by a hermitian gridH(I), |I | = 2 if and only ifV ∼= (J, J ) whereJ is a Jordan
superalgebra overS which contains two strongly connected supplementary orthog
idempotents.

In this case,(V ,H(I)) has a refined root grading of type(Cher
2 ,Λ) if and J has a

Λ-grading compatible with theCher
2 -grading, and thenV ∼=Λ (J,J ).

Proof. SupposeV is a Jordan superpair covered by a triangle(h12;h11, h22). Then
V = V11⊕ V12⊕ V22 whereVij are the Peirce spaces of the orthogonal system(h11, h22).
It follows that c = h11+ h22 is an invertible idempotent inV . Hence, by Lemma 2.12
V ∼= (J, J ) whereJ is thec−-isotope ofV . It is then easily checked thatc1 = h+11 and
c2 = h−22 are supplementary orthogonal idempotents which are strongly connect
u= h+12. In view of what has been said in 4.8, this proves the coordinatization theore
root gradings. The proof for refined root gradings is then immediate (compare the pr
4.3). ✷
Remark. Examples of Jordan superalgebras with a covering triangle will be given in
and 4.15. Even in the classical case, the structure of Jordan pairs covered by a tria
unknown in general. However, one has a classification in the case of a simple Jord
[29] and also in the case of the coordinate algebra of an extended affine Lie alge
type C2 [1, §4].

4.10. Ample subspaces.LetA be a unital alternative superalgebra overS. Thenucleus of
A is the submodule N(A)= {n ∈ A: (n,A,A)= 0} where(. , . , .) denotes the associato
see 1.15. Letπ be an involution ofA, as defined in Example 2.14. AS-submoduleA0⊂A
is called anample subspace of(A,π) if

(i) 1 ∈A0⊂H(A,π)∩N(A),
(ii) a0̄A

0aπ
0̄
⊂A0 for all a0̄ ∈A0̄, and

(iii) a(b0cπ) + (−1)|a||b0|+|a||c|+|b0||c|c(b0aπ) ∈ A0 for all homogeneousa, c ∈ A and
b0 ∈A0.
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Note that (i) and (iii) implya + aπ ∈ N(A), from which it easily follows thata(baπ) =
(ab)aπ for all a, b ∈A. We can therefore leave out the brackets in an expressionabaπ , as
we have done in (ii).

All concepts in the definition of an ample subspace are compatible with ta
Grassmann envelopes:π is an involution ofA if and only if G(π) is an involution of
G(A), G(H(A,π)) = H(G(A),G(π)) andG(N(A)) = N(G(A)). It is then easily see
thatA0 is an ample subspace for(A,π) if and only if G(A0) is an ample subspace fo
(G(A),G(π)) in the classical sense, i.e., (i) and (ii) hold with obvious meaning. Bec
of this connection and [11, p. 1.47] we have the following criterion for the existence
ample subspace: An ample subspace exists if and only ifπ is anuclear involutionin the
sense that

(a) a0̄a
π

0̄
∈N(A) for all a0̄ ∈A0̄, and

(b) abπ + (−1)|a||b|baπ ∈N(A) for all homogeneousa, b ∈A.

In this case,

A0
min= S-span

({
a0̄a

π

0̄
: a0̄ ∈A0̄

} ∪ {
abπ + (−1)|a||b|baπ : a, b ∈A })

and A0
max=H(A,π)∩N(A)

are ample subspaces, and henceA0
min⊂A0⊂A0

max holds for every ample subspaceA0. In
particular, if 1

2 ∈ k thenA0
min=A0

max is the only ample subspace.

Examples. Let (A,π,A0) be an alternative algebra over some base ringk with involution
π and ample subspaceA0. If S is ak-superextension then the canonicalS-superextension
(S⊗k A, Id⊗kπ,S⊗k A0) are an example of an alternativeS-superalgebra with involutio
and ample subspace. More genuine super examples have been found by Shestakov
With the notation of that paper, the superalgebrasB(1,2) andB(4,2) are simple alternativ
superalgebras defined over fields of characteristic 3 (!). Both have a nuclear (even c
involution. The corresponding Jordan superalgebras of 3×3-hermitian matrices are simp
Jordan superalgebras ([41, Theorem 3]—these are examples ix) and x) in the R
Zelmanov list [39]). The corresponding hermitian matrix superpair of 4.11 are si
Jordan superpairs (Lemma 2.12(a) or [8, 3.10]).

