Appandix IV

Left Allarnatiwve Alouebras
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Left Moufang algebras

laf+ altermative algebra is one satisfying the left

s

alt=rnative law

-

1.1) ﬁ{xy} = xzy. (Lef: alternative)

I+ =urps out thabk this law alone i not encugh to abtain sat-

isfactory rasulbks in gancral, and we will conecern ourselwves
entiraly with left Moufarg algebras - Lhoses which gatisiy
(L2 vz = xiv(xz)) (Left Moufang)

in =zddition to (1.1). Tn kterms of cperators the axicoma are

(1.1 o) 5 _ A
Lo, = L:{
®
(3 T = T y = w{yx)
(3.2 6] Cyix) v L:»«:L"f""a: {Ux_f x{yx))
while terms of assocliators
(1.1=} [x,x,¥] = 0
(1.Z=) ¥ [ B8] + [Bayxnez] =0 (Left Bumping)
(note =li{vxlz - yixz)} + {x(yx)lz -x{(yx)zl = {=x(yx}le —x{y(x=z}}}.

In ths presence of 2 unit element, axiom (1.2) implies
axiom (1.1) by substituting ¥y = l. Furthermore, in the presence

alar % axiom (1.1] implies axiom (1,2),

o
Il
b
t
f}

(Eguivalence Theorem) TI 2 is injective or surjective on A,

'-_—l u

#han A Iz left alternative iff it is lafl Moufang.

Procf. Always left Moufang implies left alternative (left
Moufang raguires both (1.1) and {(1.2)). How assume A is lefl

allesrnative. Then we have



L

(1.4] 2L L L & 2L

-2
since ¥e(xey) - }:2"H = x(xy) + x{yx) + (xy)x + (yx)x -x"y - ¥x

= —[x,%y] + xlyx) + Ig,v,x] + x{yx) + [v.x,x] = 2e(yx) + [2,¥,%]

v
L 4

+ Iy,x,x] - [x,x,¥] = 2U¥y (in the presence of (1l.la) and its
2

ljinsarizaticn), similarly on End A 2L (L L] = L_e{L oL ) — L_°L
- 4 S 3 X ¥ X ¥y
B AT e o Ty — L. =5 oe(L *L ) — L o, = 2L L L
] 33T b {_"\:Cp}?:! Jx.i = &i" o ."' b4 _Ilr . _}CL 'xr ’X b o

(using (1.1 op) and ics linecarization). [We are jusk saying

EUT = v; -V 5, can be huilt from sguares and circles, so 1T
- d x
¥ —5L, Dresecves Lhese 1t prossrves EUX] 2

1f 2 is injective w2 can cancel it from the relation

2T T, L.z = ELU,_ z in (1.4} to get the left Moufang law

b I <2 (xly
LkLny Z = LU{x: « for . all x,v,2. If 2 is surjective, cvery

# & A has the form =z = 2w, so applying (1.4) Lo w gives

L.L = 20, L L W = w o= T
L.L. L. & thny W zLuix}y W TU{x}y

Bemark. Lt will be important tc observe thabt a leit alterna-
tive wr left Moufang algebra is actually alterrative LE and
only if it is flexible, [x,;¥.¥] = 0, since then right alter-
nativity [v,z,x] = —[x,v,x] = 0 follows by lincarized (1.la)

{1,1la"] [x,v,2] + [y,x,z] = 0. B

Since the defining axioms (1.1),{l.2) are guadratic they

remain valid in all extensions, so the scalar extension Ag of
]

a2 left ealternative or Moufang algebra A remains lsft alterna-

tiva pr Moulang. Furthcrmore, 1f A is left alternativa or
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ManZang, =0 is the algebra A = $1 + A chtalined by adjeining

a unit to A: for (l.la} we have [al + x,al + x, Bl + ¥]

= [x,%,y] = 0 since 1 is in the nucleus of A, and similarly

for (l.2a) (¢l + x)[RL + vypl + x4yl + 7]
+ Jol + %, (Bl % ¥} (el + =)yl + 2] = (0l + x)Iyv.x,2)
(ol £ %) Tw.a2] + 2.5 + o¥ + ¥ee] = plly.x,%27 + [%ov.81
+ alx,x,z] + x[v,x,2] + [x,vx,2] = 0. Tndeed, we reguire a
left Moufang algebra to satigly (1.1} in additieon to Che left
Munfang law precissly =o that ths uniltal hull A will remain
leZt Moufang.

Tha Zinesar mapping & + End a given by x -+ L is injective

sines L, =0 =D x = in = 0 (the left regular representalbion

on A itself need not be injectiwe}.

Proposition, A linear algebra & iz left Moufarng L0l the left

-

" - . . T
gular rapressnlbalion x + L,_, of A in {End A) is a homomor—

m

vhizm of guadralic zlgecbras.

