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4. Slater's approach to the structure theory

We have ssen thal well bhehaved alternative algebras are sithar assoelative

or related to Cavley algebras. Michael 3later has developed an illuminating

(ONYO0AA tA EhD QCYUOCHED ThOAYY UAION L dou C0IC dlanoro ATACAG

naturallv: an alternative algebra can be broken intrinsically inbe an
associative part and a purely alteraative part.

Fundamental e tais approach iz the relation belwean Che nucleus o an
ideal and the nucleuns of the whele algebra. The associative part 1s the
maximal nuclear ideal, while the purely alternative part is the wart gen-—
srated by associators, This separation inLo tweo parts leads to & quick
preot of an allarnative Artin-Wedderburn Theorem for algebras with d.c.e. m
lett ideals {we apply tha associative Artin-Wedderburn to the assoclative

part and hresk the purely alternative part into Cayley alpehrasj.

¥uclear Inmhexitence

The kay Lo Slater's approach lies in the nucleus. Wa will establish
that For resoectsble aleebras tha nucleus of an ideal B <14 is the part
3V NCA) inherited from A. One important consequence of this is thal an
ssspeizlive ideal is necessarily nuclear: if B = N(B) asscciates with itsslf
it is foreed +#o associate B o= N{B) T M{A) with all of A. This 15 indicalive
of the sharp dichotomy: Che associative part of A is vary assoclalive, the
purely alternative part is not the slightest Hit assoclative,

Ve will primarily bhe concerned with semiprime algebras. We cun actually
replace "global" semiprimeness of A by "local" sewiprimencss at B, where A
ig B—EEmiprimE relative Lo an ideal B if there ave no krivial [dsals of

A& econtained inside B. (A may contain trivial ideals, but they all miss BY.
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Wote hy TTIT.1.8 that if A L3 B-sewdprime thete are no Jordan-solvable idezls

of A inside B.

4.1 (Local Muclear Tnheritance Theorem) I0 an alternative algebra A ds

B-gemiprime [or an ideal B, then the aucleus of B is

N(E) = B MHBA).

Proot. Inclusicn By 8EAYES BORY is criwial: if z e B nucleives all
pf A if certainly nucleizes B. The hard part is the rveverszs inclusion.

Reeall (ITT.1.3) that the middle annihilator fmuxlfiﬁ] = lxas 4 T =07

I
i an ddeal whenawver B is, so 0L = Er'\ﬁ.nn,‘,{]?.} ig a Jordan—-trivial ddeal of

4 lying inside B ( U.C C -'.IH (A:mu{{B}) = 01, hepnce © = 0 by D-semiprimensss:

(%) Tz =0 for z& Bapz = 0,

We can apply this together with the fact that associakor maps are Jurdan

derivations (1.3.8) to =ee
(%) [=,v,2] = 0 for [=.,v,A] & B=2[x,¥.A] =0

since under these hvpotheses any z & [®,y,4A] belongs te 2 wvet is killed by B,

I[BE e ”B[xsff;é'-i = [%,7. L_.,I-"’t.l =0 by [x,v,B] = 0, ond therefore

- 1
T B, [=,7.B ['d‘
bv (%) = = 0. In parcizular, for z & N(B) wa have [=,08,4] = 0 and [=,B,AlC B,
so by (#2) [2,B,A] = 0; repeating, [z,A,B] = 0 and [2,AA]l C B (for z € B)
imply [=.4,4]1 = 0 by (&%), We lLave shown 2 £ HiBl ==z 9(A): nuclearity of

z in B oand resistance to annihilation by HE force nuclearity of z in A. B

¥z can establish a similary vesult for the cenrer.
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4,2 {lLocal Central Tnhervitance Theorem} If an alternative alpabra A is B

saminrime Sor aa 1deal B, then the center of B is

CERY = B M n{A).

Progf. Ooce move B CIA)Y © C(B) is obvicus, and by the previous result
wa at least Lnow the central elements of B nucleize A, C(B) C N(3)}C W{AD.
it remains to show they commute with A.  But using our standard argument we

sas that for any o € C0(R)

U le,4] = [c, VAl =T 0

B,[n,H]A

=

since [c,B] = 0 and commutator maps are Jordan devivations 9y L.3.

Applying (*) we sse [v,A| = 0 and o is central in A, '

For globally semiprims algebras we lave

=
R ]

{Muclzar Tnheritance Theorem) TL A is a semiprime alternative alesbra

then the auclens of any idezl E=1 A is

Ny = rnNCa). W

4,4 (Central InheriLance Thecrem) If A ls a semiprime allernative zlgebra

then the center ef any ideal 3=14 15

gy =8 cia). B

4.5 Cprollary. Aoy associative ideal R in a semiprime alternative algshra

A is nuelear in 4, @
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We say A dis Pur‘&l:] ﬂu':f'ﬂ.fnﬂ.‘l'l:\i& if it has no nwelear ideals) a
tvpical examnle would ba a Cayley algebra (or a direct sum or preduct of
such), By 4.5, & semiprime alternative algebra is purely zalternative iff
it rontainsg no associative ideals,

For the corresponding local notion, we say A is @G-purely alternative
for an idezl B il there ars ne nuclear ideals of 4 lying inside B, For

these we can strengthen the Prime Mucleus Theorem Lo

4.6 {(Semiprime Mucleus Theovsm) If an alternative alpebra A is E-semiprime
and B—purely alternative for an ideal B <da, then the nucleus and center of

B coincide:

M) = ofnuy,

Proof, We must show ¥ = N(2) commutes with B (aence with A4}, l.e., the
space M = M{E) = [M(B),A] wanishes., We will show ¥ vanishes by showing the

at
ideal L

P!
(M) It gemeratss wvanishes, and we will show I (M) wanishes by
showing it is a nuclear Ildeal contained in I and thervefore vanizshes by
B—pure allernatiwity.
o ’ coes qx
Avtomatically (M) is an ideal contained in B, s¢ we must axteblish

nuclearity. Now by B-semiprimeness 4.1 and T1.1.8 M H are both nuclear

i'l.'l. .t.!.. with

M,Al o [H,48] =M

(8,4 [A,A,4] = [H,AlA,A,A]1-AIN, [A,A,4]]

I

H[.‘.‘I'J..l.ﬂlﬁ..,."";]

[-'hql‘lli"[i“"léip‘-]] C [H,A] = M,

A P ~ b P ~ ) . . .
Thus L(M) = AMA = TAMIAH(MA)A = MA by 0.00, so I (M) will he nuclear if

A -
| T(M),A,A)] = [MA,A,A] = H[A,A,A] vanishes. We will show MlA, A, A] vanishes
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[

hy showing its spanming slements w = mix,y,&] (m = [a,a] for n € ¥, a,X.¥.2 & 4)

are trivial nuclear alements and therefore vanish hy B-sesmiprimensss. (Bv
: :

o
0.00 T{w) is trivial if w is, and is containad in B if w is),
We aaw above w& M[A,A,A] € M is nuclear, so all thal remains Is trivi ality.
Tsing IT1.1.9 and its linearizalion we have waw = Imlx,v,=] 0 mlx,7,2]]
= m [x,v.2]ibn[x,v,21}  (evervthing takes place in the associative suhalgehra
¢

gencrated By [#,v.=l,b, and the nuclens) = —inv | %oy alibm! [a,v,2]F (' = In,x])

me [x,7,21{[n" bl [a,y.2] - n'bla,r,2]¥= n-Ix,y.zl{-[m' 7] [2,5,2]-[n,x]-bla,y,2]]

0 since [x,v,z][m',¥] = [®.¥:=]1[n,x] = 0 by IL.1.9. Thus w is Indecd criviai. B

The agsociactive and purely alternative parts

We wish to divide an zlgehrta intu a purely associative and a purely
slternative part and analyze these parts separately.
The asseciator \deal Ast(A) of any linear algebra A is Lhe Ideel

ganerated by all associaturs [x,v,z]. We always have

Ast(A) = A[A,A,A] = [A,A,ATA.