4.11. Hermitian matrix superpairs.To motivate the construction below we will sta
with an example of a Jordan superpair covered by a hermitian gridH(I), |I |� 2, which,
however, will turn out to be the general case for|I |� 4.

Let A be a unital associativeS-superalgebra with involutionπ . We have then see
in 4.6 that Mat(I, I ;A) is an associative superalgebra overS. The mapx = (xij ) �→
x∗ := xπ T = (xπji) is an involution of the superalgebra Mat(I, I ;A). Hence, if we define
HI (A,π)= {x ∈Mat(I, I ;A): x = x∗} then, by (46),

HI (A,π) :=
(
HI (A,π),HI (A,π)

)
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is a JordanS-superpair with quadratic maps given by matrix multiplication. Note that
diagonal elements ofx ∈ HI (A,π) lie in H(A,π). More generally, letA0 be an ample
subspace for(A,π) and define HI (A,A0,π) = {x = (xij ) ∈ Mat(I, I ;A): x = x∗, all
xii ∈A0}. Then

HI
(
A,A0,π

) := (
HI

(
A,A0,π

)
,HI

(
A,A0,π

))
is a subpair ofMII (A) and hence itself a JordanS-superpair. We recall from 4.10 th
HI (A,A0,π)=HI (A,π) if 1

2 ∈ k.
TheS-module HI (A,A0,π) is spanned by elements of type

a[ij ] = aEij + aπEji (a ∈A, i �= j) and a0[ii] = a0Eii
(
a0 ∈A0).

The Jordan superpair product ofHI (A,A0,π) is therefore known once it is known for th
spanning set. Because all products of elements in our spanning set lie in an HI ′(A,A0,π)

for finite I ′ it is sufficient to considerI finite, in which caseHI (A,A0,π) is the Jordan
superpair associated to a unital Jordan superalgebraJ , whose quadratic map we wi
denote byU . In the formulas below,a0

0̄
∈ A0 ∩ A0̄, a0, b0, c0 ∈ A0, a0̄ ∈ A0̄, a, b, c ∈ A

(homogeneous if necessary) andi, j, k, l ∈ I are pairwise distinct.

U0̄

(
a0

0̄
[ii])b0[ii] = a0

0̄
b0a0

0̄
[ii],{

a0[ii]b0[ii] c0[ii]}= (
a0b0c0+ (−1)|a0||b0|+|a0||c0|+|b0||c0|c0b0a0)[ii],

U0̄

(
a0̄[ij ]

)
b[j i] = a0̄ba0̄[ij ],{

a[ij ]b[j i] c[ij ]}= (
a(bc)+ (−1)|a||b|+|a||c|+|b||c|c(ba)

)[ij ],
U0̄

(
a0̄[ij ]

)
b0[jj ] = a0̄b

0aπ
0̄
[ii],{

a[ij ]b0[jj ] c[j i]}= (
a(bc)+ (−1)|a||b0|+|a||c|+|b0||c|c

(
b0a

))[ij ],{
a0[ii]b0[ii] c[ij ]}= a0b0c[ij ],{
a0[ii]b[ij ] c0[jj ]}= a0bc0[ij ],{
a[ij ]b[j i] c0[ii]}= (

abc0+ (−1)|a||b|+|a||c0|+|b||c0|c0bπaπ
)[ii],{

a[ij ]b[j i] c[ik]}= a(bc)[ik],{
a[ij ]b0[jj ] c[jk]}= ab0c[ik],{
a[ij ]b[jk] c[ki]}= (

a(bc)+ (−1)|a||b|+|a||c|+|b||c|
(
cπbπ

)
aπ

)[ii],{
a[ij ]b[jk] c[kl]}= abc[il].

