§3. Automocrphisms and derivations of ©(E,n)

The automorphisms of a Cavlevy algebratﬁ{ﬁ.u} which Zfi=x:
the guaternion algebra B are chtained by shifting by an element
of norm 1, and all such automorphisems are inner. Analogously,
the derivations of £i{B,y) killing B are oblained by shifting

by &an element of trace =zero, and all such derivations adare inner,

Automorphisms
We begin by charackerizing the subgroup AutH{E1 of

Automerphisms of a Cayley algebra ({IB,p) over a field ¢ which

fix the guaternion algebra B.

[Quaternion Dilation Theorem) The auvutomorphisms of a Caylay
algebra ({B,y) which fix the guaternion subalgebra B elemant-

wise are precisely the guaternion dilaticns

T +  a+hf -+ a+{ub)f (n{a)=Y
B:u
by selements a of norm 1. Thus Autﬂiij iz isomorphic to the
multiplicative group of elements of nerm 1 in B.
Proof. A1l maps T = TB i are auntomorphisms by direct
calculatien: from the multiplicaticon formula I.1.8 T{xlxj}
= + T 4= a = -+ s b
T{{alaz ubzbl} + {b2a1 | blaz}ﬂ} {ala2 ub,, l]
+ % + R =2t T ¥ Tl dm = ?
{uibzdL blaz}}ﬁ {alaz - u{ubz}{qu]} + <{uby)a, {uhl]az}L
(sinco = n{ul]l = 1 and B i= asscociative] = [a + {ub 14£] -

1 1

{a, + (ubzlﬁ} = T{%,)T(x,), and T is eclearly a bijsctive lineax

; ; SFS ; : -1
map since b -+ ubk is bijective on B. In fact, T = T -1
- B, B,u

since in general T T = and T = 1. Thus ths
E,ul B.u2 B,ulu2 BE,1
cgquaternion dilations TB i form a group isomorphic un the
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muletiplicative group of guaternions u of norm 1.

Thesa dilations are precisely zll automorphisms which fix
B. nmny T which fixes B must hawve the form T(x) = T{a+hbf)
= w(a) + T(B)T(L) = & + bT(E) (a, b = B are fixed). We neecd

[

only show T{(L) = uf for some u with nf(u) = 1, since then

Liuf) = (ub)f and T = TH . as claimed. TF we write T(L)

v + ul then va + (ualf = o(fla = 1r(La) = Tial) = am{l]

av + (ua)f implies va = av for all a ¢ B, thersefore

[a,bk]lv = (ablv - biav) = v{;zj - bva = vba - vba = 0 and
congequently w = (1 since there are invertible commutators

[a,k] in a guaternion algebra B. (B is gither a noncommutatlve

division ring or M_(2¢); in the first case any [x,¥] # 0

2
is inwvertible, in the second [Elz’ezl] = @54 ~ 8,y 18 invertibla).
% 2 i 2
Then T(£) = ul where pl = T(pL) = TIEE} = T{E£YT = (ufy
= uuu = un{u)l implies ni{u) = 1. [Alternately, one can show

T is an isometry relative to the norm form n, hence T({f] = T[FL}
C:HL‘; B{, so T(L) = uf where an{f) = n(T) = n{uf)

= nlu}n(f) forces n{u = 1).
Wext we show these guaternion dilatiocns are inner.

Froposition. L1f u is a product of commutators [[xv]] in B

then the guaternien dilation To i= innear.
I

Proo f. Since TB;'J - TBrul‘.-TBfﬂ-Tl if uw = l.l.l++-un for l|.:L11
. ~ = -~ |
= [[xiyil]. where automatically n{[[xvll) = ni{x)ni{vinix) Tniy} =
it sufficaes 1f each TB 5 iz inner. Thus we may assume
[ .
i
u = [[=2,%¥]]. We claim

G o R T B e

1,



From our general feormula (1.4) for the action of L P L We sSsg

A

1k

3 -
1y TagyTtxTT) 4

i = — " = ik -:‘ -J-
“lxy)l, 5 Iﬁry“1£{d+b£} "’(xy}ﬂ.f.‘w .

1 =L -1 ~1 -15

= ; =1 " e
(x "y "dbly "x ) } = u{xy}g,ittxy}a{xyl + (yx) bixy)- L}

= (xy) Mxylalxy) Tiixy) ¢ (xe) Llyx) Tbexy) Fixy) Lok

= 7 4 {{x};j {—}.}[} _lh}l.:_‘ = &85 + ':.[[KY]]-L'.--E = T-E [ny]}

i1t is known to group theorists that the derived group aof
the guaternions of norm # 0 is the group of guaternions of
norm = 1 {for the split guatcrnion alygsbra ME{@} this means
the derived group ofthe genaral linear group GL(Z,%) of matrices
of determinant ¥ 0 is the special linsar group s5Li2,E) of
matrices of determinant 1), except when @ =:ZE' We will give
a dirsct procf that when # -;-‘-Zz evary guaternion of norm 1
actually is a conmutator (and net merely a produckt of

commutataors) .

