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Alternative division algebras

This Appendix is davoted tc the study ¢l alternative

algebras without any finiteness restrictions. We begin in

2S5, jJust as befors., Of course, ths asécciative divizglion
alg=bras are nobt completely classified, but from the standpaint
Lernative algebras we consider our task finished if we
have rzduced our problem ta one about associative slgebras,

We racall the Nucleus = Center Theorem ITIT.1.10: if a
is an alternative divisien algebra, then either & is aszcci-
ve or its nucleus and center coincide, N( &4 ) = &b Y.

TC might happen that the nucleus and center reduce to zero; +his

is made unlikely by ths following striking result, which provides

oy

2 supzmly of nuclear elem=nts.

{I'ourth Power Theoremr) In an alternative algebra the fourlh
powar of any commutalter lies in the nucleus,

re,v1d e w .

n

wWnen [®,v] is nolb a zero divisor, already lhe second powar lie
2

in the nucleus, Ix,v]17 N .

Froat. Het z = [x,y]; wa will show
(1.2} z[zQ,a,b} = in,a,hTz = 0

for all a,b. If z is not a zero divisar this implies all

"



2 i . .
;zz,a,h] = 0 and 2 € N , while in general by Middle Bumping

S0 ; 1 2 s
1t amplies [27,a5,h] = z [zz,a,h] + [zz’a’b]g? = 0 .
. 2 ;
By symmetry wa prove only m[2°, a.h] = in (1.2),
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(zy) [27,a,5] ~ (yx) 1?2,:1 bl =
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{Ix.y, Iz%,a,0]] + x(ylz®.a,b1)} - {ly,x, [2°,a,b]] + y(xlz2,a,b1)]
= 2{x,v,7al«.a,k01] + }:{*_,r‘[zg,a,':ﬁi} = ;L'fx[z“,a,b:?} {by Middle

Bumoling) , it sufficss to prove

(1.3) [%,¥v2 val = zol[x,v,al = 0
; 3o 2
1.4} x{v[z%,a,blF = ylx[z",a,Bb]]

For (1.3), I=x,v, [x,vleal = [x,¥, [xiv ca] - yol[x,al]
(A72 x 12 a Jordan derivation by IV,3.24) = =[x, oa, [x,v]]
= oldyyy [xy=d] (linearizing v - ¥, vye a in [x,v, [2,v11 = 0
v Arbin, and noting R s iz a Jordan derivation by IV.3.25

M,

which Xills ¥) = -y olx,a, [x,v1] + velx,a, [%,¥]1] (since

A T4 a7 i85 & Jordan derivation killing v, and linearizing

2y Lxrf] B

¥ o+ ¥ea in [xn,v, (=,v]] = @) = 0. The sceond park of (1.3)

follows since P‘x ., 18 a Jordan derivation killing = = [x,¥y] ..
rx

{1.5) 1z%,%,b] = 0, [2°,v,b] =0
since LJH;EJ%FKJEJ = —[[=,¥lelx,bl, x,¥v] (linearizing v-+ v,b
in [Ix,y}a,x,y] = 0) = =[=z°[=x,b], %,v¥] = 0, conseguantly
2
Fi

(1.6) =le®,a,bl = [z°,a,bx], ylz%,a,b] = [2%,ay,b]

haoause }{[zz,a,b] = =x[I=x,vlela,yv], =, b] {(linearize x + x,&8
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in (1.5)) = Ix, [xylola,y], bx] (laft bunping) =

~la, [x,y]z, bx]  (linearize x + x,a in (1.85)) = +[22,a;bX1-

Frem (16.) we get (1.4) by the HIDING TRICK: };{y[zz,a,b]}
2

= x[z",av,b] = jzg,ay,bx] = ylzz,a,hx] = ylaele® a WlEF,

-1

Thiz finishes (1.4) and the Theoram. B

Ik

hus supplicd with central elements we can establish the

i

structure of an arbitrary alternative division algebra.

(Bruck—-Kleinfeld-Skornvakov Theoram) An alternziive divisien

algebra is either associative or a Cayley algebra over its

Senter.

Procft,  Assume throughout that the alternative division

algebra &£ is nal associative., We wish to show A is a degree

2 algebra over its centar. But for any element x we can actually

write down a cuadratic eguation il satislies:
2 - . ;
(1.8) ¥ = X + vl =0 (Hall's identity)

o = [x,%]

whers g [x,y]2 X =Ix,ylx[x,¥] = [2,¥]s]x,¥"]

¥y fx:y]xix;f]x = IK;F']E
(here ¥' = vx has Ix,v']l = xyx — yxx = [x,ylx). By Axtin's
theprem the aboye equation holds identically in % and v. We
must sheow Lhs cosflficients lie in the center and can he chosean
nontrivial.

2

Since a diwvizgion algebra has no zero divisors, o = [x,¥]
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N by the Fourth Power
Theorem, and so does the linearization f = [%,v]1°[x.v'].
By the Nucleus = Center Thecrem and the assumed nonassociativity
of A,p,R,y lieinX=20C.

Thus avery element x satisfies a guadratic eguation over C.