(Some of the parentheses in the products are of course not necessary sinceA is associative
but they will get their meaning below.) The formulas in particular imply that fori, j ∈ I
the elements
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hii =
(
1[ii],1[ii]) and hij =

(
1[ij ],1[ij ])= hji , i �= j,

are idempotents such thatH(I) = {hij : i, j ∈ I } is a hermitian grid which cover
HI (A,A0,π). The joint Peirce spaces are(A[ij ],A[ij ]) for i �= j and(A0[ii],A0[ii]).

We now consider the case 2� |I | � 3, and replace the associative superalgebraA by
a unital alternativeS-superalgebra, also denotedA. As before, we assume thatπ is an
involution and thatA0 is an ample subspace for(A,π). We putJ =HI (A,A0,π) and use
the formulas above (with the exception of the last one since|I |� 3) to define a quadrati
mapU :J → EndS J . The Grassmann envelope of thisU satisfies all the formulas o
[35, 4.1] (or [11, p. 2.15]) and henceJ is a unital Jordan superalgebra overS. (That the
Grassmann envelope ofJ is a unital Jordan algebra has been proven by McCrimmon
[11, Chapter II.2, p. 2.17]; for the special case whenπ is a central involution, i.e., all norm
aaπ are central, one can find a published proof in [26, Theorem 3].) As in the assoc
case, the Jordan superpair(J, J ) is covered by a hermitian grid.

The Jordan superpairsHI (A,A0,π) = (HI (A,A0,π),HI (A,A0,π)) with A alterna-
tive for 2� |I |� 3 andA associative for|I |� 4 will be calledhermitian matrix superpairs
of rankI and with coordinate algebra(A,A0,π).

Suppose|I | � 3 and let 1,2,3∈ I be three distinct elements. The algebraA can then
be described as the McCrimmon–Meyberg superalgebra of the collinear pairh12, h13. We
point out that the McCrimmon–Meyberg superalgebra of the collinear pairh12, h23 isAop.

To obtain a refined root grading ofHI (A,A0,π) we take aΛ-grading of(A,A0,π)

in the following sense: we have aΛ-grading ofA, sayA=⊕
λ∈ΛAλ, which respectsA0

andπ , i.e.,

A0=
⊕
λ∈Λ

A0∩Aλ and Aπλ =Aλ for all λ ∈Λ.

Let HI (A,A0,π)〈λ〉 be the matrices in HI (A,A0,π) with all entries inAλ. It is then easily
checked thatHI (A,A0,π)〈λ〉 = (HI (A,A0,π)〈λ〉,HI (A,A0,π)〈λ〉) defines aΛ-grading
which is compatible with the root grading induced by the covering gridH(I).

The proof of the following coordinatization theorem can be given along the line
the proof in Theorem 4.5, using the classical Hermitian Coordinatization Theorem
(4.1.2)].

4.12. Hermitian Coordinatization Theorem. Let |I |� 3. A Jordan superpairV overS
is isomorphic to a hermitian matrix superpairHI (A,A0,π) if and only ifV is covered by
a hermitian gridH(I)= {hij : i, j ∈ I } such that for alli, j ∈ I , i �= j the maps

D
(
hσij , h

−σ
jj

)
:V σjj→ V σij are injective, (62)

whereVij denotes the joint Peirce spaces ofH(I). In this case, we may take

(i) asA the McCrimmon–Meyberg superalgebra of a fixed collinear pair(hij , hik),
(ii) as ample subspaceA0=D(h+ij , h−jj )V +jj , and

(iii) as involutionπ the mapaπ =Q+(hij ){h− a h− }.
0̄ ii jj
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In this case,(V ,H(I)) has a refined root grading of type(Cher
I ,Λ) if and only if(A,A0,π)

isΛ-graded, and thenV ∼=Λ HI (A,A0,π).

Concerning the condition (62) we note that (62) holds for all pairs(ij) if it holds for
one pair(ij) and that (1) always holds ifV has no 2-torsion or if the (suitable define
extreme radical ofV vanishes (see [28] or [35, 4.1.2]).

4.13. Even quadratic form grids.Let I be a set with|I | � 2. An even quadratic form
grid is a family Qe(I ) = {e±i : i ∈ I } of non-zero idempotents satisfying the followi
relations:

(i) (e+i , e+j , e−i ,−e−j ), i �= j, is a quadrangle of idempotents, 3.6, and
(ii) Qe(I ) is pure, 3.3.