Proof. The map is always linear, so it will bs a homomor-—

phiszsm iff it prasserves the guadratic operations %7 = xx and
Uy =xlyxl: L, = L> and T =L LL . B3
s wiahs ¥ 2 R T T Xy

Mote that if & is unilal Lhen L, = L1 and the left regular
representation is o monomorphism of unital guadratic algebras.

o
Since any A 1s imbadded in a unltal algebra A, We have as
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Corollary. Lf A is left Moufang then the left reqular rep-

gabras. In particular, any identities satisfied by the

ML
quadratic algebra End(d)  are satisfied by A as quadralic

algebra., B

This immediately leads to some useful identities

1.8} ) = 1.1 Fundamental Formuls
{ i s (i) e FUK ( 1 ormula)
(1.9) W Io=0 v = U
s "x,v Ux X ¥,X X (yx)
whars V= L + R | = Loh. # are defined hy
irie -JK e o U}:,'}g Xl:f RYK re defined by
V., ¥ = xey = xy + yx and VK:? z = Ux,z ¥ = xlvz) + =z(y=).
In addilbion we oave
n n
I'"[ = =
.‘“_'lc‘} L 1 Lx r U n U}c
x ®
which also could have been provan directly from the axioms.

Thig has as immediate consequence

(Power-Associativity Theorem) 4 left Moufang algebra is strictk-

lv power—associstive,

i m -k
=X

i n n s
whers X = Ey L (jey = L

. m . ' B 0 {1 it
Proof. xxt =1, L ] e Lo 1P
nT_m wTN *
X X
and this remains valid in all scalar cxbonsions ﬁr since theoy

1= """ py (L.10),

all remain left Moufang.
s R ; | i aid ) . 2
Thiz =z=lleows us to tall akzout ldempolbenlt alements (27 = o)

‘ . I z
end nilpotent elements (2 = 0] in the accusbomed way.
S
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Exarclcees

We can base the study of lefl Moufang algebras on the
Ao 5B SR Bl B o = 3w

vroducts ¥ and x” rather than x® and le'f. Clearly x~ = U x

an ba definsd in terms of U's, and canversely we can recover

U ¥ froem linearizing 33. :

10w thalb & is Jeft Moufang i£f it striebly sabislfiss

(1.1} Ixix,2]7 = 0

o 2

(1.2) %", %,2] = 0,

or in gpperator notation

el Om) L g = Li
x

(1.3 onj L 5= Li (27 = x5 = RRE}.
x

Show that if 2 is indjective or surjective then (1.1) impllies

Lincarize (1.2) and {1.2) to show

{sz - Rsz}vx ='1Rz’h 2}
x

P == — TE

[RZ,L Lw] Ry{xz} LZ]yX

b
t

-
Show L, U_ zrz ldempotent (resp, nilpotsnt] if x is idempotent
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Untits

i

An element 1 is A4 unit Tor A if nx = xu = x for all x & A.
& 2

% for all =x=.

. ; o A o
an slament iz a unit for 2 if U x = =, Uﬁu

il

Proposition., 2An element uw is a unit for & iff it is a uait

Proof, Clearly if ux = xu = x for all x we will have
I . E 5 2
qu = ulxu) = ux = x and Uxu = x{ux) = xx = ®° , Converszsly,
g b ~ " - _+ o c) 2
1f 11 15 '8 unit for A tThen uw” = U 1 = 1 50 3xu = T.. 1
bl Ul

Il
[y
I

u{xu~} = ufxu} = qu = x and thereforc

r
5
|
e
]
-
I

ULE}: = x Loo. B

Proposition, A has a unit if either one of

(1] scme U is surjective

iz} some LH,HX ara surjeckive .

Procoif. Since Ex = LFRK ; (i1} implies (i), so we show

only that (i)} implies the existence of a unit.

Thers must be a v such that = = Ux}’, and v = U_=z for
somnz: 2. Then L. L L. = T =1L shogws L L, =T on L, A = 2
- uixly p4 oy : X
if U = L B _ is surjectil go dis I = £l e ]
{ ” Py % o ve oo i _.x} ; and then LE’ LA T,

injeckive impliasz LE injectivae toon, so Lx and L? are inverses.

Set u = vwx. This u is a left it since L. = L =
U Ty Tadw () |

Lx{EEK} = ;XLFLELK = 1, and & right unit since for any

a = U D in A owe have au = x{b(xu)} = x{bx} = a by xu = xlyx) =



Invarses

Two elements x,y are inverses in A 1f xy = yx

T

. TR, :
are inverses in &" if Uy = x. Uy" = 1.

It

—
o
=
D
k)

Thaoram. The [ollowing are sguivalent:

) ¥,y are inyerses in A
- ] A . +
{14} ¥,.¥ are inverass in B
et L'x 1. ars ikverses.
e

¢ T ¥ . _l - i
1 Chils gase i@ Anverse ¥o— X 15 uvhnlgue, and

. T S _ -1 _ -1l _ -
L _, = R, L7< Ry = LU LB TL T, U 5 = U ".
= 34 .9
Procf. (i) =2(ii): if xv = vx = 1 clearly Uy = z{vx) = =
: 2 o "
and Uy = xiy ®x] = x{k":"fx}} = wy = 1.

