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Appendix V.

Alternative Algehras in Gecmetry




§l Projective planes
A plane (or ingidence plane) TT = (p, T, ,I) consists of
a get P of points, a3 set 1. of lines, and an incidence relation
L PXL . When PeP and L € . are L-related, (P,L) € I,
wWe write PIL and say "P is incident to L", "P i= on ", "p lies
on LY, "L lies on P", "L goes through B", "L is incident to P",
etc. A collection of points are ¢ollinear if they lie on a2 com-

mon line, and a collection of lines are concurrent if they lie

on a comman polint:

—e——o—a9—o—
Collinear
Concurrent .
o ~
A homomorphism I — 1l of planes consists of a mapping
¢ T
P + P oL peints and a mappingI.——i+ I of lines which preserve
incidence,

PLL =g (P) Lo, (L) .
We will consistently denote points by letters P,Q,R, etc. and
lines by L.,M,N, etc. Therefore it will cause no confusion if
we use the same symbol g for the map on points, the map on lines,
and the hememeorphism of planes (Ehough a purist weould object,
Zer il could happen that P 3y L # d and gP # Ji an ALY .

We can write the homomorphism condition as (g xg) I T .



Az always, the composition of two homomorghisms

uf i L =
I- + Il T is again a hemomorphism, and the identity

maz on points and lines is a homomorphisam lﬂ of I into itself.
o -
A homomerphism I — T is an igomorphism if it has an

m
In this case 1 coincides with the set-theoretic inverse of a

. : ~ f
inverss homomorphism J| =—— I, T o g = 1. and G ® T = lﬁ .

cn points and lines, so ¢ is an isomorphism iff it is kijective

on paints and linas and

PIL &= g(B) I g(I) .
The product of two isomorphisms is again an isomorphism,

An isomorphism of a plane T onto itself is called an automorphism

(more commonly a cellineation), and an isomorphism of a plans

k3
onto its dual I is called an antiauntomorphism (more commonly,

correlaticn) .,

It must be stressed that points and lines are cempletely
arbitrary sorts aof cbiects — a line doesn't have to consist of

points, We denote the points on a line I, by

P (L)

|P & P|P I L}

=

and the lines on a point P by
L(P) = {LE€L |PIL}.

A concrete plane (as opposed to an abstrack one) is one in which

each line L = P(L) is the set of its points and the inecidence

relalion is just membership, P I Le&=hP € L . For each plane



r € )

I = (P, L,I) we have a concrete realization Hc = (P L,
with the same points as 7, whose lines are all "concrets lines"
Lc = P(L) for . € 1. , and whose incidence relative P Ic Lc is
inclusicon P & P(L). The map i sending P — P, L — P(L) is a
homomorphism of I onto its concreie reglization I, - Clearly
T 15 bijective on points, surjective on lines, and preserves
incidence: P Ic Lc &> P € P(L &> P I L. Therefore 1 is an
isomerphism iff it is indeclive on lines.

In general, we say a plane is concrete if the homomorphism

T
T e—p l, 18 an isomerphism; this is ecuivalent to saying that

a2 lins L is uniguely determined by its points P(L), P(L)

F(L') <% L. = L' , All the planes we shall be interested in
will be conorete in this sense, so we can (and should) think
of lines as being certain collections of points, but we will be
very careful not tc write P € 1. (but rather D € P(LY).

One reason for keeping to the abstract view is to maintain
symmetry between points and lines. The dual of a plane T = (P, L ,I)

*

w
is 1 = (F*, L*,1") where the points P* L  of the dual are

I

the lines of the original, the lines L* = P gf the dual are the

original peints, and the ineidence relation I = I“1 is the

canverse ralalion I, I* FE =% TP 1L 1 {(ie (L,.P) & 1* <=h (F,L) € I).
Principle af Duality says that if a statement S phrazed in terms
only of points, lines, and incidence is true for all planes, then

the dual statement S* , obtained by interchanging "point" and
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"line" in statement 5 , is also true of all planes. The reason
is that statement 5* for an arbitrary plane I ig really just
statement S for T¥ . Note that the dual of a concrete plane is
1o longer concrete, so if we defined lines to be certain col-
lecticna of points we could not avail ourselves of duality,

To weed out seme degenerate examples we assume that a rlane
has "enough" points and lines. & d-point consists of 4 distinct
points {Pl,PE.PE,Pq? no 3 of which are ccllinear. & d4-line

consiste of 4 lines {Ll’LE'LE'L4} no 3 of which are concurrent,

E L

3 2
2
L. L
1 3
2y P4 Ly
4 1
4-point 4-line

A projective plans is a plane which satisfies the axions

(1.1) (Praj T) Any two distinct peints lie on a unigue line
(Frej II) Any two distinect lines lie on a unigque point
(Froj III) There exists a 4-point,

A plane satisfying Prej I and II hut not Proj I11 ig called a

dagenerate projective plane; there are only 4 possible kinds of

degenerate planes (seec Problem Se+ 1).