The reader should be warned that the terms “even” and “odd” quadratic form grids
here and in the following subsections do not refer to aZ2-grading but rather to the type o
grid.

An even quadratic form grid is a connected standard grid. Its associated 3-grade
system(R,R1) is the even quadratic form grading Dqf

I∪{0} as defined in [22, 17.8], wher
0 is a symbol with 0/∈ I . Thus,R =DI∪{0} = {±εj ± εk: j, k ∈ I ∪ {0}, j �= k} ∪ {0} and
R1 = {ε0± εi : i ∈ I }. A canonical bijection betweenR1 andQe(I ) preserving the Peirc
relations is given byε0± εi �→ e±i . For |I | = 2, an even quadratic form grid is the same
a quadrangle of idempotents, after changing the sign of the fourth idempotent.

We will describe a realization ofQe(I ). For a base superringS we denote byH(I,S)
the freeS-module with an even basis{h±i : i ∈ I }, considered as anS-supermodule. Thus

H(I,S)= S(+I∪−I ) =H+(I, S)⊕H−(I, S) for H±(I, S)=
⊕
i∈I
Sh±i .

Thehyperbolic superspace overS of rank2|I | is theS-supermoduleH(I,S) together with
thehyperbolic formqI :H(I,S)→ S which, by definition, is the quadratic form associa
to theS-bilinear formh :H(I,S)×H(I,S)→ S given by

h

(∑
i

(a+ih+i + a−ih−i ),
∑
i

(b+ih+i + b−ih−i )
)
=

∑
i

a+ib−i ,

see example 1.10(a). The Grassmann envelope of the hyperbolic formqI in the sense
of 1.12 is the usual hyperbolic space of rank 2|I | over the commutative ringG(S). The
quadratic form superpair

EQI (S) :=
(
H(I,S),H(I,S)

)
associated to the hyperbolic formqI , Example 2.9, will be called theeven quadratic form
superpair overS of rank2|I |. In EQI (S) the pairs



66 E. Neher / Journal of Algebra 269 (2003) 28–73

d

this

only
ing,
n
form

:

d root

e

ei = (h+i , h−i ) and e−i = (h−i , h+i )

are idempotents, and the familyQe(I ) = {e±i : i ∈ I } is an even quadratic form gri
which coversEQI (S). Indeed, writinge±i = eε0±εi the joint Peirce spaces ofQe(I )
in V = EQI (S) are Vε0+σεi = V2(eσ i) = (Shσi , Sh−σ i), σ = ±. For i, j ∈ I , i �= j,
the idempotentse+i , e+j are collinear. The McCrimmon–Meyberg superalgebra of
collinear pair is defined onV +ε0+εi = Shi and can be canonically identified withS. Observe
thatEQI (S) is a split Jordan superpair of typeQe(I ) in the terminology of 3.9.

The Jordan superpairs occurring in the following coordinatization theorem are
formally more general: anyS-superextensionA can be considered as a base superr
and hence the above also defines a JordanA-superpairEQI (A). The Jordan pair versio
of 4.14 is proven in [35, 5.2.3], based on the Jordan triple version of the quadratic
coordinatization [31, III, Theorem 2.6 and Corollary 2.7].

4.14. Even Quadratic Form Coordinatization. Suppose|I | � 3. A Jordan superpairV
overS is covered by an even quadratic form gridQe(I ) if and only ifV is S-isomorphic
to a quadratic form superpairEQI (A) for someS-superextensionA. We may takeA to be
the McCrimmon–Meyberg superalgebra of some collinear pair inQe(I ).

In this case,(V ,Qe(I )) has a refined root grading of type(Dqf
I∪{0},Λ) if and only ifV

is graded-isomorphic toEQI (A) for someΛ-gradedS-superextensionA.

4.15. Odd quadratic form grids.Let I be a non-empty set. Anodd quadratic form grid
is a familyQo(I)= {e0} ∪̇ {e±i : i ∈ I } of idempotents satisfying the following relations

(i) (e0; e+i , e−i ), i ∈ I arbitrary, is a triangle of idempotents, 3.6, and
(ii) if |I |� 2 then the subfamily{e±i : i ∈ I } is an even quadratic form grid.