(Horm 1 Quaternion Lemma) Everv elemsnt of norm 1 in a guaternion

algebhra B i3 & vommutator

u = [[=¥11
exceprt wh B M, () = :
e when = , u o=
£ O, k5 5
Fraoof. Any central u = ledl is sasgily seen to be a
s ;
commubtator: n{u) = ¢ = 1 dmwmplies & = +1, u = +1, whare | is

trivially a commutator, hence sao is -1 in characteristic 2,

wherecasg in charactervisties # 2 the guatsrnion algekra has basis

: ] et
l,1,3.,k with £j = =3ji so [[13]] = (i3} (3i) = =0135i3 {54 = =l
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{a + bf} as claimed-.



Bnother case where we can explicitly represent u as a

commutator is when tfiu) -2, with the exception indicated

in the proposition. If u -1 this fellows from ths previous

paragraph, so assume t({u)

-2, nfu) = 1, u# -1. If we set
z = u+l then Li{=z) = Ti{u) = 2 = 0, ni{=z) = l+tfu} + L = 0,
yat z # 0. Thus the guaternion algebra B is not a diwvision

algabra, conseguently B = ME

polynomial Az -tfu) A + nfu) = 12 + 24 = 1 = (X + 112 with

characteristic roots in ¢, by Jordan canonical form we can

-1 1
o T B .
choose the isamarphism B = M_($#) so u =( 0—1)- But this matrix
=
: ] . . _ =1 -1
iz a commutator in MZE@] for any field ¢ f'zz u=a Lk " ab

1 0 1 —_}l_"‘l
for a = | 23 }.—l,b=(D —])fﬂran-,-r LE P with A #F 0,1

Fince
= “F
10 3 g 5 s
ab = 24 x-1 o -1 = 2h =2=3+1
=1 -1 i +=1
1 - 1 O = 1 1 =A -1 1 =142 1={32+1)2
haun = \o -1 24 A-1 n -1 )J=fo0 -1 =3k A+1)] = L2 -h=1
: U A W ORI FLEYS T S, is =
where I-=[A+1) 4 = — ALY TA = -4 7. Theraefore 1 is =&
Ty = 2 ¥ -1 1
commutator unless B o= ME(@}. u = o -1), & = {0,1} —'2?’2-
From now on assume u # @1 and t{un) # -2. From ti{u} # =2
we See x = l+u is invertible: nlx) = n(l+u) = 1 =+ tiu) + niu)
= 2 + tlu) # 0. TFurthermore, from x #tl:'l we can find an
invartible commutabtozr v = [u,v], because if Lhe guadratic
function £(x) = n{[u,x]) wvanished identically on B it would

BT
vanish on the split guaternion algehzra 35.\ = szﬂ} {2 the

algebraic closure of ¢; see I.2.4), and in the split case

if det[u,elz] det[u,ﬂgll = aat[u'eli+eil] = 1 then

{4} is split. Since u has minimum

42
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0 = s %, .2,, 18 a mcalar: if 0 = detlu,e..]
i,7= L] 17 12
= detlf)1911%12 * %31%21%10 T %21%12%21 T %22%12%22)
_ f e a - - 2 _ " =
deu( 21 11 2?) Csq then Moy = 0, similarly €y 5 0 if
0 o
21
g = ﬂet[u,azl]. and then if QO = det[u.e12+ezl]
_ " . ) [ ST
= det[mll_ll S “zzezz, e, Ezl] = det(a - llﬂ 22
22 11
= =fm , - )2 we would have @ = O = @ and u = [':m} = nl
Il “2g T 22 O :
Anytime niu)l] = 1 we hava ul[u,v](l4u) = (l+u)[u,v] for all w,
since -ulu,v]{l+u] = ~uuvi{l+u) + uvua(l+u) = -uov - vu + uva + uv
(using uu = uwu = 1) = [u,v] - ufu,v] = (1+u) [u,v]. Thus u is a
commutaitor {l+u][u,v]ﬁl+u}-l[u,v]-1 = [[xv]] long as x = 1l+u
is invertible and some y = [u,v] is invertible. By ocur

Previcus results this shaws any u¢ $1 with t{u) # -2 1is a

commutator, and all v with n{u)

1

1l are commutators except f[oz
the case u Y, {['] 'jIL'} in B = MEIE’E}. .

Ewven though in the excepticnal case u is not a commutator, the
dilation TB,u is still innesr. Indeed, in B = HQ{EE] the element
i -1

u = (0 l} can be written as l+uxy where vx = 0 for = = L ell' y = @
Thergfore TB.L: is inner by the general
Proposilion. If yx = 0 for R_:‘:‘E'H- then the guaternion dilation
ny u = l+pxy 1s inner in @C(B,u}.,
TE,1+UxE 3 Ll+x£, 1+vf .
Proof. Hare (1+x£l{l+§f} = 1 + xb + y& + pyvx = la(x+y)d
1E wu = 0. One can copute directly that Ll*{xﬂ';}f. TB,I.J
= =1

