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Abstract

In this paper we are proposing a theory of Jordan superpairs defined over (super)commutative
superrings. Our framework has two novelties: we allow scalars of even and odd parity and we do not
assume tha% lies in our base superring. To demonstrate that it is possible to work in this generality
we classify Jordan superpairs covered by a grid.

0 2003 Elsevier Inc. All rights reserved.

There has recently been a lot of interest in linear Jordan superstructures. One of
the major advances in this area is the classification of simple finite-dimensional Jordan
superalgebras over algebraically closed fields of charactegisfi¢c due to Racine and
Zelmanov [39,40] and Martinez and Zelmanov [25], extending Kac's classification [10,
15,16] of the characteristic 0 case. Another important achievement is the classification
of infinite-dimensional graded-simple Jordan superalgebras whose graded components are
uniformly bounded, due to Kac, Martinez, and Zelmanov [14]. Most of the recent research
has been devoted to Jordan superalgebras, but one now has a classification of simple
finite-dimensional Jordan superpairs over algebraically closed fields of characteristic O,
due to Krutelevich [18] and based on Kac'’s determinatio-@fradings of simple finite-
dimensional Lie superalgebras [15].

It is remarkable that most (probably all) examples of linear Jordan superalgebras and
superpairs in the papers mentioned above can in fact be defined over arbitrary superrings.
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For some of them this was verified in the recent preprint [17] by King, for others like the
Kantor double with a bracket of vector field type or the Cheng and Kac Jordan superalgebra
one can use the speciality results of McCrimmon [27] and Martinez, Shestakov, and
Zelmanov [24] to give a model over superrings. To the best of my knowledge, King's
preprint [17], which | received after the research for this paper had been finished, is the
only publication devoted to quadratic Jordan superstructures. In this paper King introduces
a notion of quadratic Jordan superalgebras. Apart from the fact that King works over
commutative rings while we work over commutative superrings, there is also a difference
in “characteristic 2”: King's Jordan triple product is only skew-symmetric in the outer two
odd variables, hencg2;yxj} = 0 for an oddy;, while we require that it is even alternating

and hencéx;yx;} = 0 always holds in our setting. Our reasons for imposing the stronger
condition is that it holds for all reasonable Jordan superstructures we know of, for example
for special Jordan superstructures (see Example 2.14) or for King's quadratic version of
Kac’s 10-dimensional Jordan superalgebrg.K{There is a small exception for Jordan
superalgebras associated to quadratic forms since King requires the form on the odd part
to be only skew symmetric and not necessarily alternating, as we do.)

Why Jordan superstructures over superrings? It is of course true that any Jordan
superpair over a superring is also a Jordan superpair over a ring, for example over the
even part of the base superring. Nevertheless, there are good reasons for working over
superrings. This setting naturally occurs in the class of Jordan superpairs classified in this
paper, Jordan superpairs covered by a grid (Section 4). For example, a Jordan stperpair
covered by an even quadratic form grid is in a natural way a quadratic form superpair over
a superring, even if one originally considergdnly over a ring (see 4.14).

A description of the paper’s contents follows. Due to a lack of an appropriate
reference, the following Section 1 provides the necessary background from the theory of
supermodules over superrings as far as this is needed later on. This section also contains the
fundamental and new definition of a quadratic map between supermodules over superrings.
In the next Section 2 we define (quadratic) Jordan superpairs, Jordan supertriples and unital
Jordan superalgebras over superrings. We develop some basic theory and give examples.
This section could be considered as a super version of [20, §1]. In the following Section 3
we introduce grids in Jordan superpairs and refined root gradings. The final Section 4
gives the classification of Jordan superpairs covered by a grid, the super version of results
from [35], and—more generally—the description of refined root gradings. This latter
description is new even in the case of Jordan pairs. Our interest in Jordan superpairs with
a refined root grading comes from their connection to Lie (super)algebras which have a
refined root grading, see [42] for the case of Lie algebras graded by a simply-laced root
system.

There are three sequels to this paper, all jointly with E. Garcia. Semiprimeness,
primeness and simplicity of Jordan superpairs covered by grids are characterized in [8].
The corresponding Tits—Kantor—Koecher superalgebras are described in [9], while [7]
studies the Gelfand—Kirillov dimension of Jordan superpairs and their associated Lie
superalgebras.
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1. Supermodulesand their multilinear and quadratic maps

In this section we introduce our terminology regarding supermodules and multilinear
and quadratic maps. With the exception of quadratic maps, these concepts have already
been introduced in the literature ([6, Chapter 1], [19, Chapter 1] and [23, Chapter 3]), but
not in the form and generality suitable for this paper. One of the main differences is that
our objects will be defined over a superring not necessarily conta%qing

1.1. Base superrings.We write Z, = {0, 1} and use its standard field structure. We put
(—-1)° =1 and(—1)1 = —1. Most objects studied here will BB>-graded in a natural
sense. For example,Zy-graded abelian group is just a direct sun = Mz @ Mj of
two subgroupsM,, o € Z,. In this case, elements iy U M; are calledhomogeneous
For a homogeneous € M, a € Zj, its degreeis denoted bym| = « € Z,. We adopt
the convention that whenever the degree function occurs in a formula, the corresponding
elements are assumed to be homogeneous.

An arbitrary (not necessarily associative) rifgis called Z,-gradedor a superring
if §=S;® S; as abelian group anfl,Sg C Su+p for a, B € Z. A superring is called
commutativeif st = (—1)!llrs holds for s, € S. Some authors would call such a
superring supercommutative, but we have tried to minimize the use of the adjective
“super.” In a commutative superrirgywe always haves% = 0 for anysj € Sj, creating a
sometimes exceptional situation if 2 is not invertibleSin(One could think of adding the
conditions2 = 0 for si € § to the definition of a commutative superring. This, however,
would impose restrictions elsewhere: several of the natural examples of Jordan superpairs,
e.g., quadratic form superpairs, are defined over a commutative superring not necessarily
satisfyingsi2 =0.)

A superrings is calledunital if there exists e S such that $ =5 forall s € S, and it
is calledassociativdf it is so as ungraded ringub)c = a(bc) for all a, b, c € §. We will
call § abase superringf S is a commutative associative unital superring. Analogously, a
base ringis a commutative associative unital ring.

Unless specified otherwis§, will always denote a base superring and all structures
considered here will be defined ovgin a sense to be explained in the following.

1.2. Supermodules.An S-supermodulés a left moduleM over (the associative ring)
whose underlying abelian group %-graded such thas, Mg C My for o, B € Zo. It
will be convenient to conside§-supermodules also &sbimodules by defining the right
action as

ms = (=1)sMlgm Q)

for s € S andm € M. Alternatively, one can defing-supermodules as-bimodules
satisfying (1), or as righ§-modules and then define the left action by (1).

Let M be anS-supermodule. Asubmodulef M is a submoduléV of the S-module
M which respects thé&Z,-grading, i.e.,N = (N N Mg) & (N N M7). Then N is an
S-supermodule with the induced actions. Tquotientof M by a submoduleV is again
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an S-supermodule with respect to the canonidamodule structure and.,-grading:
(M/N)y = My /N, for a € Zy. Thedirect sumof a family (M?);<; of S-supermodules is
an S-supermodule, denote@,_, M’, with homogeneous part€p,.; M) = B;; M},
for a € Z,. In case allM! = M this supermodule is denoted").

A new S-supermodule][M is obtained fromM by interchanging the parity of
M: [[M = M as abelian groups, bdf[ M), = M, 5 for o € Z; and(] [m)s = [](ms)
wheres € S and[[m is the element of | M corresponding tan € M. It follows that
s([]m) = (=1 T](sm) indicating thaf | can be viewed as an entity of degrkecalled
the parity change functarA free S-supermodule is a§-supermodule isomorphic (in the
sense of 1.3) to

sUsll) .— gUp) o (l_[ S>(11)

for suitable setd,. Thus,M is free if and only ifM is free as a module over the rirfy
and has a homogeneous basis.

1.3. Multilinear maps. Let M,..., M" andN be S-supermodules, and lete Z,. An
S-multilinear map of degree from M1,..., M"to Nisamapf:M!x ... x M" - N
satisfying

(i) f(Mgl, <oy M) C Noy pyt+p, for all g; € Za,
(i) f is additive in each variable, and
(iiiy for s € S, m; € M/ and 1< i < n we have

fma,...,mj—_1s,mi,...,my) = f(ma,...,mj_1,sm;,...,my,) and

f(ma,...,mus) = f(my,...,my)s.

For readers preferring left modules we note that the conditions (iii) are equivalent to

flmy,...,mi_1,sm;,...,my)

— (—l)m(‘f‘+|m1‘+m+|m"‘1|)sf(ml, e M1, My . Ty).

We denote byCs(M?L, ..., M"; N), the abelian group of-multilinear maps of degree
and put

Lg(MY,....M";N):=Ls(M',...,M"; N)g® Ls(M*, ..., M"; N);.

We endowl (ML, ..., M™; N) with anS-supermodule structure ky. f)(m1, ..., my,) =
sf(ma,...,my).

As usual, the elements ds (M1, M?; S) are calledbilinear forms We will use the
abbreviation Hom(M, N) = Lg(M; N), and call its elementsomomorphismer S-linear
maps Specializing the definition above, an additive mépM — N is a homomorphism
of supermodules iff (ms) = f(m)s for m € M ands € S or, equivalently,sf (m) =
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(=171 £ (sm). The concept of an isomorphism is then just the usual one. It is easily
verified thatS-supermodules together witftlinear maps form a category. It is in fact a
tensor category with respect to the tensor product defined in 1.4 [23, Chapter 3, 82].

1.4. Tensor products. For two S-supermodules®/ and N we denote byM ®g N the
tensor product oM and N in the category ofS-bimodules. To recogniz& ®s N as an
S-supermodule we recall the constructioméfy s N (see, e.g., [4, 811.5]). Thg-module
M ®s, N has aZ»-grading given by

(M ®sy N)g= (M ®s, Np) ® (M1 ®s; N7),
(M ®s; N)1 = (Mg ®s; N1) © (M3 ®s, Np)-

By definition,

M ®s N =(M®s;N)/Q = ((M®s;N)g/ Q) & (M &5, N)1/ Q1) ()

whereQ = Qp @ Q7 is theSz-submodule o ®s, N spanned by homogeneous elements
of typems; Qsyn —m Qg 511 with s € S7. We denote byn ®; n the image ofn ®s, 1
in M ®s N under the quotient mafl ®s, N — M ®s N of (2). ThenS acts onM ®s N
by s.(m ®gs n) = (sm) Qs n, ms s n = m g sn and (m Qs n)s = m Qg (ns). This
action fulfills the condition (1) with respect to tl#-grading (2), thus givingl ®s N
the structure of anS-supermodule. By abuse of notation, we will occasionally write
M, ®s Ng (o, B € Z) for the span of alin, ®s ng wherem, € M, andng € Ng. We
then havelM ®s N)g = Mg ®s Ny + M7 ®s Ni, which is in general not a direct sum of
Sg-supermodules, and similarly foM ®g N)j.

For S-supermodules/, N and P there are canonical isomorphisms$supermodules

(M ®s N) ®s P — M ®s (N ®s P), (3)
L(M, N; P) —> Homg(M ®s N, P), (4)
l/fM,N1M®sNi>N®sM, (5)
S@sM —> M, (6)

given by the mapsm ®s n) s p — m ®s (n s p), b — [(m s n) — b(m,n)],
m s n > (=DMly @¢m ands @ m +— sm.

1.5. Superalgebras.An S-superalgebra also called asuperalgebra overS, is an
S-supermoduleA together with anS-bilinear mapm:A x A — A of degree0. It is
usual to abbreviate:(a, b) =: ab and callab the productof A. A homomorphisnof
S-superalgebras is astlinear mapf : A — B of degreed such thatf (aa’) = f(a) f(a’)
foralla,a’ € A.

Let A be anS-superalgebra. It is in particular a superring as defined in 1.1, hence
the concepts defined there (commutative, associative and unital) apgly ltet A be
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an abelian group. AM-grading of A is a family (A,: A € A) of S-submodules ofd
satisfyingA = P, .4, A» andA A, C A4, forall &, u € A. Note that theA-grading is
compatible with the&Z,-grading ofA by our definition ofS-submodules. Theppositeof an
S-superalgebra is the S-superalgebra °° with product- defined on thes-supermodule
underlyingA by the formulaa - b = (—1)'*!"?lpq where the product on the right side is
calculated inA.

The tensor product ®¢ B of two S-superalgebrag andB is again anS-superalgebra
with respect to the product

(a®sb)(a' ®sb') = (1) aa’ @ bb" (7)

To see that this is indeed a well-defined product, one can, for example, use (4). In the
following, tensor products of superalgebras will always be equipped with the product (7).
We note that th&-supermodule isomorphism

YaBAQRsB—> BQRsAaQ@sb— (—1)‘“”17‘17 ®s b
of (5) is an isomorphism of-superalgebras. The following lemma is easily verified.

1.6. Lemma. Let P be one of the properties commutative, associative or unital, and let
and B be S-superalgebras. If botlA and B have propertyP, then so doed ®s B.

1.7. SuperextensionsAn S-superextensions a commutative, associative and unital
S-superalgebra. SuperextensionsSoform a category whose morphisms are the super-
algebra homomorphisms preserving the unit elements. It is tensor category by Lemma 1.6:
A ®g B is anS-superextension it andA are S-superextension.

An example of &-superextension is the algebra of dual numiges = Z & Ze where
¢ is a homogeneous element satisfyirfg= 0. It gives rise to theS-superalgebra of dual
numbersS[s] = S ®7 Z[¢]. We have

Sp® Sge if |e] =0,

Slelo= { So @ Sge i e =1, ®)

and 3[8112{51@518 if |£:i%

S; @ Sge i |e

Another example is the Grassmann algebra ¢yé¢o be discussed in 1.11.

We note that anS-superextensiorf’ can serve as a new base superring Alfis
an S-superalgebra, the tensor product superalgebfa=T ®s A (1.5) becomes a
T-superalgebra, called thmse superring extensiom particular,Ar is a T-superexten-
sion if A is anS-superextension.