An odd quadratic form grid is a connected standard grid. Its associated 3-grade
system(R,R1) is the odd quadratic form grading Bqf

I∪{0} where 0 is a symbol with 0/∈ I , as

defined in [22, 17.8]. We haveR = {0} ∪ {±εj : j ∈ {0} ∪̇ I } ∪ {±εj ± εk: j, k ∈ {0} ∪̇ I,
j �= k} andR1 = {ε0} ∪ {ε0 ± εi : i ∈ I }. A canonical bijection betweenR1 andQo(I)

preserving the Peirce relations is given byε0 �→ e0, ε0± εi �→ e±i .
We will give a realization of odd quadratic form grids. Given twoS-quadratic forms

qi = (qi
0̄
, bi) :Mi→ N we denote byq1⊕ q2 their orthogonal sum, i.e., theS-quadratic

map (q0̄, b) from the S-supermoduleM = M1 ⊕ M2 to N given by q0̄(m
1 ⊕ m2) =

q1
0̄
(m1)+ q2

0̄
(m2) andb(m1⊕m2, n1⊕ n2) = b1(m1, n1)+ b2(m2, n2) for mi,ni ∈Mi .

For anS-superextensionA we denote by

OQI (A,qX)

the quadratic form superpair associated toqI ⊕ qX , where qA :H(I,A)→ A is the
hyperbolic map defined in 4.13 andqX :X → A is an S-quadratic map on som
A-supermoduleX with base pointh0 ∈ X0̄, i.e., qX0̄(h0) = 1. We callOQI (A,qX) an
odd quadratic form superpair. This JordanS-superpair contains the idempotents
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e0= (h0, h0) and e+i = (h+i , h−i ), e−i = (−h−i ,−h+i ).

Note the minus signs in the definition ofe−i which are needed to ensure thatQo(I) =
{e0} ∪ {e±i : i ∈ I } is an odd quadratic form grid. It coversV = OQI (A,qX). Writing
e0= eε0 ande±i = eε0±εi the joint Peirce spaces ofQo(I) in V are

Vε0+σεi = V2(eσ i)= (Ahσi ,Ah−σ i), σ =± andVε0 = (X,X).

For i, j ∈ I , i �= j, the idempotentse+i , e+j are collinear. The McCrimmon–Meybe
superalgebra of this collinear pair is defined onV +ε0+εi = Ahi and can be canonicall
identified withA. A refined root grading of this superpair is obtained from aΛ-grading of
(A,qX) in the following sense:

(i) aΛ-grading of theS-superalgebraA, written in the formA=⊕
λ∈ΛAλ;

(ii) a Λ-grading of theA-supermoduleX, i.e., a direct sumX = ⊕
λ∈ΛXλ such that

AλXµ ⊂Xλ+µ for λ,µ ∈Λ, and in addition
(iii) h0 ∈X0 (soh0 ∈X0̄ ∩X0),
(iv) bX(Xλ,Xµ)⊂Aλ+µ andqX0̄(Xλ)⊂A2λ.

If we have such aΛ-grading, we can build aΛ-grading ofOQI (A,qX) by defining the
λ-homogeneous space as the submodule where all components lie inAλ respectivelyXλ.
ThisΛ-grading is compatible with the root grading and hence gives a refined root gr
of type(Bqf

I∪{0},Λ) where, as above, 0/∈ I .

4.16. Odd Quadratic Form Coordinatization. Let |I | � 2. A Jordan superpairV
over S is covered by an odd quadratic form gridQo(I) if and only if there exists an
S-superextensionA, anA-supermoduleX and anS-quadratic mapqX :X→A with base
point such thatV is S-isomorphic to the odd quadratic form superpairOQI (A,qX).

More precisely, ifV is covered byQo(I) we denote by1,2 two distinct elements ofI
and byε0 the unique long root in the1-part of the3-graded root systemBqf

I∪{0} associated
to Qo(I). Moreover, we lete−1 ∈ Qo(I) be the unique idempotent satisfyinge1⊥ e−1. The
dataA,X andqX mentioned above can then be defined as follows:

(a) A is the McCrimmon–Meyberg superalgebra of(e1, e2) (note thatA = V +2 (e1) as
S-supermodule).