We obtain a calegory of projective planes by taking as objects

all projective planes and as morphisms all isomerphisms. (Pro-
jective planes are very rigid objects, like division rings, so
that the only homomorphisms which are not isomorphisms are de-

generate; se= Problem Sct #4) .



It is important that duality applies to projective planes.
Clearly Proj I and II are dual axzioms; to see that the dual
plane II" satisfies Proj IIT we must show Il satisfies the dual
2:x10m

(Proj III™) There axist a 4-line,

This follows [(rom

{(Lemma) If {PT’PE'PE’P4} is a é-point and Lij denctes the
unigue line on Pi and Pj  then {LlE'LEH’LBQ’Ldl} is a 4-line.
Proctf. The Pi are distinect, s8¢ by Proj I there exists a

1]
sides Lii+1 are concurrent; by cyelic symmetry we may suppose

unique line L,. on Pi and P_j for 1 # j. Suppose three of the

T i i {
Ll?*“23’L34 a4ll lie on a point P, How either B # P2 or P # PE '
say P # P'2 . Then le and Lzﬂ have 2 distinct points B and P2
in common, so by Preoj 1 le = L23 v But then P]’PE’PB all lie

on Ly, = L,y , contrary to non collinearity. (If P # P, we would

have FE.

o B

4¢P, collinear). | |

This a=stablishes
{(Duality Thcorem) The dual of a projective planc is projective,

(Duality Principle] If S5 is a statement trus of all projective
planes, so is the dual statement S° obtainad by everywhere inter-

changing "points" and "lines." |[R§






The virtue of dualilty is that you gelk two theorems for the
procf of one.

Next we see that projective planes are concrete,
1.5 (Congretensss Theorem) Projective planes are conorste,

Procf., We must show distinct lines consist of different
points, L # L' = P(L) # P(L°), Now if T # L' then by Broj IT

! intersect at a unique point P, By Proj ITT* there exists

L.L
4 lines no 3 of which are concurrent; in particular, these
lineg don't zll pass through P, say M is off P (so M ¥ L,L7).
By Preoj IL M intersscts L,L at points Q,Q’ which are on M and
therefore diffarent from P: by Proj I L is the unigue line
through P and Q, L' the unigue line through P and Q'. Since

L#L'we have 0 # 0 , s0 Q € P(L) but 0 € P(L!] (else

Qe P(L )N P(M = {0'H. B

This justifies always thinking oZ lines as cellections of points,



We write PY Q for the unigue line on P # Q (the span of
P and @) guaranteed axiom PFroj I, and L A M for the unigue

peint incident to L and M (the point of intersection) guaranteead

by Prej II.

Py Q) M
,rffffffﬁig L::)ﬁﬁngﬂ
E

WARMING: One must always check that P # Q in any specific
instance before writing BV ; PV P ie meaningless. The same

goes for L A M.

One of the major geals of projective geometry is to classify
all projective planes up to izomorphism. In particular, cne would
like to clasgeifv all finite projective planes. We are still a
long way from this geal. In Fact, 2 major open guestion is the
cruder classificaticn of finits projsctive planes according to
cardinality: what are Lhe possible ecerdinalities for a finite
projective plane?

There is an important numericzl invariant of a projective
plane, namely the number of points on a line. Before counting
the number of points on & lins we need to be able toc move off

lines.

Lemma. Given any two lines L,L’' there exists a point P off

both of themn.






Proof., Buppose on the contrary all points lie on L or L.