The two expressions coincide by the Assvciator ILdenticy 11.2.7
(x[v,z.w] = -[x,7,2]w madulo [A,A,A]), The first of these is a leokt idez]
since afAlA,AA]) = (AA) &, A,A]-[8,AA,4,A11 C AlA A A]. dually the =second
iz a right ideal, so their common value [s a two-sided ddeal. Clearly it
iz penerated by the assoclators. Nole A is assaciative LI dseliy — 0.

We next consider the maximal nuclear dideal of A (which, by Yorn, always
axists), This can be deseribed elementwisc as tne seb of preperly nuclaar
plementcs, where z & 4 i= pr‘aperly nuclear 17 it is nuclear and all

multiples ma stay nuclear:

[z,4,4] = [zAa,AA] = 0.
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4.7 (Proper Nuclearity Lemma) The following are equivalent [or 2 nuclear

clement z £ ¥(A) in an alternative algebra A:

(i) = is properly nuclear
{(ii) all za for a @ A are nuclear

{141y all az for 2 € & are nuclear

(iw) =lA,AA] = O

(v) [A,AAlz =0
(wvi) az+Ast{A) =10
(wiil Ast{A)ez = 1),

Erook, {'I}-%Hﬁi} by definicion, (ii)%= (iv) since [zA,A8,A] = z[A, 4,4
by Muclear Slipping LT.1.6, (iv) & (vi) since zA(A) = m{lAAALR]
- iz[AAATYA. Tually (L) (v) & (vi1), and (11) €9 (111) since always

za—az = [=,a] € [N,A] &8 hy TI.1.98, B

The preperly nuclear elemenis constitute the rue le av racical ,

which for reasons of sughony is called Nurd(A).

4.8 (Nuclear ltadical Propesition) The nuclear redical Mord{s) is Lhe
maximal nuclear ideal of the alternative algebra A: it 4= an ideal contained
in the nucleus, and contaings all ene-sided nuclear ideals of &. A 1s purely

alcarnative iff Murd{h) = U.

Proof, Olearly Nurd(A) is a subspace by linearity of Lhe defining
conditions in 4.6, Tt is closed vnder wultiplication, since if 7 is properly

nuclear any mnltiple is nof enly unuclear but proverly nuclear: za is properly



i
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nuclezr since all (zalh = zlahk) & =24 are nnolear 10 = z2o0d =4 are nuclear.

I COMGIR A1 AT OO0 0 oy e IC VAR T

nraparly nuolear. B

The assoclator ideal Ast(A) and nuclecar radical Nurd(d) can be thought

of as the purely altemative and associetive parts of A vespectively,

The nuclear radical and assoeciator ideal are orthogomal,

4.9 fuzd{A) rds LAY = AsL{A)eNurdid) = D

Nurd(4) = Ase(ar™ M WA

by &£.7 {v)-(wvi}. In particular, zince two nonzero ideals In a prime algebrs

carmot annihilata each othar, eiLher Ast{A) = 0 or Hurd{i) = (0:

4,10 (Corollarw) A z2rime alternative algehra is sirther assnciative or

puraly altermative. ]

He say A is unmited if the nuclesr radical and sssociator ideal stav

ApaTl,

Nurd |:.|!~L:| ﬁ hat f_:ﬂ"_} = [,

4 tvpical example wonld he a dirvect sum A = D #H € of an assoclative algehra

O and a Caylay algebhra G, whers Hurd(i) D and Ast(i) — G,

4,11  (Unmixed Propositian) A semiprime alternabtive algebra A Is wnomixed, and

Nurd(A) = AsclA)™ .
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Proof. We have [:-'-.st{fa}J' yALAl contained in Asr{a) hy construction and

| 9 -
in Ast(4) gince the latter iz an ideal. Since H‘. ’5 = " tor any uleal

in a semiprims algehra, we have [Ast{ﬁ]¢ A AT AsEEAY M AEL[A}J‘ = 0 and

A g % ; . R _
Axl(A) is nuclear., Tn Lhis case 4,9 reduces Lo Nurd{A) = At (AT, Again
semisrimeness implies Ast(A) M Hurd(A} = Astla} M ast (M) = 0, so0 A is

unmizad, B

4,12 (Leeal Nuclear Hadical Inheritance Theorem) If an alternalive algebra

A is B-gemiprime for an ideal 3, then the nuclear radical of B is

Murd (B) = B Hurd(A).

Proof. The inclusion B Nurd(A) (< Hurd(l) holds since the lelt =side
is an ideal contained iu B and nueleizing all ef A, Conversely, if
z € Nurd(BR) is propexly auclear in B we claim 1t is alse properly nuclear in
A mACH(AY., Tt suffices Lo show zAC N{#} since by Loecal Huclear Inheritance
H(EI S WEA), #ot if z is in Hurd(B) then = znd Bz lie in HOBEY ¢ MiA), s0
[B,B,zi] = [B,Ez,A] (nuclear Elipping TII.1.6 since z £ M{AY) = 1 [since
Bz €T N{A)), and zA is nuclear in B as claimed. &
4,13 (¥uclear Fadical Inhsvitance Theorem) If & is & sewiprime altermative

alpelra then the nuclear radical of anw ideal B is

Nurd (8] = B Mdurdiay. @

Purc alternabivily means vanlshing ef Lhe nuclear radi ral. Alsce recall thart

scmiprimeness is inherived (1V.3.3).
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4.14  (Ture Alternacivity Inheritance Theorem) 1f A is a semiprime purely

alternative alpebra, so is any ideal B <lA. B

Recall that & is B-purely alrernative if ne nuclear ideals of A lie

inside B, i.e., BV Hurd{A) = 0.

4.15 (Local Ture Alternacivity Inheritance Thesrem) If A is B-semiorime

ard R-purely altcrnative for an ideal B-l A, Chen B is= purely alternarivea. (55

Application to algebras with d.c.c. on lett ideals

4 nice example of the power ol chis appreoach is ils applicacion to
algebras with d.c.o, en left ideals (generali=zing our vesults in Chapter VIII
on alzebras with d.c.c. on all inner ideals).