: 1 + “. , =T e = N T T e =
Ll+x£L1+yL ocn oa he hen o TE.u Tl+{x+y]£ 1+?E Ll*Yﬂ
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J..l._bxﬁ; l+'__.:£' Alternately, Ll+x£. .l+£_

ro iz e ! P i, 3 T :""_'
I+ I‘xE + Ly-E + LxELy-E where L]U1 u}_.ﬁ (a2 + kL) 1x-f,{ (va) £ + pby)

Hayx + pixyb)f = ul=xyb)f (since vx = D) and thare fore

"

" 3 o==— -
L = o L L— + b = = sipxnyn)l = y ! +¥) = 0
ceml Tep Lo (a £) Ll-x_l_}rjﬂmlﬁ}ﬂ:lt BT by x(x+y)
{since x§ = y_x = 0, and yx = 0 implies eithar v = 0 and *:rn(x‘.l = @
or ¥ # 0 and % is not invertible and ¥x = nlx)l = 0) so we can writa
T. T, =y = + T = T - T, .L—
L+xld T1l+wl = [ x+y) L I {1-:+§,r].5} 'x.L’.Lyf
= {1 + T — . H L—, }.
! (x+y) L° tz + TP ynﬁ} Thus Ll+xﬂ,l+yﬁ
_l = 5
= + L — . ¥ — I 4 Lo o 5 a % t
(% {1':+1-'}x_} ]_+:-:~'.3Lr+yf. TJELL}-'-E- wehds bk ke
a + bf + U(xyb)f = a + {ub)f and coincides with T . B

Since TB o is inner for all commutatsrs u by 3.2, hence for all
r

1 1 : E @
= t g =i y 15 i o =
u excap {G .lj by 3.3, and sinces TH,u nner for u {0 lJ

by 3.4, we see the quaternion dilatians are always inner.

(Inner Dilation Theocrem) All guaternion dilations T, , 3fe inner
’

automorphisms of the Cayley algebkra {[(B,u) (inde=d, &ll are

products of aszoclationg) . .

11
; bul o - o1 m i =T I
Hemark. In B ‘r-tzizé:l the element u I{ﬂ 1} s neithar a
commutator nor a product of commutatoers [lxyl]l. Tn this B there
; . . 1 0O 1

are 16 elements, only @ of which are invertible: 1 = {r" 1}. u -'I[U 1
: 10 i o B 1 I T - | _—
u = {J_ ]:lr 1 = :1 ) A I:l O]r vlo= [l 1}. One sasily

2 2
cheaoks 1.12 = ~..-3 = 1, v/ = v, u' = va, u''" = uv = v u so the

* 2 1 i
multiplicative group 6 = B = 11,v,v s, vu,uvs is the semidirect

2 U
product K x 0 of the normal subgroup K = {1,v,v"} = Z(3)

Wy ;
and the subgroup H = {l,n} = Z(2), where Lhes sutomorphism
k™ uku-l of K induced by H is uvu_.l = v . Tn this case

G = {x|n(x] # :i.nzz.]l' = {x|n{x] =i ¥ inz'g}. but the commutator

subgroup is a praper subgroup. Indeed, [(ls,5l] is generated by
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[[a;wx]] = uvu_iv_l = va—l = v gnd it= conjugate vz {in

general, LE g, genarate G then the conjugates [[gi,gj]}g

¢ z
generate [[&,6]1), so [[G,G]] = {L,v.v'} = £. I

Example. In characteristis # 2 the most important automorphisms

are the guaternion reflections 'I'B = TB -1 (heing reflectian
a+ kL + a - bf in the guaterniaon subalgabra B). Such TB
are actually asscciations,

=1

T = L, , =L, 6 L L.

ginee 1f 1, i, j, k is a standard guaternion basis for B we hawve

L. .fa + BEY = (89 "%y a + fRdii ™ 2 4 4 fei-19y e e

“a-bi-Tola+pd). W

Dexrivaticns
How we turn to the Lie subslgebra BEZH({ﬁ of deriwvations

of a Cayley algebra T(E,u) which annihilate E.

{Quaternion Translation Thecorem) The derivations of Liz,w
winich annihilate B zre precisely the guaternion translations

[JH.‘u: a + bf —siub)d (t{u) = 0}

by elements u of trace zero. Thus DerBtmﬁ is isomorphic +to the

Lie rlgebra of clements of trace gero in B.

Proof. By direct calculation the guaternion translaticns

D= D are derivaltions: Dix x?} = Difa a._ + uE?bl} * {b?a

B,u 1 i | 3 bLa L&)

1 2

= U{bpﬂ t hlzq}'ﬂ = {ub_a. + ub a_ e coinecides with

1 12

Dix, )%, + x Dix ) = {{ubllt'.}{a2 + bgﬂ} + {31 } blﬂ}{{uhz}ﬁi

1

- u{EEubl + Eéﬁhl} ¢+ {ub,a. + ub_a,!f iff u + u = £{u) = 0.
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' D + bE) = u.b D »
Clearly BB,ul B, (a L) {ullz V£ ose | Bou, [ 1

3] and the guaternion translations form a Lies
By lu,,u,l

algebra iscomozxphic to the trace zero elements of B.