OLVCT 0 Cuacranglm g In oy, TIT W 0o hawe J adhL) &

either line, so two must be on L and two on o7 : raelabel so

Pl.P2 ars on L and PyeB, on L'. We claim P = [Plu P4}fh{P2u P3}

lies on nsither. Notice A exists since

Pl “f P4 = P2 ' P3

{the latter A's sxist since L # ?1v E

¢ indeed Lﬂ{?l'uf P:L] = Pl = PE = 1, M (PEVPEI

L 35 B, is off L, similarly

L # P2 v Pj}. Then P 1is on Plv Pﬁ_ and E’EV P3 ; 2o Lf it were
on L too we would have L h[Plv Pa] =P =1 h{PEN?PB), contra-—
diction. Similarly P is off 1.'. W

(Cardinality Theorem) 2Anvy twe lines L,L' in a projective
plane have Lhe same number of points: [P{L}I = |E‘{L'] Vo (Eh

fact, 1f Q is off L and L' then the map

o . A
ﬂLFL.{P} = L' A{OWF)

defines a bijection of L on L',

Procf. By the precssdinc Lemma, there exists a Q off

I, and L'. Once we have such Q, for any P on L we have Q # P
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(Q is not on L) s 0w P eXists, and L' # 0 v P since Q ispn't
on L', 50 L' A(Q«DP) = P' exists. The map P + P' is a bijection
T, ] i = LT i H 1 | = !
L,n' Since it has inverse TL*,L TL',L[TL,L'(P}} La(dvwPp')
=LA(DVYP) =P (owD contains O and P''= L' A(QV PR,

N

ag does O ¥ D', =p by Proj I gwr = QwP'}l. Similarly

Y

= : and m_ are 1nve 1] ions.
Ty, T, i1 ¢ 80 T & L e inverse bhijectio ||

The number of points cn a line is thus an invariant of the
plane. A proj=ctive plane has EEﬁEE_E if every line has n+1l
points. (Warning: the order is not the cardinality n in the
projective case; the definiticn of order will become clearer
in the affine case). Tt is an open question what n can be +he
order of a projective plane; so far all known planes have order

cf the Form n = pk {and thers always axist planes of order pk}.

(Cardinality Conjectura) Svery finite projective plane has

. " ; k
prime power order n = p- . £

The most celebrated pesitive reault is the

: 2
(Bruck-Ryser Theorem) Ifn = 1 orn = 2 mod 4 and if n # a2 + b

Cannct be written as a sum of Sguares of integers a,b then n

cannot be the order of a projective plans. (=
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For example, this rules outb &, 14, 21, 22,... But it leaves
the OPEN QUESTION of the existence of a plane of order 10,
(Compubers are litlle help; there are ElG,DUD poseibilities
for an incidence matrix of order 10).

The Cardinality Theorem has some useful consequencas

1.10 (Cardinality Corcllary) 211 lines contain at least 3 points:

RAGA U N

Proof. It suffices to find one line with = 3 roints.

If {B,)] form a 4-point then Py W P, contains 3 distinct points

Pl,Pd,[Plv Pé} ﬂ[sz PBJ = PF: P F Pl sincea P1 15 not on

Pzw 93 {Pl,?E,P3 are not collinear}, similarly P # P R

4 i

P'J
B e
i _.-'-.-F-F-
== 7 iy
21

Using thiz can ackually construct 4-peints all over the place.

1.11 bxample: (Vector-spacc planes). Tet V he any 3-dimensional

left voctor space over an {associative) division ring A, set

Proj(Vv) = (W), ,{V), IT(V))}
P(V) = {l-dimensional subspaces of V)

L (V)

]

{2-dimensional subspaces of V)

I(V) = dnglusion (P I L o= P CL)
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We c¢lain Proj(V) is a projective plane, the plane of the

vecetor space V or a vectar-space plane,

(Proj. I): If P # P' are l-dimensional subspaces then

L =P+ P' is 2-dimensional, hence a line through P and P';
it is unigue since if L' passes through P and P' it must
centain B,P', and P + P', and if it is to be 2-dimensicnal
it can't contain anvthing =zlse.

{(Proj. TI}) If L # L' are 2-dimensional then L + T' > I,

implies L + L' = ¥ is 3 dimensional, s¢ from the dimension
formula dim LAL' = dim L + dim L' - dim{(L + L') = 2 + 2 - 3 = 1
we see LA L' = P is a point on L and L'. Any other P' on L

and L' has '€ L. A L' = P, and 1f P' i3 alsc to have dimension
1 we must have 2' = 2,

(Proj. III}) Tf V,+V,eVy are a bases for V over A we claim
-, = 4 = ;B R T - F F
Pl AV ¢ EE AV P3 &vj 4 [Ll + Vo T v3] form a
d-point: no 3 of the points are collinear since any 3 of LERALTASY
Vi + Vs o Vv, Span V.

