3. The Cayley-Dickson process

The Cayley-Dickson construction builds commutative
associative algebras with nontrivial involution out of com-
mutative associative algehras wikh trivial involution, non-
commutative associative algebras out of commutative associative
algebras with nonktrivial invelution, nonassociative alternative
algebras out of noncommutative associative algebras, and non-
alternative algebras out of nonassociative algebras. By means
of this construction the Cayley-Dickson process starts from
the base field and successively builds composilion algebras of
dimension 1,2,4 and 8 (the basc field, guadratic extensions,

quaternicn algsbras, and Cayley algebras respectively).

The Cayley-Dickson process, as its name suggesats, is due
ko A, A. Albert. It is a process for starting with the base
field and successively building up larger and larger composi-
tion algebras. &t each stage we double the previcus algebra
by the Cayley-Dickson construction. Let us recall from Chapter

how that construction goes (always over a fisld @).
The Construction

Given a nonzero scalar p € ¢ and a unital algebra B with

scalar invelution b + b (so bhbh = Bh = n{b) and t(b) = b + b

41



42

lie in ?1), we build a new alyebra

[3LT) C{E,1) = B 9 BL

from two copies of B as linear space, with new involution

(3.2) (btci)* = b - of

and new multiplication given as in 1. 1.8 by the Chsley-chksan formula,
(3,3) {bl+c1£]{b2+c2£} = Iblb2+p52¢l} + (c2b1+c1521£

This eminently forgettable formula can be broken down into
bite-sized picces. Besides the fact that B is imbedded as a

subalgebra with its usual multiplication we have

(3.4) bL = &b

{3.53) b{ck) = (cb)k

(3.6) (el}b = (cb)&

(3.7) (bi) (ck) = uchb

some helpful mnemonic devicesg: in (3.3) nutice that to mul-

tiply b against cb ¥you slip the b in behind the ¢, and also

in (3.6) the b gets put between the ¢ and the 1, but in moving
past the I it gets conjugated as in (3.4). (WARNING: many
authors use B @ IB instead, which turns all these formulas

gound, )
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The multiplication formula is forced upon us: we must

define multiplication by (3.3) if we want to have 12 = pl and

b? = b. Recall that we are now working over a field ¢, so

B # 0 implies y is invertible.

3-8 (Necessity Proposition) If B is a unital subalgebra with
scalar involution of a unital alternative algebra 2, and
L an element of A satisfying £2 = 11 # 0 and bt = tb for
all b € B, then B + BL is a subalgebra of A whose multi-
plicaticn is given by the Cayley-Dickson formula, and the
map b 8 cf + b + ¢f is a homomorphism of @(B,1) onto the
subalgebra B + B:. When BM 3L = 0, the map is an iso-

morphism.

Prooef. Sinece (3.4) is one of our assumptions, we have
(bL] (cl) = {HE){CQJ = RLiba)k (Middle Moufang) = E{izggl =
iz[Eb} = u ch, sa (3.7) is foresd upon us. From alternativity
(eb) L + {cl)b = c(bl+ib) we see (chlo = cl(btb)R2} - (cb)l (by
(3-4)) = {c(btb) - cblR (since b + b € ¢1) = (cB)f, so (3.6)

too is forced. If A had an involution with I = - 2 this would

imply (3.5), but since we are not assumimg an involution we

arque dually: b(cl) = b{ig) = -L(bo) + (b2+4b)c = - L(bc) +
{8{b+bllc = Li-be + (b+B)Z} = &(bo) = L(cb) = (ch)h.
We could also derive {3.5) = (3.86) from the Moufang

formulas: for example, uib(ct)} = L{i{b(Rc)} = R({{ibRk}a) =

1{{125}5} = ul (be) = u(eb)t and w{(c)b} = ([(ci)bli)y =



dd

(C{AAW = | (cB),.

Thus the various Pieces (3.4) - (3.7) of the Cavley-Diekson

formula are foreced upon us. Ip particular, B + Bp is a subalgebra.