(i) =w{iii}: msincs E{-J—irT.R iz o monomorphism of A in

-+ . 2 + sl . " . +
(End &) , Inversses x;¥ in & go into inverses L:“J_-}r in (End &)
X Fe : e g - . .
and L L L =L L I L. = 1 shows L_ 1is iavertlible with invarse
WOV X S T A "
1, N omnd Ba
3

(iii) ==p(i)s 1 = L, T, 1l = x¢y ard similsrly 1 = vx.
iu -
In this case U O U = U = U, and U O 51 =T 9 = I
b i " RS Uixly X Hopd Uiy

(by the Fundamental Farmula (1.8)) imoly I.I}r U}_ arc inverses,

r
. -1 . . e (o N =5 T e .
U 4 = U}c . We lave T e -Lx by {iii), and L}:‘qux = 1 implies
b b4
= e ; ; . ; B
] o= 2 an 13 ¥ i o= U_= 1 glives
-l L, Lazﬁgel no 1n L__J_T{ —1L}i i L gy
x b4 3
R T.-KU;'L; singe L and U = L K _ are invertible,



Note that if A is not alternative we need not have

-1 . o wiye i . -
R - H}_  although R}{ ig invertible when x is; indsed

, r
-=, -1 -1,
™~ . & -, - e W (] " i ER L
% — polincides with its conjugate R = L R 1 iff L and
R, colncldas with Jug g T LR L -

R}C oommuTe.

The conditions on an elemant for il Lo be inverkible ars

(Inverss Theoram]. The following ars eguivalent Ffor an slement
#x af a unital left Moufany algebra:
fi) = is invertible, xy = yvx = 1 for some v

(ii) xz = yx = L for some v.,Z

{iii) 1 & ERance Lxﬁ}{ange R}:
(iv) 1 & Range UE
(v] L _, B are inwvartible

P =

T II:{ iz inwvertible.

Proof. Clearly (i) = {(ii)4»(iii), and (ii) =% (i) since

H-
b

t i1mpl

= (4

figp=2(vi) sznce if Ux?'

'_I.n.

s xy = xiy(xz)!l Ix(yx)le = xz = 1. Clearly (v) =p(vi)

#y o, and we rvemarked (i) =S (v} alter the previous theoram;

1 then U DU =TI (via ths Funda-
o R

mantal Formula (1.8)71 shows TIK_ has left and right inverse;

"1 (i1 since if U v = 2 then U U U= U implias
{\"JJ__ #,.J.,! 1L.0L s w :'zr ar i AL
o 2

U, = I, Lty =10 1 =1, % is invertible in at ana (v

}EU&’

the previcus theorem] also in Al e |



Inverses can he used to characterize left MouZang algebras.

A nenasscclative division ring is said Lo have the left inverse

(3.3) x" () = y (x # 0, all ¥)

o s b ety R ST ._-L 4 = [ - e -1 5 x 2 e T-
ment gazxcisfvidg ® x = 1l. Then glso =y = 1; 1&. % 18 the

sy : ik —L:i=E

L inverse of its laft inverse ® “: (% ) = m. Ta sas this,

-1, - =1, =] w4
note (x ) 7h = TN = e h T v 2w o ok by bhe et
inverse properky applied to xhl : More generally, for all y

we have 2{x 7 y) = y¥. In operator terms thsse mean

(3.4) T, = (x # D).

(Left Inverse Droparity Thecorsam). A nonasscoiative division

ring is left Moufang iff it has Lhe leaft inverse property,

Proof. OCur previous work on inversss has shown evasry left
MouZang ring (=algecbra over %) has the lefb inverse properlby.
Conversely, assums A has the left inverse property. In Problem
Set 42 we hawve slresady indicatsad one way to derive the left

¥oufang formula. What was tzcitly behind that proof (due to

Bruck) Is the Hua formula

-L ~1. -1

-1
iz - fa +b 7)Y 7} = a + aba

valid in any associalbive algsbra where Lhe inversas maks senss
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: w1 i - . i
(namsly when a,b, a + b are invertiole - then auvtomatically

-._-I_ _-]-. ‘_l [ i 1 F v
a = {a+hb ") ig invertible with inverse a + aba : for

-1 -1 -1

| s
examples, (a + aba)(a ~ =-{a t b l} | = (a+b 'ha - a

~BEIE B et B )Y m (e B

b - ab = 1}.
The basic idea is simple: Eua's Zormulz says xyx can be

buaild ovi of addition, subtraction, and inversion, so any map

i

X oL praserving these oparations will praserve xyx, giving

left Moufanagitivity I = Te Tt
T THYH oy ox
We raust be 2 little careful in carrying cul bhe debails

of this argument, for we do not khew Hua applies to the left

il
g
i

mnative algsbra A (only to the assoeciative zlgebra

End (&) ). We hegin by noting

{3.8) L+ L LL =L R
® VR g 1_{K+? 1] l} 1
sincae L. + L L T, = {L_l —={L -+ L_l}nl}_l [aszsociative EHEua
e FARL U b X ¥
in End A) = [L SOy e T
-1 -1 © -1 -1,-1
- oty ® Te{uty 7))
=, : : (by left inverze property in A). We
PN _=Lly-i -1
L T=ladye T T
3 1 e S = ~1,=1,-1 s ; .
don't vet know {x= -fx+ yv ") 7} ggusls x + Eyi 1n L since

we don 'l know Hua Zor A, bul whan we apply (2.6) Lo Lhe ele-

ment 1 we get a4 nonassoclative Huz formula x + x{vx)

. T = (T : T wlin -
= {x —f=x 4+ v ) 7} y Mhus (2.68) becomes Lx [ LxLyL'