4.16 (Arcin-Weddsrhurn Theorem) An alternaltive algebra is semiprime with
doeve, on left Ldeals ifE

A = AstiA) M Nurd(al
where the purely allernative part Ast(A) is a [inite direct sum

of Cayley alpebras owver fields, and the associative pari Nurd(A) is & Tinile

diract sum of Artinian assaciative marrix algebras over diwvision vings.

Trool. OClezrly & and T%(e.} and any finite direct sum thereof has doe.c.

on one-s5ided ideals and s sewmiprime,
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Var Lhe converse, assume at [irst that A is semiprime with d.c.c. meraly
an fwo-sided ideals. We want to show Ast(A) is unital, hence a direct

summand, We do this in a voundabout fashion, first showing that a certain

ideal S is unital and then that § = Ast{a)., Let & dencte the "socle!' of

the associator ideal, the sum of all these ninimal ideals of A which lie in
Ast(A). GSince these are precisely the irreducible M{A)-submodules of AsL{A),
by module theory weo knew £ is a direct sum of irreducibles, and by the d.c.c.
on two-sided ideals this sum must he Tindile: 5 = ﬂ] [ = Gj. By the
Mimimal Ideal Theorem ITI.L.10 a minimal ideal Is either trivial or simple,
and it can't be trivial in a semiprime algebra, so all minimal dceals B ave
gimple. By Eleinfald's Simple Theorem 3 is then Cavley or asscciative. If
B Ast(A) then B M Nurd{a) = 0, so Hurd(R) = B MHard(as) = 00 by semi-
arimeness and Nuclear Naudical Inmheritance, Buch B arse not assouialive, and
therefore the socle § of Asti{d) Is a finite dirsct sum [H H .- Cn ol
Cayley algehras Ci. “inee each Ci is unital, so is 5. Then by VIT1.0.8

L
L4

wers nenzero it would contain a mindimal ideal B by the d.oc.c., then B & Ast(d)

Ast(A) = 5 HE 57 where SE'= Si‘fﬁ Ast(h) is an ideal in all of A, If 5

would imply B 8§ by deflinition of the socle, whareas B C 5 F\HS’= 0 is

i

impanssible. Therefore Ea = 0 and Ast () s 8, = 5 is unitel. By VITL.0.0

]
H

again

A= AsL{A) W Ast(a)* Ast(A) 1D Nurd(A)

gipnce Ast{h}& = Furdi{a) by £,11.

llp Lo now we have used only the d.c.c. on Lwo—sided dideals. In dealing
with the asspeiative parl ol 4 we need the full force of the d.e.c. Az a
direcl summand, Murd{A} inberils semiprimenes= and the d.c.c. on one—sLded
ideals, therefore iz 3 semiprime artinian associatiwve algebra, =o by the

assocdative Artin-Weddarburn Theorem is a finite dircct sum of matrix algebras, l.
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4 17 ®smark. Notice how conceprually clear the arnefl is. We break Lhe
alsebra into purely alternative and associative pieces Ast{A) and Nurd(4),

describe these, and show & is their dirzect sum. The only unfortunate

s oL L L AUELY AN 0 g COAVIECRCET O

simple algehras. In some senss [0 1S vneatisfactory to have to use simple

algebras to classifly semisimple alpebras, and it is especially unsalisfactory
co hawve to assume the gzneral theory of simple algebras when one is dealing

only with the {prasumably) moye manapeable class of alpebras witn d,. oo, @

4.18 Corellary. TIf A is semiprime with d.c.c. on Left ideals then & is

unital and has dec.c, and a.c.e. on hoth lefc and right idezls, [

We can zlse use our resulbs to ecompare radicals,
4,19 (Radical Fqualicy Theersm) IF A iz an alternative algsbra with d.co.0,

on lefr ideals then the radicals
p{ A) = 8(A) = L{A)Y = Nil(A) = Rad(A) = JE(A) = mic( A

211 voincide with the maximal nilpotent idesl.

Proof. Alwave PC S CLC NIl C Rad C I HMC (see IV.0.0). Hince
AfP{ A) is semiprime with d.c.e. we have seen it is a direcl wum of unital
simple alpebras, so by definition E{'A}‘:}‘EH“{A']. Thus =2l1 tadicals
coincide. By Zhavlakov-5later MilpoCence V.3, 14 we know PLA) is che maximal

nilpotent idezl., M
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4.70 Remark. Again it is unsatisfactory to have Lo use our knowledge of
simple and semisimple alpsbras to describe radicals. One would ewpact =@
simple Jdirect treatment of radicals as in the =espciacive case (or a= in

\I]W Tj.lﬁi; of alternative al«:r[ehras wirh d.c.c. on lnner ideals in (V.9.2).

The treusle #s always is the refractory nature of one-sided ideals. =
Prime Inharibance

The method of middle annihilation nsed in semiprime and nuelear inherlitance
appliss just =5 well to prima inhariltance. Agaln wa can gel Ly with locsl
primgness. We say 4 is B- prime for an ideal BR<lA if ne orrhogonal iideals
of A lie insidz B: 4if C,D are nonzero ideals of A lying inside B their
product €0 iz alzo nonzere. Equivalently, if 0 is a noazevo ideal of A lying
in B then Aﬂﬂﬂ,ﬂfﬂj = B !"‘IAnnR{E} = 0 (though perhaps there are parts of its

atnihilator lying outside B).

4.21 {Local Prime Inheritance Theorem) TI[ an alternacive algzhra A is5 BE-

prime for an ideal B, fhan ® is prime as an algehra.

Proof, [f A is B-prime 1t is rcertainly Z-semiprime, =0 hy Sendprinc
Imnsritance 0,00 we koow @ is ab least semiprime. Ie show primeness we will
show that Arm :Ellft.:‘l = [ [or any nonzere ideal U< B.

-9

We begin by showing that if C<]E Is an ideal in K then ils apnihiiator

ann (G} 1s an ideal of A even if © dIsn'r,
b

() ,ﬂ_nnﬂfi‘.}-ﬂﬁ. (OC=0B =148 .



st neote that all annibhilatexrs fumL H(f‘.} = Ann B{L‘] = AnnH{C} coincide
1 3 o

whan B iz semiprime, since for example Ann q(C] C?ﬁnnR H(C}:
b ]

Lt
4
C*fmnl_ B[E} oM .5-_1.1.1"_-[ {C) is a trivial ideal in I by oy fan, 3i B o PmTIL'['E]I C

L e sonloranenctd M I upmECTY, C0T (1)

it sufiices if z'-'snanC) ig a laft ideal of A. This follows from .‘-Lnta]_[i:} *'-‘:]L Ay