1.8. Superextensions of supermodules and multilinear mapst 7 be anS-superexten-
sion, and let be anS-supermodule. Then tHE-superextension ¥

Mr =T Qs M
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has a canonical leff-module, namely (t' ® s m) = (1t') ®s m) for¢,t' € T andm € M,
with respect to which it is &-supermodule.

Taking extensions of supermodules is transitiveUlfis a T-superextension, then
because of (3) and (6) we hav® )y = My . Moreover, using the isomorphisms fers
exhibited in 1.4 one easily verifies that there is an isomorphisifsfipermodules

Mr ®r Ny — (M ®s N)r
given by(r ®s m) @7 (t' ®s n) = (="t @5 (m @5 n).

Let ML, ..., M" and N be S-supermodules. Fare T and f € Lg(M?L, ..., M"; N)

there exists a uniqu&-multilinear mapt@s/f : M% x --- x M} — Nr satisfying, with
obvious notation,

(1® f)t1@sm1.... 1, ®smy)

= (~ DMl lillma®@milyy oy @ f(my, ..., ma),
where of courséty - --1,| = > 11 il and|m1 @ - - @ m;_1| = ’1;11 |m ;|. Moreover,
T T @sLs(MY .. M"N) > Lr(ME . MINE) it ®s fot®s £ (9)
is a T-linear map of the corresponding-supermodules. We calf; := 1/8?5/]‘ the

T-superextension of € Lg(M?, ..., My,; N).
In particular, for every € T and f € Homg(M, N) there exists a uniqug-linear map

1®s f: My — Nr:(t' @sm) > (=D’ @ f(m).

This gives rise to & -linear map of degre@

T ®5 Homg(M, N) — Homy (M7, N7) it Qs f >t s f. (10)

1.9. Quadratic maps. Let M andN be S-supermodules. A homogeneairbilinear map
b:M x M — N is calledsymmetric-alternatingf

b(m,m') = (=" lb(m’,m) and b(mg,mz) =0

form,m" e M andmj € Mj. We note that the second condition bifollows from the first
as soon as it holds for a spanning setf. It is of course implied by the first % es.

An S-quadratic map fromV/ to N, written in the formg : M — N, is a pairg = (gg, b),
wheregqg: Mg — Ng is anSz-quadratic map and whete M x M — N is a symmetric-
alternatingS-bilinear map of degre@ such that

b(mg, m3) = qg(mg +mg) — qp(mg) — qp(mp) (11)
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for all mg, m'ﬁ € My, i.e.,b|Mg x Mgy is polar ofgg in the usual sense. We therefore dall
thepolar of¢. An S-quadratic mag : M — S will be called anS-quadratic form

We note that g5(mg) = b(mg, my) and hencegg is determined by if % € S. Also
2q@(simi) = b(symi, symi) = —sib(mi, mij)s; =0 sinceb(mi,mi) = 0. For a finite
family (si, mi)ier C (S5 x M) U (S5 x Mj) we have

qa(Zs,m,-) = Z Sizqé(mi)‘f‘ Z qp(sim;)

ieF Im;|=0 Imi|=1
+ Y (=Dl ibmi, m)), (12)
i, j}1=2

where},; .1, is the sum over all two-element subsetsfofThis makes sense since

(—DPiilsisibmi, mj) = (=D)F s jsib(m . mi)
is symmetric on and;.

1.10. Examples of quadratic maps(a) (O. Loos) For ai$-bilinear mapz: M x M — N
of degreed define

qg(m(-)) =a(mg, mg) and b* (m, m/) = a(m, m/) + (—1)‘m||'"/‘a(m/, m)

Theng® = (¢4, b*): M — N is anS-quadratic map, called thguadratic map associated
to a. Over a free supermodule every quadratic form is obtained in this way (cf. [3, §3.4,
Proposition 2] for the classical case).

(b) Letg: M — N be anS-quadratic map and lef : N — P be anS-linear map of
degree0. Thenf og = (f o gg, f o b):M — P is an S-quadratic map. Similarly, if
g:L — M is an S-linear map of degre® theng o g = (ggo g, bo(gxg):L— Nis
an S-quadratic map.

(c) For anS-quadratic mapg: M — N define Rad = {m € M: ¢g(mgz) =0 =
b(m, M)} wheremg denotes the\fz-component ofn. Then Rag is anS-submodule of
M. If Fis a submodule of Ragitheng induces ar§-quadratic maf : M/F — N given
by Gg(mg+ F) = qg(mg) andb(m + F,m’ + F) = b(m,m’).

1.11. Grassmann algebrasWe letGz be the exterior algebra of the fréemoduleZ ™,
i.e., the unitalZ-algebra generated by the odd generatprs € N, and subject to the
relationsgl.2 =0=§&¢&; +&;& for i, j € N. For a finite non-empty subsétof N, written
in the form I = {iy, ip,...,i,}, i1 <i2 < --- <., We puté; =&, §,---&,, and recall
&y =1¢,. Then(ér: I C Nfinite) is aZ-basis 0fGz, satisfying

+&505 IﬂJZQ} (13)

§1$J=(—1)IJ§J$1={O 10720
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(the sign on the right hand side is described explicitly in [5, §7.8, (19)]). Gg}
(respectivelyG ,7) be theZ-span of all; with |7]| even (respectively odd). Using (13)
it follows easily thatGz = G ;5 ® G is a superextension &f.

For a base superrin§we put

Gs=Gz®zS= @ Gzq ®z Sg.
o,BEZy

Ggs is a free S-supermodule with basigt;: I ¢ Nfinite). By 1.7, Gg is also an
S-superextension with respect to thg-grading

Ggp=(Gp®z Sp) @ (G ®z S1) and Ggq = (Gz5®z S7) ® (Gy1 ®z Sp)
(direct sum ofSz-modules). In particular,
G(S):=Ggp

is a commutative associative unitg-algebra with &.;-grading (noteG(S) is in general
not a commutative superalgebra).

1.12. Grassmann envelopes of supermodulégt M be anS-supermodule. Because of
(3) and (6) we have

Gs@sM=GzQRzSQsM=GzQz M= @ Gza ®z Mp.
o,Bely

In the future we will consider the isomorphism above as an equality.@f@ction on
Gs ®s M is then given by

(¢ ®z5) (g ®zm)=(~1)"1¢gg’ @7 sm. (14)
TheGrassmann envelope of @asupermodulé is defined as thé& (S)-module
Gs(M) :=(Gs Qs M)y= (G5 ®z M) ® (G,7 ®z M7)
with G (S)-module action given by (14).
Example. Letk be a base ringyf ak-module ands ak-superextension. Thabig s Ms =
(Gz®z S) ®s (S® M) =Gz ®z (S Qs (SQ®k M) =Gz ®z (S & M) = (Gz ®z S)

®x M = Gs ®; M. Hence the Grassmann envelope of faguperextensio/s can be
identified with theG (S)-extension ofM :

Gs(Ms) =(Gz®z S)g®k M =G(S) @ M. (15)
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1.13. Grassmann envelopes of multilinear mapset M1, ..., M" and N be S-super-
modules. Restricting the map (9) to the Grassmann envelopes, yiéld$)dinear map

—_—~

(Gs(Ls(MY, ..., M";N)) = Lges)(Gs(MY), ..., Gs(M"); Gs(N)).  (16)

In particular, for f € L(M?Y, ..., M"; N)c-,’the restriction of theG g-superextensiorfc
(see 1.8) to the Grassmann envelo@&a/’) is aG(S)-multilinear map

Gs(f):Gs(MY) x - x Gg(M") - Gs(N),

called theGrassmann envelope gf. For example, the Grassmann envelope offaa
Homg (M, N)g is the G (S)-linear map

G(f):G(M)—> G(N):g®@zmi> g ®z f(m), 17)
and by restricting of the map (10) we obtailGaS)-linear map
T . G(Homg(M. N)) — Homg(s)(Gs(M). Gs(N)) :t ®s f > 1 ®s f.  (18)

If f eHomg(M, N)g is invertible it is immediate from (17) tha¥(f) is invertible too.
More precisely, we have

fisinvertible < G(f) isinvertible. (29)

Indeed, ifG(f) is invertible its inverse leaves all spaggsxyz N|;| invariant. SinceGz is
free we have an imbedding

My — Gs(M) . m+— & Qzm (20)
for any finite/ C N. Now invertibility of f follows from M = My & (61 ® Mj).
1.14. Grassmann envelopes of quadratic mapehe Grassmann envelope of @hquad-

ratic map g = (¢3.b) : M — N is the G(S)-quadratic mapGs(q):Gs(M) — Gs(N)
defined as follows:

Gs(q) (Zsz ®z mz) = 16 ®z q5(my)
1

+ Y DEIMgE g b, my),  (21)
{1.7}1=2

where the second sum is taken over all sets consisting of two distinct finite sub$gts of
including the possibilityy = @. It has the following properties:

(i) The polar ofGs(q) is the Grassmann envelope of the bilinear fdrm
(i) Gs(q)|Gyp®z My is theG gg-extension of theSg-quadratic formgg,.
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Example. Let k be a base ringM and N k-modules andy: M — N a k-quadratic
map. Assume further that is a k-superextension. As explained in (15), the Grassmann
envelopes ofMs and Ny can be identified with th& (S)-extensions of and N. It is

well known (see, e.g., [3, 83.4, Proposition 3]) that there exists a unique extensjon of
to a G (S)-quadratic maggs): G(S) M — G(S) ® N. We claim that there exists a
unigue S-quadratic mays: Ms — Ns whose Grassmann envelope makes the following
diagram commutative:

G(Ms) G M
lG(qs) lqcm (22)
G(Ns) ——= G M

Indeed, the magys = (bs, qg¢) is given as follows:gps:So ® M — S5 ® N is the
Sg-extension ofy, while bg is the S-extension ob.

Remark. The definition of the Grassmann envelope of $sguadratic map and the
definition of g5 in (22) are special cases of the general fact that eSegqyadratic map

q M — N can be extended to®-quadratic magr : My — Nr for everyS-extensiorr .

Since this result is not needed in the paper, we omit its proof which can be given along
the lines of the corresponding extension result for quadratic forms over rings [3, §3.4,
Proposition 3].

1.15. Varieties of superalgebrasLet A be anS-superalgebra. It follows from (16) that
the Grassmann envelopi(A) is aG(S)-algebra. Moreover, (20) allows one to compare
identities inA andG (A). For example, it is easily seen (and well-known) that

A is associative (commutative) <=  Gs(A) is associative (commutative). (23)

In general, letV be a homogeneous variety of algebras, i.e., a variety of algebras whose
T-ideal is generated by homogeneous elements [43, 1.35-8mperalgebra is called a
V-superalgebraf Gg(A) belongs toV. Because of (20)yV-superalgebras can be defined
by a set of homogeneous identities obtained from the defining identitiésRéther than
doing the precise transfer frois(A) to A one can simply apply thsign ruleto obtain
the super version of an identity: Whenever the order of two symhojss changed from
x...ytoy...x, one mustintroduce a siga-1)*I*! in frontof y .. . x.

Let T be anS-superextension and let be aV-superalgebra oves. If A satisfies the
super version of a homogeneous idengitgefining’V, the T-superextension 7 will also
satisfy f, because of the uniqueness of superextensions of multilinear maps (1.8).

Example (alternative superalgebrasRecall that an algebra is alternative if(a, a, b) =

0= (b,a,a)forall a,b e A where(a, b, c) = (ab)c — a(bc) is theassociatoy which can
of course be defined in amtsuperalgebra. Hence, @hasuperalgebral is analternative
superalgebraf it satisfies the following identities:



E. Neher / Journal of Algebra 269 (2003) 28-73 39

0] (ap, aps b)=0= (b, ag, ag) for all ag € Ap, be A, and
(i) (a,b,¢)+ (=Dl a,c)=0=(a,b,c)+ (—1)?Il(a, ¢, b) foralla, b, c € A.

2. Quadratic Jordan superpairsand supertriple systems

2.1. Quadratic maps and supertriple productsChe notation introduced here will be used
throughout the paper.

Let V = (V™T, V™) be a pair ofS-supermodules and 1e2? : V° — Homg(V 7, V°)
be a pair ofS-quadratic maps. We writ€@? = (Qg, Q°(.,.)) and recall thatQ? is
S-quadratic if and only if the following holds:

@ 0°(.,.): Vo x Ve - Homg(V™?,V?): (u,w) — Q°(u,w) is a map that is
(a.1) additive in each variable,
(a.2) of degre®, i.e., Q7 (V7. V§) C Homs(V =7, V7)qp for o, B € Zo,
(a.3) symmetric-alternating?? (u, w) = (=1)"“I*! Q7 (w, u) and Q(uz, u7) = 0 for
u,weV?, uje Vi and
(a.4) S-bilinear: Q% (su, w) = s Q% (u, w) fors € §.
(b) The mapQg : Vé’ — (Homg(V =7, V7)) has the following properties:

O (emrr) — «2()T (1) YO
S A A AN A
Given such mapg?’ we define asupertriple product
{..}:VIXxVTTx V> Vo:i(u,v,w) —~ {uvw} (24)
and anS-bilinear map of degree 0
D°(.,): V" xV™? —EndV?
by the formula
fuvw) =D, vyw = (=" Q7 (u, wyv. (25)
The triple product.. .} is anS-trilinear map of degree 0 which satisfies
{wvw) = (=pliFldivRIviG, 4 4y and  {ujvui)=0. (26)
We note that, conversely, givefitrilinear maps{...}: V? x V77 x V7 — V? of degree
0 satisfying (26), one can defirfebilinear symmetric mapg? (., .) of degreed by (25).
In the situation above we consider the Grassmann envelopeg@°ofsee 1.12.