=

= | + T r |0 T 10 Ea

- = I and & is5 lefl Mowifang.
e x{vx) Sl #*yvx) e

2a ousilal , we have glihly passed over bhe cades = = 0,y = 0,

o = 0 when the requisilbe inverses don't exist. But
- ; O Fa El . b S b )
., LL =1L, iz triwvial if % or vy is 93, and 1f -x = ¥ then
NV H Hlvx)
I ] - L.
y = =% © and xlyx) = -%, so L, LL_ =L L L =-L_ . @

oS b il bid
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Since duzlly right Moufang i equivalent to right inverse
properiy, and left + right Moufang is equivalent to alter-
nativity, we have the characterizaticon of altarnative algebras

in terms of inverses which we pronised in Section T.4:

Inver Progerty Theorem) & ponasscociative division »inc is
i F ¥ =

0
fb

0

alternative 122 it has the inverse proverty (ie. both left and

~ight inverse properties). B3

¥ow we turn to showing Lhat for a division algebra, left Mou-
fang alone already implies alternativity (thus the lef+ inverse

Droperiy implies alternativily) -
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Zhornvakov's Theorem

2g in the case of alternative division algebras, we will

be able to classify all left Moufang division algebras. Since
wa already know that any alternative division algebra is either
associative or a Cavlev algebra, all we nesd do is show a leflk
Moufang divisicn algsbra is actually alterrative (that is, we
nust establish flexibility). In the next sectlion we will show
that left aihérnativity iz not sufficient - there exist left
alternative diwvision rings which are not left Moufang (much
lzszs alternztive):; of courss, this can happen only in charac—
teristic 2.

Lat us, introduce Lwo operators

(4. A =5 = F L B = = L T
SEER X,V ny e o Y ny g
Clearly lafli albernativity gives
- = =
(.23 ﬁ:a'.,?: B}-‘.;J{
(4.2} A A = B + B C o L
LY A ¥ ¥rx

In thz pressncs of the lelft Moufang Law we will cstablish

(4.3) B ooy D Pyg = 0

a,.3) HX:Y Ax’y =0

(4.4) Pry x Py T TRGey) xIx,y)

(4.47) Ry Bxy T Taix,v) [x,v)

(4.3) ﬂer[H:ErK] =0

(4.6) LIKFE;E] = Axy,x + Aer Lx = Exy,x + Lx ery

Obsaryve that (4.3') and (£.4') follow fxom (4.3) and (£.4)

"ﬂ - - - -
in the lefi Moufang algebra A by linearizing x + x.1 (zince



A fEK » oand [x,v] all vanish when x = 1). Therefors we

must check oaly (4.3}, (4.4), (£.5), (4.8).

Por {£.3) we compute B L A ={L - L L }L
¥ XY X MY XY VR
. X - B 2 3
{L -~ L E1 =% LL - L T we T ; I
vy sy v R Ry v I IE‘:I xv "‘I}{ELIKLE F LffJ_IAL y
=t B A5 # fTeam o 8 Te T B ¥ Bk o b s W
wir) fae eyl gt o A el
LRy {x vy ¥ Ay sy 2y Y 3y {x) Uﬂzf}
=% 5 + L 5 4 F L 3 = 0 by rszpeated use of
wixT[xy)) (my) (x7¥) y(xTv)
S : 2 3
l=2fT Moufangitivity (recall x™ (xy) = X y by (1.20)).
4,47 iz simils iy mesgiar; f L = 1T - '
(d:4) 4= %ap Lar but messier ﬂxry - BX:F { - LNLE}TX
I -_— = ' = I ¥ T s
S g Lny} nyLKIxy IxT}1xlxj JxVLxLVLx +ILxLnyLyLM
= L = By coogiily - L I + el Ti.-= L
(=v)iwixy)t Hx (v =y v ox(yx vy ST 2
: E Eam e AL (xy) (x°y)

&) - i - 1L . z 7] Tif :'T":._ ) 1
(2{ya)} (ny) (xydix(y=) b Y Daeiv ey ox) (xy} e (xy) ]

- Ryl - Axy)ix(y=)} + x{vix{¥x)1}) = L({=xy} =[xyl
+ x{yixly,.x])}) = LA _ =Ix,vl}-
¥ ;
(d.23) follows by asplying [*-3}' o x ([x,yv.xl = Ax ¢ ).
L r
o A b e = 'E — L = -
For (4.6) not . S ] Lixgrx ~ Peiyx L{KE}K LxLny
}- fd_ Mouran <+ A =T - I 'I<_
w left Moufang, while ﬂxy,x Lx,y LK “L{xy}x ny d
+{L - L L 1L =T - I B L = {L - I
TRY X ¥R (xv)x XV X '{'ny}x KIXf}
+ L IL L. B 1 =B I B atrvaight from the dafinitions
Xty VO V= e R
How let us consider left Moufang algebras with the fol-

lowing oroperfhy K (as in Kleinf=13) :

{(X] 1IE 2 has ths form (ilm:, (ii1) [=,v), (iii) =[=,¥], or

fiw) =" [x,v] Lhen [x,‘g.z]2 = 0 implies [x,y,z2] = 0.
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Clearly (X) holds if A is a division algebra, or has no zero
divisnrs, or has no nilpotent elements, ox even if 1t has no

nilpotent associators [x,v,2(x,v)] invelving only 2 variables

%x,v (whlch assoclators are therefore zero in all alternative
algabras).