= ), hence 1t must vanls

or equivalantly
[&, ;HHLI.{C:I,C] =1,

which results from 4,1(%%) using B-scmiprimensss nlus

[A].".nL[Cfl ,0,4] = 0 plus U—'umL e v I e

If D = Annjli:l:} were nomgero il would by (£) be 8 nonzere Ldeal of A

contained in B, so by B-primeness Annl_t B[D‘j = i, FBut [ is pongero and
]
concained in Izr;nR E‘U'J}l (DO = 0 for D = AnnB[C}J. theretore Anm_ U(D] £ 0
» iy

implies D = 0. Thus P.nn]_{ Er:r_‘.] = a'a.nr:E(EJ = 0 for any nonzere ideal C<=B,

and i is priwe. ()]

In particular, if A i entirely prime so are all its ldeals.
15 ¥

4.22 (clebtal Prime Inheritance Theorem) I[ A is a prime alternatbive algebra,

g0 is any ldeal B =ZlA. ]
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Show 4 is associative 1ff Asc(A) = 0. UWe say A 1s pur*tlj e,';:_c;ep-l-i.anu..l

N

if Ast(A) = A: shew this is eguivalent to the condition that A have

10 706D EXOCLCCTOC ONOHATdieD gy

Tf A is purely exceptional, show Hurd(a) = ﬁJ‘. Ghow a one-sided
P ; B )

ideal B is muerlear in A 1f ByAst(A) = 0, and if B is nuclear and
4 unmixed then B My (Ast(a) = 0. Conclude that if A Is purely

alternative, then AsL(A) is the heart af A and hics all nonzearo Ldeals B

Show Ast(A) is Lhe smallest ideal E such that AR is associative., 1If

A is unmixed show Nurd(Affurd(a)) = 0, and hurd(A) is the smallsest idesl
3 such that A/# is Durely alternative, Tor seniprime 4 conclude Aldst (A)
is the mawximal sasscciative image of A and A/Hurd{A} is the maximal pursly

altammative Image of A

& Mg

Show F(Nurd(A)) < Fard(F(A)) for zll homomorphisms A £ A

Show [MCA),N(A)] and any [x,N0A}][=,N04)] [for x E A are contained In
Hurd(a)., Cenclude that if A is purely altermative, lls nucleus 1s
commitative. {(Actually N{A) not only commutes with izself, bur with

all of A - se= 0.00).
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Tf B iw & nontrivial minimal idecal in an alternatiwve aleehra A, show
cither (1) B 4s a Cavley algebra over a field and RC A=L(A), or

(1i} 2 45 a simple associative algebra and RO Murd{a). Show Lhal

0L sy ol 2 o L, 0 L) B DT (UICT

£ A is semiprime acd (1) A/Ast(Ad) has d.e.c. on left ideals, (2)

there is an ideal B TPNurd(A), maximal among Chose missing Ast(A), such

that all ideals of A/B contain minimal ideals and A/R contains ne infinice
direct sum of ideals (e.g., hoth will be met if A/B has d.c.c. on two-

sided ideals) shuw A is a [inite direct sum of simple Cayley algebras and
simplc artinian associative matvix =lgehras.

Assume (1) A is semiprime, (2) A is purely alternative, (3) every

fdesl of A contains a minimal ideal, (£) every descending chain Bl » By omeen
of direct summands of A syventually terminates. Show & is a Slnlte

direct sum of Cayley algebras,in particular Is unital with a.c.c. and

1
d.c.c. on left and right ideals, Constryuct examvles of alternative

algshras 4 satisfying all of (1)-(4) except (k).

k

assume (11 A is Asti{A)-semiprime, (2} all A-ideals insida AsL(A)

contain winimal A-ideals, (3) 4f Hl = Ry e is & chain of direct
= 4

summands aof A then the chain Bl M Ast(4) 2 B, MAst (A2 R AR

Show that & = Cl e E‘n B D where the i, are Cayley algebras and D is

i
associative.

If D b where & has d.c.c. en left ideals contained dn B and B has

the property that its image F(B) has no nuclear idewputents in any image

F{A}, shew BB is nilpotent.

T B8<) 4 whsre A& i3 a p.i. algchra (see Appendix)] and hasx d.c.e. on left

idezls ceontained in B, whare B has Lhe property that itsimaze F(2) has no
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4,15

4.18

central idempotents in any image F(A), show B 1= nilpolentk.

If A is a sbtrongly semiprime alternative algebra, show that

U2 =0=r¥z& Ann B for any ideal B<J A (mere generally, =& AnnR(B'j

if B iz a left ideal and z € Ann (B) if B is a right ideall). Hecull

that &4 is strongly prime if it is prime and stromgly semiprime, L.c.

(i for B,C=1 4 implies C =0 or B = 0.

==
n._
1l

(#)

e
Il

0 lwplics =z = 0.
Conclude Lhal an alternative algebra is strongly prime iIF
(&4 UZE =0 for B<lA dnplies 2 =0 or B = 0.

Improve on Nuclear Inheritance te show N(#) = B/ N{A) for a cne-sided
o} . . :
ideal B in A if nmerely Xex(H) M B "'vIr"} [%(B),A,A] = O (weukening B-semi-
& - - i 1 i _J_?:H q
primeness). Indeed, show thal il z& M(BY has Kev(E) M B M [z,4.8] =0

Lhen 2 € N{A).

If B is anv one-sided ideal in A, and b & B satisfies [p,A,B] = 0, show

[h,A,A1C Eex(3).

Tf A is B-semiprime Tor & left ideal 3, show [.—‘LuLLL(E:I,B,I*_] = 1, aund

B ﬁ:‘anfH] iz a triviazl left dideal of A contained In B.
Show & is B-sewmiprime for B<d A i[f C/MB = 0 for all ctrivial ideals C=lA.
If 4<IB show A is B-semiprime iff B de semiprime &3 an algebra.

If B is a lsft ideal in A, show Ann_(B) is an ddezl in & ifF [A:LEL(H},E.:'L]

L
= 1, ilge middle annihilation to show [Aan. (B),0,A] = 0 il A is Ker(B)-
semiprime and [4nn_ (B),2,A]C Ker(B). If & is prime and Ar'.nL(B} is nonzero,
show B = 0.

Chow A is left B prime for B a left ideal of A (i.e., if[ C,D are nonzero

1efi ideals of A contained in B then CD £ 1) if£ D = @} for C,0 lefr ideals



t=1ha

of & dmplies CAE = 0 oxr DMy A

0, iff CDM B = 0 for C,D left ideals

of A implies CALG=0o0r DAR =N
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Te.4.1, Problem Set on Une-sided Inhericance

We can carry wmany of our inheritance results over te one-sided ideals.
£ B is a lafL ideal in A we say A ic B—samiprlr.ﬁe- if there ar= no Lrivial
laft ideals of A contained in K., (Warning: this does net imply E is scmiprima
as an algebra, see Ex, 10 below). Recall {II1.2.,1-3) that the amallest
rwo—sided ddezal containing B iz ics hell H{B) = Hi, the largest two—sided idesal
contained in B is its kernel Ker{h) = {b € H|bA:: %}, where any assacialor

with one Factor from B Falls back in B and with twe factors from B [alls into

the kernsl: [A4,B] < B and [4,D0,3] C Xer(B).