Tha only trouble is that it might be a trivial sguation. It will
NP T 0 | ;= e, FREE T , e Ry
be nontrivial if [x,v] # 0 (sinece then ¢ = [x,¥v]17 # @) , S50

by proper cholce of ¥ we can get a nonbrivial eguation unless
ix,y1 = 0 for all possible v. But such an ¥ already lies in C
by the Commutativity-Tmplies—Centrality Lemma IIT.4.1 (since
2 has no nilpotents); in which case % = § satisfies
T = 2w o+ 57 = 0,

So far we know svery x satisfies an equation

f1.9) =14 - Elx)x | nl=x)31 =0
for some cosfficients ©(x) ,n(x) in the cenker 0, 1f we can show
is linzar then & will hbe deqrca-i over C; since A iz alrsady
sepiorime (being a division algebra), by the Bouivalence and
Hurwitz Thsorxems IL.2.14 and IT.4.1l, & will have to be a
Cayley algebra over ,

But in IT.1.8 ws saw that (1,9 and +he fact that & has

no zere diviscrs fores it te be daygree 2. BB

Renarlk For a differcnt proof of the lasbk stetement, recall

that we have seen t is autcmatically linear if |CJ -

Bukt 1Z C = @, 1is [Finite then any two elements x,y € A generate



a finite assogiative subalgebra Clx,v] = Cl + Cx + Cy + Cuy
- ) " e P £ 2
=Cl+ Cx + Cy + Cyx (note xy + yx = (x +y]° - x* - v
ECx +y) +Cx+ Cy+ Cl) without zers divisors,; which must
bz a finite field by Wedderburn's Theorem. In particular,

x and ¥ cormute. This helds for all % and ¥r 50 A di& com—
mutative, hence ascoocialive byv ITT. 4.1, contrary to o our

nypothasis, |
‘he precading remark once again shows

{¥zddarburn Thsoren) Zny lfinite alternative divisinon ring

is a finile (vommutative, associative) fisld, 5



=1T11,1 Problem S=t on Domains

Go back through the preof of the Bruck=Kleinfeld-

Starnvakov Theorem, making whateyer additional arguments are

necassary, to sstablish

i)

{Phenrom) LE & ‘g an alternative algesbra wikhoulk zero divisors,

then M iz s=ither assodcialive or an ordor in a Cavloy alegcbhra.
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A im nobt assaciative it is of degree 2 over C = N

ard semiprime.

&
Saow C 1s an integral domain with guotient fisld C© , and bthabk A

can be irbeddsd as a C-orvder in 1ts central closure A2 0= .ﬂ@c Z =

Show A has no zeoro divisors, and is of dsgrse 2 over C 1ff

=
cF

If & is no:t associative b is a domain of degres Z over a

ield ¢ , show A iz a Cayley algebra, so our original A is an

order in z Cavley algebra.



EAIT.2 Probhlem Set on the Fourth Powsar Theorcm

Prova that [x,mllv,z.wllxnl]l = Ixmlixn]lly,zw] = 0

or all x,v,z2,w &€ A andn,m € N( A ).

-
g - z = g L a - 1 3 2
Prove any assoclator a = [x,y,2] satisfiss a = [x,y,az]
elaz] = -3, (az) for o= Ix,y] -
. 2 2

Prove that [i(x,v] ,2,w]" = € holds in all alternative

udae Ltheit LT A has no nilpatent salements, the sguars

[®,v] 7 o©of any commutator lies in the nucleus.

This dmprowves on the Fourth FPowsr Thecorem (instead
of no z=ro divisors w2 need only no nilpotents). Howsver,
we cHEAnoT gensralizs the Nucleus = Usnter Theorem Zrom the
casse of no zero divisors Lo bthe cass of ne nilpoltentbs:
it D iz a central associative division algebra and C a
gy division algebra Lhen A = DB C  has no ﬁilgutents

but has nucleus N{(A ) = D9 & different from & or
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the saction we extend the Bruck-Kleinfeld-Skornyakov
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Thaoren to arhitrary simple algebras. The fact that we are

ne lenger in a division algebra forces us to modify slightly
the approach of ths previous section.

The first corder of business is Lo prave that in a simple
not-assccliative algebra A the nucleus N and center C coincide.
Ths proos of the Nucleus = Center Theorem required cancellation,

so we will give a different (and more general) wroof,

(Prim= Nuclsus Thecrem). If A is a prime zllernative algchra
eithar A is asaocciative, N{( 2 ) = A , or ths nucleus and

censter coincide, N{( A ) = cC( & ).

Frooz. Rssums N{ A ) # C{ A}, so B deesn't commuts with
gverything: [ L ,N] # 0. We will show 2 is asscciativeo.

B = A [A Nl iz an ideal since BB = ([ A ﬁ_][ A N]
(regcall [ A ,N]C N by IIL.1.8)¢ B and BA = E [[ & ,ﬁ],ﬁ ]
+ ::a [ 2 0] & }; i, 21+ A[A ,N] € B. By hypothesis, B
is nonzzro; thzrefore by primeness i7f a® = (0 or Ba = 0
thzn a = 100 {ﬁnﬁL{ B B = { and B EnnR{ E ) = 0 forece Lhe
idesls EnnL[ B ) and Annﬁi B ) to vanishn by.primenessj.

But i1f x commates with N then any [x,v,z] belongs to
p:'.:':p{ = ; L & Nll=,¥,28] = 0 ;, since for any s = [a,n]

we nave sx,v,z] = [sx,v:2] (s EN) = 0 (s% = anx — nax

= axn — nax = [ax,n] €« T A NICN if x commubes with N).