Obsearya that 1£f we
multioly (4.4) or (4.4') on the right by Hx,y the left sidaes
vanish sinecs both end in B . and by, (4.3') b A =

Xy ¥ XY XY
thereigre the right sides are zero and L[}: = (0 for

o B
sV rE] Ha W
z = xlx,y¥] or 2z = [x,yl. If we apply this opsratar Lo z and
= n : 2 :
recall A 2 = [x,v:2] we gee [%.v,2]" = 0 for z = xIx,¥]
or 2 = [®,v¥]. Consequently,if ws assume (Kiil) or (K 11} we
[x,¥,2] = 0 for 2 = x[x,¥] or [x,y]. Putting

2 #l=z,v1 = A [%,¥v] = 0 back into (4.4),(4.4') shows

Lhat when & sabisfies (K) wo can strengthen them to rsad

4_4'E) i ] =]
[ g ' E ‘3{,}' %, v

This symmetry between A's and 33's allows us to prove

{Property (K) Theorem). & left Moufang algebra is alternative

1Zf it has properby (X]:

Pronflf. If A is alternative it has (K) because any assgo-—
ciztor [x,v,z] vanishes when z is a polynomial in x and ¥

(by Ariin's Theorem) . Conversely, suppose A has (K). We must
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izt A is flsxible, i.e. all assocgiators a = [x,¥,X]

it
4.8) L. =) Ty
( “ a RV TH TR
2 : X
since 1T = { -4 + R L tL-p + I p Y
a = ARy _ Bx,y' L., Ex,y} (by (4.6) and
(2.2%), ¥ = uy) ywhere &. .., B , = 0 by {(£.4'E) and
- 4‘:".‘-:!' Y : .
T g B -2 ek o BB 5 =0 by ldoeariswed {4.4K). In paxr—
e T RV KW T Hwy <
= G e T g a _ : E » B
sicucarx, & = L a - 0 zingo EH - by (4.3"),. Then (a“)" =
:1"3=D"f':r‘3::uta2—Lzl*‘?‘n.* L° B 1= [x,v,z] by (4.8)
! tua ; = L C By v Px Py = [®,¥,2 ¥ -
Ty G o= 12 §=1 == -1-2 1 * A 2 Z o
for 2 =L B, 1 =x"Ix,yl, so by (K iv) (a®")" = 0 forces
K E:Y
= - . y
=27 = 0D , 2nd since a = [x,y,z] for z = x we can apply (K i)

again to gt a = 0. Thus [x,v,x] = 0 , and any algsbra with

proparty (K] is flexible. B

Since all diwvision algsbras have (E), we have as an lmmediate

COONSZARCS.

(Skornyakov's Theoram). A left Moufang divisien algehra is

altornative, thsrsfore associative or a Cayley division algebra. B)

-

ZEinge 3 division ring with left inverse propertvy is left

Mpufang by 3.5, we have the geomstrically significant

(Left Inverss Theorem] A nonasscciative division ring with

laft inverss property is zlternative, therefore asscciative

or a Cavley algzbra. BF

as manticnad previcusly, a projective pilane with encugh trans-

1

T as

n
|t
n

fu

coordinatized by a divizion ring with left inverse

DIQnercy.



sroblem Set on Jordan Homomorphisms

£ F:r A * D bhe a Jordan homemorphisn of the left Mou-

Ta
fang algebra A into the associative algebra D , in the sense

that ¥ iz a linear map satisZying

D2y = ) Flelyx)) = FOOT(y)F(x)
(for cxample; b = Bod A and Fix) = T ).
Intraduce the abbreviations
x* = Fixy} - F(=2)F(y) x_ = Flay) ~ FlyIF{x) .

¥
1
Thus F is a hemomorphism iff 411 %’ = 0 , and an antihomamor-

phigm iff all = = 0 .
f -
Prova 2 = X, = ¢ ; linearizs. Show xE—yH = Fllxy]l): xyfxy
= I—1{'f-1 rE[“'J.' ] -
Show J-L_U_;f‘:-lr = 0 , J{EZ{:{_ = F{[x,v,Ix:¥]1).
Show x o = ZI:"{:i]I:»;-"_";r r % = 2 Pix),
¥R ¥

Show Xv FEK}RE = 0 {when 1/2 = ¢ deriva this immadiately freom
£2 58
Show F{[y.x,x]) = xxy - xYF[x} = xx? - H[xjxy -
Bhow oy = 0 :f? Fi[y,x,xljxy =

. ¥l L F
show xf Flz) + Plz)x = Viix.y,2] + EERF?JJ;_KY BXz) o Filakae
b '—'I':_ E:‘:l:fr Z] T [}':.l'}r]'!-'} L]

show %, F(Ix,v,u1) + F([x,y,2]) = 0.