L, If B is actually a two-sided idesal, show this netion of cne-sidad 23—

semiprimeness colncides with our earlier definition of two-gided 3-
semiorinenass, If C&F are left ideals show P—seniorinensss impli=as
C—semiprimaness.

z. Tf B is a loft ddeal and A 4= Eer(B)-semiprime, use (4.1%%) Lo show

W(B),D,A] = 03 if A is B-scmiprime use it te show furcher [N(B),A,a] = 0.

i Deduce the Tocal One-—sided Muclear [nheritance Theorem: 1T an allernative
aleehre A is B-semiprime for some one-sidad ZId=al R then Lhe nucleus of
B is
N(R) = 2 MINCA).
%, Mimiec the two—cided proof to estailish the Lacal One-sided Mucloarv

RBadical Inheritance Theorem: 1f an alternative algebra A is B-seniprine

Sor some one=sided ideal B then

Murd(BY = B M Hurd{A).
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Examine the proofs of Bx, 3.4 in detail and sliow Lhat N(3) = A /N(A),
Nurd(B) = B M Nurd(A) hold il we merely assums A is C-seminrime for

go= IL[[N{B],A.ﬁ]J{:'E. [int: for ix, 4 the relevant ideal is

b= EL[[ANurde),h,ﬁ]}; show D < O by showing Aﬂufd(ﬂ} — Murd(B) ¢ N(R)
viz the usual application of (4.12%); note [A¥urd(B),B,B] = [BNurd(2),B,A]

by right bumping since Nurd{B) £ N(B)C W{A) using Ex. 3.]|

For the canter we need locsl semiprimeness of the holl H(B)] rather than
juet B dtself, since [C(B).Al needn't se comtained in B any longer il
B is merely ens—sided. Show [C(3},AJE(B} = 0 if A is H-semiprime, If

3 My Arn, (H(B)} = 0 show [0(R),A] = 0,

daduce the Lecal Opne-—sided Central IUﬁ?fitEFEF Theorem: 1f an altermative

algehra A [s H(R)-semiprime for scme eonc-sided ideal B, then the center
of B is

CERY = By ClA).

Establish the Glehal (na-sidad Isheritance Theorem: If A is a semiprime

alternative algehra then for all vne-sided idezls B

HEEY = BEyvuda)
CiBy = B ola)
Hurd (B) = B Yurd{A).

LI A Is P-semiprime and B-purely alternzative for a one-sided ids=al I im
A {in the sense that 7o ome—sided nuclesr ideal of A lies inside B,

B M Furd(A) = 0) show B is purely alternative,

It is not in general true that a one-sided ideal in a samiprime algebra
is semivrime; pive a simple countevexample., Heweower, such countersxauples

exist oenly in the presence of associalivity: in the purely alternatiwe



cage semiprimeness is inherited, If A 15 B-semiprive show O ryXer(R) = 0
for any trivial idezl C< B Ly Ker(B)-semiprimeness, then show C is

auelear in B, and use this to deduce the One—sided Semiprime Inheritance

Theorem: T an alternative algenra A is B-semiprime and H-purely altex=
nztive far 2 one—sided ideal B, then B is semiprime and purely glternmative

25 an alsebra,

11. If B0 = 0 for lalc ideals B,C of A shaw H(Z)H(C) = 0. Derive Lhe

Mme-sided Primeness Theerem: IL A is a prime zlternative algebra then

the product 30 of two nonzera left (or right) ideals B,C ig Apdin NoNZEra.

If B 18 3 ene—sided ideal in an associative algsbra A, thera is
no reason why B should contain a nonzero ideal of A (e.g., § = r%{@j simple,
Bo= Aeif}' Howewer, i A iz a Cayley alpebra ice only one-sided ideals are
B -0 and T = A, so avery nonzero one-sided ideal is a nonzere twn—sided idezl.

Tais holds more geanerallwy,

L2, Show Lhat if A is lL-semiprime for a nonzero left ideal 3 then Ker(h) = 0
implics BOC MWurd{a). Derive the Preposition: If an alternative algcbra
A 45 R-semiprime and B-puraly allernative for some nonzerc one-sided ideal
3 rhen B econtains a nonzero cwo—sided ideal of A, In particular, if A is
semiprime and purely alternative then every nonzera one-sided ideal con-
tains a nonzero two-sided ideal.

Thus one-sided ideals are not far from being Lwo-sided in Lhe purely

alternative case.
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1%.4,.72 Trohlem Set on Nuclear Inheritance

We outline an alternate approach to nuclear inheritance which avoids

Jordan n’.el;ho:is.

11 Show that 1if B<l4 and n & H(B}, aeE A, e &0 Lhan

cln,b,a] = [n,be,a] = [e,{byn],a]l = -[n,h,ale is an alternating Tunclion
of hoo.

B [T = = |n,b.al as zbowve, show zz = zaff = ”zB =0 50 ﬁz = zﬁ is a crivial
ideal af B, Comelude that if B ie semiprime then |K{B),B,Al = D.

3. Alternately, for n € H{B) and a € 4 show R = AH‘H{B} and K = Xer An,a are

ideals in B with KR = 0, so 8M RB=08 dis Lrivial., 1I= ﬂnnL EKH] = 0
¥

“¥

N - S . “ . i 11 - e
show E = AnnLgRj. Shaw rhat r™, raB, TrB’ U”r, Ur,hE all 1lie in X E

for » € B, Deduce that if B is semiprime then B = 0 and [n,a,l] = 0.
lne way Lo be assured B is semiprime is to assume A 1= H-szeniprime
(using Semiprime Inheritance IV.3.3). We ean avoid Semiprims Inheritance by

the follewing detour.

: 2,
4, For = = |n.b,a] as above show z[B,B,B] = 0, z( UEJi] =0, =2{Bc”) = 0,

. - : i, 2 ; 4
Show 2BBT ( [BLHE,EHT LHh + R UBL and conclude 2] (2E)BIB = 0. IF

o

Anm_ E{H} = 0 (a5 when A is H-semiprime) concluds 2z = [z,B.B] = 0, anc
=

therafore [z,B] = [2.8,F] = 0 and z & C{B). Vlse this and bhxerclise 1 to

show [z,3,4]18 = 0, =0 d4nn (L3 0 smplies [2,B,A] = 0.

L.E

5. VWhemever w & B=<d A satisfies wh = Bw and [w,3,A] = 0 show 3w = wB=] 4]
if w is Criwial 1m 0 show Bw is trivial; conclude that il A is B-semipiima

then w = 00, Use Lhis to prove [H(B),8,A] = 0 when A is D-semiprine.
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Jeturning to where we Look Lhe delour, assume B Is an ideal in A and

n bk satisfies [n,B,A] = 0.