AbbreviatingG(.) = Gs(.), we have aG(S)-quadratic map

G(Q%):G(V?) — G(Homg(V~7, V7)),
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which we compose with th& (S)-linear map (see (18))
"1 G(Homs(V77, V7)) — Homg(s)(G(V ™), G(V?))

to obtain, by Example 1.10(b),@(S)-quadratic map

—_~—

0% :=G(0°):G(V?) — Homgs5)(G(V°), G(V?)). (27)

Let 0°(.,.) be its polar. As usual, we associate to the pairt,0~) a G(S)-
tLiIinear triple productG(V?) x G(V™?) x G(V°) - G(V°) Qnd G(8)-bilinear maps
D°(.,.):G(V°) x G(V™?) — Ends G(V?) . (We leave out the in the notation for the
triple product since this will most likely not lead to confusion with the triple produdt 9f
We then have the following formulas for homogeneous € V°, v € V™° andg € Gy
such thalg, ® u € G(V?) etc.

~ 0 forl1 40

Q (‘§’®”)={Id®Qg(u) forI:(Z)}’ (28)
0% (g ®u, gy @w) = (=DM g, 0, ® 0 (u, w), (29)
D% (gu ®u, gy ®v) = (=DM Mg, e, ® D (u, v), (30)

{(gu ®@ 1) (g0 ® V) (g @ W)} = (—plIPIFlwIFIvIg 0 0 @ fuvw).  (31)

Of course® = ®z in the formulas above. In particular, it follows from (31) that the triple
product on the Grassmann envelope

Gs(V):=G(V):=(G(V").G(V™))

is just the Grassmann envelope of the triple produdt ¢fL..12).In the following we will
omit the superscrip# if it can be inferred from the context or if it is unimportant.

2.2. Jordan superpairs. A Jordan S-superpait also called alordan superpair oves,
is a pairV = (VT, V™) of S-supermodules together with a pa®™, 0~) of S-quadratic
mapsQ? : V? — Homg(V 7, V?) such that its Grassmann envelapg(V) together with
the quadratic map&)+, 0) of (27) is a Jordan pair oveF(S).

The condition thatG (V) be a Jordan pair can be expressed in terms of identities as
follows. Using the notation of [20]G (V) is a Jordan pair if and only if the identities
(JP1)—(JP3) and all their linearizations hold when substituting elements from the spanning
setéy @ v (61 € Gz, ve Vﬁ‘) of G(V) (a total of 15 identities). Since — & ®z v is
an embedding, we can pull back the identitied’tdt follows thatV is a Jordan superpair
if and only if the super versions of (JP1)—(JP3) and all their linearizations hdtd @ne
obtains the super version (JSPx) of the Jordan identity (JPx) by using the sign rule (1.15)
and by replacing any quadratic opera@fx) by Qg(xg) with an evenxg. For example,
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D(x, y)D(u, v) — (_1)(|X|+\y\)(\u|+\v\)D(u’ v)D(x, y)
= D({x yu},v) — (=l p (4 (y xv}). (JSP15)

As in the classical theory the definition of a Jordan superpair simplifigs 3fe .
Indeed, assuming this, 18t = (V*, V™) be a pair ofS-supermodules with a pair of triple
products (24) satisfying (26). Defin®(., .) by (25). Since (JSP15) fdr is equivalent to
(JP15) forG (V) it follows from [20, 2.2] that

If 1,1 € S thenV is a Jordan superpair if and only ifJSP15)olds forv.  (32)

This characterization is taken as the definition in Krutelevich’s paper [18] which contains
a classification of simple finite-dimensional Jordan superpairs over algebraically closed
fields of characteristic O.

2.3. Basic concepts.A homomorphismf:V — W of JordanS-superpairs is a pair
f=(f", f7) of S-linear mapsf“:V? — W? of degree0 satisfying forxz € V(-;’ and
arbitraryu, w € Vo andv e V=°

f7(Qatpv) = Q5(f7x5) f v and [ ({uvw}) ={f7@) ) f7w)}. (33)

There is a usefuhomomorphism criteriorSupposef : V — W is a pair ofS-linear maps
of degree O and la () : G(V) — G(W) be its Grassmann envelope (17). Then

fisahomomorphism < G(f) is a homomorphism. (34)

The definition of ansomorphisnrespectivelyautomorphisnibetween Jordan superpairs is
obvious, and clearly (34) also holds for them.

ApairU = (U™, U™) of Z,-gradedS-submodules of a Jordan superpdioversS is a
subpairof V if

0s(US)U™° cU? and {U°UT7U}CU”. (35)

In this caseGs(U) imbeds as a subpair @fs(V) and hencd/ is a JordanS-superpair
with the induced grading and the induced quadratic maps. In partidgas, a subpair
of V, whereV is considered as Jordan superpair a%erSimilarly, a pairU = (U™, U™)
of Z,-graded submodules is @heal of V if

Q5(US)V™7 4+ Qp(VS) U™ + {vov—ousl+{viu—vo}cue.

Inthis casey /U = (V*t/U*, V= /U™) is a Jordan superpair with the induced operations.
It is clear thatU C V is a subpair (respectively ideal) if and onlyGfs(U) C Gg(V) is
a subpair (respectively ideal). Once calissimpleif V has only the trivial ideals and if

Q% #0.
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Let I be an abelian group. & -grading of a JordanS-superpairV = (V*, V™) is a
family (V9[a]; 0 = &+, @ € I') of S-submodules such that

=P vy

yel’

and the following multiplications rules hold for all 8,y € I

Q5(V§ [el)V 7Bl C V7 [2¢ + B], and (36)
{Volal, VOUBL VOIyl} C Vola+ B+ v]. (37)

see [21] for the classical situation. In this casé,will be called I"'-graded and the
Via] = (V*[a], V- [a]) will be referred to ashomogeneous space$ V and W are
I'-graded Jordan superpairs we will say that theygaegled-isomorphi@and denote this
by V = W, if there exists an isomorphistfi: V. — W with f°(V°[y]) = W°[y] for
o=xandally er.

We call ug € Vé’ invertible if Q"(u) € Homg(V~7,V?) is invertible. In this case,

its inverseis defined by =1 = Q"(u) Ty e Ve Since 0 (1 ® u) is the Grassmann
envelope ofQq(u), it follows from (19) thaty i |s |nvert|ble if and onIy if 1® u is invertible
in the Jordan paiG (V). In this case, ® u 1= (1@ u)~1 , 05 Tl = 02 ()~ 1 and
u~1is again invertible and has inverse

For(x,y) e Vé’ X Vc-]*” theBergman operatois defined as

B(x,y)=1d =D (x, y) + 0 (x) Q5 (v) € Ends (V7).

Observe that the Grassmann envelopeBaf, y) is the Bergman operator of the pair
(1® x,1® y). Hence, by (19) and the elemental characterization of quasi-invertibility
in Jordan pairs we see that the following conditions are equivalent:

(i) B(x,y) isinvertible;
(i) 1®x,1Q® y)isquasi-invertible in the Jordan paif(V);
(iii) (x, y)is quasi-invertible in the Jordan pai;

In this case, we callx, y) € V quasi-invertible and note that
B(x,y) = (B(x,y), B(y,x)"!) is an automorphism of, (38)

called theinner automorphisndefined by(x, y). Indeed, this follows from the homomor-
phism criterion (34) and the corresponding fact for Jordan pairs [20, 3.9].

2.4. Proposition (split null extensions)Let U be a Jordan pair ovek, M = (M*, M ™)
a pair of k-modules,d? :U° x U™ — End,(M?) bilinear maps andg?:U° —
Hom, (M~°, M°) quadratic maps.OW =U @M =UT® M+, U~ & M~) we define
quadratic map° : V¢ — Honmg(V~?, V?) by
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Q°(xem)(y®n)=0°(x)y ®q° (x)n+d’ (x, y)m. (39)
Then the following are equivalent

(i) V isaJordan pair with respect t@ defined in(39).
(i) v is a Jordan superpair ovek with homogeneous parts; = U, V; = M and
quadratic mapgQ?|U°, Q°(.,.)) whereQ°(.,.) is the polar ofQ?.
(i) (M,d,q)is aU-module in the sense ¢20, 2.3]

One callsV the split null extension dff by M [20, 2.7]

Proof. We start out with a general observation. For a fixed Grassmann generatéy, say
the pairw = (W, W=) Cc G(V) given byW° = (1Q U°) & (§; ® M?) is a subpair of
G(V), i.e., (35) holds which makes sense eve{fV) is not necessarily a Jordan pair.
Moreover, the canonical map

VoWiudme— AQu)® & @m) (40)

is an isomorphism of pairs in the sense that (33) holds which, again, makes sense for
arbitrary pairs.

(i) = (ii) To prove thatG(V) is a Jordan pair we have to verify that the Jordan pair
identities and all their linearizations hold for elements from the spanning set.§ of
G (V). The product formula (39) implies that i& (V) all products with more than one
factor fromG; ® M vanish. Thus, it is sufficient to check that the identity hold$inBut
this is indeed the case, siné~ V by (40) and sinc& is a Jordan pair by assumption.

(i) = (iii) By the observation abové¥ is a subpair of the Jordan pai(V) and hence
itself a Jordan pair. Using the enumeration of [20, 2.3], the defining identities (1), (3), (4)
and (5) of a representation, follow by evaluating the Jordan pair identities (JP1)—(JP3) on
W while (2) is a consequence of (JP12).

(iii) = (i) thisis [20,2.7]. O

2.5. Corollary (first approximation of Jordan superpairkgt V be a Jordan superpair
over a base superring. ThenVj is a Vg-module, and hence the split null extensiohof
Vg by Vj is a Jordan superpair ove$ as well as a Jordan pair ove§g, called the first
approximation ofv.

Proof. Let V’ be the pair obtained fron¥ by putting all products with more than one
factor from V; equal to zero. By (40) the pairg’ and W are isomorphic. Since by
assumptiorG (V) is a Jordan pair, so i# ~ V'. By Proposition 2.4 we then know tha{

is a VZ-module with respect to the canonical maps which, by definitiol'gimeans that

Vj is aVg-module. O

2.6. Proposition (superextensions of Jordan pairksgt V be a Jordan pair over a base
ring k and let S be ak-superextension. We piity = (S ®; VT, S ® V™) and denote
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by Vi (s)y = G(S) @« V the base ring extension df by G(S). By (15) we can identify
GV =G(S) @ V° = Vg(s) asG(S)-modules.

There exist a unique Jordasrsuperpair structure or'Vs = (S® V', S ® V), called
the S-extension ofV, such thatG (Vs) = Vg (s).

Proof. We letQgs = (Q;f, Qy) be theS-extensions of the structure maps$ (see Exam-
ple in 1.14) followed by thes-linear mapn : S ®; Homg (V=7,V?) — Homg(VS“’, V§)
of (10). Itis then straightforward to verify th&t(Vs) = Vg(s). O

2.7. Jordan supertriples. Let T be anS-supermodule with a§-quadratic maP : 7 —
Ends(T). As in (27) this gives rise to & (S)-quadratic map6 :G(T) — Endg(5)(G(T)).

We call T aJordan supertriple oves if G(T) together withP is a Jordan triple (system),

as, for example, defined in [20, 1.13]. Homomorphisms of Jordan supertriples, ideals and
simplicity are defined in the obvious way.

The relation between Jordan supertriples and Jordan superpairs is the same as in the
classical theory. To explain this, we need some more definitionsoppesiteof a Jordan
S-superpaitV = (V*+, V™) is the Jordan superpaif®? = (V—, V) with quadratic maps
(0™, 0™). That V°P is indeed a Jordan superpair follows fra@(V°oP) = G(V)°P. An
involution of V is a homomorphisny: V — VP such that(n™ o n*,n" o n7) = Idy.

It is clear thaty is an involution ofV if and only if its Grassmann envelofg(n) is an
involution of G (V). One can now easily verify:

(@) If (T, P) is a Jordan supertriple thén(T) = (T, T) with the quadratic mapg&P, P)
is a Jordan superpair with involution= (Id, Id).

(b) Conversely, if is a Jordan superpair with involutionthen7 = V+ together withP
defined byP (x) = Q% (x)n™ is a Jordan supertriple whose associated Jordan superpair
(T, T) is isomorphic toV via (Id, n*) : (T, T) — V.

As in the classical theory one can, conversely, imbed the category of Jordan superpairs
in the category of Jordan supertriples by associating to a Jordan supeérgaiv+, V)
the Jordan supertriplE(V) = V*+ @ V~ with quadratic maps determined by

Polxg @ x5) (" @y7) = 07 (x5)y™ @ Q5 (xo)(»") and
rex ytey . e =ty Fle{x yT 7}

That 7(V) is indeed a Jordan supertriple follows fro@(T (V)) = T(G(V)) and the
corresponding fact for Jordan pairs [20, 1.14]. One then has the super version of the well-
known simplicity transfer (see, for example, [30, 1.5]):

2.8. Lemma.
(a) A Jordan superpailV is simple if and only if the Jordan supertripf& V) is simple.

(b) A Jordan supertripld is simple if and only the Jordan superp(T) is either simple
or a direct sum of two simple ideal®,(7T) = W & W°P, such thatl’ = T(W).
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2.9. Example (quadratic form supertriplds To motivate the definition below we first recall
qguadratic form triples. Let be a base ringX ak-module and; : X — k a quadratic form
with polarb. ThenX becomes a Jordan triple system okgcalled aquadratic form triple
with quadratic mapP (x)y = b(x, y)x — g(x)y.

Let now S be a base superring and lgt= (g5, b) : M — S be anS-quadratic form.
Define formg € Mg and arbitrary homogeneous n, p e M

Po(mg)n =b(mg, mymg — gg(mg)n,

{mn p} = b(m,n)p+mbn, p) — (—D)"Pbm, pyn.

Then M together with the quadratic map and triple products defined above is a Jordan
supertriple overS, called theJordan supertriple associated tp or sometimes simply a
guadratic form supertriplelndeed, the Grassmann envelope of the supertfipls the
guadratic form triple orG (M) with respect to th&; (S)-quadratic formG (¢) of 1.14. The
Jordan superpaitM, M), see 2.7, will be called thguadratic form superpair associated
tog.

The radical Radg of ¢, see example 1.10(c), is an ideal of the quadratic form supertriple
M defined byy whose multiplication is trivial. Hence, a necessary condition for simplicity
of M or (M, M) is thatq is nondegenerate the sense that Rgd= 0. The techniques
to establish the following simplicity criterion are well-known, see, e.g., [13, Theorem 11]
and [17, Theorem 6.1] for the case of Jordan algebras and superalgebras. Its proof will
therefore be left to the reader, but we note that because of Lemma 2.8 it is sufficient to
consider the quadratic form superp&, M).