(b) X is theA-supermodule defined on the Peirce spaceX = V +ε0 with the canonica
inducedZ2-grading and theA-action given by

a.x = {
a e−1 x

}
(a ∈A, x ∈X). (63)

(c) qX = (qX0̄, bX) :X→A is theS-quadratic mapX given by

qX0̄(x0̄)=Q0̄(x0̄)e
−
−1 and bX

(
x, x ′

)= {
x e−−1x

′}. (64)
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In this case,(V ,Qo(I)) has a refined root grading of type(Bqf
I ∪̇{0},Λ) if and only if(A,qX)

isΛ-graded. ThenV andOQI (A,qX) are graded-isomorphic.

Proof. We know thatṼ = GS(V ) = G(V ) is covered by the odd quadratic form gr
Q̃o(I) = {ẽ0} ∪ {ẽ±i : i ∈ I }, where ẽ0 = 1 ⊗ e0 and ẽ±i = (1 ⊗ e+±i ,1 ⊗ e−±i ). By
the odd quadratic form coordinatization for Jordan pairs, [35, (5.3.1)] and [31
Corollary 2.9],Ṽ is therefore isomorphic to an odd quadratic form pairOQI (Ã, q̃) where
Ã is a commutative associative unitalG(S)-algebra and̃q is anÃ-quadratic form on an
Ã-moduleX̃. We will show that the datãA, X̃ andq̃ are in fact the Grassmann envelop
of the corresponding dataA,X andqX defined above, thereby also proving (a), (b) and

First of all, by [31, Theorem 2.8], we may takẽA to be the McCrimmon–Meyber
superalgebra of the collinear pair(ẽ1, ẽ2). Hence Ã = G(A) which proves (a). In
the classical odd quadratic form coordinatization, the underlying abelian group o
Ã-moduleX̃ is the Peirce spaceG(V )+ε0 = G(V +ε0 ) on whichÃ acts by (63) interprete
for Ã, X̃. On the other side, we know thatV +ε0 is anS-supermodule. All properties of a
A-supermodule are therefore clear, except that(ab).x = a.(b.x) for a, b ∈ A andx ∈ X.
This means {{{

a e−1 e
+
2

}
e−2 b

}
e−1 x

}= {
a e−1

{
b e−1 x

}}
. (65)

But sinceX̃ is anÃ-module, formula (65) holds fora, b, x replaced byξ |a|1 ⊗ a, ξ |b|2 ⊗ b
andξ |x|3 ⊗ x, which then implies (65). In other words,̃X is the Grassmann envelope ofX.

Regarding (c), we observe thatqX is anS-quadratic map in view of properties of th
quadratic mapQ. Moreover, using (21), we find that the Grassmann envelopeG(qX) of
qX is given byG(qX)(x̃) = Q̃(x̃)e−−1 whereQ̃ is the quadratic map of the Jordan pairṼ
andx̃ ∈ Ṽ+. On the other side, by [31, III, Theorem 2.8], this is exactly the formq̃ used in
the coordinatization of̃V , which provesG(qX)= q̃.

To showV ∼=OQI (A,qX) we define anS-linear mapf :V → OQI (A,qX) given as
follows:

(i) on the subpair
⊕
i∈I (Vε0+εi ⊕ Vε0−εi ) it is the map used in the even quadratic fo

coordinatization, and hence it maps this subpair onto the obvious subpairEQI (A) of
OQI (A,qX);

(b) on Vε0 it is defined by f+(v+ε0) = v+ε0 ∈ X ⊂ OQI (A,qX)
+ and f−(v−ε0) =

{e+1 v−ε0 e+−1} ∈X ⊂OQI (A,qX)
−.

The Grassmann envelope of this map is the isomorphism used in the classic
quadratic form coordinatization (see the proof of [31, III, Theorem 2.8]) and hencef is an
isomorphism by the homomorphism criterion (34).