G. Shew [n,4,A]B = 0, and conclude that |[n,AA] = 0 if _i'..nnT (2} =10,
=3
Furzhlish the Woclear Tnheritance Theorem 4.1.
7. TF ¢ € G(RY show [e,A10 = 0, 50 [e,A] = 0 0f dong ((B) = 0. fstablish
¥
Lhe Cenlral Inheritance Theorem 4.2,

We can similarly estahlish the one-sided Ehecrems withoul, Jordan
methods, Throughout we assumc B is a left idzal, C = Eeri{B) the maximal two-
sided ideal inside it,

8. As in Oxercise 1, show cln.b,al = [a,be,a] = [e,[ab],a8] = —[n,b,ale
f[or e &4, b&E 5, c& L, n €N(B) vaniszhes il b = ¢ & .

: > s - .

g, For z = |n,b,a] show = & 0 has 27 = =0 = U?E =i, g0 0z = z2C 45 a
trivial idezal of €, Conclude that [N(2},0,A] = N if A is B-semiprine
{using Semiprime Tnheritanecel. An altermate melhod avoids Semiprime
Inheritance: show C[N{B),C.A] = € using [Ni(B),C] < K{C) & W(A), s
if A de l-semiprime [NIB).C,A] = G; then show CIN{H) B,AT =, =0
[¥{R),B,Al = 0 in che B-semiprime case (using [W{B).B,a] < C}.

10.  When [N(B},C,A] = 0 chow [W(B),A,A]C = 0 ag in Oxercise 6. Lt
A‘l‘l‘.’lL 3['(_“.] = 0, conclude ¥(B]  MLA).

11. Nerive the One-zided HNuclear [nheritance Theorom,

12 10 A is B-semiprime for a leit dideal D, show [COR)ATH(E) = 0. Deduce

Ci{E) = B M C{A) waen A is H{l}-seminrime {(or aven just TC[C(R},A]D-

semiprime],



H$]||f FF?P+?H i (1l ﬂiﬁ?$thLT? and Fupe Alternative Payts

Although the associztor ideal and nuclear vadical are ideals in the
original algebra which usnally form a direct sum, A D Ast{A) B Nurcd(A), theyv
don't alwavs add up to tha whole slpehra.  Another way Lo bDresk A iorto
assnciative and purely altemmative pieces is hy mzans of guolisnts: deline
!:12 assaciative por+t of A Lo be Afasc(A), ard the Purtly alterna-tive part
bo he A/Nurd(A) {dessite the tact that these are homomorphic images rather

Lhan subalpshras of A).

Tz Show afAst(4) Is che maximal associative image of A, TDespite its
nama, A/Nurd(A) is net alwave purely alrernative (pive an ewampla
whare 4 15 solwvahla of index 2313 show, howewver, Lhal it s al leasl

maximal in Che sense Chat if A/B is purely alternative then B 3 Nurd(a)).

2. If A is unmized show A/Nurd(Ad is purcly alternative, L[t A is sendprims
saow AfNurd{A) contazins no associative ideals, in parbiculsar iz zemiprime.
A Frove the Unmixzed Theorem. An unmisned allernalive algebra is a subdivect

S0

A= Afascl(a) B A HurdlA)

of itz associative and purely alternatiwve parls (which are LChe waxinal

asgociative and purely zlternative images of A respectively).

This is the matural or dintrinsic decomposition of a2 semiprime algebra

intn its assaciative and purely allernslive parls.

4. Uga 3.5 and 4,10 to nhtain a non-Llobtrinsic decomposition of & semiprime
algebra into a samidirect sum of an associative and 2 puraly sltermallive

algebra, (Lompare with 3.27.
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Thess notions of associative and purely alternative parts can he used Lo

re-derive the Artin-Wedderburn Theorem 4,16, Their adventage is that a

quctient ASD automatically inherits d.c.c., whereas we liad to rescrt to

subberfuss to assure ourselves that the ideals Hurd{a) and Asc(p) inherited

Lhe d.c.e.

IF A iz semiprime with d.e.c. on left ideals, and B is = maxinal ideal
of & containing Ast(A) but missing Nurd(A) [remark: we can ghow Nurd(a)
i5 maximal ameng ideals missing AsL{A}, bul IL is not clear whethar
Ast(A) is maximal among fdeals wmissing Hurd{A)], sheow A/K 1= A semiprime
asenciative algebra with d.c.c. on left idenls; show Nurd{A) is imbeddad
as en ideal in A/D, and deduce Wurd(A) is a [inite direct sum of simple

artinian watrix algebras, so in particular Murd{A} is unital.

Under the same hyporheses show the purely alternative part A/Wurd(a)

is semiprime wich d.c.c. Show IL Is a [inite direct sum of Caylay
algebras [(using Lhe Minimal Tdeal Theorem and Kleinfeld's Simple Theorem) .
Deduce Lhac AstiA) 18 a finire direcl sum of Cayvley algebras, in

particular iz unital.

Derive the Artin-Wedderburn Theorem by showing that & minimal ideal
in a semiprime algebra A helonps either Lo AscfA) or Murd(a), =so thatl
17 Ast(AY B ®ord(A) is unitel its cemplement contains ne minimal

ideslae of AL



m| ‘“T mmm“ W on Nucleus and Center

Hew far the nucleus is from being central is measured by the ideal
Curd(4) penavared by all commitators [a,n] foraghand nE NA) s

curd(4) = 0 46f all [a,n] = 0 1iff N{A) = C(A).

T Show Curd(a) = A[AN{A)] = [4,0(0) A,

25 Show Curd(A) & Nurd (A& Curd(A)-AsL{A) = D& [AN Cay ] [a, a0l
= () g2 [Qurd(A) 4,4] = 0. Usually Curd(a) will be contained in
Nurd{A). Show that although [Curd(A),A,A] mwav not always be Zerq,

at least it is always containad in N(A).

3. Show any m = [al[x,n],b,e] (for ab,c,x €A, n EH{A)) iz & trivial
wlement of £he nuclens. Copclude that aither Curd(A) & Nurd(A) or clse
thorve iz a trivial ideal L{m] where o is contained in Curd(A) M Ask{(A) MY NOA) .
(Wa do nmot claim all of T{m} is containsad in M{aY: sco SH 2 in the next

vroblem set).

Daduca Slarer's General Nuclear Theorem: It Curd (o) y AsclA) M Hurd (AD

contains no brivial elements then Curd(A) C WNurd{a), sc that if A i=

also purely alternative then WiA) = CLA).

Ln

f teduce Slatar's Yuclear Theoram: L[ A is semiprime Lhen Curd (A) C Murd(A).
19

I# A is seniprime and purely alternative theo its nucleus and venter
epinegide, M{A) = C{A).

a. Doduce MiA) = C(A) also if A lhas no associative 1deals, or in seniprime
with no associative images (= purely exceplionall,

Ty (% A tag ne trivial nuclear alemsnls show: (1) A i unmixed, (i1}
Curd(a) & mMnrd(A), {(iii) N{a) = C(A) if A is purely alternative, {4+

Ast(A) My HCA)Y = Ase(n) MyolA), (v) [N{A),4st(A)] = 0.