These translations are precisely all the derivations which

kill RB. Tndead, and derivation O killing B has the form
Dta + bf) = D(a) + D{k){ + bOo(€) = bD(L). We nead only show
Dif) = uf for t{u} = 0, since then Di{a + bf) = bluf) = (ub) il
= Uﬂfu{a + bly. If we write D(£) = v + uf then
av + (ualf = an(d) = p(ad) = n(la) = pD(fla = va + (ua)f,
and once more av = va for all a& B forces v = O. Thus D{L] = uf;
whete 0 = Dlul) = D(ES) = Ban(f) = foul = p(G+u) - pE(wl forces
t{u} = 0. {Alternately, one can show D is alternating relative
to the norm form, n{Dx,x] = 0, sa D{&L) & DI:E'L] B'L = Bl
by n(pf,B) = -n{f,D(B)) = 0, and if o(f) = uf then
¢ = n(D(E),L) = ntul,£) = t{uwnif) implies t(uw) = 0). [l

In zhowing thess DE.u are inner we will need Lo express u
in terms of (algehra) commutators [x,y]. It is5 well known to

Lis algebraiskts that all trace zero gquaternions ars sums of
commutators {for the eplit guaternicn algebra B = Hﬁ[@l this means
the derived alyebra of the Lie algebra gfi{z,%) = M2f¢}_

is the algehra s£({2,9%) of trace =ero elements). This is sasy

o sae in the =plit case, since in B ME[@J Ker £ i8 a

i-dimensional subkspace containing all commutators {(since
t{xy) = tlyx) implies t{lx,v¥]) = 0), yet the commutators

= [

] alreadsy

Ty ey17@1alr By T Meggemny 1l By ey [ey,eeyy

span a 3-dimensional subspace, s all trace =zero slements are sums

of



commutators. In the unsplit case Ker £ is still 3-dimensional,
a8 18 the derived algebra {(over the algebraic closure i

[E;B]p = [BH,B,_J] = Ker t. 1s 3-dimensional owver &, hence
& L]

it

[B,2] is 3-dimensicnal cver ¢¥), so again Ker t [B,B].

Actually we have a strongerxr

(Trace EZexc Quaternicon Lemma) Every guaternicn u of trace merc

fe a commutator, u = [x,v].

Proof., Whenever a, B & B with t{bk) = 0 ws have

lab, B] = an(h) - hab = n{bla - bin{a,b) - bal

= nilbkla - n{a,2)d + {t{bl'E - nl:b',il.lz nib) la-al - nfa,blb, or

(3.10) [ab,b] = 2Zn(k)a - nibjt(a)l - nia,b)b fECE) = ).
First consider the characteristic 2 case, whare =he first of the

three terms dropz oul. 10 u i3 independent of 1 we can Lakse kB = u

{remember t{u) = 0!} and find a&E B with n{a,l) = ¢, n{a,ul] = -1

(hecause the bhilinear norm form nix,v) iz nondegenerate on a

guaternion alyekbra, and therefare the linsar functicnals nla, *)

separate independent wectors); then in (2.10) 2 = tl{a] = ©C

and n(a,u) = =1 imply lau,ul = u is a commutator. On the

other hand, when w = 0l is dependent on 1 we can £ind bk & B

independant of 1 with t{(b) = 0, nik)] # 0 (there cxists =z

independenlt of 1 in ' Kar t; 1f n{z) # U0 then b = = will dao,

while 1if hiz}) - 0 Lien b = 1 + = has tib) = 2 =+ ti{iz) = 0, n{l)

= L1 + t{g} + n{z) = 1) and then by nandegeneracy again find

a with n{a,b) = 0, ni{a,l) = -an{b}_l. so Lhat by (3.10)

[aE.b] = O A n(h}nn(h]ui 1 = 0=l = 1 is a commutator in

this case as well.
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Mow assum= the characteristic # 2. If £{u) = nfu} = 0
we can by nondegeneracy find a & B with n{a,u) = -1;
setting b = 1 in (3.10) we see {aﬁ.ﬂ =0 -0+ u=uis a
commutator. If n{ﬁ} # 0 then U = §1 + fu is a nondegenarate
subspace of B under n{x,v), sa B = U & UL whe re UL must
alsc be nondegenerate if nix,y) is to be nondegensrats on

all of E. In particular, we can find b & UL with ni{b) # 0.

Tf we set a = {Zn[b}}-lu (remember characteristic # 21!') then
t{u) = n{b,l} = nib,n) = 0 imply tf{a) = t{b)] = ni(b,a) = 0 and

in (2.10) [aa}b] = u -0 -0 = u. Thus in all vases o bLraveless
element 1 18 a commutator u = [&.5;1:]..

We can now show all guaternion translaticns are 1nnar.