In particular, this holds when x is an assoclator because the
nucleus commutes with associztors (see 11r.1.7). Therefcre
[X)y¥s2] = 0 for all associators x and arbitrary ¥,2; ies x
lies in the nucleus. Thus all associators lie in the nucleus:

(2.2) [2,2 , 2 1 N .

Then for arbitrary x,y,;z the nuclear alement n = [x,v,z] has
nlx;z,B] = Tnx;a,b] =70 sings gk = I, U /ElEE [Ev.e,5 €’
by (2.2} and right Dumpling,

{2.3) [x, A,aA JI%,A ,A]l =20 .

Consider an associator n = [%,¥,2] lying in ¥. If [ A ,n] = 0O
then n lies in ©C , otherwise 8 = [ a ,n)] 4 0 . ¥ut © kiIle =
sincs [a,nln = la,n] [x,v,2] = -[®,n]la,y,2z] (linearizing IIL.1l.9)
= nxfa,v,z](xnla,y,2] =0 bv(2.3) since n ana [a,v,2] havs commnon
Tactor z) = [xv,z,x]la,y,z] (left bumping on n) = 0 by (2.3)

adain because of a common Tactor z in both asanciators). In

this case primeness forces n = 0 sirce S+ = ﬁnnH{S] is an idsal
(even though & iasn't: s+A Rills § because 35(37A y = (88+)yA =
by o learit £ ag+ kills 9 h=p = g4y — - L
y nuclearity of 8 , AS illz 5 beacause S{ A 8*) = [ a,nla 5

= {[ Aax ,n] - Al A ,n]}SJ' “anity O U LS 0}, and a nonzero

idsal 5% could not kill & ¥ 0. In either pase n lies in €. Tt
also has sguare zero by (2.3), hence generates a nilpotent ildeal
Ll ay

An =nfk ; primeness then forces n = 0. Therefore all associators

n = [x,¥,2] vanish, and a is asscciative. BEi



(2.4)

11

Wz now are set to proye

(Kleinfcld's Simpls Theorem) A zimple alternaktive algebra is

2loier o

,.
11

sociative or a Cayley slgebra cver its center.

Froor., We may regard the simple algebra 4 as an algebra
over Iis csatroid [ (which is a field conkaining the center

C of A, and coineciding with it if C # 0). Since any scalar

i=s

extensien Ay = A @ @ remainsg simple, and since if Ag

associative or Cayley then A was to begin with, it suffices

Lo prove the rasult for A, . Taking an infinite £ (in case
i

T was finlte), w2 may assume the centroid T of A is infinite.

Tais will allow us to make uze of the Zariski topelogy on A .
Lssuma bhrougnount that L ds not associative. Yo show sush
an & iz Caylay, we begin as in the last section from Hall's
. 2 .
(2.5) ax” - g% 4 v = 0
s o _12 el r 1 . r 1 2 = o T e %
le = [,w]™, B = Ixe¥lolx,v' ],y = Ix,y']" for y' = yx).
. : i o 2
Zince & is no longer a division algebra we do not know z° € N

for all commutators z = [x%,v], s0 we have no guarantee [~

do have ¢ = z , p= z2e2', y = 7' 2 lying in T for arbitrary

I
Hi

py']. Indeed, lirearizing y + y + iy' in (1.2} viclds
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Z[EE,E;b] = 0

#[zo%',a,b] + z']z",a,b] =0

z[z'?,a,b] + z'[zez',q.b] = 0
for any a,b. If z is invertible we can cancel i+ frem the
first relation to get Lzzra,h] = 0 for all a,b; the s=cond
relation than becomes z[zez',a,bl = 0, and we can again oan—

egel g toget [zeat,a,bl = 0; the third relation fthen reduces

To z[z'g,a,b] = 0, whence [z'z,a}bj = 0 by cancellation.
. 2 : T
Conssguently [z7,2,b] = [ze2',a,b]l = [2'2,a,b] = 0 for all
; s b S . . p . .
a,b and z%,zcz',2'" lie in ¥N. Since A isg prime and by hypoth-

#5is not associalbive, the Prime Nucleus Theorsm asSsyures us

N =0C, g0 that g,f,y liz in ' (and o iz invertible since
By

2

o= ET).

E

o

far we know ® will sabisfy an eguation of degres 2 uver

ra

' &8 soon as some z = [x,y] is invertible. Farthsrmore, since
; ;
z° € 1 = C by the Fourlkh Power Theorem,and CC T is a field,
; . . &
z will he invertibhle as soon as z° # 0.
Thus = will satiafy a nontrivial guadratic equation: if we
; e . 4 o ; ;
can just Tind & ¥ such that [=,y]  # 0. Since A is nol a di-

vision algekra thare ig no rezson o cxpect wery many such pairs

X,¥. The amazing thing is that if we can find one such pair

X 15 guadratic. Baing quadratic just means x%,x,l are linsarly

. ? . " ;
depesndent over ||, ie. 1AxAx" = 0 in Lhe extarior algebra



. i 2 . ;
ACR) over T, But P(%) = LAxAx® definss a polynomial

map Irom A into A( & ). Further, by cur remarks above

= ; 4 i ;
F{x] = 0 whenever [x,yq] # 0. But then T vanishes on the set

< § d - ‘ ; i
oL = for which Gix) = }x,yg] # 0; this set is Zariskl-open
since it is dafined by a polynomial equation, and it iz non-