T s
We claim any semilinear isomorphism V — V of vector spaces
over A,A (ie T is additive and T(4&v) = t(5)7T(v) for some
- Froj (T} >

isamorphism 4 — A) induces an isomorphism Proj (V) —— Praj (V)
of planes. Cerlainly a semi-linear T induces a bijection from
l-dimensional ﬂ*épaces to l-dimensional Erspaces, and similarly
on 2-dimensional spaces. It preserves incidence since it preserves
inclusion. This gives us a functor

Proj
Vector spaces ——— Projective planes
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1=-1Z
from the category of 3-dimensional vecter spaces (V,A) over

division rings, with semilinear'iammorphiama (T,7t) as morphisms,

o the category of projective planes by V =+ Broj(V), T + Proj(D).
The Fundamental Theorem of Projective Goeometry gays all

Dezarguian planes are vector-space planes and (almost) all

isomorphisms come from semilinear isomorphisms of vector spaces. B

Lrample: (Divisicn-ring planss). If we are given only a di-

visien ring & we can form a canonical 3-dimensional left vector
gpace V(A) = a3 over A . The projective plane Proj(V{A}) we

denote simply by Projl{a); such a plane is called a division-ring

plane. (If A = ¢ is a field it is called a field plane). Any ring
T i

isomorphism 4 + A' induces a semilinear isomerphiam 53——+ are by

Tiﬁl.ﬁzrﬁj} = {Iiﬁl}rtiﬁz}rT{GBJJ: we denote this by Projir).

The correspondence A +TProjl{A), 1+ Proj(t) detarmines a functor

Froj
Division rings —— Projective planes

from the category of division rings and isomorphisms to the

category of projective planes. B

Example: (Field Planes). "There is an alternate description of

fizld plances which is more standard in the study of prejective
goomalry. We define two 3-Luples (o) reqrng) and (e ragray) to

be equivalent if they differ by & nonzero scalar; the equivalaence

classes Iful;mz,uEJ] of nonezero vectorsars just the one-dimensional
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subspacss ${&l,ﬂ2;ﬂ3] (minus zero). For projective 3-space

over ¢ we take P = L  to be these eguivalence classes., This

is reasonable: a Z-dimensional subspace L is uniguely deter-

mined by its orthogonal complemenk relative to the cancnical

on @3 ; this complement has tha form L~ = @{51,52,53} for

sQine NONzZero {51,52,33}, g0 we identity L with [{51,52,33]].
Ll

Now the incidence relation P I I hecomes P € I, = L or

L .
PL L ; 50 [Eul;uzux3J]II'.'E:]_:E—.2:33]] =9 0B, t a,By + wafy = 0, OF

PIL &% <P,L> = 0.
™
An invertible semilinear transformaticn ¢3-——+$'3 induces

an isomorphism “ro0 by

,
L
i
o
il

T(E)
T (L) = T"1(Ln),

The reason for the inverse adjoint is that <rT1{PJ, (L) s

1i

*—]. ® F=1 P _
<T(B), T (L)» = <P, T T (L)> (by definition of adjoint)

<P,L> yields "T' (M) I'T (L)é&=d P I L.

i

Az & particular cass, the world's smallest field & = &
3

2

gives rise tc a projective plane Proj(¢) = (¢~ ~0)/¢™ with

= 7 ezlements, the Fang plane




=

{U,Q l) _line xl+x2+x3 =0
line x1+x3 = line % +x. =0
[ Y s .
line x, = =0
e
(1,0,0) {0,1,0)
lina }::+x2= lina :{3 =10

Werld's Smallest Frojective Plane

Since this centains only 3 points on each line, it is as small
48 possible. Further, one can show (exarcise!) this is the

unique plane of order 2 (with 7 points).

Example ! (Incidence matrices). A practieal method of describing

finite projective Planss is by means of the incidence matrix

M{I} = (p,.) where we have numbered Lhe points P, and lines L.
L] 1 if p,. I Ly = J

and set y,. = “{ - The matrix M(I) has the properties
11 0 4f B; 7 L,

(MI) each row (and column} have n 1's
(MI1) twe rows (or columns) have exactly one 1
in a common place
(MIII) there exist 4 rows (or columns) no 3 of which

have a 1 in a common placa,
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Any n*n matrix M = (M yof 0's and 1's satisfying MI-III
3
defines a projective plane I = I(M) by letting

= {Pl,.-Pn}, L = {LI_,..LI_'} with B, J:'Lj el uijr- 1. Indeed,
the row version of MIT is Froj I: giwven Pi’ Pj there is 3

unigue k such that Beg = = 1, ie a unigue L. such that

“ik k

By T L., Pj 1 L, . The row version of MII is Prej II. MILT

is Prod Ill: thers arc 4 points Pl,PE,PB,;‘J4 no 3 of which are
; ; : ; th
5 1 . = . = = s It 1 .
collinear (ie 19 “jﬂ Mycg 1 share a common in the &
place, ie lie an Lﬂ la