Shew wt th}xy s xy F{z}xy m File,vyeinyll),
Show ®* ik} = Plla,v,xnlz,y¥l) and F(ix,y,x[x,yj}xY = 0 .
When P(x) = L Show xyfz) = Ix;wszl, x (2} = [=.¥12 + [x:¥,.%],

" ¥
x, 1) = Ix.xl. Simplify notalkicn in #2,#7,#8,42,+L10.
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Bruck's axamples
vz anow left alternative and left Moufang arsa the same in

characvceristic # 2. In this section we construck examples of

4

leit alternative division rings of characteristic 2 which are
Moufang, much less alternative.

We begin witzh any vnital commutative associztive ¢—-algsbhra

characteristic 2, and any ¢-linear mapoing s ¢f ¢ into

itself. We define an algebra
L3+ 1] h(i,o) =0l & qu

xy = (wl & gu) vyl & sul = (ay + s{g) 8JL B(ud + gylu .
This is like the Cayley-Dickson formula, except we use gy in-

!

HE

stz2ad o the zcxpect (). For fixed o ,p this expression is

4]

S
linszar in v and §; 50 I.X is g-linecar (though RE is only e-linear,

due to the presence of the sp)).

Lemma, Rif,5) is always left alternative; but is left Moufang

PFF s{g(xiw) = qlx)s(w) for all w,u,8 € [ where g(x) = &> + s(p)

pa

If § conlazins no nilpolbant elements, Lhe leik Moulang condilian

L

i

that = = Lg foxr ¢ = sll) .

" - ’ - S o gy
Ercof, To check lsaft alternativity L 2 =L, s note that

. ; e
for x = 2l + g we hava xi = Luz + =s{glgll + (Zgpiu = glx)l ,

Fhoatre Tore = = — T ST L . - » E.
Eherefors Lyz g(x)I since Lwl wI [(BEWARE Lmu # mIiai sinoe

F iz not g-linecar 1), and L2 = {ul + L EE = mEE + L2 = gilu) I
W B B ' Bu gu =

Sincs woe are in sharecteristic 2. (Mote



18.

{D s(g) a(glg 0
_l P L= relative to the chvious
' B 0 0. gs(g)

n-hazis for A). Thus left alternativity is automatlc.

However, the lelt Moulanyg axiom I

) = L T Ti ‘.\Till Gnly ba
x {yx) X ¥X

- . . - 2 -
gatigfied For ¢artain kinds of 3. Tndeed, x5 = g{x)l vields

xo¥ = alx,y)l for gfix,v) = g(x + v) - g{x} - ql¥)

= 2oy + 5{8)§ * s(glg = s{glé + s{3ip , =0

T = - [ T E g-ivitw)l = ; P :

“a (yx) Lx{xy+yx} L 5 {left alternativity) Iq[x;y]x Iq{xj}

= g, 7)al + L = gxlyl ., On the other hand

- L [
g {x) du

g(x,y)gu

2 -
e ] =T == b AN - 0 ]
L ‘L-}FLJ{ g [L}'DL ) L J—_. Lj_{ ;l.."}_l 1-_1{2{.]'-[.1

= gl(x,vipI + q{'x'l'r}i'gu - gqix)yI - q{ijGu . Thus the azxicm re=-

: = ¢{x)T. (and its linearizaticn I
q(x)su = IELg, (A o ‘g (x,¥) gu

= {2, ¥) 1L ) . Since L = the condition bhecomas
ol L 0 ]

s{gixiz) = g(x) s{g) (and its linearization s(g(x,y)d) = gl=.¥)=(&))-

duces Co

. g ran 2
in particular 8 commbes wilh gi{wl) = w", gluwa) = ws(w),

giu) = (1) = g, glu, pu) = gw + a{w), so that {guw + sw) I1s(w)

i o ; 2.
st Siplle) =slin ¢ + wslw)ll) = {w o + wolw) }sfl)
2 2 . y
= w g + gwslw). Comparing gives SI:‘u,jJ'}"I = mzﬁ“ . In characteristic 2

=
L.

this implies {s(g) - EW}E = 0, 80 1f  @Dnas no nilpotent elemnsmnks

s{w) = ow for alli w., @

t alternative division algsbra iff (i) &

Il

Lemma. A{i,7) 1s a ls

iz =2 fi=ld, (ii) s - L 2 iz bijective on { for all w.
)



in

broof., Certainly o must he a fleld: it is g commutative
n=sociative subalgebra of A, and if ¢ + Au is an inverse in A
of w £0 than o is an inverse of w in il .

Asgune frem row on 0 is a field. "Divisicn algebra" means

=11 T ,Rx Sor » # 0 ars bijective, Now Lx is bijective 100
=% .
.7 = aix)L is bijsctive, so the condition that all L oy x # 0

e

Do bijsctive iz that g(x: # ¢ for x # 0 . In parcicular, thiz is

caisfied when (i) and (ii) hold: clearly qlx} = a® + fs(B) = 0

is impossibls for B = 0 (since then ﬁ £ 1), while iFf B # 0 it

would imply s(3) = nﬂzjﬁ = [ﬁfﬁ}zﬁ (characteriatic 2.) and

therefora 5 - L . is nobk bijoctive for w = /B since it kills B .
B

Turning now te the R's, 1f x = ¢ + Bu has B = 0 than % = ¢l

and B = @I is clearly bitective. If B # 0 then x = S{E-ldl + 1)

s
= 8y, so R = ERE is bijective 1ff R is for y = wl + u. But
W ' 2. \ i 2 ok el
o ow = =i s Ws+su s—W Wt
R,o= wl+ R, = nas B & x| T 2
= 1 i o . 20 s+w” (1 55—
in gharactsristic 2, which is invertible ifl 8 = L igs inverkbible. ﬁl'

e

fhesrsm., IE 0 is a field of characteristie 2, with rnontrivial
inveluticn *, and & = a* is a symmetric nonsquare in 2, then