2wty since G{x | # 0 by choice of xo,yu f 20 Deczuse we nads
Lo

Sure we ware working over an infinite field o we can conclude
the set is 4ariski-dense. If the polynemial map F vanishes on

& Zariski-dznse set ik vanishes cverywhere, and all % are guad-
i Tt (A bty

AL Ehls stage we have established Lhat if we can find a

" ; = . 4 —
2ingls pair #,0¥ Tor which [xu,yﬂ] # 0 we will know all ele-

ments are guadratic. How could we passibly fail? Only if

[xq,ysle = U vanished identically., New the polynomial identity
4 : o 5 :

plx,¥) = [x,¥v]" = 0 is not satisfied by matrix algsbras Mn{ T

arf degres n 2 2: if we set % = elé YOS ey then [2,¥y] €1y — e
has [:«:,y‘]‘1 = e T oe,, # 0. By amazing co;ncidence wa jusk hap-
pen to have proved a theorem about thie situation in the previous
appondix: Trom Lamma 0 of Appendix I wo know that if [}:,y]4 = {
identically Lhen szither A contains locally nilpotens ideals
(which is impossihle for a simple R ; see VI.EI1Q), or slse

is commubtative and associative (which cortradicits cur hypaolkh-
esis), Consaquerntly our A refuses to obey the law [x,y]d =0,
and somevhers we musst be able to find [=

I 5 8.

o' Yo



By now we know each x zatisfies a nontrivial eguation

over [ of degres 2; since [ is infinite we conclude A is

2

egre2 Z over U (=2ee II. 1.6). 2 is certainly semiprime,
so 25 in Lhe last section the Equivalence and Composition

Algshra Thaorems shcw ik nust be Cayleay

-

14
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Remark. An alternate proof would not seck to prove that all
elements ¥ are quadratic, only that there exists at least one

% which is separeble guadratie. For il such an element exists

-rl'
b-"‘

lhert's More General 'Theorem to deduce A is

we can apply

zszociative or Caylev. A2 belfaore x will be guadratic,
2 ; = . 4

gx” o+ 82 + ¢y =0 for o,8,vy £ T , =s soon as [x¥ £ 0. wWe

(- _I

art a sepavable equabtion, 87 - 4oy # 0, ic. the discriminant

I I - 2 ¢ e
6 = tIx;yJufoyx]}E - 4LK,yj?[x,yE] # 0. The only way we could

Tail . to find a separable guadratic element is thalbt for esach
ﬂ e
#,¥ =2ither [x,v] =0 or § = 0; in Lhal case the product
) I £ o T
gix,y) = [xyl" {(lx,v]e]lx, ka:l - 4]z, y] 7 [x,yx1"]

;ould vanish identically en A « But once again g(x,vy) is

not satisii=d by any Fﬂ it ) for n > 2: if x = @197 ¥ T 4,
then yx = — 321 s Ix,¥1 = 212 b Eaq v lx,yvyx] = 321 a0 that
: ) : .4 2

(=,917 = lxz,¥] = [x,v]elx,yx] = 214 + € [, vx]17 = 0 and
gl=,3) = ey + €5y # (., As befors, the Lemma shows gqix,v) =

is impossible if A is neithar loeally nilpotenlk nor associa
s wa must be able teo find qlz_,v_) 7 0 and consequently a

i -1
soparable x_ . &
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TATI.3 Prehlem Set on Reasonahle El=aments

Those who don't believe in the zariski topolagy may give

ez W TR n
g “Lonatructiva

preof, Say x,v is g reascnable pair if

[#,¥17 # 0, and say x is reasonanle if there is a y such that

;¥ is a reascnzble pair. Assume thal & is an alternative

algoira over a field & with nowre than 5 elamsnts, |#|» 5 .
Show that if 0¥ is rozsonable and y arbitrary, thers are
=

T l2&st two values of Y€ ¢ for which He¥ + lyﬂ is reasonable.
i L2 N
LTON noW on assune X,y reasonable :i?[x,yj E ¢l.

5 SE 3 . ; Gz 2
Show that if x is reasonable then all [x,z2]" and [x,zlelx,w]

"

Saow zl1 reasonzhle x are quadratic.
Show that if LS N iz reasenable then any x satisfies relations
xz =zl + 3% 4+ wx and xz = 81 + zxx + LT

; o )

- ; . . 2
Sa0w in all casss x is quadratiec, " & $#1 + ox,

freove the Theorem ., If A is an alternative algebra over a

field ¢ with more than 5 slements sueh that
(i) thaore exists at least one reasonable pair Xy
e . . ; 2
{(ii) =,v reasonzbis= rmplies [x.v1T € 31

then A iz degree 2 over o .

Dzduca that 211 simple not-associative algebras which contain

]
m
1
1

Sonable pairs are degres 2.
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At only two places in Kleinfeid's Simple Theorem did we
regulre simplicity of A as opposed to primeness: when we
raducad to the cass of an algebra over an infinite rield, and
when we concludsd thal a simple algebra couldn't contain lo-
cally nilzotent jdeals. The Tirst diifimult? 18 easily taken
Hote that the elsmants of the centroid 'ia ) are injec-

tive on 2 prime algebra 4 , ya = 0 jmplies v = 0 vr a = 0.