2.10.Lemma. Let S = S; be a field, letM be a non-zerg-supermodule and let: M — §
be a nondegenerat§-quadratic form. Exclude the following situatinf§ is a field of
characteristic2, M = M; anddimg M = 2.

Then the quadratic form tripl@/ is simple, while the quadratic form paf = (M, M)
is either simple oM = Mg has dimensio2 andgq is hyperbolic. In the latter case, #f.. is
a hyperbolic basis o#/, the Jordan paintM, M) = W & WP is a direct sum of two ideals
W and W°P for W = (Sh, Sh_).

2.11. Unital Jordan superalgebras A unital Jordan superalgebra oves is a triple
(J,U, 1), whereJ is an S-supermodulel/ : J — Ends(J) is an S-quadratic map and
1, is a distinguished element ify such that the Grassmann envel@pg/) together with
the G (S)-quadratic mapG (U): G(J) — Ends(s5)(G(J)) is a (quadratic) Jordan algebra
with unit element § ® 1,, as, for example, defined in [12, 1.3.4]. It follows that

Up(1y) =1d. (41)

Since a unital Jordan algebra is the same as a Jordan triple with an element satisfying (41),
unital Jordan superalgebras can also be characterized as Jordan supertriples containing an
element } satisfying (41).
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Basic concepts like homomorphism, ideal and simplicity are defined in an analogous
manner as in 2.3 for Jordan superpairs. Details can be left to the reader but, for later use,
we mention explicitly the definition of a grading. Ldtbe an abelian group. A-grading
of a unital JordarS-superalgebra is a family (J,: A € A) of S-submodules such that
J =@, 4/, and the following multiplication rules hold for, i, v € A:

U()(JA)J;L C J2A+p. and {5 Ju Jv} C JA—HH—va (42)
where{...} denotes the Jordan triple product of the Jordan supertriple undedying

Remarks. (a) If % € S one can define #near Jordan superalgebras anS-superalge-

bra with the property that its Grassmann envelope is a linear Jordan algebra (1.15). As in
the classical case, they coincide with quadratic Jordan superalgebras defined above. The
relation between the quadratic structure and the linear Jordan superalgebra product is given

by
Up(ag)b = 2ag(agh) — asb, (43)
{abe) =2(a(be) + (ab)e — (=" @ac)b). (44)

(b) The same approach that we have used to define Jordan superpairs leads to a definition
of not necessarily unital (quadratic) Jordan superalgebras: one requires that the Grassmann
envelope is a non-unital quadratic Jordan algebra. For the case of base rings, details can
be found in the recent paper [17] which also contains a discussion of some of the standard
examples of Jordan superalgebras.

The relation between Jordan superalgebras and Jordan superpairs is the same as in the
non-super case [20, 1.6, 1.11]:

2.12. Lemma (isotopes).

(a) Let J be a unital Jordan superalgebra ovér ThenV = (J,J) with Q° =U is a
Jordan superpair with invertible elemehj e Vo and inversel; € V(-)+. If J is simple
then soisV.

(b) Conversely, leV be a Jordan superpair ovef and suppose that € Vo is invertible

with inverseu € Vg. ThenJ = V7T together withl; = x and quadratic maps
given byUs(x) = Qar(x)Qa(v) andU(x,y) = 0" (x, y)Qa(v) is a unital Jordan

superalgebra, called the-isotope ofV. Moreover,(ld;, Qg(v)) :(J,J)— Visan
isomorphism of Jordan superpairs.¥fis simple then so ig.

2.13. Example (quadratic form superalgebrasLet V = (M, M) be the quadratic form
superpair associated to a@iquadratic formg = (b,qg):M — S. If 1 € My is abase

point i.e.,g5(1) = 1, then 1e V™~ = M is invertible with inverse k vVt = M: the map

Q5(LHm =b(1,m)1 —m =: m satisfiesn = m. Hence, by Lemma 2.12(b), tiemodule

M together with the quadratic map
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Ug(mg)n = b(mc‘], fl)mc‘] — qp(mp)n,

{mnp}=>b(m,n)p+mb(n, p) — (=1)"Pp(m, p)n.

is a unital Jordan superalgebra with identity element 1.5erSj these superalgebras are
studied in [17, 8§6].

2.14. Example (special Jordan supertriplg¢s Every associative algebra becomes a
Jordan algebra, denoted), with respect to the quadratic operatidf(x)y = xyx,
where the product on the right hand side is calculated in the associative algelbre
corresponding triple product ig: b c} = abc + cba. We will describe the super version
of this example but since we did not define non-unital Jordan superalgebras we will work
with Jordan supertriples instead.

Let A be an associative superalgebra over some base sup&ruiity multiplication
ab for a,b € A. For a € A we define theleft multiplication L(a) respectivelyright
multiplication R(a) by

L(a)b=ab, R(a)b = (—1)l*Plpg.

ThenL(a), R(a) € Ends(A) and L(a)R(b) = (—1)\“!PIR(b)L(a) for a,b € A. We have
an S-quadratic mapP : A — Endg(A) given by

Py(ag) = L(ag)R(ap) and
P(a,b) = L(@)R(b) + (—1)“"IL(b)R(a) = L(a)R(b) + R(a)L(b).

Indeed,P is the quadratic map associated to fabilinear mapA x A — Endgs(A) defined
by (a, b) — L(a)R(b), see example 1.10(a). The corresponding triple product (25) is

{abcy=abc+ (_1)\dIIbHIaHCIHbIIC\Cba'

These formulas imply that the Grassmann envelop@ofP) is the Jordan triple system
G(A)™), hence(A, P) is a Jordan supertriple, denoted agaifi”’. Note thatA™ is
a Jordan superalgebra i is unital. In any case, by 2.7(a)A, A) is always a Jordan
superpair.

An involution of an S-superalgebrad is an S-linear mapr:A — A of degree 0
satisfying fora, b € A

@b)™ = (=1"Plp7a™ and (a")" =a.
Obviously,r is an involution if and only if its Grassmann envelo@ér) is an involution
of the algebraG (A). Any involution = of an associatived is also an involution of the

supertripleA™ in the following sense

(Polag)b)™ = Py(aZ)b™,  {abc}" ={a" b" "}, (45)
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and hence induces an involution of the associated Jordan supetpdir as defined in 2.7.
We denote by A, 7) = {a € A: a™ = a} the symmetric elements and by Skewr) =
{a € A: a™ = —a} the skew symmetric elements af Then (45) implies that

(H(A,7),H(A, 7)) and (SkewA,r), Skew A, )) are subpairs of(A, A). (46)

Special quadratic Jordan superalgebras are also considered in [17]. For a description of
involutions of simple or primitive associative superalgebras see [8, Theorem 2.10] and
[38].

3. Gridsin Jordan superpairs

Unless stated otherwis#&, = V5 @ V3 will denote a Jordan superpair over some base
superrings. We will write Q for 9 and D for D? if o can be inferred from the context. We
will frequently consider elements= (et,e™), f = (f+, f7) or g =(g*+, g7), in which
case it is often useful to employ the following abbreviations

0p(e) :=(Qg(e), 0g(e™)) (for evene),
D(e, f):=(D(e*, f7).D(e”, f*)) and
tefey:=e" regth{e e}
3.1. Idempotents. This subsection is the super version of [20, 5.4]. All unexplained
results follow from there. Using the abbreviations above,igempotent ofV is an

elemente = (¢, ¢7) € Vj satisfyingQg(e)e = e. To an idempotent we associat®eirce
projectionsE; = (E;}*, E[),i =0, 1, 2, given by

E§ = 05(e")Qp(e™).  Ef =D(e".e") ~2Ef. E§=B(e". ™).

Let V' be the first approximation o¥ (2.5). Since thef; are the same fo¥ and the
Jordan pai’, the classical theory implies that they form a complete system of orthogonal
projections onto th@eirce spacesf ¢,

Vier= (V@ V@), Ve =EJ(V°),

and hence give rise to tHeeirce decompositioly = Va(e) ® Vi(e) @ Vo(e). Of course
this direct sum has to be understood componentwise. We will abbréXigteby V; if the
idempotent is clear from the context. The Peirce spaces&seibmodules, and they are
the same folV andV'. Therefore we have the following characterizations:

V3 =Im(Qp(e”)). Vi @ V5 =Ker(Qg(e™?)).
Vi = Ker(ld—D(eU,e_U)),
Vg =Ker(Qp(e™?)) NKer(D(e”,e7%)),



E. Neher / Journal of Algebra 269 (2003) 28-73 49
[ . o —0 — .
Vi C{veV.{e e v}—lv} (i=0,1,2),

where the inclusion above is an equality if eitlier 1 ori = 0,2 andV has no 2-torsion.
Theelement®e=(1®e", 1®e7) is an idempotent of the Grassmann envel6ige).
Since the Grassmann envelopes of the Peirce projechipase the Peirce projections of
the idempotent ® ¢ € G(V) it follows that

G(Vi(e) =G(V)i(e) (i=0,1,2). (47)

Using (47), the multiplication rules between the Peirce spacesof tan be pulled back
to V. SettingV; =0 fori #£ 0, 1, 2 we therefore have

Qa(V)V; CVa—; and {V; V; Vi} C Vi j, (48)
D(V2, Vo) =0= D(Vo, V2). (49)

In particular, (48) says that evely(e) is a subpair ofV.
For two idempotents and f in Jordan superpal@ we say

(i) eandf areassociated(e =~ f)if e € Vo(f) and f € Va(e) or, equivalently, the Peirce
spaces oé and f coincide,
(i) eandf arecollinear(eT f)if e € V1(f) and f € Vi(e),
(iif) e andf areorthogonal(e L f) if e € Vo(f) or, equivalently,f € Vp(e),
(iv) e governsf (et f)if e e Vi(f) and f € Va(e).

3.2. McCrimmon—Meyberg superalgebrad.et ¢, f be two collinear idempotents in
a Jordan paiU. By a result of McCrimmon—Meyberg [28, 1.1] the pau™ + f,
e~ + f7) e U is quasi-invertible and gives rise to tlexchange automorphism ;s =
Bet + fT,e” + f7) which has period 2, and satisfigsy (e) = f andz,, ¢ (f) = e. We
also recall from [28, 2.2] that the algeb#a defined orl/ (¢) N U (f) by

Arab={lae” fT}f b} (a.beUS(e)NU(f)), (50)

is an alternative algebra with identity elemerit We will call A theMcCrimmon—Meyberg
algebra of the pair(e, f).

These results immediately generalize to the setting of Jordan superpairs. Indéed, let
be a Jordan superpair and assume &éhdte V; are two collinear idempotents. Applying
the above to the Jordan palit’, the first approximation oV, we have the exchange
automorphisn,, s of order 2. Also,A = V. (e) N V;"(f) together with the product (50)
is anS-superalgebra. By (47) and the definition of the algebra respectively triple product
in the Grassmann envelopes (7), (31) the Grassmann envelopésahe McCrimmon—
Meyberg algebra of the collinear pait ® e, 1 ® f) in G(V). Therefore, by 1.154 is
an alternative superalgebra. It is unital with identity elemehtand will be called the
McCrimmon—Meyberg superalgebra of the collinear p@ir f).
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3.3. Grids. Grids in Jordan triple systems have been studied in [31] and [33]. By
considering the polarized Jordan triple system associated to any Jordan pair, this theory
can be applied to Jordan pairs, see [35, 81] for a review of grids in Jordan pairs. Since by
definition an idempotent in a Jordan supergailies in the Jordan paivj, the theory of
grids is also available for Jordan superpairs, by considering the sulgpairV. For the
sake of completeness we give a short review below. We will use some concepts from the
theory of 3-graded root systems for which the reader is referred to [22, §17 and §18].
A summary of some results is also given in [32], [33, 81] and [35, 1.1], but note the
following changes: in [22] O is considered a root and the Cartan integers are denoted
(o, BY).

A cogin V is a family € c V of non-zero idempotents such that two distinct
idempotentse, f € £ satisfy exactly one of th&eirce relationseT f,e L f,et f or
e f. A cogé€ is closedif there exists a 3-graded root systdiR, R1) and a bijection
R1 — &:a+— e, Which preserves the Peirce relations_ L andl. Such a 3-graded root
system is uniquely determined up to isomorphism and calledgbeciate®-graded root
system of€ [33, 3.2]. We fix one such bijection and enumeréte {¢,; « € R1}. Since
ey Teg < oTp and similarly for L andk- we have

ey € Vig,pvy(ep),
in particular, {eqeqep}=(B, " )ep. (51)

A cogé€ in V is calledconnectedf every two idempotents, f € £ can be connected by a
finite chain(e = f1, f2, ..., fn = f) C € with f; L fi11 forevery 1<i < n. A closed cog
is connected if and only if its associated 3-graded root system is irreducible [33, 3.4]. One
calls two cogst andé&’ associated € ~ &’) if there exists a bijectiog : & — &’ such that
¢ (e) ~ e for everye € €. Two associated closed cogs have isomorphic associated 3-graded
root systems [33, Theorem 3.4.a].

A closed co@ C V is agrid if it has the following two properties:

(G1) wheneven(g1, g2, g3) C G is a family of pairwise collinear idempotents such that
{g1 g2, g3} # 0 then there exists € G such thatg1 =2 - g3 andh L g, i.e., the
Peirce relations irih; g1, g2, g3) are the same as in a diamond of roots, and

(G2) if g1 482+ g3Tgathen{gigzgs}=0.

For covering grids another characterization will be given in (53). Special examples of
grids will be studied in detail in Section 4.

A collinear familyis a family of pairwise collinear non-zero idempotents. A €og
calledpureif {e f g} = 0 for any collinear familye, f, g) C €. A collinear family is a grid
if and only if it is pure. It follows from the classification of grids in [31, Chapter Il] that
any connected non-pure grid is associated to a so-called hermitian grid as defined in 4.8.