TN 4.5 Problem Set on Slater's Muclear Conjoctures

Mickael Slater has made the Tullowing conjectures about the dimtance

of the nucleus from the cenler in the purely zlternative case:

fsx 1 Curd(A) M Ast{A) {5 zero or contains trivial nuclear ideals

)
Co

(5N Curd (A NA) or alse Cord (&Y (MY AsE{A) conteins trivial
nuclear ddeals

(=9 01 A unmixed Syplurd (A) S H(A)

aNoA) TF Murd{A) is commutative without nilpetant elements,

then (A) = 0(A).

{53 3) 4 purely alternative=2F(A) = C{4a) .

Show in genera]l 1= 2=23=24&% 5 for alternative algebras. In the

previous prollem set we saw (58 4) always holds.

Tl cplat, 5%, o2 iWa i) = 11, %, .¥..2, 1M, . lw,,n.,]l f{r,s > 1} for
5:( gy ._I, 3 1 [ "'I"I] j=l' ._..r_] 3 bt
Xg oV 0By sV, e 4 and I, € N{A). Show g is dindependent of the orvder
i 3 _ i
and association of the factors f'xi,;.ri,zij arid 'wj ,11].]. Show its wvalues

lie in Curd{A) Y M(A).

Show g is an alternatiang [unction eof its arguments Xy a¥ie 2y aWie which

wanishes if one of these varlables lies in N({A). TF o w:_:-:"_‘ show

1n

aix,v,2iw i) = glx,v,z5w]linjw + glxiy.aw n'l) where
5 =1 = 5 5

=i
=

+ glu,v,z1w mlv
3

n'' = [w"",nsj. Conclude that if g wanishes on a seC of generators

5 =

x,v,2,.w [01 A modulo N(A), iL wvanishes cverywhere.

Ponelude thar iF A s (inltelv generated mod %{A) then gz = 0 for largs

enouph v and =. Show SN 2-5 hold if A d= finitely generated moad MLAY,

If 4 is zenerated mod E(A) by 3 elements, show Curd(A) C M{A}.



1%, 4.4 Probhlem Set on Prims Inheritancs

i

Ve E{W’- a1 alternate prnc:[ -_'IL 1.‘:I-,1‘r‘.e :_f_';Lf:'f'; |1'cl't‘JLL.\L, L.!.!uﬂ.‘ﬂ ﬂ['l J_I-H:'J "”ﬂ_ﬂﬂ

radical rather than Jordan methods.

A is B-prime for an ideal 3 (or |eft B-prime for a left fdezl B

—_
w

=
i

im the sense that there are no orthngonal left ideale of A Inside B
show sither B Y AsL{A) = D or B/ Hurd(Ad) = 0; conclude either 3 1s
nroperly nuclear or B is semiprime purely alrernalive without one-sided
agsoviabive idsals.

2 Tf 0,0 are erthegomal left ideals of A coatained In an ideal B, show
CE,DB are orthogonal ideais of A contalned in B if B is properly nuclear:

if A i B-prime, conclude € = 2 cr D = 0,

£ [f ¢,D are erthogenal lelt ideals of A conLained in an ideal B, show
Ker(0), Eer(p} are orthogenal ideals of A containad in Bp if A 18 0=
prime conclude ¥er{C) = 10 or Ker(D} = 0. LE h is sominrime purely

alternative, deduce 0= 0 or I = 7.

A Prgve the Thenrsm. IE & 1s S—prime [or an ideal B then it is left and
ripght B-prime,

5. Deduce the One-sided Primeness Thanrem.

B, Use the associater derivacion formula 0,00 to show &, C,AnnlCy ]k = 40
if p=I B<]a: if A is B-prime conclude .'5.T1Ti_11:I::il = _-_f'.nnL EU':} = .r*kn.uu‘ EL’_L"}I <] A.

Teduce the Prims Inheritonce Theoren.

45 with semiprimensss, primeness will not in general he Inherited by

4 mere cne—sided ideal {same example: A = Mlﬁb} ig mimwplc associanive,
5
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bance prime, but the lett ddeal B = #u:.l] is pot even semiprime, much less

prime). TUader csrtain conditions primencss will Se inherd Led.

7. I B is a left ddeal of A, whare A& Is lali—B-prime and 3 qf;-‘.’urd{,ﬁ.},

show B is prims as an alpebra. (Use Exercise 1 and N, 00y .

8. 1f B ¥urdin) is a laeft ideal of A, where A 1is left-P-prime and

fl,nr] n{jﬂ.} = 1, show B i3 prime as an algebra. [Copy Fxereisae 2).
=1 3

In addition to primensss. weak vrimencss is inherited. e say A is
B_WE:‘L‘IE Prime  [or an ideal Bl A if A is B-semiprime and EB—purely
slternative, and if in addition 4 is B-tersion-+free  (the clements R

of By OCAY = C{B) act injecliively on A! Ba - Ol = 0D or a= .

g, A ftself iz weakly prime 1f it is A-weszkly prime. Show A is B-weaxly

prime i[[ B is wealkly prime as an slgebru.
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TX.4.7 Problem Set on HMinimal TefL TIdeals

I, b Lo ohbadn Tov ona-sldRd AJLALY 00 SRATOND O (00 I0IMOL

Tdaal Theoram., We will make free use of nuclzar inheritance.

A

I ]

If B i5 a minimal one-sided ideal in A, show the ideal generated by
[B,0,4] is sithar & or 3. I I([3,B,A]) = B deduce h is acLually

minimal two-gided didoal of A contained in Ast(A). In this case show
E iz a simple Cavley algebra, in particular is unital: B = A= = eA

Tor 3 central idewpotent e,

g
Tf T([R,B.,A]) = O show B is associalive; LI B Is not trivial show &
is B-scmiprime, and use Local Ounea—sided Muclear Inheritance {(Problem

Bet 4,f) ko conclude B¢ Nurdia).

If B is =# non—trivial minimal left ideal of A coutained in Murd{A),
show T(B) = BA = BI(H) € Nurd(4), aad that B is a minimal lefr ideal

-y oy
of the alpganrd I(E]. Conelude that § = I1fnya = Aw [or a puclear

* =¥ ; g=
loepmpalent e.

o LY
T+ B is as in Ex. 3, and if Aﬁni{Z{HJ} = 0, show T{L} 1s simnle. Show
the annihilator cendition is nceessary by construcling & 2-dimensional

i) R - a2
axarple with B a fleld and T(R] = A wot semiprime,

Prowve the Minimal LafL_LQEE;_Ihcqren. A ominimal left dideal B of an

alternative zlgebra A is either
. .. ?
(i)Y triviel, I = 0;
(1) a simple two-sided ideal contained in AscA) and isomorphic
to a Caylev algehra, B = I(B)C Ast(A};
{(11ii) a minimal left idezl of a nuclear ideal TfE), B minimal din

) .
I{RY = BI(B) C Nurdla).
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In ecases (ii)}=(iil) B is of the form B = Ac for a nuclear idempotent &,

Frove Hopkins' Theorem., Lt an alrternatiwve algsbra A has d.c.e. on lefc

ideals, therm anvy son—nilpotent lsft ddeal 0 conmteains A nonsere Ldewpotent
e, [llint: A/P(4) is semiprime with d,c.e., B a nonzero left ideal,
hence contains 2 minimal laft ideal Aey wa can 1lift e in B = BR/BM P(A)
throush the nil ideal PLA) Lo an idempotent e & Bl.