Indead, i - is in the centroid then Tm v and Xer vy are ideals
in 2 winich Xxill =ach Gtﬁar, Im y.-Kcr ¥ = 0, sinca

Ly A}-{?_ju} = &-T(Thlul = A+0 = 0. Thus il A is prime esither
Im oy = 0 {and v = 0) or Ker v = 0 (and ¥ iz injectiwve). In
particular, [ is an integral demain, so has a field of fractions
E . Then A = A @ T iz an alternativs 3 algebra (callsd the

centroid closure of & ; its eentroid contains the ficld of

!
H
m
{1
vl
-
]
1
|
=]
o
=i
rt

e original centroid ' , and coincides with it
if A is unital), Purthermare, A4 is still nrime and A is
imbaddes =z 20 order in i {a I'-subelgebra such that E A = p | B
The =asiest way to see these last two propertics is +o ohserve
tat A is isomorphic to the algebra of "fractions® aﬁy
(2 in &, v # 0 in |') with tho usual algebralec opsrations ob-
tained by the "standard construction®, under the isomorghism

a,, _&lal .

a8 e o= /v (note Lhat if % a. B lfy = 7 5i[a1}® lfy

1 =

— {Z 9;(2:)}/y = 0 then x §, (a;) = 0, so the map is injechtive;
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clearly it is a surjective glgebra homomorphism). The fact
that ya # 0 il v # 0 and a # 0 implies & is imbedded in this

algebra of Zractions, and primeness of the fraction algebra

comes about bocause if B , ¢ are nonzers ideals of Fractions

with BC = 0 then p = BA B, O = ﬁ N A are nonzesro ideals

zacislying pe = 0 (nonzsro becavss [B =R : 2

o

=

o [a 5 B ' i
B then h = vie JSvE B Mo =B and " Jy = J","*,r-}.n E IB).

-

fias
#y

im

(We could de exactly the sams thing with ths center in

place of the centroid, but the center may well be zeoro).

(Order Proposition) kvery prime alternative algobra & with
ceniraid T iz imbeddsd az a T-order in its centroid closure & )
which 15 a prime alternative algebra over the lield of frac-

tions E of T . E&

Thce guestion of the structure of prime algebras thus re-

i

ucez to the skructure of prime algebras over fields (modulo
a4 description of all orders). This is all very well, but if
Cha original centreid [ was linite the same will he true of

{indead |' = I !} We need a method of creating an infinite

el d

czntroid withoul al the same destroying primensss: unlike
simplicity, primeness is not preserved by arbitrary scalar

extonsiaons.
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(K]

Led

Proposizion) If A is a prims alternative algehra with

=

centrold T then the algebrz AJL] of polynomials in t is a

prime alternative algebra with infinite centroid containing

Proof. Aflk] = a8, §[t] remains altiternative, and contains

[ e glt] in its centroid. It is prime sings i BC = 0
i

“or nonzaro t-invariant idsals B,C in A[t] then BC = 0 whare

B,C are the (nunzero) idsals in & of leading cocfficients of

5,C {if b_,b' l=2ad §H,%' in R then & . b 1 g g
r L -:-]F el r § B tht_h "'I_Tn;bn d, o = - Bbm Ars EArc

or the lecading coefficients of ab,ba, utmh =+ gt@b' £ B , using

L-inwvariance of B}. &
Dutting all these raduckbiens Logelher, we can prove

(flaler's Prime Theorsm) If A iz a prime alternative algebra
then either

(i) A is a prims associative algebra

(ii}y & is an order in a Cayley algebra over a field

(iii}) A contains locally nilpotent ideals.

Froof. Stark with XK, form &[k] (with infinite centroid FU]

thea A (algebra over an infinite field T}. The arguament of

Flainfald's Simols Theorem showgs 2 I8 either asscciative [(whence
iits subalgebra A i1s asscciative), a Cayley algebra over its

centar {in which cass A is an order in A: A = Fh[t] = F$[t]ﬂ = ['R),;
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or A containg locally nilpotent ideals (in which case A does:

N 1s lecally nilpotent in A then N, =NMNA[t] is locally

if
nilpotent in Al:] and H = {].eac'ling coefficients of NO} in A,

where N # 0 since N = IN_C T4[tln). @

Hate ws cannetbt sharpsn ({il) to say A itself is aven nils
if B is a nil not-assaciative prime algebra (it is still open
whether such exist - they would have to be of characteristic 3)
then 21 + B = & im still prim=, not associalkive, not Cayley,
but also no lenger nil - it only contains the nil ideal B,

O course, we can say a littls more - namely thal if A is

rol associative nor Cayley, the nil radical ¥ consistis of all

(2= in our szxample) A is an extension of a nil algehra by a

commiitative assoclative algesbra withoutl nilpotent =lements.
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It is highly unlikely that there can be any of these

prime nil algsbras which ars not associative (and, if the

less likaly Kothe Conjecturs holda, thers aren't even any

that LT such heasts exist there would axist an algehra A sat-

tsrving a1l of ths following:
I}y A iz nongeroe Dut 3A = 0 and N(A) = Q.
fii A satizalies the polynomial identity [x,v]4 = 0.
(i1i) A 1ls prime vet locally nilpaient.

(isrd & 1

n

semiprime vet not strongly semiprime;
Lhers wxist trivial elements £, zhz = 0 .
(v & containsg no minimal one-sided ideals.