3.4. Covering grids. For a closed co§ = {e,: « € R1} C V anda € Ry we define the
(joint) x-Peirce space of by
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Vo =[] Viap)(ep),
BERL

where, of course, the intersection has to be taken componentwise. Obseryedhat C
Va(eq). The sum of the joint Peirce spaces is always direct, and oneSsaysgersV if

V=@P Ve (52)
a€Ry
By [37, Proposition 3.7],
a covering cog is necessarily a grid, (53)

and hence in the future we will only speak of covering grids instead of covering closed
cogs. Recall that two associated closed cogs have the same Peirce spaces [33, (3.8.1)]. In
particular, one is a covering grid if and only if both are covering grids.

In view of (47), the Grassmann envelope of the jeirPeirce space of a grid is the
a-Peirce space of the closed co@15 ={1® g: g € G} C G(V), from which it easily
follows that

GcoversV <« 1® GcoversG(V). (54)

The Peirce multiplication rules (48) and (49) for a single idempotent imply

Q5(Va) Vg C Vag—p, {(VaVgVy} C Vou—pty and (55)
{(Va Vg V}=0 ifalp, (56)

whereQq(Vy) Vg =0if 20 — B ¢ R1 and analogously for the triple produdt, Vs V) }.

Suppose tha§ is a covering grid. The multiplication rule (55) can also be interpreted
by saying that (52) is a grading &f by the root latticeZ[ R] of R. Indeed, (55) becomes
(36) if one defines

VS o=+, ¢ €Ry,
Vial=1V., o=—, aeR_y, (57)
0 otherwise.

This grading will be denoted bt and called theoot grading induced b.

Let (o, B) C Ry be a pair of collinear roots, heneg, eg are collinear idempotents.
(Such a pair does not exist if and onlyff= A; or R = By). The McCrimmon—Meyberg
superalgebra ofe,, eg), as defined in 3.2, is defined on the Peirce spgj:esince

Vo = Va(eq) N Vl(eﬁ)- (58)

Indeed,Vy, C Va(eq) N Va(ep) since(a, o) =2 and(B, «¥) = 1. For the other inclusion,
we note that alwayd/(ey) N Vi(ep) = P{V,: ¥y € R1, (y,a”) =2, (y.BY)=1}. For
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anyy € Rj satisfyingy # «a and{y,a”) = 2 we havey 4o T B and thereforgr - 8 or
y L B by length considerations [22, 18.6.b(ii)]. In particulgr, 8Y) # 1 which implies
(58).

The following lemma is immediate from (56). It reduces the classification of Jordan
superpairs covered by a grid to the case of connected grids.

3.5. Lemma (direct sums)Let V be a Jordan superpair with a covering grfgl whose
associated3-graded root systenir, R1) is an orthogonal sum d3-graded root systems
(RW, Rg’)), e.g., the decomposition 6R, R1) into its irreducible components. Put) =
@aeR? Vy. ThenV =@, V¥ is a direct sum of ideals.

3.6. Standard grids. In an arbitrary gridG the relations between idempotents are
controlled by the associated 3-graded root system, but products of @ype) f or
{efg} for e, f, g € G may fall outside ofG even if Qg(e) f or {efg} are idempotents.
Roughly speaking, standard grids are characterized by the condition that Jordan products
of idempotents irG which are idempotents lie inrG. To define standard grids, we need
the following concepts.

A family (eo; e1, e2) of non-zero idempotents i is atriangle of idempotents

(i) egte1 L ex—eg, and
(i) Ogleo)er = e2, Qplen)ez = e1 and {erepe2} = eo (by [31, 1.2.5], the first of these
three equations implies the remaining two).

A family (eq, e2, e3,e4) of non-zero idempotents in a Jordan superpgiris a
guadrangle of idempotenifsfor all indices mod 4 we have

(i) eiTej+1 L eiy3, and
(i) {eieir1eit2} =eit3.

A family (eo; e1, e2, e3) of non-zero idempotents ivi is adiamond of idempotentt

(i) (e, e2,e3) is a collinear family an@1 - eg - e3, eg L e2;
(i) {eoe1e2} = ez, {e1e2e3} = 2eq, {e2e3e0} = e1, {ezepe1} = ez (the first of these four
equations actually implies the remaining three, see [31, 1.2.8]).

In the three definitions above the conditions (i) coincide with the definition of a
triangle, quadrangle or diamond of roots [22, 18.3]. To distinguish them from triangle
of idempotents etc., we will refer to the configurations of rootgaa triangle root
guadrangleor root diamondrespectively.

Agrid G ={ey: @ € R1} in a Jordan superpair isstandard grid[33, 3.5] if

(SG1) the idempotents corresponding to a root triatigles, y) C Ry form a triangle of
idempotents;
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(SG2) the idempotents corresponding to a root diameng, y, §) C Ry form a diamond
of idempotents;

(SG3) for every root quadrangles, a2, a3, ®a) C R1 there exists a sign € {1} such
that (eq;, €a,. €a3, €€a,) is @ quadrangle of idempotents.

Clearly, triangles and quadrangles of idempotents are examples of standard grids.
A diamond creates a standard grid, namely a hermitian &i{@) as defined in 4.8, see
[31, Theorem 1.2.11].
Every gridg is associated to a standard grid [33, 3.7 and 3.8]. Such a standard grid is not
unique, but one example can be constructed as follows. We choose a griél ba&e, R1)
(see [32] or [33, 1.5]) and defirfg= {g,: « € R1} by induction on the height. Fg& € B
we putgg = eg. Fora € Ry with ht(e) > 3 we choose a decomposition=y — 1 + B2
with g; € B andy € R3, ht(y) = ht(«) — 2, and defing,, by

a) g4 = Ogley)ep, incasey = B2 and(y; B1, ) is a root triangle;
b) g« = e, e, ep,} In case(py, B2, a, y) is a root quadrangle dBy; B2, «, y) is a root
diamond.

Then§ is a standard grid withG ~ G. It is called thestandard grid generated by
{eg: B € B}. It is unique in the following sense: i§’ is another standard grid with
{eg: B € B} C §' and with the same 3-graded root systerg ésnd?) then the idempotents
in G and ing’ differ by a sign only [33, 3.7].

3.7. Refined root gradings of Jordan superpair§uppose tha¥ is covered by a standard
grid § = {eq: @ € Ry} with associated 3-graded root systém, R;1). We then have an
induced root gradingr of V with grading grouZ[R] as defined in (57).

A refined root grading ofV, §) isa gradingV?[y]: o = &, y € I') of V with grading
groupI”, written additively, such that the following two properties hold:

(i) There exists a group homomorphigmI” — Z[R] such that for everg € R1 we have

Vo= € Vloyl
yep (e
(i) Everye, is homogeneous, € (V*[at], V- [¢~]) for suitablea™ e I".
Throughout we will use the following notation for a refined root grading with grading

group I'. Since 0# ef = Qp(ed)e,” € V[2a° + a~ 7] it follows thata® = —a~7.
Hence, withe :=&™, we havee, € (V*[a], V- [—a]). We put

I" := the subgroup of” generated byi: « € Ry},
r°:=Kerg.

We can therefore write
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=@ vo[oa+]

rer0

for « € Ry. Our notation is influenced by the notations used in the theory of extended
affine Lie algebras, see, for example, [2] or [1]. Indeed, for suitable choic&said V
the TKK-algebra ofV is the core of an extended affine Lie algebra.

Remarks. (1) The definition above makes perfect sense for an arbitrary coveringgrid
which is not necessarily a standard grid. This will however not lead to a more general
structure. Indeed, leB be a grid base ofR, R1) and letG be the standard grid generated

by {eg: B € B}, see 3.6. Ther§ has the same root grading §ssince§ ~ §. By the
description of§ given in 3.6, every idempotent 6fis I’'-homogeneous. It is therefore no
loss of generality to assume in the definition of a refined root gradingtiea standard

grid. In fact, we can even assume ti$ais the standard grid generated {&: 8 € B} for

some grid bas@ of (R, R1).

(2) Refined root gradings naturally occur in the following set-up. Suppose, for
simplicity, thatk is a field of characteristic 0. L&i; denote the span of all inner derivations
(D(e},ey), —D(ea, el)),a € R1. ThenZ[R] imbeds as a subgroup of the dual space
of hg via a(A(e ey 2)) = (a, BY) [34, 3.2.c]. Assume further thdt C (DerV)g is an
subalgebra of the derlvat|on algebra Dewhich acts diagonalizably ol and contains
hg. The weight spaces &fin V then define a refined root grading with grading gratip
In this case the map can be taken to be the restriction)o€ h* to Z[R] C b%.

(3) Generalizing (2), one can define refined root gradings of Lie algebras graded by a
root systemr [42, 82]. For the case of a 3-grad&d refined root gradings are described
in[9, 2.11].

(4) For an easy example of refined root grading see 3.9. We will describe refined root
gradings in terms of graded supercoordinate systems in Section 4.

3.8. Lemma.

@) Let(Vi[y] y € I') be a refined root grading with grading group. Then
(a.i) ¢|I" is a group isomorphism ontd[R] andI" = I" & I'°.
(a.ii) Put

Vo= @ vofoa+1]. o=+

aER1

Then(V*(); & € I'% is a I'%-grading of the Jordan superpalf as defined ir2.3. In
particular, V (0) is a subpair ofV containingg:

(b) Conversely, assume that is an abelian group and thatV*(AV): > € A) is a
A-grading of V which is compatible with the root gradirig in the following sense
(b.i) VoY) = @aeRl(V"(AV) NVy) for everyx e A;
(b.ii) §cC V(0Y).
Putl” = Z[R] & A (direct sum of abelian groupsand forp € Z[R] andi € A define
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vinveay) ifp=oa, a€Ry,

Ve A=
Lp ® 2] {O otherwise

Then(VE[p @ A]: p ® A € I') is a refined root grading ofV, 9).

A refined root grading ofV, §) with grading grouZ[R] & A will be called arefined
root grading of type(R, A). We will say V has a refined root grading of typér, A) if
there exists a covering grig with 3-graded root systenr, R1) = R such that(V, 9)
has a refined root grading of tyg®, A). Because of the result above, every refined root
grading ofV is of type (R, A) for some suitabl& and A.

Proof. (a.i) Let B be a grid base ofR, R1). Because of the uniqueness of standard grids
we may assume thdt is the standard grid generated . B € R1}, see 3.6. Then an
induction on the height, using the formulas of [22, 18.4], shows fhas spanned by
{B: B € B}. SinceZ[R] = Ppep B, it follows thato|I™ is an isomorphism ont@[R],
and this then implies the second claim.

(a.ii) Itis clear thatV? = @, .o V7 (1). The multiplication rules (36) and (37) hold
because fow, 8, y € R1 andx, u, v € I'% there exists$ € R1 such that

Q(VI[oa+A))V o [—oBp+u]CcV[o+2+u] and  (59)
(Voo + 1]V [0+ u]Voloy +v1} C Vo od + 1+ u +v]. (60)

Indeed, since we havea-grading the left side of (59) lies i [0 (2& — B) + 2A + u].
We can assume that it is non-zero. Then, because of (55), wephiaie- f) = 20 — 8 =:
8 € Ry whence & — 8 = § by injectivity of ¢|I". (60) is proven similarly.

(b) is a straightforward verification.

3.9. Split Jordan superpairs.Because of [31, Theorem 1.4.3] and the defining properties
of standard grids, th&-span of any standard griglin V,

219 =P (zg™. 2¢7)

g€§

is a subpair of the Jordan superpticonsidered as a superpair over the integers. It follows
easily from the properties mentioned above that the following are equivalent for a Jordan
superpaiV over some base superrifg

(a) there exists a grig C Vg suchthaf{g?: g € G} is a basis of theS-supermodule/;

(b) there exists a standard gr@l C V5 such that{g°: g € G} is a basis of the
S-supermodul&/?;

(c) there exists a standard gi§dC V; such thatV is isomorphic to theS-superextension
Z[SG]s of Z[S] by S as defined in Proposition 2.6.

Generalizing a concept from [36, 3], is calledsplit or split of type§ if the conditions
(a)—(c) are fulfilled. In this casé, is a covering grid oV
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LetG ={e,: @ € Ry} be a standard grid and suppose thidtas aA-grading as defined
in 1.5. The split Jordan superpdit = Z[G]s then has aA-grading with homogeneous
partssS; ® Z[G] which is compatible with the root grading &f. Hence, by Lemma 3.8(b),
V has a refined root grading with grading grddjR] & A.

4. Refined root gradings of Jordan superpairs

4.1. Preparation. Unless stated otherwise, in this sectiorwill denote a Jordan
superpair over some base superrifigSuppose’ is covered by a gri@ with associated
3-graded root systertR, R1). Every grid is the union of connected, pairwise orthogonal
grids or, equivalently, every 3-graded root system is the orthogonal sum of irreducible root
systems. Hence, by Lemma 31B,is a direct sum of ideals each covered by a connected
subgrid. For the purpose of classification we may therefore assumg thabnnected, or
equivalently, that® is irreducible.

Connected grids in Jordan triple systems are classified up to association in [31, 1l]. As
explained in 3.3, this can be applied$oC V. Since idempotents are associated/irif
and only if they are associated i and since a grid associated to a covering grid is still
covering, it follows from the classification of grids that we may assumeghatexactly
one of the seven types of grids listed in Table 1. For the convenience of the reader the
definition of these grids is given in the subsections indicated. All of these seven grids are
connected standard grids. Their associated 3-graded root systems are the ones with the
corresponding names, see for example [22, 17.8, 17.9].

To classify Jordan superpairs covered by a grid now means to define for each of these
seven types a so-callsthndard examplef a Jordan superpair covered §yand to prove
acoordinatization theoremi.e., to show that an abstract Jordan superpair coverédidy
isomorphic to a standard example. For the convenience of the reader the list of the various
coordinatization results is indicated in the column “coordinatization.”

Once one knows the structure of a Jordan supefpamvered by a grid, i.e., a Jordan
superpair with a root gradingt, one can then easily describe the refined root gradings of
(V, 9). We will employ the terminology of Lemma 3.8 and study refined root gradings of
type (R, A) whereA is an abelian group.