(Tnneyr Translation Theorem) Every guaternion translation DB »
r

@f a Cavlay algabra (B,)) is strictly inner with indicator

.l =l e B
1 -
D = = (R, o= - A b
B, [x,¥] HoTwd, xk (xy) £, £
Froaof. By the previous lemma we can write the btrace =zerco
aelemant v as u = [x,y] for somae %, ¥ & B. How from our formula

. {a + Bf£) = pulde,al + p{bde - caéblf =o

(2.14) we have AG-E.,H{

1

m igyﬁrzﬁ N A(xy}ﬁrf} (& % B

= [x*y = Llexy,a]l + lbi(xy - leoxy) - (yx - xy-1l}bl}{
= {[x,ylb}L

DB,{xry] {a + L)

s0 D is strictly inner {even an associator derivation)with
I

inaisaban %‘- { Iyt xk] - [(xy)&,L]} = (xy - %) = (xy - %y} = 0. W
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We will see in Chaptexr VII that a Cayley algebra may be
written as ({{B,U) for lots of different guaternion sukalgsbras
B, s0 there are lots of gquaternion dilaticns and translations.
Indeed, weg will see any automorphism is a prﬂn.:iuc:t of
gquaternion dilations and any derivation a sum of guaternion
translations, so all automorphisms and derivations are inner.

For a split Cayley algebra we can explicitly show 211
derivations {(inte any bimodule) are inner. We turn now to a

detailed investigation of derivations in the split case,



Lad

18

Exerciges IV.3

i ;s L = - 1 E ism f B b
Show T{xy}f.L L 15. o lp is an avtomozrphism of (B, 1) by
; R o pe=l 5 =1 _
computing its indicalor z = lR{xylE'ﬁ E’Ltw_’.:IE RE: {Rtxhlflfy'lﬁ
R -Lp Ro-1ph (1)
T T s — - s "T_I
S LI1 + (=m+y} b TR, 1L+ =y hl + =l Ll + FE Ry eqmpaTlmg

dirseltly the actions on a + bE (when yx = 0).

Use a dual-numbers argument to deriwve the Qualsrnion
Translation Thoerem 3.8 from kthe Quaternion Translatian
Theorem 3,1. Can y¥ou show the Trace Bero JQuaterniocn Lemnma

3.% trom the Werm One Quaternion Lenma 3 37

Compute the action of LE 32 LE 1 an ) o Eﬁﬂ;ﬂ]
b ” - r r

(xgP inwvertihle) and deduce it is an zautomorphism.

50
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§4. ©Derivations of split tavlev algebras

In this section weg display in concrete form the structure
wi the derivation algebra Der(€) of a split Cavley algebra
over an arbitrary #. This turns out to bhe a split Lie algehra
of type Gz- The fact that Cayley algebras give rise to

excaphtianal Lie algebras is responsible for wmuch of the

attention glven alternatiwve algehras.

out first job will be to prowve all darivaticns are inner,
Cex(ff} = Tndex{C) Dutdex{€} = 0.
Over a ficld ¢ this could be proved by praoving that Ner(q) is
simple and Inder(C) is a nonzero ideal therefore, Index(d) must
be all of Cexr(€) (szee 0.00).
Thers i1s a more constructive approach, which works foz

arbitrary ¥ and for arbitrarvy derivations inte a bimodulae.

{8plit Inner Derivation Theorem) All derivaticns D of a split
Cavley algzbra {:into a unital kimodule M are strict inner

derivations wilh lndicator =zera,

3
-"g.:-'.:' [l == % .
( Bepms, T JE B g v Gy

1z ¥ Tay

(my = Dley)s myy = 8y D{aéflha1’z E:;}m;f}
= k& méi}efgn = 0}).
If 1/3 & ¥ all derivations are strictly standard,
3
[4.3) B = ].'.fle:l_”m2 - 153 iil D {i-)'mf.'i.}'
12 21
Proot. The alternate expression (4.3) follows from the

basic formula (4.2) by (2.20).



4.4

[ 3]
)

Sz we turn te (4.2}, oOur first step 1s to subtract off
an innexr derivation Ifrom D so that the resulting derivaticn
5 éills el and €, - This can be dong guite generally: L2 mge
not true that a derivation kills idempotents, the way it

lkkills units, but it can be persuaded to after a little

straightening-out.

(Tdempotent-Killing Lemma) IE£ D: A + M is a derivation of an
alternative algebra A into a bimodule M, where el"“'eﬁ ars

palirwise orthogonal idempotents in &, then

i -

=0 , D
<3 Te.iDi{E .}
= 4 i

. . . i " . i L
is a derivativn D: B + M which kills all e, ﬁ(E+J = [0, and

congequently maps FPeilrce spaces ﬁtﬁiij:Haj'

Proof. To sae N kills 2.+ simply compute ﬁ{ek}
= Oile + B, . : = + B ;
(e, 1;{; ”e:,u{ajn e, = Dle) Eiij [[el,utejjl.ek]
+ JEi{j [ea,Dtej!.ck]. Qf the three parts to tThe expression

for ﬁ{ek}, the first is Dtek}. the last wvanishes =since

[e,,M,e.] = 0, and ths middle is - Df(e.) since
i ] k
S Die — - e - i
li]{ e, (p:] D{Ej}ei} ey ck{eiﬁtejl D[Ej}ei}
= i A = I=
Eiij {EiE[ej}ek + EkD(Ej}EiJ lifj Lj{Ej}EiEk + ekeiD{ej}}
{by the above associativity) = X, . {D{le.e.}) - Die.lea.le
i<3 i 7 I k
D ] - - {
+ Ek{ (ajai} pjn{ei}} Eijj D{ejleiek + ekeinfeji} [as
Tk = F = X [ -.'
{2y Dix)y + x=D(¥)) litﬂ{ailak + ekD{ei}.
i o I =) +
24k {n(e;)e, + e Dle!] k=< (o ey eknrej}} (by
2
- =R f % i = = = —_ 9 = - =] .
orthogonality of the & 's) {D!Ek}gk + ekD{Ek]} : D(akj U{Lk}