{vi) ZEZny ons sided ideal B of & ig just as bad,

8]

possessing properties (i)-—(vi].
It would ba a sad day indeed if such a beast were ever un-

covarad. iSee bthe bDestiary in reference 00].
L]
necassarily has a nuclsus. Using the Fourth Power Theorem as

z sourcs of nuclear elements, we have

clcar Existence Proposition) If A # 0 i3 & skrongly scmi-

prime alternative algsbra then its nucleus is nonzero, H(A) #

Proof. Hssume to the contrary W = 0. Let z = [x,¥] be an

arzitrary commutator, By the I'ourth ?Power Theorem we know

rhere are certain gensral conditions under which an algcbra
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il : _ 2 &, X e
'z £ N and Izz, A, Az] =.22[h, A, z"] (left bumping)
. i o \ - ;
= z{z[A, A, 2]} =0 (reecall (1.2)), hence by the Associater

S, . 2 2. "
Derivation Formula IV. 3.12 all [z7, Bz"] € N, If N = 0 ywe
2 2 2. 2

=2z = Jz7, az"] = 0, therefore z"az” = 0 for a1l a. By our
2

hyzothesis that R has no Lrivial elements, z° = 0. Thus

or #1131 .y, and by linearization Ixyvle [x',¥] = 0:for

G 2 .
How leb z bhe any element wibth 2% = Q and lebt a,b he arbi-

e r T 5 wy T i i 2_
Crary in A. We hays - b "-Lzla,ﬁj b LE g7 = 1)
= R[a,z] Uz L[a 21 B {(Right Fundamental) = {zla,zl- bz} [a,z]

(Middle Moufandg) = {z]a,zls[b,x1}[a,z] (a5 zla,2lzh = maz-ub
= z{a{z b))} = 0 by Left Moufang) = z{[a,z][b,zjle,zT} (Bight
Moufang) = -z{[b,z]lla,z]l[a,2]] = 0 by the vanishing of sguaras
g ; 2 _ ] .
O commucators [a,z]” = [z,zl=[a',z] = 0. "hus zaz is trivial,
: . i 2 : Gt
20 zaz = 0 by hypolhesis whenever -z° = 0; but then z is trivial,
N L - 2
20 2 = 0 whernever z° = 0.

This impliss A contains no nilpotent elements. In particular,
el = 0 implies all commutators [x,v] = 0. Thus A iz commat-
albivs without nilpotent elemants, hence ascociative {by ITIT. 4,1).
Taen A = M(a] = 0 contradictz A # 0, and the assumpticn ¥ = 0

is untenable. 8

Taz Kleinfeld Slrong Senmiprimsness ThAcorcem says a semiprime
2lgebra on wihich 3 iz injeclkive a surjective is necessarily

stryongly seniprime, 5o
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A nonzaro semiprine algebra on which 3 is injec-

tive or surjective has a nonzero nucleug,

(Theoram). ZIf & i3 = prime nilalgebra of characteristie 7 3

Frooz. e may assume A # 0, and prime implies semiprime,
so by the previous therem N(a) # 0. suppose A is not associa-
tivez; by the Prime Nucleus Theorem C{A}] = H{(A] # 0, s0 & is nob

pil. (Tf C(a) contained a nilpotent clement it would contain

5 2 oo 2 - ; .
c # 0 with ¢ = 0, and Ac would be a +rivial ideal, contrary Lo
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Show that the center C of a prime ring is 0 or an integral

domain, znd in the latter case that the central closuras

A = AB_ C 1= lsomorphic to the algebra of "fractions" a/c

entar just the field of fractions il gl

{3

43t is biwe relacion of the cerntroid ¢ the centroid closure

A = Ag " -0 ths original centoid T ?

Give an exanple whére the centroid closure a is degree 2 aver E
but A is not degres 2 ovar T .

Give an example of a prime associative algebra with center a
Ziele & and an exlensicn & 26 such that Ao noe longer remains

prme.

Baes an ideal B4 A inherit primencss From A 2 (TL does in the
associative case).

If Z C2CT(Aa) show R is & -prime (orims as # —-algebra, is. as
A is U-prime iff A is T-prime,

show that if A is an order in a Cayley algsbra A over a field i,

50 is any one-sided ideal B of A.
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tAILl.4 Problem Set on Algebras with Non-nil Heart

2= in aszoclative algebras, the heart M of an alternative

algabra & iz the intersection of all nonzera ldeals of A. (In
particulay, a non-~trivial algebra B is simple iff it iz all
heart, M = 2). T£f M # 0, it iz the unigue minimal ideal.

Show that 1f the hsart M of A is not trivial, M° # 0, then

A is orims.

Dzcuce that if the heart of A is not trivial, either A is
assocliative or N{A) = C(a).