Here the incidence matrix of the dual plane is just the
transpose MEH*} = M[I}t of the original incidence relation.
An isomorphism T (M) j I(M'}) ecorresaponds to a pair of
permutations w,p of {l,...,n} (where J{Pij = P%{i}’ G(Li}

T{ida{d) = “.i_; . B

= Léfi}j gatisfying p
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Exercises

show %% = 1 for every plane I. Give an example of a pra-
. B E

]_I'k

8

jective plane [ whers T
Define imheddLng:u:i+ L of projective planes., Show the fol-
lowing are esguivalent for an injective g
(1) ¢ 1s an imbedding
(i1) 7(Pv Q) = ¢ (P)w ¢ (D) (P # @)
(1ii) o (LAM) = o(L)A o (M) (1 # M)
(iv} P,Q,R collinear =» o(F),c(Q),c(R) collinear
(v) L,M,N cohncurrent => g (L) ,o (M) ,o (¥) concurrent,
Condition (iv) 'is the reason that an automorphism of II iz
called a collineation - it preserves the relation of collinsarity.,
Lf p[z}:i+ PEE} is a bijection preserving collinearity, show o
can be extended to an igomorphism of planes. Thus an isomarphism
is completely determined by its action on points, the lines fol-
lowing automatically.
1 [F1¢P5 Py Py} is a 4-point and Lij = E.\er » show no 4 of

i

the 7 points L. .P 8

= E = T T
2 a'F5 T LypAlgy o Pg = Loy ALy,
?? = L,y ALy, are cellincar. Deduce directly from this that if

qu I'P

T is a projective plane and L,L' any two lines in I then there

exists a point P off L and L'.
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IT o is an involution (= automorphism of pericd 2, a2 = 1) ef
a finite projective planc T show each point lies on at least
one fixed line y (L} = L and each line contains at leaslk ane
fixed point g(2) = p.
i i s I are two sets and ¥, A are symmetric maps Bw P + L,
LAL + T defined for P # Q or L & M satisfying
(1) PwQ #PvQ = (PVQ)A(PVY]D') = b
(L) LAM # LAM' = (LAM) V(LAM') = L
show the incidence reclation P I L € L = PvQ for some 0
(dually €=bP = L A M for some M) defines a plane I = (P,L,I)

satisfying - Proj I,II. Show I is projective iff there are

distinct Pl’PE’P3 g1ach that Plv PE' P2~¢P3, PBﬂFPI are distinct.
Dual ize,
Take P = {l-dimensional subspaces}, L = {2-dimensional subspaces}

in a 3J-dimensional left veclkor space V over A, set
PO =T 10, LAM=LNMfor P # 0 , L # M. Show these satisfy
Lhe conditions of $#7. Show the resulting projective plane is

just Projiv).
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Problem Set on Cardinality

Show |P(L)| = [P(L'}| for any two lines in a projective plane
by defining projectioms m: P(L) + P(L'), m': P(L") » D(L) with
oo = Ly o B8 s 1l -

shew |P(L)| = |L(P)| for any point F off L by defining

f: P 4 I i = i — -:_ i
B(L) + L(F}), g: L(P) = P(L) with £ o g LdL[P}' g o f iy 1)

Conclude from this (rather than #1) that |2(L)| = |P(L')]| for

L # L', Thus each line is on N points and each point on N lines.

If one line has |B(L,)| = N points show there are lp(m | = 8% -5+ 1

points (and lines) in .
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Problem Set on Subplanes

IF = (Y Y05 e & subplane of 1T = (P,L,I) if P'C P, L' L, I'
= AP x BY) M T i lor g 49 En exteﬁsiﬂn of 1') and

(1) P',Q' € P' s P'vQ' €1' , (i%) L', M' e L' =t

L'AM' € P' (ie P', L' closed under A,V ). Show 11" satisfies
Proj I,II if 1 does. Hote that Froj T1I need not be inherited

By ' .

Lf ¢+ I — Il is an imbedding, show ¢ (I] is a subplane. TIf J'

is a subplane of T, show ! = ¢_l(ﬁ'} is & subplane aof Il.

If ¢: Il = T is an automorphism, show the fixed points and

lines ¢ () =.P, ${L) = L form a subplane I' of T.