Al

1,8) for 5 = % + L is a left alternalive division algsbra whici

i

iz not laft Moufang.

procf, Such an algebra is not left Moufang by 5.2 hecause
g o Lo ¢ = sl = 1 o= 14 ;L = L Ty E 2 d hy &5

singe # # I is ponlrivial by hypothesiz.



[

L

Since  is a field, 2@ ,s)

(¥

il
L

gocn s all 8 - I, 5 = *
i
* L. is hijective for all § =
+ L) =
&

iz invertible sincs

11*

L SR f

SRS IE

o e chosse: 4f 4w is sv

¢ By hypothssis, ag
s 2
o -u e =1+y° =

Characteristic 2), contrary to

3 =

winile Lf 4 is nonsymmetriec, 4 +

2. 2y
" He = w*) = ¢ + (wa*

: oy 2 2 2
ale v gl €407, & (

0 cholge. Thus 1 - gz* # 0 is

3 = 5L 5 = L LE are bDijeclbive.

oxXample.

As a spzcific example

of charzcteristic 2. Then £(x)*

2n Bsot o= = + 1/% is

2 2

and % 15 a nonsguare by {7 = @

This particular @ and g = *

divizion ring A(8,0} which iz n

Aviimnetrio,

symmetric but a nonsquars (since n =

20

will be a division algebra by

+ L 5 are bijective, ie.
4 ST
oo~

. X W ¥ i ) E .
Hwpn l: 1{}}{: L.:, ;

= 11 = I — *
Il ﬁﬁ* I:I'F:'.‘“.E-L , L

NOoNZers in @ no matter what .

y
w*

s

i* =g

1y &= 1

(heavily using

Ww® =, than

G o= 1 :&ﬁz =

(1 -+ m)2 € 5_32

our choice of g az a nonsguare,

w* # 0, then 1
2

¥}

&

1
Ik

2 :
)7 - alw + would imply

recall ¢ + g*

.

0), &gain contrary

invartible in =211 all

-

S0

¥

CABRes '

¢ take @ = @{x) for any field o

= £{=) is & nonkrivial involuktion

1
=

(1l +

+ L lead ko a left alternative

o
alk left Moufang. B

1 Ly e



L

L
T

l_l

(iii) {s(w} - Jw

Show diregtlw RK

cowmo® O show x

s b L i= hij=a

) = o + 8s(8) iff (i) s(o? u) = o s(w), (i) s(s(e))

21

Ixarcises

w i — @ satisfies s(g(xjw) = g(x)a(w) for all

o= o
is invertible for x = Bu Lff s is bijective;
T i5 hijective iff

= 4y , whare Ri’ ol R"fu

Tive.
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HOnoLopes

Given an alement u in a left Moufang algebra A we can

. i . i . . 1
ancow A with & new multiplicative structure A{ ) tha uw-homotons
i r

of A, v

(G.1) Y T ®(uy) -
N (1) _ {u 3 .
Since I = 0 3 i FEEEE = x Ve o owmb o= (T I LoD )& =
THES R = e x % ur u 7 {'x“uitiyhﬁ}j Bl LxLJ[aJE
= 1 : rt g = {u:l 10 o= 2 T = =
= .JKLUU_ vl Wo sas B 1s again left Moufang:
{r) s _ _ o lalo (u)
LKE{uJ il Lx(ux}Lu =rh b b, = R,
7 () = 1 o T = LG LR T, = )
U[L}[x]v Tix)Ululy "a X uTyu oK u b ¥ boa

L
Mora slegantly, the homomorphism RF —> (End h]+ induces a homo-

- L :
P - D {End ﬂ}+{Lu}r whara af(“] = ﬁrd}+

r

morpD

Sl e

T oo
T — TL_is a homomorphism (End A}[““’—ﬂﬁ End A as #(7T-
= [TLu EJLu = FIT}F(5), 80 x ~» L.L. 1% a homomorphism

+ . : g -
et —— (End .‘ﬂ-__l+ = (mnd aﬂNLL})

1f 1 is invertibls we call ﬁiu) the u-isotope of A; here
16.2) L{u} =yl
iz the unit Zor
T and 509 = 3 e B
uo u 11 e

We hawve Lransilbivity of hoemotopas

1) - (U, v
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gince L T 2t i L

U -
Wyl o ppnn =1 i 2
X B A XUV U s U{ay T X :

AN
jm
[
m
f=n
b
4
1t
i
[
-

ra symnietry in the cass of isotopes:

(6.4) '{g'f.u}}funzh "

A .