Although refined root gradings are more general than root gradings, i.e., the gradings
obtained from covering grids, we feel it is more natural to formulate our coordinatization
results first for covering grids and then indicate the necessary “refinements” for refined

Table 1
Name of grid Definition Coordinatization

rectangular gridR(M, N) (1< |M| < |N|) 4.2 4.3,4.5,4.7
hermitian gridH (1) (2< |1]) 4.8 4.9,4.12
even quadratic form gri@. (1) (3< |1]) 4.13 414

odd quadratic form grid, (1) (2< |1]) 4.15 4.16
alternating £ symplectic) gridA(7) (5< |1]) 4.17 4.18
Bi-Cayley gridB 4.19 4.20

Albert grid A 4.21 4.22
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root gradings—after all, this is what the terminology suggests. Let us point out that the
coordinatization theorems for refined root gradings are new even in the case of Jordan pairs.
Because of this they cannot be obtained by applying the Even Rules Principle [6, 1.7]. Of
course, with some good will this principle can be applied in the ungraded case, i.e., the
coordinatization of Jordan superpairs covered by grids. However, since the proofs of the
various coordinatization theorems are quite similar, we will only present three of them as
representative examples (Theorems 4.5, 4.9 and 4.16).

4.2. Rectangular grids. For arbitrary (possibly infinite) non-empty sefd, N with
M| < |N| a family R(M, N) = {en: m € M,n € N} of non-zero idempotents i is
called arectangular grid of sizef x N if it has the following properties:

(i) if [M]=1thenR(M, N) is a collinear family, 3.3,
(i) for distinct m,m' € M and n,n’ € N the subfamily (e, emn's €mns €mrn) Of
R(M, N) is a quadrangle of idempotents, 3.6, and
(i) R(M, N) is pure, 3.3.

For finite M, N with |M| =m and |[N| = n we will write R(M, N) = R(m,n). The
3-graded root systertR, R1) associated to a rectangular gidM, N) is the rectangular
gradingAY"" for 1 = M U N as defined in [22, 17.8]. We hae = {s; — ¢;: i, j € I}
andRy ={ey, —&y. me M,n € N}.

The classification of Jordan superpairs covered by a rectangular grid naturally leads to
three subcasesiM|, |[N|) = (1,1), (M|, |N|) = (1,2) and|M| + |N| > 4. The last one
will be dealt with in 4.6 and Theorem 4.7, for the second see 4.4 and Theorem 4.5.

In the first case we havk = A1. The standard example for such a Jordan superpair is
(J, J) whereJ is a unital Jordan superalgebhfaLemma 2.12. Indeed,/, J) is covered
by the gridg = {e} for e = (1, 1;). A A-grading ofJ, as defined in 2.11, gives rise to
a refined root grading of/, J) of type (A1, A). Conversely, ifV is a Jordan superpair
covered by a single idempoteatthen V = V(e). Since Qg(e?) Qp(e™?) projects onto
V3 (e) it follows that V = Vz(e) if and only if ¢ is invertible, and in this case we
have (¢”)~1 = ¢=?. Hence we can apply Lemma 2.12 and obt&ire= (J, J) via the
isomorphism(ldy+, Qg(e™)):V — (J,J). In caseV has a refined root grading, this
isomorphism becomes a graded isomorphism, whiehas the induced grading given by
Jy = V;r. These results are summarized below.

4.3. A1-Coordinatization. A Jordan superpail/’ overS is covered by a single idempotent
if and only if V is isomorphic to the superpaii/, J) of a unital Jordan superalgebrd
over S. More generally,V has a refined root grading of typ@\1, A) if and only if V is
graded-isomorphic t@J, J) whereJ is a unital Jordan superalgebra with a-grading.

4.4. R(1,2) and alternativel x 2-matrices. A rectangular gridR(1, 2) is the same as
a collinear pair(e, ). A collinear pair(e, f) covers a Jordan superpairif and only if
V = Va(e) ® Va(f) andVa(e) = Vi(f), Va(f) = Vi(e).
Before we describe Jordan superpairs covered by a collinear pair, let us recall the
classical situation. One knows ([28, 2.2], [35, (3.2.3)]) that a Jordan{pas covered
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by a collinear pair(e, f) if and only if U is isomorphic to the Jordan paii2(B) :=
(Mat(1, 2; B), Mat(2, 1, B)) where B is a unital alternative algebra, which one can take
to be the McCrimmon—Meyberg algebra of the collinear pairf). For (x, y) € M12(B)
written in the formx = (x1x2), y' = (y1y2) the Jordan pair products are

0" (x)y =x(yx) = (x1(y1x1) + x2(y2x1), x1(y1x2) + x2(y2x2)),
0~ (y)x = (yx)x = ((yrx1)y1 + (y1x2)y2, (y2x1)y1 + (y2X2)yz)T-

Of course, because of the Moufang identitya) = (ab)a, some of the brackets above are
superfluous. They are included for easier comparison with the supercase discussed below.
In the supercase, we consider a unital alternative superalgeloreer S. For natural
numbersn, n we denote by Main, n; A) them x n-matrices with entries fromt. This
becomes as-supermodule whose even partis Matn; Ag) and whose odd part consists
of thosem x n-matrices for which all entries lie id;. (Warning: Matrices oveA are also
defined in [19, 83] and [23, Chapter 3, §81.7]. The matrices considered here all have even
rows and columns in the terminology of [19] and [23].) In particular,

Mi2(A) := (Mat(1, 2; A), Mat(2, 1; A))

is a pair of S-supermodules. There are canoni§afjuadratic map2 = (Q*, 07) on
Mj2(A) such that the Grassmann envelopé&dfi2(A), Q) is the Jordan paikli12(G(A)).
Namely, for xg = (x5 %50) € Mat(1,2; Ag), y € Mat(2,1; A) with yT = (y1y2) and
arbitrary homogeneous z € Mat(1, 2; A), y € Mat(2, 1; A) we define

03 (xp)y = (x50 (1x50) + X2 (V2X50) X1 (¥1%0) + X5 (¥2X5) ).
{x yz} = (x1(r121) + x2(y2z1) + (= DIV (2 (3y120) + 22(32x1)).
x1(y122) + x2(y2z2) + (= DIV (2 (y1x9) + 22(y2x2))).
One obtain@g and the other supertriple prodyct.}: V= x VT x V= — V~ by shifting

the brackets in the expressions above one position to the left and taking the transpose. With
respect to this product

e=(a0.(5)) and r=(0n.(3))

are collinear idempotents which covdri 2(A). Moreover, anyA-grading ofA, as defined
in 1.5, gives rise to a refined root grading lgf12(A) of type (Az, A) by defining the
homogeneous-space adl12(A) (1) = (Mat(1, 2; A,), Mat(2, 1; Ay)).

4.5. A,-Coordinatization Theorem. A Jordan superpairV over S is covered by a
collinear pair (e, f) if and only if V is isomorphic to a Jordan superpalfli2(A) of a
unital alternative superalgebra overS. One can taked to be the McCrimmon—Meyberg
superalgebra ofe, f).
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In this case,(V, {e, f}) has a refined root grading of typ@A, A) if and if A is
A-graded. TherV andM12(A) are graded-isomorphic.

Proof. SupposeV is covered by a collinear paie, 1), and letA be its McCrimmon—
Meyberg superalgebra. This= V1 @ V> whereV; = V;(f) andA = Vfr asS-modules.
We definep : V. — M12(A) by

n _ b _ _ Ople™y1 )
s =l o mew=(, S0
and claim thatp is an isomorphism of Jordan superpairs o§eBy the homomorphism
criterion (34) it suffices to show that the Grassmann enveldf@e is an isomorphism. By
(54) we know thatG (V) is covered by the collinear pail ® ¢, 1 ® f), and by 3.2 the
Grassmann envelope df is the McCrimmon—Meyberg algebra ¢f ® ¢, 1 ® f). Since
(G(Mat(1,2; A)), G(Mat(2,1; A))) = (Mat(1, 2; G(A)), Mat(2, 1; G(A)) one then finds
that G(¢): G(V) — M12(G(A)) is exactly the map used in thexAoordinatization of
Jordan pairs ([28, 2.2] and [35, (3.2.3)]) and is therefore an isomorphism.

Now suppose thatV, {e, f}) has a refined root grading of typéAs, A) with
homogeneous spacé&’ (1) in the notation of Lemma 3.8(b). Defing, = V," N A.
Sincee, f € V(0) it easily follows from the product formula (50) that = P, ., Ax
is aA-grading ofA. Moreover, the isomorphisi defined above is a graded isomorphism
sinceg (V (1)) € M12(A),. This proves one direction of the theorem, the other has been
established in 4.4. O

4.6. Rectangular matrix superpairsLet A be a unital associative superalgebra over
S, and letM, N be arbitrary sets. Ainite matrix overA of sizeM x N is a matrix

X = (Xmn)meM.nen Where allx,,, € A andx,,, # 0 for only a finite number of indices, n.
Generalizing the notation of 4.4 we denote by #t N; A) the leftA-module of all finite
matrices over of sizeM x N. By restriction of scalars, this becomes&isupermodule
with even part MatM, N; Ag) and odd part MatM, N; Az) (in obvious notation).

Let P be the disjoint unior® = M U N. With respect to the usual matrix multiplication,
Mat(P, P; A) is an associative superalgebra o§eBy Example 2.14 we therefore have a
Jordan superpaiMat(P, P; A), Mat(P, P; A)) overS. Therectangular matrix superpair
of sizeM x N and with coordinate algebr& is the pair

Mun (A) = (Mat(M, N; A), Mat(N, M; A)),

which we consider as a subpair ¢¥lat(P, P; A), Mat(P, P; A)) via the imbedding of
My (A) in Mpp(A) given by

w»=((05)(7 o)

Thus, the structure maps by, (A) are
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Q% (xp)y =xgyxgy  {xyz}=xyz+ (DKL ¢ (61)

where on the right hand side of the equations we have the usual matrix multiplication.
Let E;; be the matrix whoséij)-entry is 1 and whose other entries are zero. Then

ejj = (E;jj, Ej;) € Myn(A) is an idempotent an®(M, N) = {ey,: m € M, n e N} is

a rectangular grid of siz&f x N which coverdM;n (A). If we choose the obvious map

R1— R(M, N) which sends; — ¢; to ¢;;, then the joint Peirce spaces®{M, N) are

Mun(A)e—e; = (AEij, AEji).

In particular, for(|M|, |N]) = (1,1) or (1,2) we obtain special cases of 4.3 and 4.4:
J = A7 in the first case and associative in the second. It follows from Theorem 4.7
below that associative coordinates are necessary and sufficieftt for|J| > 4. In the
ungraded case, this coordinatization result is the super version of [28, 3.4] and [35, (3.2.3)].
We have seen thatlyy (A) has a root grading of typ&YN . If A =@, _, A, is a
A-grading, we obtain a refined root grading of ty(kf,”"’, A) by putting My (A)(A)
= (Mat(M, N; A;), Mat(N, M; A;)).
The proof of the following coordinatization theorem is analogous to the proof of
Theorem 4.5, using the rectangular coordinatization theorems of Jordan pairs [35, (3.2.3)].

4.7. Rectangular Coordinatization Theorem. Let V be a Jordan superpair ovef. Then
V is covered by a rectangular gri} (M, N) with |M| + |N| > 4 if and only if, as a Jordan
superpair overS, V is isomorphic to a rectangular matrix superpaifly,y(A) where
A is a unital associativeS-superalgebra. AsA we can take the McCrimmon—Meyberg
superalgebra of a collinear paite;,, e,,,») for some choice ofrn € M andn,n’ € N,
n#n'.

In this case(V, R(M, N)) has a refined root grading of typ@\»V, A) if and only if
A is A-graded, and we then even have a graded isomorplisiay My (A).

4.8. Hermitian grids. LetI be an arbitrary set with/ | > 2. A hermitian grid of sizd is
a family H(I) = {h;; = hj;: i, j € I} C V of non-zero idempotents built out of triangles
and diamonds, as defined in 3.6: for distinct, k € I we have

() (hij; hii, hjj) is atriangle of idempotents, and
(i) (hiis hij, hjk, hii) is a diamond of idempotents.

A hermitian grid is a connected (in general non-pure) standard grid. Its associated 3-graded
root system is isomorphic to the hermitian gradinEeretermined on the root system
R=C;={xexte;:i,jel}byR1={e +¢;: i, jel}. The canonical bijection between
R1and3(]) is given bye; +¢&; — h;;.

As we will see, the description of Jordan superpargovered by a hermitian grid
naturally falls into two caseg’| =2 and|I| > 3. The latter case will be dealt with in
Theorem 4.12. In the first cas®,= C; = B, andJ (/) is a triangle of idempotents, say

FH(I) = (h12; ha1, h22).
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The standard example of a Jordan superpair covered by such a triangleJis
where J is a unital Jordan superalgebra containing a feait c2) of orthogonal even
idempotents which are supplementary, i®@.+ ¢ = 1;, and strongly connected, i.e.,
there exists an even elementn the Peirce spacéi, such that? = ¢1 + c¢». Indeed, in
this caseiiz = (u, u), h11 = (c1, c1), ho2 = (c2, c2) form a triangle which coveré/, J).
For this example a refined root grading is obtained by takingrgrading of the Jordan
superalgebra/, 2.11, which is compatible with the@rading: we have/ = @, _, Jx
such that eactiy, = (J11N J,) @ (J12N J,) @ (J22N Jy). The following coordinatization
theorem says that this example is in fact the general case.

4.9. Cy-Coordinatization Theorem. Let V be a Jordan superpair ove§. ThenV is
covered by a hermitian grié((/), |I| =2 if and only if V = (J, J) whereJ is a Jordan
superalgebra oveS which contains two strongly connected supplementary orthogonal
idempotents.

In this case,(V,H([I)) has a refined root grading of typ(scge’, A) ifand J has a
A-grading compatible with theger-grading, and therV =, (J, J).

Proof. SupposeV is a Jordan superpair covered by a triangleo; h11, h22). Then

V = V11 @ V12® V22 whereV;; are the Peirce spaces of the orthogonal sysiem £25).