Since both CiB, 1) and B + B¢ have multiplication given

by the Cayley-Dickson formula, the map b @ cf - b+ c2 ig a

homomorphism. If ™ BL = 0 then b + ci =0 =p b=c¢cy = g,
and cf = @ = uc = (ei)e = 0 = c =0, so0 in these cases the

map is injective. [

When A itself has an invelution the proposition takes the

Eorm

3.9  (*-Necessity Proposition) If B is a unital subalgebra of
an alternative algebra & with scalar involution, and £ € BJ'
has norm n{f) = -u #£ 0 then B+ B iz g *~subalgebra of

A with Cayley-Dickson multiplication and involution, and
the map b @ ¢ +b + cg is & *—homomorphism of @[5, u)

onto B + BL. If the norm bilinear form is nonsinqular

on B then the map iz a *—igomorphism,

Froor. If t € B then t(bl) = n(b*, %) & a(B,BL ) = ¢ by

(1.6) (note that a unital Subalgebra is automatically a #-sub-

algebra since b* = t(b)1 - B), so t(k) = t(br) = 0 imply

¥ L™ B.
Lo+ k% = by + g*p* = 0, or L% = - ¢ and bg = &b for all b €
Thus Ez = < 2% = won(F) ] - Ll. By the previous proposition

b@cl - hbh+ct is a homomorohism of



@ (B,p) onto the éubalgebra B+ BL. Since (btel)? = h - ck

as in (3.2), the map is a *-homomorphism.

If the norm bilinear form is nonsingular on B, BN B+ = 0,

then BM B = 0 because BX € Bt : n(BL,B) = n(L,B*B) (by
5 P 15 YO Y n(BL ,B) = 0 since B is a x-subalgebra. Thus by

the criterion in 3.8 the map is a *—igomorphism. [

This result will be crucial in the next section; it allows
us to build up Cavley-Dickson algebras inside A becanse it says
that under =zuitable conditions B & A =% T(B,u) < A

greturning to L (B,u) in general, recall that » is again

a scalar involution with

ti{x) = t(h)
(3.10) (x=b+cl)
nix) = n(b) - pun{c)

{we established this for general @ I, 1.10).

Notice that since it possesses 4 gcalar involuticn, C(B,u)
iz of degres Z.

From the expression for the norm on L(B,pn), we ses that

it inherits nondegeneracy from B:

3.11 (Nondegeneracy Criterion) I1f the norm bilinear form is
nonsinyular on B, it remaing nonsingular as a billinear
form on EHB,u}- If the norm hilinear form i=s singular
on an alternative B but the norm guadratic form is non-

degenarate, and if p is not a norm, u # ni{b), then n 1s

- PO TR ml"l:l [
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Proof, If z =h + qo is in the radical of the norm bi-

linear form, niz,x) = 0 for all x = a + 4, then from lineari =d

(3.10) n(b,a) - bn{e,d) = 0 for all a,d; setting successively
d =10, a =0 we see n(e,B) = un(ec,B) = q. If ni{x,v) is non-
singular ©n B, this Yielde b =& = 0 and g = 0 so nix,y) is
nonsingular on  {L(B,u).

If we only assume the quadratic form is nondegencrate on
E:, then if z # 0 belongs to the radical of the norm form,
n{z) = n(z,x) = 0 for all Xy We have n{b) = un(c) velt n(b,B)
= n{c,B) = g0, hence n(g),n{c) # 0 by nondegeneracy on
B. DBut by (1.16) the norm in an allernative algebra permits

L n{bc_l}, contrary to

composition, therefore u = n(b)n(c)”
our hypotheses that U not be a norm. Conseguently n is non-

degenerate on @ (B,u). B

T2 see what sort of algebras the Cayley-Dickson construc—

tion leads ta, we prove

3.12 (Criterion) If B ig a unital algebra with scalar in-
volution then (1) C(B,p) is commulbative iff B is com—
mutative with trivial involution; (2) E:{B,p} is

associative iff B ig commutative and associative; (3)

@€ (B, 1) is alternative ifFf B is associative.

Proof. The commutators [#,2] and associators [%,v,2] for

X =a+bly z=0¢+ dab in C(E,u] are spanned by slements of the

form
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(C1)  [a,e] = [a,e]

(C2)  [a,dd] = {d(a-3) 1

(C3) [b2,dL) = u{db-Bd}

(1) [a,b,c] = [a,b,c]

(A2) [a,b,di] = [d(ab)-(db)als {dla,b]l~[d,b,a]}s

(23)  [a.bl,c] = {(ba)c-(ba)al}s [[b,a,c]-[b,c,a]l+bla,s] }2
(A4) [BL,a,c] = {(ba)e-b(sa) i = {[bya,cl+b[a,c]}t
{A5) [a,bl,dr] = u{d(ba)-a(dp)} = p{-[d,b,al+[db,a]}

(A6) [b%,a,d%] = p{d(ba)-(ad)b} = wi-1d,b,al+Idb,al-[a,d,b] |

il

(A7) Tal,bR,cl = u{(ba)e-(cB)al pi[ba,cl~[e,b,a]}

il
I

(48)  [a%,b2,d2] = p{da(ba)-a(bd)le = uild,bal+(b,ald +[a,B,d]1¢
where a,b,c,d & B,

If ©(B,H) is commutative 80 is the subalgebra B, and by (C2)
[a,2] = (a~a)® = 0 implies the involution is trivial. Conversely,
if ab = ba and a = a for all a,b then (C1)-(C3) vanish and @(B,u)
is commutative.