Thus the three expressions for Etekj add up to Zero,



ny " n
Onoe D kKills all & we have ﬁ:n Y = D(e,Ac.)
k ig i 1

an
e.Dla)e Ce ve, =, .0
i J i i ij

Applying this to our situation we ses
iy
5]

= ¥ # B =D - D kills =& {hence alsa e, =1 - e.}
al’ml el,mz 1 2 1
£ = N = - = L
or m2 {ezj Dl ell D{el] ml.
ny
The formula (4.2) thus reduces to 0O = EAE{i} m{i). Lat
T3 e

us note at this point that

(i) _ o (L)
myy = Dley)
Sinae m;i} = ezﬂ{eij}]el and ﬁ{e

¥ .-

}} = B{e & B = egﬁ{eéi}]el

N .
if D kills e, and e., this means D(e >} (1)

1 a7 a1 1 oa 2,7 } have tha

M,.» ©or that their differencc D {eFl’
21 B, 21

(i) , NS {4
21 )= [Eel'nzl’ ©21

Samps compunent in

)

has =zero component in M_._., But D (e
21 @ .,

1 2

- 3le. ,m ,e(ij] where (since m_, = Di{e_) = e_%DLl{ae_) = e_om

1 2 21 2 2 2 2 2 2

(i}

21]

i 113 = T i =t o
implies m, mo, +om, for mijEMij} naither [[el,mz] e

= tm,my e @A H M AL R N+ By M CH .+ M

1 21 21 21" 21 12

r (i)}, _ Ei . (i)
nor 1m2'e]_"5213 = Emzcl] 2,y = m .8, EM21 Elr_'b'i has any

t 4 %
COoOmponen in le

: ; Y
Replacing O by U, we must show that if D kills g, and 2,

it has the form

i . ; (i) (i) (i) (i)
(d.2") D= LA (1) (1) (m, = D{ec T | m,
Elﬂ 'mﬂl 21 21 12 21
tiy (1)
Emzl 215 2 e

We begin by showing ortheogonality of e's and m's:

o = D{c yo= H{E(H {efjjeig}:l}
. fl} (2) {3} [1} fzi £3)
= blag, M ley3e sl 4 ey (e Lz 1%}
{1] (2) {3) 3 3 (i) {1+l} {i+zj
*oepp teyy’ Dlegnl} =Bl Dlegy d{ey, ey

(by Permuting Formula v.3.9)



(i+1) (i+2}, (i) | {i-i-l;E{i+211

= = T E{i] Die

: >
12 - I - bolas Bbey o el 12
= D = 0
EEIJ 1
(i) {1}
= -1
CR Uiezl }
o e g A
et - I
e 0 I S - £3), - - PRSI i S G o
Similarly D{{Elg elE ¥ e, } = 0 leads to L mEl e, 0.
i ; . : 5 i e b iy, _
This orthogonality implies in particular u[clj o 1:= @
gsoo D' = X A . ; iz a deriwvation bhv the Associator
(i) S
e .

Derivation Criterion 2.14. To finish (4.2'}) we n=ed onlvy show

the derivations D and D' agree on the generators Défj (1 = 1.2,3)
since then they agree avarywhere. But
oral) = 5, (e a0 f80) - D) o2 i)

Thig completes (4.2') and the theoram. ll
Once we hawe this for the split case, we can use a stand-

ard field extension argument to get it for the general cass.

{Inner Nerivation Theorem) any deriwvatinn aof a Cavley algahra
Aoover a [ield 4 inte & unital bimodule M is strictly inner,

{d.63 ¥

Il
-1
jar
=
=1
=)

. (Z v,n, = ¥ n,y, = 0}.
“i:mi Yirni A  Hal

(4.7 L =11 D {if zhar.® & 3).
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Proof. B we noted in I.24, we can cheoose an extension

field ¥ D ¢ so that a. = {{(9) is split Cayley over . D, = D & 1
1] &
remains a derivation 'F"ﬂ = A @ 0 > Ma i = M_,;:, 20 by the split
a
vage D, Lls slrictly inner: D. =L D + L A where
P o Ix, g m, v, o0,
;U | i’
Ey.n, = B R, ¥ = 0, From the bilinearity of D and A
s B X, m ¥

and yn and ny we can {by expressing x,¥yE2 as {l-linear
combinations of a,b& A and mowing the scalars to the m's and

n'e, e2qg. Dma o ™ [Ia. u:-[‘[l:l assume all X ¥y belong to A and all
r r

A

m, (0. ko M., Choosing a basis {m } for /¢ with w = 1
q ] 5] o

and writin m, = LA, (= n., = n., oW for m, n. [
am; L inm g By L ia o i’ :LL‘LE z

we can identify cosfficients of b in D@ w,, = D

=L{'L.D:~:.,m.+EA } @ w_ to get D = L, D + L, a
oL L Lo : A s : i ®H,.m 1 S s B

(]

Furthermore, identifying coefficients of :"5.;, in 0 = 4 yin

TR i \ 5 L T = i =1imi r ., ¥y, = 0.
- ?1nia} ® w,  shows L y.n, 0, and similariy £ N ¥y
s @establishes (4.8).