Finally supposeV has aΛ-grading compatible with the root grading induced by
covering odd quadratic form grid. The description of the dataA,X andqX given above
then shows that(A,qX) isΛ-graded in the sense of 4.15. HenceOQI (A,qX) has a refined
root grading. It is straightforward to check that the isomorphismf :V → OQI (A,qX)
defined above is a graded isomorphism.✷
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4.17. Alternating grids. Let I be a set with|I |� 4 and a total order< . An alternating
grid of sizeI in a Jordan superpairV is a familyA(I)= {eij : i, j ∈ I, i < j } of non-zero
idempotents inV such that, puttingeji =−eij , the following properties hold:

(i) (eij , ekj , ekl, eil) for distincti, j, k, l ∈ I is a quadrangle of idempotents, and
(ii) A(I) is pure.

Alternating grids were calledsymplecticin [28,31,33] and [35]. Following a suggestion
O. Loos, I have changed the name to “alternating,” since the standard realization o
grids is in alternating matrices (see below), and since these grids have little to do
symplectic Lie algebras or symplectic groups.

An alternating gridA(I) is a connected standard grid. Identifyingeij with εi + εj one
easily sees that the associated 3-graded root system ofA(I) is the alternating gradin
Dalt
I of the root systemDI , as defined in [22, 17.8]. An alternating gridA(I), |I | = 4 is

associated to an even quadratic form gridQe(J ), |J | = 3.
Let A be a superextension ofS. Since the identity map is an involution ofA the

classical transpose map is an involution of the associativeA-superalgebra Mat(I, I ;A),
see 4.11. A matrixx = (xij ) ∈ Mat(I, I ;A) is calledalternating if xT = −x and if all
diagonal elementsxii = 0. The set of all alternating matrices is anA-supermodule, denote
Alt(I,A). The pair

AI (A) :=
(
Alt(I,A),Alt(I,A)

)
is a subpair of the Jordan superpairMII (A) and hence itself a Jordan superpair o
A (or over S) called thealternating matrix superpair of rankI and with coordinate
algebraA. Note that the product is given by (61). (One obtains an isomorphic Jo
superpair by taking the quadratic productQ0̄(x0̄)y = −x0̄yx0̄ and {x y z} = −xyz −
(−1)|x||y|+|x||z|+|y||z|zyx, see [35, 6.1].) In the alternating matrix pair the family of all

eij = (Eij −Eji,Eji −Eij ), i < j,

forms a covering alternating grid. In fact, the alternating matrix pairAI (A) is the split
Jordan superpair of typeA(I) overA. Conversely, using [35, (6.1)], we have

4.18. Alternating Coordinatization. Let |I |� 4 and letV be a Jordan superpair overS.
ThenV is covered by an alternating gridA(I) if and only if there exists a superextensi
A of S such thatV is isomorphic toAI (A). In this case, we may takeA to be the
McCrimmon–Meyberg superalgebra of some collinear pair inA(I).

More generally, a Jordan superpairV has a refined root grading of type(Dalt
I ,Λ) if and

only if V is graded-isomorphic toAI (A) for someΛ-graded superextensionA of S.

4.19. Bi-Cayley grids. A Bi-Cayley grid in a Jordan superpairV is a family B =
(eεi : ε = ±, 1 � i � 8) of 16 non-zero idempotents inV satisfying the following
conditions:
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(i) for 1 � i, j � 4, i �= j andε,µ arbitrary the following are quadrangles of idempoten
(1) (eεi, eµj , e−εi,−e−µj ) and(eε(i+4), eµ(j+4), e−ε(i+4),−e−µ(j+4)),
(2) (eεi, eεj , e−ε(i+4),−e−ε(j+4)) and(eεi, eεj , eε(j+4), eε(i+4)),
(3) (e−i , e+j , e−(k+4),sgn

(1234
ijkl

)
e+l ), where sgn

(1234
ijkl

)
is the signature of the permut

tion
(1234
ijkl

)
;

(ii) B is pure.

An equivalent definition is given in [31, II, §3.1]. A Bi-Cayley grid is a connected stan
grid. Its associated 3-graded root system is the Bi-Cayley grading Ebi

6 of the root system
E6, see [22, 17.9].