If ©(B,u) is asscciative so is the subalgebra B, and by (A2)
[a,b,4] = [a,b]2 = 0 implies all [a,b] = 0 and B iz commutative.
Conversely, if B is commutative associative all commutators and
associators are zero, so (A1)~ (AB) wanish and T(E,n) is associative.

If €(B,u) is alternative then 0 = [arbR,c]+[bL,a,c]
= -[a,bs,c]+[bR,3,5] (%+X = t(x)1 is nuclear) = [b,c,a]s for

all a,b,c by (43), (a4d), =0 all [b;c,a)] = 0 and B is associative.



Conversely, if B is associative we have left alternativity

h(,!{,y] = [} .F.OI‘ 311 x = a+hl, v = c+dl since

la,a,c+di] = [a,a,c]+{d[a,a]-[d,a,a]}L (al-2)
[b,bl,c+tdl] = u{[bb,c]~[c,B,b]}

+ p{[d,bbl+[b,bld+[b,b,d] 18 (A7-8)
[a;bl,c+dl]+[bi,a,ctdi]

tla,b,cl-[bL,a,cl}+{[a,bt,ds]~[bR,3,ds] }

-[b,c,ali+pla,d,b] (A3-4,A5-6)

all vanish since all associators in B vanish and bb = hb & 2l
commutes with any c or d. Therefare C(B,u) is left alternative,

and dually (wvia the involution) is right alternative. [
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B is the field of veal numbers andg 5l = iy = Al
i &

adratic extznsion 92 is simply the field {L of Lompley

with conqjugation as involution, B, Ls the division
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Find the Cayley-Dicksson

LIS,
4L

o define & general

= 3V & g with u + g =

17 25 % 9 #

T

|
EG

Dxperclees

fornula for multiplicatioen in 3 + f£3 if

"modified Cavyley-Dicksan procsss" C(3,v)

Wl = 0.

I the "modified" zonsbruction L) = #1 & @u in arbitrary characteris-
, 2 :

Eace, Af = 1tk owl o= G, ghow nlx,¥v! iz nensingular 1i£EF L F 4y 1s

LONZ2 XD, Conclude in characteristic 2 it i3 nonsinguleaer no matber

what v is chosen.

_ Y . 1, L . N .

In charagteristic # 2 show u = (1 + i) in B = EJ?,pl} = &1 & &1
g iy 2 ; "

hhag w+u=1, 17 - 11 % ull = 0. What is 1 + evl?

Tt % 15 a sinple algabra, owver an arbitvary ring @ of scalars, wWith

irvalution which is assvciative but not commutative, and u = §

ig inwvartihls, =shew thsz algebra TUS,n) defired as in (3.1) with

Lhe Caylevy-Dickson fTormula [3.3) has oo proper ideals, in

particular is simpla, {

involution scalarx,
elemant F
product of b with £.9
iz & ualtal zlgehbra
valutiosn which is
w that LB, W s
e xamine

commetetaors]

assaciatlve

Hotice B is not

go @{B, u)

nob nseessarily
commutative
cshow Cis assodlabive 1f2 D

lexanline assaciztars)

assumed unital nor the

nead not ba slternative. Also tha

! mes2d not cxistk in_c, sz bf zannot he intergreted as a

over a ring ¢ of scalazs, in-

roalav, show for cancellanlce

Ls vommubtative and * = T

ifr B
commutativa

15

snow L is alternabive iLL (i) B

is altervnabive, (ii} all ni{nh) = bbh = nhh ocommute with B, {iii) all
b o= L) assocvicete with B (ocxamine assooliolors). Show from (iii)
th=z if B has no 3-torsion then B is associative, so * is & centbral
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utizn. Thus to get an altaernative d: ths inwvolution has to
loast geabral anyway; regarding 3 as ah algebra over its
¥ ©, this means % ie secalar avar .

thzt Propositions 3.8 and 3.9 hold over arbitrary rings of

scalars 2 sz long as U is cancellable (Ux = 0 = x = 0).

3.11 holds if U is pangallabla andéd {in Lhe second part)
not =datisfy Lnia) = nin) foar any nfc), ntb) £ 0. Show

holdcs no mabtbter what L we ghooss.,
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