Lf B 15 a nonzero ideal in a prims alcebra, show [B,2,00(8)) = 0O,
[B,2,2(B)] = 0, [C(B),R] = 0. Cecncluds that if A is prime and
B«<dd than C(8) C Cin).

sacw thalk in general if ¢ € C(A) then M = 0 or oM = M (M tho
heart}; if A is prime show ¢ M = M for all ¢ € C(M) and hence
C(#) is zero or & fiasld., If A is prime and C{M) iz a field with
unit &, show ¢ is the unit for A, hence M = A, Conclude that

A is prime and its heart M has nonzerc center C(M) # 0, then

(M) i=2 a Field and & = M is simpls,

T

Azsums A 1s prime, not associative, and (M) = 0, Show fourth
powars of commutators in M are zero, so the nilpotent elements

of M form an ideal 4(d) <4 M. Show Z(M) <] A, conclude Z(M) = M

or 2{M) = D. If Z(M) = M th=n M iz nil; 1if Z(M) = 0 =how
i

4= C{M} = 0. Conclude that if A is prime but not assoziative,

with hesart M satisfying C(M) 0, then M is nil.
Frove the Theorem, ILf A has a ron-nil heart then A i cither

assgciative or a Cayley algebra.
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FATL.5 Problem Set on Primitive Algebras

hn assoclative algebra is primitive if it has a faithful
irreducible representation ¢ on M, in which case M = ﬂfE under
Wi 8 ~am foxr B = Ker ¢ a maximal modular left ideal which
contains no nongero two-sided ideal.

Although ths module definibion does nob go ovar, the ideal
delinition can be carried over te alternative algshras: an al-

ternalive algebra & 1s (left) primitive if it contains a leftb

primitivity ideal (a maximal modular left ideal B with karnel

(2] = L(a,3) = 0; see V.2),

Hi

L{A,B) = 0 show B =0 if BAC B and A = B =0 if

i
hE]

= }%,1_"-2 = 0 {Hﬂg. 3

Ehow that Tor any prime (resp. semiprims) nonassociative al-
gesra A with EE £ 0, Lhe ganter ClA) and cventroid T{a) contain
an wmern divisors {(resp. nilpotent elemenbts) .

Show [x,y,R] = 0 in an alternative algebra imolies [x,v] & W(h)
and Ix,ylx € W(A). If [x,v]., [¥,vlx € C{A) show Ix,y]l> = O.
Conclude that if A is an alternative algebra with N{A) = C{&)
then [x,v,a] = 0 implies [x,y] is & nilpotent clement of the
genlkar; if A 1s semiprime then [x,v] = 0.

Azsuns N(A) = C(a) and L{A,B) = 0 for Ed;gﬂd A semiprims.

Show B is commutative ([B,B] = 0), then LBE,ﬂ,ﬂ] = 0, then

BE is central {[ME,E] = 0), then B = 0. Conclude that if A

iz semiprims with Wia) = C{(a) and B is a lelft ideal with

L(AB) = € then B is trivial, 32 = .
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We can put these results together to show that a general

simole algebra (even nil of characteristic 3) must lock soma-

Estanlish the Theorem. If A is simple but not associativa it
contains no prozar one-sided idszls.
Now e returh to primitivity.

¥ B 1z a modular left ideal and € a supplemsntary left ideal

(B + 2 = HA] then acC 2 =2 a2 € B, If B is maximzl modular,

:"'Lu
Cai

two-sidad)} ideal not contained in By show I 2 = O for an

ideal D ipplies DG B, Conclude Lhatb a primitive algebhra is

Shaw that if B is a left primitivity ideal for a thep eithar

% =0 or BA = A pooomelude that B = 0 if EE — @, in which cass
A has no propsr lefi ideals and has a right unit; deduce 4 has
g unit. Conclude that if B is a l=f: primifivity ideal for a
With BE = 0 than A is simpls with-unit.

Sinecz we know all simple algebras with unit (they cannot
o2 nil evan in Characteristic 3), show
Tasorem A primitive algebra iz either associative or a Cayley

algabr

m

Note that this strengthens Slater's Drime Theorem when A

is primitive rather than merely prima.
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sATI. 6 Problem Set on the Jaccbson-Kleinfeld Radiecal

In the ascoeclative cazz the Jacehezon radical can ha
dsfined elther in terms of quasi-invertibility or in terms

of primitivity. In the assoclative case Lhese two approaches

i~
lzad respectivaly to the Jacobson-Smiley radical and ths
Jacobzon—ileinf=ld radical; it is not clsar they coincida.

Dzfine an ideal K to be primitive in A if A/K is orimitive

=]

o
i

n zlagsbra.

L
Show ¥ is primitiva iff XK = L(a,8) for som= maximal modular

lerft idssz1 B,
Concluds the intersection [} B of all maximal moedular left ideals

2 cuntains the inkerssaction () K of all primitive ideals K .

L{AIE} is orimitive shiow B is & mawiial modular left ideal
in A = a/K . If R is Cayley show B = K and hence K 2 rﬁih

If A is primitive associative show B = 0 : concluds 8 D) 4.
Conclude that (1K contains () =.

Theroam The intergection of all maximal modular l=ft ideals

coincides with the intersection of all (left) primitive ideals

This interssction is called the Jacobson-Hleinfeld radical

JE{A}) of A, & is semiprimitive or JX-samisimple if JX(&) = 0.

Establish the Theorem. An alternative zlgebra A is seniprimitive
££ it is =2 subdirect sum of primitive associalive algebras and

Cavlzy algebras ovar [ields,
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Show that if A(l - ¥) generateg a proper left ideal C < &
then € iz contained in a waximal modular l=f- ideal BV which
o 5

excludes v, Conclude that if x € {)B then zll elements v & I{x)

have the Droperty that A{l - v} generates all of A as left ideal.

(1 ¥y 28 guasi-invertible then A(l - ¥

A alrcady).
I x % B for somne maximal modulsr 3 wilh modulus & show vy + 5 = o

for some v E I{x), b € B : show A{l - ¥I€ B ; concluds that

if x € B sore v € T(x) has Lhe property that A(lL - y) gensrates

2Tt dideal.