It follows thatc = h11 + hop is an invertible idempotent ifv. Hence, by Lemma 2.12,

V = (J,J) whereJ is the ¢~ -isotope ofV. It is then easily checked that = hirl and

c2 = h;, are supplementary orthogonal idempotents which are strongly connected by
u = h3,. In view of what has been said in 4.8, this proves the coordinatization theorem for
root gradings. The proof for refined root gradings is then immediate (compare the proof of
4.3). O

Remark. Examples of Jordan superalgebras with a covering triangle will be given in 4.11
and 4.15. Even in the classical case, the structure of Jordan pairs covered by a triangle is
unknown in general. However, one has a classification in the case of a simple Jordan pair
[29] and also in the case of the coordinate algebra of an extended affine Lie algebra of
type G [1, 84].

4.10. Ample subspacesLet A be a unital alternative superalgebra o§emhenucleus of
A is the submodule M) = {n € A: (n, A, A) =0} where(., ., .) denotes the associator,
see 1.15. Let be an involution of4, as defined in Example 2.14. &submoduleA® c A

is called arample subspace @#A, ) if

(i) 1€ A°C H(A, m) NN(A),
(i) agA®a? c A°forall ag € Ag, and
(i) a(BOc™) + (—1)lallb®+lallel+1b%lel . (p04™) ¢ AQ for all homogeneous, ¢ € A and
b9 e AO,
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Note that (i) and (i) implya + a™ € N(A), from which it easily follows that(ba™) =
(ab)a™ forall a,b € A. We can therefore leave out the brackets in an expreasioh, as
we have done in (ii).

All concepts in the definition of an ample subspace are compatible with taking
Grassmann envelopes: is an involution ofA if and only if G() is an involution of
G(A), GH(A, 7)) =H(G(A),G@)) and G(N(A)) = N(G(A)). It is then easily seen
that A° is an ample subspace foA, =) if and only if G(A®) is an ample subspace for
(G(A), G()) in the classical sense, i.e., (i) and (ii) hold with obvious meaning. Because
of this connection and [11, p. 1.47] we have the following criterion for the existence of an
ample subspace: An ample subspace exists if and omdyisfanuclear involutionin the
sense that

(a) agag € N(A) for all ag € Ag, and
(b) ab™ + (—=1)l4llblpa™ e N(A) for all homogeneous, b € A.

In this case,

A% — S—Spar({a()ag: ag € A@} U {ab” +(=DllPlpg™: a be A })

min

and A%, =H(A, ) NN(A)

are ample subspaces, and heAfle. c A® c A2, holds for every ample subspagé. In
0

particular, if € k thenA%, = A, is the only ample subspace.
Examples. Let (A, 77, A®) be an alternative algebra over some base kimgth involution

7 and ample subspac®. If S is ak-superextension then the canoni§asuperextensions

(S®k A, ld@im, S A% are an example of an alternati¥esuperalgebra with involution

and ample subspace. More genuine super examples have been found by Shestakov in [41].
With the notation of that paper, the superalgel@éls 2) andB(4, 2) are simple alternative
superalgebras defined over fields of characteristic 3 (!). Both have a nuclear (even central)
involution. The corresponding Jordan superalgebraso8aermitian matrices are simple
Jordan superalgebras ([41, Theorem 3]—these are examples ix) and x) in the Racine—
Zelmanov list [39]). The corresponding hermitian matrix superpair of 4.11 are simple
Jordan superpairs (Lemma 2.12(a) or [8, 3.10]).

4.11. Hermitian matrix superpairs.To motivate the construction below we will start
with an example of a Jordan superpair covered by a hermitiartg¢id, |1| > 2, which,
however, will turn out to be the general case fbr> 4.

Let A be a unital associativd-superalgebra with involutiomw. We have then seen
in 4.6 that Maf/, I; A) is an associative superalgebra o¥erThe mapx = (x;;) —
x*i=xTT = (x}’i) is an involution of the superalgebra Mat/; A). Hence, if we define
H;(A, ) = {x € Mat(l, I; A): x =x*} then, by (46),

H;(A, )= (H[(A,JT), Hr(A, rr))
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is a JordarS-superpair with quadratic maps given by matrix multiplication. Note that the
diagonal elements of € H; (A, ) lie in H(A, 7). More generally, letA® be an ample
subspace forA, ) and define H(A, A%, 7) = {x = (xij) € Mat(Z, I; A): x = x*, all

Xii € AO}. Then

Hy (A, A% 7) := (H/ (A, A% ), H; (A, A®, 7))

is a subpair ofM;;(A) and hence itself a Jordasrsuperpair. We recall from 4.10 that
H; (A, A% ) =H; (A, n) if 5 €k.
The S-module H (A, A°, ) is spanned by elements of type

alijl=aEij+a"Eji (a€ A, i #j) and a%[ii]=a"E;; (a®€ A).

The Jordan superpair productlif (A, A®, ) is therefore known once it is known for this
spanning set. Because all products of elements in our spanning set lie in(an 4P, )
for finite 1’ it is sufficient to consider finite, in which caset; (A, A, 7) is the Jordan
superpair associated to a unital Jordan superalgébrahose quadratic map we will
denote byU. In the formulas belowg? € A° N Ag, a%, 5%, ¥ € A%, a5 € Ag, a,b,c€ A
(homogeneous if necessary) ang, k, [ € I are pairwise distinct.
Up(adlii1)b°lii] = ad b0 agliil,
{a®1i11601i11 i1} = (a%0%0 + (= 1)l IO HaCICIHOI! 0, 040) 7
Ug(aglijl)bljil= agbaglijl,
lalij1bljilclijl} = (a(be) + (=DleliPiHlalletiblicle (pay)i 1,
Ug(aglij1)p°Lij1 = agh®aZ liil,
{alij1b%jj1cljil} = (a(bc) + (—1>‘“””°'+‘“”C‘+"’°"C'c(b%))[ij],
{ O[lz]b [ii]clij] Obo
{a®lii161ij1¢%jj1} = a®cOlif1,
{ [l_]]b ]l]C ”] (abc +( 1)\a||b\+|aH¢0‘+|bH¢0| Obr[ 7'[)[”]

J=
1}
}
{alij1blji]clik]}
}
J
}=

=a(bo)lik],
{alij16%jjlcljkl} = ab’clik],
{alij1bLjk] clki] =(a(bc)+( pleliPlallebliel(cmpm)a ) i),
{alij1b1jK) clkl]} = abclil].

(Some of the parentheses in the products are of course not necessary simssociative,
but they will get their meaning below.) The formulas in particular imply thatifgre 1
the elements
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hii = (1[ii], 1ii]) and hy; = (1ij], Wij1) = hji, i # ],

are idempotents such that(l) = {h;;: i,j € I} is a hermitian grid which covers
H; (A, A°, ). The joint Peirce spaces ata[ij], A[ij]) fori # j and(A%[ii], A%ii]).

We now consider the case<|!/| < 3, and replace the associative superalgebitay
a unital alternativeS-superalgebra, also denoted As before, we assume thatis an
involution and thatA® is an ample subspace fo4, 7). We putJ = H; (A4, A%, ) and use
the formulas above (with the exception of the last one sjiitel 3) to define a quadratic
map U :J — Ends J. The Grassmann envelope of thi5 satisfies all the formulas of
[35, 4.1] (or [11, p. 2.15]) and henckis a unital Jordan superalgebra over(That the
Grassmann envelope dfis a unital Jordan algebra has been proven by McCrimmon, see
[11, Chapter 1.2, p. 2.17]; for the special case wheis a central involution, i.e., all norms
aa™ are central, one can find a published proof in [26, Theorem 3].) As in the associative
case, the Jordan superpéir, J) is covered by a hermitian grid.

The Jordan superpaifé; (A, A®, 7) = (H; (A, A%, ), H; (A, A%, 7)) with A alterna-
tive for 2< || < 3 andA associative fot/| > 4 will be calledhermitian matrix superpairs
of rank/ and with coordinate algebraa, A°, ).

Supposég/| > 3 and let 12, 3 € I be three distinct elements. The algelraan then
be described as the McCrimmon—Meyberg superalgebra of the collinedr;pain 3. We
point out that the McCrimmon—Meyberg superalgebra of the collinearpgitioz is A°P.

To obtain a refined root grading @f; (A, A%, =) we take aA-grading of (A, A%, )
in the following sense: we have4-grading ofA, sayA = @, . , Ax, which respects?
andr, i.e.,

A= A°nA, and A} =4, forallreA.
rEA

LetH; (A, A%, ) (1) be the matricesin HA, A%, =) with all entries inA;. Itis then easily
checked thatl; (A, A, 7)(1) = (H; (A, A%, m)(A), H (A, A®, ) (1)) defines aA-grading
which is compatible with the root grading induced by the covering &id).

The proof of the following coordinatization theorem can be given along the lines of
the proof in Theorem 4.5, using the classical Hermitian Coordinatization Theorem [35,
(4.1.2)].

4.12. Hermitian Coordinatization Theorem. Let |I| > 3. A Jordan superpaiV overS
is isomorphic to a hermitian matrix superpdir; (A, A°, ) if and only if V is covered by
a hermitian gridd3((1) = {h;;: i, j € I} such thatfor alli, j € I, i # j the maps

D(hi; b3} ) V5 — VS are injective (62)

whereV;; denotes the joint Peirce spacesldtl). In this case, we may take

(i) asA the McCrimmon—Meyberg superalgebra of a fixed collinear pajf, /),

(i) asample subspact® = D(h};, h7)V};, and

(iii) as involutionr the mapa™ = Qaf(h,j){h;. ahj;).
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In this case(V, H (1)) has a refined root grading of tyné:?er, A)ifandonlyif(A, A%, )
is A-graded, and thetv =, H; (A, A, 7).

Concerning the condition (62) we note that (62) holds for all péifs if it holds for
one pair(ij) and that (1) always holds i has no 2-torsion or if the (suitable defined)
extreme radical o’ vanishes (see [28] or [35, 4.1.2]).

4.13. Even quadratic form grids.Let I be a set with|/| > 2. An even quadratic form
grid is a family Q.(I) = {ex;: i € I} of non-zero idempotents satisfying the following
relations:

() (e4i.eqj,e—i,—e—j), i # j, is aquadrangle of idempotents, 3.6, and
(i) Q.(I)is pure, 3.3.

The reader should be warned that the terms “even” and “odd” quadratic form grids used
here and in the following subsections do not refer fpegrading but rather to the type of
grid.

An even quadratic form grid is a connected standard grid. Its associated 3-graded root
system(R, Rjp) is the even quadratic form grading(,‘[%} as defined in [22, 17.8], where
0 is a symbol with G¢ I. Thus,R =Djujo) = {£ej £ &x: j, ke T U{0}, j#k} U {0} and
R1 ={eo +¢;: i € I}. A canonical bijection betweeR; andQ. (/) preserving the Peirce
relations is given byo & ¢; > e4;. For|I| = 2, an even quadratic form grid is the same as
a quadrangle of idempotents, after changing the sign of the fourth idempotent.

We will describe a realization dd. (7). For a base superringywe denote byH (1, S)
the freeS-module with an even bas{&;: i € I'}, considered as aftsupermodule. Thus

H(I,$)=SHY"D = H (1.S)® H_(1.S) for Hx(I,S) =P Sh;.
iel

Thehyperbolic superspace ovérof rank2|1| is theS-supermoduld? (1, S) together with
thehyperbolic formy, : H (I, S) — S which, by definition, is the quadratic form associated
to theS-bilinear formh: H(I, S) x H(I, S) — S given by

h(z (atihyi +a—ih_;), Z(b+ih+i +b—ih—i)) = Za+ib—i,
1 l 1

see example 1.10(a). The Grassmann envelope of the hyperbolicgformthe sense
of 1.12 is the usual hyperbolic space of rarjt|2ver the commutative ring; (S). The
quadratic form superpair

EQ;(S):=(HU,$),H(I,S))

associated to the hyperbolic form, Example 2.9, will be called theven quadratic form
superpair oversS of rank2|1|. In EQ, (S) the pairs
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e =(hyi,hy) and e_;j=(h_;, hyp)

are idempotents, and the family, (/) = {ex;: i € I} is an even quadratic form grid
which coversEQy (S). Indeed, writinge+; = eg,+; the joint Peirce spaces di. (1)

in V=EQ;(S) are Vyptros; = Valesi) = (Shoi, Sh_gi), 0 = x. Fori,jel, i # j,

the idempotents;, e, ; are collinear. The McCrimmon—Meyberg superalgebra of this
collinear pair is defined oM;gHi = Sh; and can be canonically identified with Observe
thatEQ; (S) is a split Jordan superpair of tygg (1) in the terminology of 3.9.

The Jordan superpairs occurring in the following coordinatization theorem are only
formally more general: ang-superextensiom can be considered as a base superring,
and hence the above also defines a Jolsuperpaif£Q; (A). The Jordan pair version
of 4.14 is proven in [35, 5.2.3], based on the Jordan triple version of the quadratic form
coordinatization [31, lll, Theorem 2.6 and Corollary 2.7].

4.14. Even Quadratic Form Coordinatization. Suppose/| > 3. A Jordan superpaiV
over S is covered by an even quadratic form gfd(7) if and only if V is S-isomorphic
to a quadratic form superpaiEQ; (A) for someS-superextensiod. We may takei to be
the McCrimmon—Meyberg superalgebra of some collinear pait (/).

In this case(V, Q.(I)) has a refined root grading of tyg@?L{O}, A) ifand only if V
is graded-isomorphic t&Q; (A) for someA-gradedS-superextension.

4.15. Odd quadratic form grids. Let I be a non-empty set. Aodd quadratic form grid
is a familyQ, (1) = {eo} U {e+;: i € I} of idempotents satisfying the following relations:

(i) (eo; eti,e—;),i €I arbitrary, is a triangle of idempotents, 3.6, and
(i) if |7] > 2 then the subfamilye;: i € I} is an even quadratic form grid.

An odd quadratic form grid is a connected standard grid. Its associated 3-graded root
system(R, R1) is the odd quadratic form gradingfgo} where 0 is a symbol with @ I, as
defined in [22, 17.8]. We havR = {0} U {£e;: j € {0} U I} U {%e; L& j ke (01U,
j #k} and Ry = {eo} U {e0 * ¢;: i € I}. A canonical bijection betweeR1 and Q, (1)
preserving the Peirce relations is givenday— eg, eo £ &; > e4;.