We will indicate how to realize Bi-Cayley grids in Jordan superpairs. LetOk be the split
Cayley algebra overk, see, e.g., [43, 2.2] or [31, III.3.1], obtained from thek-extension
k⊕ k by twice performing the Cayley–Dickson process using 1∈ k as structure constant
Let S be a base superring. TheS-superring extensionOS := S ⊗Ok is a unital alternative
S-superalgebra, which we call thesplit Cayley superalgebra overS. By 4.4, it gives rise to
a Jordan superpair

B(S) :=M12(OS)

called theBi-Cayley superpair overS. It contains the Bi-Cayley pairB(k)=M12(Ok) as
a subpair. By [35, 7.2],B(k) is covered by a Bi-Cayley gridB, in fact, B(k) is the split
Jordan pair of typeB overk. It follows thatB(S) is the split Jordan superpair of typeB
overS. In particular,B(S) is theS-extension ofB(k) and is covered by a Bi-Cayley grid

More generally, we can replaceS in the above construction by anyΛ-graded
superextensionA of S. We obtain a JordanA-superpairB(A) which, by restriction of
scalars, becomes a Jordan superpair overS. It has a refined root grading of type(Ebi

6 ,Λ).
Conversely, using the classical Bi-Cayley Coordinatization Theorems [31, III.3.3] an
(7.2.1)], one proves:

4.20. Bi-Cayley Coordinatization. A Jordan superpairV overS is covered by a Bi-Cayle
grid B if and only if there exists a superextensionA of S such thatV is isomorphic to the
Bi-Cayley superpairB(A). In this case, one can chooseA to be the McCrimmon–Meyber
superalgebra of some collinear pair inB. Moreover,(V ,B) has a refined root grading o
type(Ebi

6 ,Λ) if and only ifA isΛ-graded, and thenV is even graded-isomorphic toB(A).

4.21. Albert grids. An Albert grid is a familyA of 27 non-zero idempotents which w
write in the form

A= ([1], [2], [3])∪ ([ij ]εr : 1 � i < j � 3, ε =±, 1 � r � 4
)

such that, putting[ij ]ε1 = [j i]−ε1 and [ij ]εr = −[j i]εr for 2 � r � 4, the following
properties hold:

(i) for each i ∈ {1,2,3} the family (e±s;1 � s � 8) given by eεr = [ij ]εr , eε(r+4) =
[ik]εr , 1� r � 4, i, j, k �=, is a Bi-Cayley grid;
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(ii) for each pair(ij),1� i < j � 3, the family([ij ]±1, [ij ]±2, [ij ]±3, [ij ]±4, [i],−[j ])
is an even quadratic form grid (of size 10);

(iii) A is pure.

An equivalent definition is given in [31, II, §3.2]. An Albert grid is a connected stand
grid. Its associated 3-graded root system is the Albert grading Ealb

7 of E7, as defined in [22
17.9].

Albert grids can be realized in 3× 3-hermitian matrix superpairs. Namely, letA be
a superextension ofS and letOA be the split Cayley superalgebra overA, 4.19. It is a
unital alternativeA-superalgebra. TheA-extension of the canonical involution ofOk is an
involutionπ of the superalgebraOA for whichA.1⊂OA is an ample subspace. Hence
hermitian matrix superpair

AB(A) :=H3(OA,A.1,π),

as defined in 4.11, is a Jordan superpair overA and by restriction of scalars overS. It will
be called theAlbert superpair overA. Note thatAB(A) contains the Jordan pairAB(k)
as a subpair. By [35, 7.3] we know thatAB(k) is split of typeA, hence so isAB(A).
In particular,AB(A) is covered by an Albert grid. Conversely, using the classical Al
Coordinatization Theorems ([31, III.3.5] and [35, (7.3.1)]) one can easily establish:

4.22. Albert Coordinatization. A Jordan superpairV overS is covered by an Albert grid
A if and only ifV is isomorphic to an Albert superpairAB(A) for some superextensionA
of S. In this case, one can chooseA to be the McCrimmon–Meyberg superalgebra of so
collinear pair inA.

Moreover, (V ,A) has a refined root grading of type(Ealb
7 ,Λ) if and only if A is

Λ-graded, and in this caseV is graded-isomorphic toAB(A).
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