Onece ws have (4.6) we derive (4.7) as before.

We have similar results for guaternion algebras

(Split Inner Derivation Theorem) All derivations of & split
guaternion algebra O inta a unital himodule ars inner derivations,

[d.%) b= = D ~ 5 + A

g™ 033 BTy 21" M2

[m=Dtezl;m = &, Dfie, . )e i ] = a m = =

If M i3 &2 regular himodule then

{4.9a) ].J=J.1|E m_Dm
11" 11

2 i ii 137593 M4 13744 mijaji]'
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while if M iz & Cayley bimedule then

{4 .9n) D= D o + Ae i + B ” (e, m,, = m, . = 0)
o B 12 ™21 s B I

is strictly inner with ipndicator Eecro.

Proof. Just as in the Cayley case, D =D + D
e,, .02, .]
3. 11
= - TI (] = =0 = i ] i 1
K e ( o iell) Dtezzll kills &1 and hence also
S L
= ﬂu e = i F_" = H ir
922 1 ell' an D(el]] eiljielj;ejj ml:I Beplacing D
by D, it suffices to assume from the start Dieyy) = 0.
In this rcase we gclaim D and D' = -Dm + Ae - + AE i
11 12721 21712
agree on the basis {Ell,elz,ezl,ezz} for ¢ and hence L = D
Hot o ¢ = = i + | + s 2 g ]y
B Hhey g Loy reyyl leemyyreyyl legyyrmpgreyyl
If i=j the associators vanish by Peirce Asscvclativity v.3.8
(distinct Peirce spaces), and trivially tHhe commutator [mll,ell]dnes
too, so D'tEiLJ = 0 = D{Eii}. Lf i # 7 the associators add
u ==} R S 11 . + FUTT T || AEUEPIETS ~ I = =R 1 | LR N — TERT
P [El] 31’E13] [E]l i '13} [ w I s Wy 1}1
fo= [eij’eji'mij] - {Eijeji}mij B Eij{Ejimij] = Eiimij T Eljkmjieij
(observe 0 = D(e_.e,.) = D{e_..)e,. + e, . D(e;.) = m,.e,.. + e,.m, .}
J1 i3 ji® i 1 iJ 1i i3 jitig
=m,, + e,.m..e,,, while for (i,J) = (1,2) the commutator
ij 1] 31 173
gives _[mll'ElH] = WLy, T TEgaTgeg . and for (i.,3) = (2,1}
; » _ A ) :
gives [mll,czl] - eElmll HElmlzazL' thus D {Eij}
Fooens S TEy e m) + e . M,.e,, = wm, . = D{a,.]. 8a D = D',
e T M - A ij o s e (0 B | i] 13

In a regular bimodule Aall asscciators vanish, and (4.9)
reduces to {(4.%z) . In & Cayley bimodule {(sese 1.7.4) we have

m. . = &,  m,., = = = _— v adl S o Me | Middle
s 5 8y My mijaji {ellel])(mjlelﬂ e 20y i (M

Moufang) = Eiifgﬁleii = (QE..E. 48 = 0 5o (£.9) reduces to (4.9b). [l

11 ii
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WARNING: In contrast to the Cayley case, not all derivations
cf a2 guaternion algebra are strictly inner. The trouble comas

with the regular bimodule; in {(4.9%9a) we can't get rid of the

i) . In this case am. = m - m ima in the center
m = C10 a1 11 22
(s@e Ex. 5.2), =a D = D + D = D = D
o - + + |
Byq 5 M T P mo, bomy,  legsamy,

= dx. - by asscciativity, sc in characteristic # 2 we can

5 Bl |
replacae (d.%9a) by
‘.‘1 Sa'} o = D }.— [n]

; - ,m m

o 2 ey,

in the =plit case, and
td.9a*") o= & D
TR
in general. Thus D is strictly inner except in characteristic 2. @

The same Tield-sxtension argument as before shows

(Tnnar Derivatiocn Thecrem) Any darivation ©of a guaternicn
algebra over 2 field ¢ into a unital bimedunle is an inner
derivatian,

(4.11) D=D + & A + E D
m ¥, .M, R (I
iTi i1
where m = L *.m, = L m, X, = 3 ( and D is strictly inner)
L

for a Cavley bhimodule and m, = 0 for a recular bimodule. 'l

Multiplicaetion Takles
It will be wusceful to have the folloawing formulas for

standard derivetions:

(4.12) Dl,x = 0

i< 13) = 0, D + D = D
(4.13 B i g g
(4.14) o o+ D = D = 0




1

=15

Here (4.12) is trivial sinece [1,a]l = [1,2,2] = 0, and (4.13)
follows from alternativity [=,x] = [x,x,a] = 0, and from
Llinzarization. The only hard part is (4.14). On the aona

hand, since I:-z is linear in the wvariable z and since by 1II.2.11

il

[xy,z] + [yz,x] + [z=x,v] Alx,v,z], we have

D + D + D = 3D :
[xv,2] [ve,=x] [zx,v] fx,v,z]

On the other hand [xy.z,a] + [yz,x,a] +[=zx,v,a] = {[=xy,=z,a]

- [x.yz,a] + Ex,y,za]] - {[x,y,za] ks [a,y,zx]} (by alternativity)

= {x[y,z,al + [x,v,2]a} - {alx,v,z] + xla,v.,z]l} (asscciator
identity III.2.4 and left bumping) = [x,v.zla-al=x,yv.z] or

> + + A = D y
XY, © Ayz.x SX, Y [€,v,2]

If we multiply Lhis by 3 and subtract from the previcous

gagquation we get (4,14}, recalling the definition D = D
Xy [2,v]

RFemark. The importance of these is= in cutting down the number

vf standard deriwvations ane has to consider. ITf A has dAimension

y+.2,% Lhere are n° standard D s fd.T12)
L n ¥, Vo
1 1
sy . 2 (n=-1) [n—-2)
reduces this o {a-1)", (4.13) tao 5 v and [(4.14) to

e 2 - T - . —
. 3 tn lLEL 2] = (n liiﬂ 2) 2 For sxample, in the CZavley

n with basic x

= ; , 2 : ;
algebra & =¢ of dimeneion &, instead of 2 = 84 dezivalions

there are really anly ?__;h = 14. l
In order to graphically illustrate the action of the

derivaticon algakra Der{(f) of a eplit Cayley algebkra T over

an arhitrary ¢ we form the table bealaow. Note

L = 1 - L 4 K = I - R 3 D = -Dq. u
E2 =] E:! E.I EJ 24
. i . (3] i i
For tyvpographical convenience we abbreviate 2 5 by f;i. and €5 by
S0 e 18,y fi'fz'f:{’ c P - N forms a basis for @ [see V.& for

tha resulting multiplication table for ©).
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}

4.16 Action Tahle for L , R , D
% ® x
Lie E{e £ ; fg, 3]
B {e-ll te,) Dle) L ;) R{fil DIf.) Lig,) R{a, __:qi:r |
ey g, e 4] ] fi —fi =F] Q g
& 0 : £ : -q.,
2 8 i ; . fl . i © 93 25
n] -
i fl id fi h 0 0 2, e &,
£ ; - _ 0 4]
i+1 | Ti4a ? tis1 w2 Vivz 29544 9
;g y : - . -2, ] i 0
1+2 i+2 Y __£1+2 q:i.-l-.’l. “i+1 J{gl+1 g =
- - [y
lJi ___L" g l]i ] El E:é‘. u_ ﬁ? lf.'r_ 0
i1 g o 9441 a e 9 "Fiia Fies R >
- - 2 £
Ji+2 . Jirz  TYi4p ;i . e e T
From this wa vompute the A = I - L L = [ ,E ] Hote
X, ¥ Xy Xy w7y
g +XY ®,R e ¥ ¥eX

1



4.17 Action Table for ax

,

. Aepdfyl Ble, o) B f.00 B8] 8.8 AELg) Ml
= J g 9 Ti12 Yisa . 2 .
. ] 0 - - 0 0
- ® : 9542 Ti+2 .

T ' o (8] o] -qg, o o u

i r g:L+l
S J G D g 93 Sit+l g B

| o - __‘- el 4P 1Y B " b e s g, -‘.. PP _—
i+32 i1 0 £y 4 Fi4z e By
EF "1 0 _fi+1 J 0 fis1 i+l
9141 @ Litn B . it ¢ 0

3 | ') = ] - - Q

9142 | i+l . b il i43 g
Since I = Ad - 33 We can put the two tables together
wiw [%,v] X, ¥
to get ocne for standard inner derivations. Note
E = saL] = = Chpad: = B -
[e,,£;] ;9 [eg.9:] 9y9 [f-0,] i50eymesly
D_ = =D .0 = D 4D =By .
Sg ¥ Py %127 %19 B17%12¥127 F12'¥:; Bt ¥a1Y0
gincea Dl =0 and 0 = b s + D a + o " "
'x 1712 ¥z ®13¥30% ¥yn=yr¥13
(by (4.14) = Dx. - De 2 and similarly D:-:
12 %12 1" %12%12 23, " ¥y
= D

Sa1ta1¥e
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4.18 Action Table for Dx

Dle. . £.) Die_,g.) Ejfi,q,} D{f ,gi+1} DE, 094 ,4)

; 3. 0 0 s

i1 g 0 0 o

2,me) 2fi Q o

42 ? “Tauy 5 2

il 2 ~Fien 2 +Ey

e . Ry Eak TG ~384 i

§ ) i1 . °

. "Ly Ti42 g 0