From this wa ecan ceonclude that & iz z2llernative iff ite
)

isntona 4 iz allernative., For if A iz alternative 5o is

o _— . (u) sonw o VRN o i ; ;
Y left jlomotope A y Bnd 1T n( j 1s aliernative so 1s its
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Degres 2 Theoren

According to our generzl definition, A iz of degree two

over 9 if

2
(7.1} %" - t{x]lx +n(x)l =0 (£{L) = 2, n(1l) = 1)
for linear t and guadratic n. A left alternitive degres 2

algebra is avtomatically leff Moufang, indeed even alternative.

(Degras 2 Yheorem) [ left alternative zlgebra of dagree 2 aver

a fisls is allsrnative,

Proof. "o prove A i3 alternative we pnesed to establish

Zlexibility. Wow ILK,Rx]y = ELx,vx]y = w(xey) - xoxv

rd

= ()Y + blylx - nix,yi1! - [{Ex)xy + bLixy)x - n{x,xv) 1)
= (@@ [tx}x - n(x)1l} - nix,v)x - t{zvix + nix,xy) 1 by lins-

arized (7.1),

[L_ 3 ]y = {nl{x,8y) - t(x*({=xy) )}l ~ " [{n(x,y) - t{z*y)ix .

Thus [lexibility will follow if we can show the bilinear form

(7.3) flx, v} = nia,y) + tlxy) - L) Liy) = nix, v} - ttx*g]

van lshes ildentically, since [ vanlshes when x or y is 1
{m(x,1) = bi{x) Follows by linearizing =+ x,1 in (7.1) and
using t(l}] = 2), and also when = = y (Laking traces of (7.1))
&0 .owWe may asgume 1,x%,y are lincarly indepandant. .

First suppose xy is linearly dependeant on 1,x,v. Then =0

is WX = X3y — Xy ,



¥w=al + Bx + vy
(7.4)
Y =

GTl + BIZ + .-IT.I'}r

2

From t(x}xy - nxly = x Y o= X(xy) = gx + ﬁ}:z TYXYy we can

ek

o+ o' = -n(x,v

B+ B = tlv)
¥y + 7' = t(x)

(by indagpendsnce of 1,x%,v) identify coefficienls of x tao

e S I J— B Sy | 4 ' P | - | ¥
(®lg = & + atix) + T8 « TrUsS oo+ By = U; cand dually with

¥* aApc v interchanged

{75] g Fy= gt gty

Taking traces of (7.4) yields Elxy] = 20 + phix)

(]
=

= 2ok Bly £ ¥") Fy(BFETY = 2a F By + (8 F 8" 0y

Il
e
T,
)
"
v

i_

ta ok A3y} e = {a' + 'y

iRt T 5]

¢ l.

+opt{¥)

- -.Il.l:'

o

iy E".\'I"I

gt = layely) ¥4 + a'

tlxdely) - ni{x,¥) as reguired in (7.3),

How suppose xv 1z indewpendent of 1,x%,v. We have the usual

U-formulz

(7.6] U_ k= ni{a,b™a - nfa)b* € 31 + 32 + &b

since af(ba) = alask) - afab) = aft{alb *

= E(bja” - n(a,b)a + n{a)b = {t(alt(b) - n{a,b}}a

by (7.1) and left alternativity. Then 0

= I"Ty x5 - Urr«‘ff =+ {xv)l{xy} & {31 + 2y

- (y,x*}xy + tixylxy - nixy)l = {t(xv}

+

t{kla - nla,b)1} - =

y{xzy} - vi{xi(xy)}

-4"}:2} -~ n{xy,x )y

n{x*,v) Ixy

so by indepsndence the cceffiocient flx,v) of xy must

Thus f(x,¥) vanishes whather xv ils dependent or independent

of l,x,v, aad by (7.3] A ia flexible, 8

+

&1

oo

b= zZaro.

2

+ nla) (b - t{a)l}

+ gy

r



|

F'u-l

- -~

[

20
Exerclges

Show that a left alternative degree 2 algebra over an arbitrary

el

ring of scalars ¢ is left Moufang,

Show that if & is

L
Wy

ft alternative cf degree 2 z0 is any isotope

5 1l : = : )
A ¢ with [:[:“1‘ (=) = rafu'k,'xj and n{ul fz) = n{ua}lnix

Iz n(x,y)} vanishas ldentically on A of dogree 2, show A is com-

mutative of choracleristic 2; optherwise show {(over a fisld)

. 5 S & 1 ;
Some 150Tope ﬂ{ ) has nonzero Lrace t(l} 7 0.

A is degres 2 over an algsbraically closed field ¢ with

noncagenerate norm form n(x,y), show eilher A = 31 or A con-

tains a proper idempotent = # 0,1.

= ¥

If A of degres 2 over an algebraically closed fiesld ¢ contains
2 proper ida=mpotent e # 0, show Zor =ach x there are infinitely

many A € % with v = x + lem separakle, so if [v,A,y] = 0 for
all saparabls ¥ then [x,2,x] = 0 for all x. If v = e + B{l - &)
iz separasle, show |y,A2,v] = 0 iT Je,h,a]l = 0 for the idermpotent

g, Conclude that i [e,h,2] = 0 Zor 21l idempobents & bLhen A is

zlternativa.,

Show [ec,x,zcl = 0 for any = and any idenpolbent = in a degres 2

l=ft alternative algchra.