We will give a realization of odd quadratic form grids. Given tWeguadratic forms
q' = (g5, b"): M' — N we denote by;! @ ¢? their orthogonal sum i.e., theS-quadratic
map (gg, b) from the S-supermoduleM = M* & M? to N given by gg(m* & m?) =
qé(ml) + qg(mz) andb(m! ® m?, nt ® n?) = br(mt, nt) + b2(m?, n?) for m',n' € M".
For anS-superextensiod we denote by

0Q; (A, gx)

the quadratic form superpair associatedqgto® gx, wherega: H(I, A) — A is the
hyperbolic map defined in 4.13 angly: X — A is an S-quadratic map on some
A-supermoduleX with base pointig € X3, i.e., gxg(ho) = 1. We callOQ; (A, gx) an
odd quadratic form superpaiiThis Jordars-superpair contains the idempotents
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eo=(ho,ho) and ey; =(hyi, h_;), e_i=(—h_;, —hy).

Note the minus signs in the definition ef; which are needed to ensure that(/) =
{eo} U {ex;: i € I} is an odd quadratic form grid. It coveis = OQ; (A, gx). Writing
€0 = egy andes; = egy+¢; the joint Peirce spaces 6f,(1) in V are

Vso—i-as,- = Valesi) = (Ahsi, Ah—si), o== andvag = (X, X).

Fori,jel,i# j, the idempotentg;,e;; are collinear. The McCrimmon-Meyberg
superalgebra of this collinear pair is defined V’!Ls,- = Ah; and can be canonically
identified with A. A refined root grading of this superpair is obtained from-grading of
(A, gx) in the following sense:

() a A-grading of theS-superalgebra, written in the formA =@, _ 4 Ax;
(i) a A-grading of theA-supermoduleX, i.e., a direct sunX = @, ., X;. such that
Ay Xy C Xyyqp for i, p e A, and in addition
(iif) ho e Xo (sohg € XN Xo),
(iv) bx(Xy, X)) CAyp anqu(-)(X,\) C Aoy

If we have such ai-grading, we can build ai-grading ofOQ; (A, ¢gx) by defining the
A-homogeneous space as the submodule where all componentgilier@spectivelyX .
This A-grading is compatible with the root grading and hence gives a refined root grading

of type(B‘}L{o}, A) where, as above,d 1.

4.16. Odd Quadratic Form Coordinatization. Let |I| > 2. A Jordan superpairV
over S is covered by an odd quadratic form grid, (/) if and only if there exists an
S-superextensiord, an A-supermodul& and anS-quadratic mapyx : X — A with base
point such that is S-isomorphic to the odd quadratic form superp@if, (A, gx).

More precisely, ifV is covered byl, (/) we denote by, 2 two distinct elements df
and byeg the unique long root in thé-part of the3-graded root systen?.%{o} associated
to Q,(1). Moreover, we let_1 € Q,(7) be the unique idempotent satisfyiag L e_1. The
dataA, X andgy mentioned above can then be defined as follows

(a) A is the McCrimmon—Meyberg superalgebra (ef, ¢2) (note thatA = V2+(e1) as
S-supermodulp

(b) X is the A-supermodule defined on the Peirce spate- V;g with the canonical
inducedZ,-grading and theA-action given by

a.x:{aeIx} (ae A, xeX). (63)
(©) gx = (gxp, bx): X — Ais theS-quadratic mapX given by

gxp(xg) = Oplxple_, and by (x, x/) = {x e:lx/}. (64)
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In this case(V, Q,(I)) has a refined root grading of typ(B‘l‘L{o}, A)ifandonlyif(A, gx)

is A-graded. ThervV andQQy, (4, gx) are graded-isomorphic.

Proof. We know thatV = Gs(V) = G(V) is covered by the odd quadratic form grid
Q,(I) = {eg} U {exi: i € I}, whereeg =1® ¢eg andey; = (1 ® eil,l ®ey;). By
the odd quadratic form coordinatization for Jordan pairs, [35, (5.3.1)] and [31, III,
Corollary 2.9], V is therefore isomorphic to an odd quadratic form 2@, (A, §) where
A is a commutative associative unitak(S)-algebra and; is an A- -quadratic form on an
A-moduleX . We will show that the data, X andg are in fact the Grassmann envelopes
of the corresponding daté, X andgy defined above, thereby also proving (a), (b) and (c).
First of all, by [31, Theorem 2.8], we may tak@ to be the McCrimmon—Meyberg
superalgebra of the collinear paié1,é2). Hence A = G(A) which proves (a). In
the classical odd quadratic form coordinatization, the underlying abelian group of the
A-moduleX is the Peirce space (V) = G(V,5) on which A acts by (63) interpreted
for A, X. On the other side, we know thafg is an S-supermodule. All properties of an
A-supermodule are therefore clear, except thad).x = a.(b.x) fora,b € A andx € X.
This means

{({Haer ez} ey blerx}={aer {bey x}}. (65)

lal \bl

But sinceX is an A-module, formula (65) holds far, b, x replaced b¥, ®a,&,

andﬁ;'x| ® x, which then implies (65). In other wordg, is the Grassmann envelopeXif

Regarding (c), we observe thgt is an S-quadratic map in view of properties of the
qguadratic mapQ. Moreover, using (21), we find that the Grassmann enve®fg) of
gx is given byG (qx)(¥) = Q(¥)e_, where( is the quadratic map of the Jordan péir
andx € V*. On the other side, by [31, Ill, Theorem 2.8], this is exactly the fgrased in
the coordinatization of, which provesG(gx) =q

To showV = 0Q, (A, ¢ X) we define arnS-linear mapf :V — OQ, (A, gx) given as
follows:

(i) on the subpaikp; ; (Vegre; ® Vep—e;) it is the map used in the even quadratic form
coordinatization, and hence it maps this subpair onto the obvious sutpai) of
0Q; (A, gx);

(b) on Vg, it is defined by f*(vt) = v} € X C 0Q;(A,qx)* and f~(vy) =

{ei|r Vo e_l} eXCcOQ;(A,gx)".

The Grassmann envelope of this map is the isomorphism used in the classical odd
guadratic form coordinatization (see the proof of [31, lll, Theorem 2.8]) and hg¢ncan
isomorphism by the homomorphism criterion (34).

Finally supposeV has aA-grading compatible with the root grading induced by the
covering odd quadratic form grid. The description of the dat& andgy given above
then shows that4, ¢x) is A-graded in the sense of 4.15. Heri@®,; (A, gx) has a refined
root grading. It is straightforward to check that the isomorphignV — OQ; (A, ¢x)
defined above is a graded isomorphisnm
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4.17. Alternating grids. Let I be a set witH/| > 4 and a total ordex . An alternating
grid of sizel in a Jordan superpalf is a family A(I) = {e;;: i, j € I, i < j} of non-zero
idempotents iV’ such that, putting ;; = —e;;, the following properties hold:

(i) Ceij, exj, ews, eip) for distincti, j, k,I € I is a quadrangle of idempotents, and
(iiy A() is pure.

Alternating grids were callesymplectidn [28,31,33] and [35]. Following a suggestion of
O. Loos, | have changed the name to “alternating,” since the standard realization of these
grids is in alternating matrices (see below), and since these grids have little to do with
symplectic Lie algebras or symplectic groups.

An alternating gridA(7) is a connected standard grid. Identifyiag with ; + ¢; one
easily sees that the associated 3-graded root systeA(Of is the alternating grading
D";"t of the root systenDy;, as defined in [22, 17.8]. An alternating guidl), |I| =4 is
associated to an even quadratic form dgeidJ), |J| = 3.

Let A be a superextension &f. Since the identity map is an involution of the
classical transpose map is an involution of the associatigeiperalgebra Mat, I; A),
see 4.11. A matrixc = (x;;) € Mat(], I; A) is calledalternatingif xT = —x and if all
diagonal elements; = 0. The set of all alternating matrices is Arsupermodule, denoted
Alt(1, A). The pair

Ar(A):= (Alt(, A), Alt(I, A))

is a subpair of the Jordan superpdl;;(A) and hence itself a Jordan superpair over
A (or over S) called thealternating matrix superpair of rand and with coordinate
algebra A. Note that the product is given by (61). (One obtains an isomorphic Jordan
superpair by taking the quadratic produ@y(xz)y = —xgyxg and {x yz} = —xyz —
(—1)llyHixlizl+ylizl oy ¢ see [35, 6.1].) In the alternating matrix pair the family of all

eij=(Eij — Eji, Eji — Eij), i<},

forms a covering alternating grid. In fact, the alternating matrix pgi¢A) is the split
Jordan superpair of typé(l) over A. Conversely, using [35, (6.1)], we have

4.18. Alternating Coordinatization. Let |7| > 4 and letV be a Jordan superpair ovef.
ThenV is covered by an alternating grid (1) if and only if there exists a superextension
A of S such thatV is isomorphic toA;(A). In this case, we may taka to be the
McCrimmon—Meyberg superalgebra of some collinear paidi).

More generally, a Jordan superpaif has a refined root grading of typ®2", A) if and
only if V is graded-isomorphic té\; (A) for someA-graded superextensiof of S.

4.19. Bi-Cayley grids. A Bi-Cayley grid in a Jordan superpaiV is a family B =
(eci: ¢ =+, 1< i < 8) of 16 non-zero idempotents i satisfying the following
conditions:
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() forl <i, j <4,i # jande, u arbitrary the following are quadrangles of idempotents:
(1) (eciyepjs e—eis —e—pj) ANA(Ex(ird), €pu(j+): €—e(i+8): —€—pu(j+4)):
(2) (eci, ecj, e—s(ita), —e—s(j+4) aANA(egi, €5, €s(j+4), Co(i+4)):
(3) (e—ires),e_ (i), sgr(%]?,fl")eﬂ), where sg 1,21?145 is the signature of the permuta-

1234
t'on(i,/kl '

(i) Bis pure.

An equivalent definition is given in [31, 11, 83.1]. A Bi-Cayley grid is a connected standard
grid. Its associated 3-graded root system is the Bi-Cayley gracﬁhgfl&‘he root system
Es, see [22, 17.9].

We will indicate how to realize Bi-Cayley grids in Jordan superpairs(yebe the split
Cayley algebra ovet, see, e.g., [43, 2.2] or [31, 111.3.1], obtained from thextension
k & k by twice performing the Cayley—Dickson process usirgklas structure constants.
Let S be a base superring. TtSesuperring extensiof)s := S ® Oy is a unital alternative
S-superalgebra, which we call tilsplit Cayley superalgebra ove. By 4.4, it gives rise to
a Jordan superpair

B(S) :=Mz12(Oys)

called theBi-Cayley superpair oves. It contains the Bi-Cayley paib(k) = M12(0y) as
a subpair. By [35, 7.2]B(k) is covered by a Bi-Cayley gri®, in fact, B(k) is the split
Jordan pair of typ& overk. It follows thatB(S) is the split Jordan superpair of tyge
overS. In particularB(S) is theS-extension of3(k) and is covered by a Bi-Cayley grid.
More generally, we can replac in the above construction by anyi-graded
superextensiom of S. We obtain a Jordam -superpairB(A) which, by restriction of
scalars, becomes a Jordan superpair 8vét has a refined root grading of tymEg', A).
Conversely, using the classical Bi-Cayley Coordinatization Theorems [31, 111.3.3] and [35,
(7.2.1)], one proves:

4.20. Bi-Cayley Coor dinatization. A Jordan superpai¥’ overS is covered by a Bi-Cayley
grid B if and only if there exists a superextensidrof S such thatV is isomorphic to the
Bi-Cayley superpaiBB(A). In this case, one can choodeto be the McCrimmon—Meyberg
superalgebra of some collinear pair iB. Moreover,(V, B) has a refined root grading of
type(Eb', A) ifand only ifA is A-graded, and thef¥ is even graded-isomorphic f&(A).

4.21. Albert grids. An Albert grid is a family A of 27 non-zero idempotents which we
write in the form

A= (11,121 B)U ([ijler: 1<i<j<3, e=+, 1<r<4)

such that, puttindijle1 = [jil-c1 and [ijler = —[jiler for 2 < r < 4, the following
properties hold:

(i) for eachi € {1, 2, 3} the family (e+s; 1 < s < 8) given by e, = [ijler, €c¢r4) =
[ikler, 1< r <4,i, j, k #,is a Bi-Cayley grid;
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(i) for each pair(ij),1<i < j <3, the family ([ij]x1, [ij]x2, [ij]+s, [ij]xa, [i1, —[j]1)
is an even quadratic form grid (of size 10);
(i) Ais pure.

An equivalent definition is given in [31, Il, 83.2]. An Albert grid is a connected standard
grid. Its associated 3-graded root system is the Albert gracﬁWg)EEL as defined in [22,
17.9].

Albert grids can be realized in 8 3-hermitian matrix superpairs. Namely, latbe
a superextension of and letO4 be the split Cayley superalgebra owér 4.19. It is a
unital alternatived-superalgebra. Tha-extension of the canonical involution @f; is an
involution of the superalgebr@4 for which A.1 c Q4 is an ample subspace. Hence the
hermitian matrix superpair

AB(A) :=Hz3z(04, A.1, 1),

as defined in 4.11, is a Jordan superpair ove&nd by restriction of scalars ovér It will
be called theAlbert superpair overA. Note thatAB(A) contains the Jordan pakB(k)
as a subpair. By [35, 7.3] we know thafB(k) is split of typeA, hence so iIAB(A).
In particular,AB(A) is covered by an Albert grid. Conversely, using the classical Albert
Coordinatization Theorems ([31, 111.3.5] and [35, (7.3.1)]) one can easily establish:

4.22. Albert Coordinatization. A Jordan superpaiV overS is covered by an Albert grid
A if and only if V is isomorphic to an Albert superpaiB(A) for some superextensioh
of S. In this case, one can choodeto be the McCrimmon—Meyberg superalgebra of some
collinear pair in A.

Moreover, (V, A) has a refined root grading of typeEa®, A) if and only if A is
A-graded, and in this casg is graded-isomorphic té&\B(A).
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