WOt that -8 go through in any nonassocliative algsbra.
ITneorsm. The Jacobson-Eleinfeld radical of an alternative
clgaisra contains the Jacobson-Smiley radical,

TR (A 2 Rad(n) .
Theorsm If A has doc. on guadratic ideals then the Jacobson-

Eleinfeld and Jacobson-8miley radiczle coincids,

JR(A) = Rad(d).



30
7A1I1.7 Problem Set on Semiprime Centers

Wie want to show that a semiprinme alternative algebra of

3 has a center,

"

Lo | - T
ona¥Yadiariseic

1f A is seniorime show Tm 3 M Xer 3 = 0, Show 3 = ﬁjﬂer 3 is
nonzZers 1TE 3A # 0 ; show A is 5till semisrime bub has no

3-torszion, and iabads in a semiprime U-algebra A far somns
ring of scalars with 1/3 & 0 . Conclude N(i] # 0 and N(A)# 0
id N(B) # 0 if 34 # 0,

Usz Problem Sets 00 and 00 to show that either FA(A) = 0 ox
ClA(A)) = N(A(A) # 0. |

Deduce Thecrsm If A 18 a semiprime alternative azlgebra then
aithar 3A = 0 o= 5{A) # 0, and either JAC N(A) or C{i} # D

Prove Proposition Tf B is a ons-sided ideal in A =nd A is

B-smriprims then cithar 38 = 0 ox BAN(A) # 0, and either

3B CN(A] oz BN C(A) £ 0.
Doauce as corollary that if W(A) is a field eithsr 3B = 0 ar

! = A, and that if C(A) is a field then =ither 3B € N(A4) or

2 = 3,
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7AIL.8 Problem S=t on Weakly Prime Algebras

algebra is said to be weakly prime if it is semiprime,

e
o

vurely alternative, and faithful as z module over its center

9 (in the sense that gx =0 for g € ¢,.x € A forces o = 0 or

ol 0

siow That any prims algebra which is not associztive is weakly
prima. Show that the center § of a weakly prims algebra is
Zero or an integral domain. |

Show (hal an algebra with centar 2 # 0 is weakly prime 1iff it
is a o-order in a weakly prime algebra over a field. Show a
central algehra over a field is weakly prime iff it is semi-
prime puraly alternalive.

Show Lhat a weakly prime algebra over a field of characteristic
7 3 is simple. (Use Problem Sects AIT.7, 000 and 000).

Show that 1f A is weakly prime and 32 # 0 Lhen A has center

8 F 0.

Deduce Slater's Weakly Prime Theorem. A weakly prime algebra

"t

with 3a 0 is an order in a Cayvley algebra over a field.

m

Deduce Slater's Prime Theorem. A prime algebra with 34 # 0

is sither associative or an ordex in a Cayley algebra.

T™iis me=thod of proving Slater's Prime Theorsm reduces prime

algaebras directly to simple algekhras; the basic idea is that

how that 2 prime algebra ig either associative or weakly prime.
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an ideal has nenzerc nuecleus = center, hence hits the nucleus

= center of the original, and therefore essentially contains

an 1nvertible alement

rrove Fropgsition If A is semiprime with center C(A)

& g

field of characteristic # 3, then & is assceialive or 2 Caylay

first glarce this looks like a much more gensral theorsm
sines one thinks of ssmiprime algebras as being direcs {really
subdirect} sums of prims algebras. However, a dirset sum decom-
positicn of 2 would lead +o a decaomposition of its center, so
tne condition that the center be a field prevents therc heing

more thzn one dirsct summand, so A looks prims.
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Set on the Hereditary Nature of the Jacobson-Xleinfeld Radical

ow that & 1s semiprimitive (or JK-semizimple) 1ff it is

o

subdirect sum oI Cayleay algebras over fields and primitive

a3
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Ful

He

id

id

= T4}

=50

ca

how that if A is semiprimitive, so is any ideal B <« &

b
b

soclative algebras., Conclude JE{A) D Rad A.

nelude JE(B) S B ) JR(A).

e tha Minimal Tdszl Thecrem V.o1.11 to show that i1f A has

-C.c. en ideals then JK(A) = Rad A, and therefore JK{B) =

M JE(R) for U =4 A in this cass,

call that A is JR-radical iff it has ne proper modular left
'F‘

#als. Show Lhat if & —— A where B is a proper modular left
i & . ) W : . §
23l in & , then F " (B} = B is a proper modular left ideal in
Conclude that 1if A iz JE-radical, =o is any homomorphic
g
n

aga. If B is a proper modular left idsal in A and A —s> A

epimorxphism with B 2 Ker I' , show F(B) B is a proper

T d

dular l=aft idesal in

H

2 < 2 and © is a left B-ideal, show © C + aC is a left

" - -+ - s 4 i ; ; =
idesal with B {Ea] £ C. If C is a maximal modular lef: B-ideal,

ww it is a lezft A-ideal. Show sach maximzl meodular C ¢j£ B

n oz sxtended to a maximal modular Ed&; A with C M B = .

cluode thaw 1F A& is JK radical, so 1is any ideal B =1 A, and

=N JR(A) © JK(B).

Pravae he Theoremn The Jacobson-Hleinfald radical is heredilary:
Tor 511 ideals B =) A we have

JE{B) = B M JE(A) .