Show directly that the Jacobson—Eleinfeld radical JK{A} and Jacohson-
Smilay radical Red(A) coincide for alternative algebras with d.c.e. on
leflt fdeals. [Hink: Assume BEad(A) = 0, so by scmiprimencss & minimal

left ideal in JEOA) gives rise to a nuclear idemnotent e £ JIK{A). ]

It has been conjecturad thar 1f A s pnrealy altemmatcive with d.coc. on
ideals then & has d.ov.c. on cight [deals. (By §.18 this is lknown it

e o
Hemlpr e ).
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1%.4.58 Troblen Sct on Goldise Theory

Here wo :{eveiiope. an HTLH]DguE: o]; l:lm HGLIJ[.E J:Lf.—*.-::ry .rﬁ":1 M!E!M!Wﬂ

algebras with a.c.c. An arbitvary Linear algebra A is a lef+ eorder
in & (or & 15 a classical alpehra of lef+ Froetiens or a left :LUﬂ‘!"iE-“t

e-lgebra of A) if AC A& and

(1) &ll nonsingular nuclaar alements of A are invertible and nuclaar
in _ff.
= T - i _J_ .
(27 all elements of A& may be exprassed as left fracticns = v lLor

®,¥ = A with % nonsingular and nucleaxr,

An element = is hcnnnﬁula.r if it is not a zera divisor, =y = 0 or yx = 0

implies v = 0, L.e., L and R:»{ ars nonsingular linear transtormations.
b4

1. Show 4 has 2n alpgehra of left [ractions iff tor all elemenis (resp.
nensingular nuclear elements) x € A and nonsingular nuclear y € A
there exist %' € A (resp. nonsingular puclear x') and nonsingular
gucloar v'E& A with v'ex = x'oy, IF A is alternative, show =,V,y'
nuclear and nensingular imply such an elemenlL x' is autematically
nuclear and right nonsingular (ax' = 0=pa = (}; chow it is lTeafL
nonsingular (x'a = D=%a = 0), [Hint: [here exists a aonsingular
auclear v and an " with -y = ="-%'x since y'x is nonsinpular;

show v'a = 0].

2 Show 3 classical alechra of left fructions Ls unique up to A-isomorphism
(if 1t exists), L.e., if A El and A © %, are algebras of lelL [ractions

there is an dizemorphiism ?'l -+ :‘-., which is the identity on A
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Proyse the Theorem. 1F A is a prime purely alternative algebra of character-

istic # 3 then A has an algebra of Jeft fraccions which is simple with
dec.o, on left ideale (in facc, ds 2 Cayley alpebra ecver its center with

no proper left ideale a2t all.)

Hote that, unlike the associative case, we nceed assume oo chaln conditions

at all,

Deduees from the previeus theorem that it A is prime purzly altcrnative,
any nonzers latt ddeal B has mern left and vight annihilarors.  Prove

Lhis direclly Dy establishicg the Lewma: T0 E is 2 nonseroe lelt ideszl

Y

in A where A i B-somiprime and B=purcly alternacive (sco 9,00 and 0,000,
then B contains a nonzero ideal o A

Formilate and prove a Goldie Theorem lor abitrary priws alternalbive
alpebras of characteristic # 3. What can you do for semiprime purely

sltermariva algerhras?
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1%.4:5 Problem Her on Semiprime Centers

Z : ) | i i
We want to show that 2 semiprims allernalive .'-.J.:l_ge.1:1'a Df c!mracteriﬁtic

# 3 has a center.

1, 1f A is semiprime show Tm 3 HKer 3 = 0. Show & = AfFer 1 is nonzero
1ft 34 # 03 show A ds8 suill semiprime bul has no 3-tersion, and imbeds
in a semiprims {-algebra A for some ring of scalars with 1/3 & 0.

Conclude Nl:.:';;:l £ 0 and ¥90A) # 0 and N{A) # 0 i 34 # 0.

b Use Problem Sats D0 znd 00 to show Lhat either 3 AstiA) = 1 or

ClastCA)) = H(AsL{AY) £ 0.

3. leduce Theotrem: ILE A is a semiprime alternative algebra Lhen silher

dA = 1 or H{A) # 0, and either 3ACH(A) or C(A) # 0,

4. Prove Proposition: II B is a one-sided ideal inm A and A is li-semiprime

Lhen either 3B = 0 or B A H(A) # 0, and either 36 CN{a) or B MYCLA) 4

3. Deduce as corellary that if W{A) is a field edthar 35 = 7 or B = 4,

and +hat if CfA) 48 a field then eicher 3BC N{A) or B = 4,

)



T¥.4.10 Problem Set on Weakly Prime Algehras
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alternative, and faithful as a module cver its cencer ¢ (in the sense Lhal

ne =0 for n E &, x € A foveea g =0 or x = 0.

1 Show that any prime algsbra which is not associatiwve 1s weakly prime.
Shuw that the centar ¢ of a weakly prime algebra is zevo or an integral

domain.

2. Sligw that an algshra wich center & # 0 is weakly prime 1£2 it 1s =

G=prder in # weaklv prime algehra over a [leld., Show 3 central algelra

over & fiecld is weakly prime if[ it iz semiprime purely alternative.

Fa Show that a weakly prime algebra over a field of characteristic # 3

iz simple, and Lhercfore a Cayley algebra. (Usc Problem hats T%.2.6,M0 and 00 7.

P Shaw that if 4 is weakly prime amd 34 4 0 Lhea A Lhas canfar rE DL

3, Daduce flater's Weakly Frime Thaorem. A weakly prime algehra with Ja # 0
is an order in a Cayley alpebra over a field.

a. Skeow chat a primz algebra is either associative or woakly prime.

i Dednee §later's Prime Theorem. A prime algabra with 34 £ 0 is elther

associative or an erder in & Cavley algehra.

This merhod ol proving Slater's Prime Theorem reduces prime algehras
directly to simple algebras; the hasic Zdea Is thal an idesl has nonzere
aucleus = center, hence hits the nucleus = renter ol the original, and tharafore

aggentially contains ac invertipi= elsment.



a. FProve Prapnsitian: Tf A dis semisrliie with ceoter QA = 8 a Sdeld

nf charactevislic £ 3, then A is associative or a Gavlew algshra owvar .

M First elanca this looks lile a mueh mora goneral theoren sinfe ode
thinks »f semiprime algehras as heing dirset (really suhdivact) sume of prime
algsbras. However, a direct sum decomposition of 4 weould laad Lo a decomposi-
tion of its centor, so the vonditien that the centar he a Field prevents

“hera hedaz mave than ona ddract sumemarnd, =0 4 Jooks prioe.



