Chapter vIT

Compesition Algebras



£El. Degree 2 algebras

Algebras of degqree 2 play a large role in nonassociative
algebra. Over a field other than 232 they are just the
algebras in which svery element satisfies an equation of
degree 2. In a flexible degree 2 algebra there is a stand-
ard scalar involution, and conversely alyebras with scalar
involutions are always of degree 2, Tn alternative degree 2
algebras we can find simple expressions for inverses, U-operators,

and isotopes in terms of the standard involution.

Defining Conditions

Throughout this chapter we will consider only unital algebras
over a field ¢, though much of what we do goes over for an ar-
bitrary ring of scalars (see Problem Set yIL. 1.1). The pro-
perties of the composition algebras will indicate and illuminate
the properties of general alternative algebras.

We say a unital nonassociative algebra A over the field
is of deqre= 2 over ¢ if every clement x & A satisfies an

egquation of degree 2
(171} x® - t(x)x + n(x)1l = 0 (t({x), nix) & &)
(1.2) el = 25 m{l) =1

where the Pra¢e t is a linear function and the worm n a gquadratic

function of x. (Such algsbras are usually called 1Fﬂﬂtrqﬁﬂh



q,',jdbl"ﬁ-'. but for ulterior motives we shall refrain from

using this term.)

These hypotheses guarantee A ig shvictly dngree 2, 1.8,
BVery scalar extension An remains degree 2 over 2. Indeed,
the linearization process applied to (1.1) vields

2

{hﬁ"y}z—x 'YE} - lelxty) (x+y) - t(x)n-t(v)y]} +in{x+y)-n{x}-n(y) 1

= {0 or

(1.1') X oy -ty - t(¥)x + n{x,y)1l = 0

(using the hypothesis Bl{x+y) = t(x) + t(y) of linearity of +;
here n{x,y) is bilinear by the guadratic nature of n). Once
(1.1) and its linearization (1.1") hold for the elements of A,

they hold for all elements x = Emiai in A (ui & 0, ai-ﬂ A):

x2 = Em?a? + B w,. . a.ca.
i b 4

i<j
2
=7 - -+ TR \ i = . '
Iu&{t{ai]ai n{ai}l} : iEj'E#'{t{al}aj+t{aj]al n{al,a]}l}

2
=1 I+ 2+ Z Juu, tla.)a, ~{su” nla,) + 5 w.w. nia,,a,} 1
i=j i<j i>j ] A - i< 17

2
= E{Iw.tla,) }w.a. = {rfu nf{a.)+ I w,w: ni{a,,a.)
i i 1 x g Sl | i 1 s i< i 173

= tﬂ{xlx R nﬂ{x}l



for tqolx) = uﬁt{aj] the linear extension of ton A to 18 t

2
on @ A = d = I IR — -
AR, an nﬂ(x] ) mintal} i:] “&“ﬁn[alfa]} the

guadratic extension of n en &4 to A

1.3 Remark. Being of degree 2 depends very much on the ring
ol spalars. If 395 ¢ then any ¢-algebra is by restriction
also a Qa-ﬁlgebra, but in general it wan't bhe of degres 2 over
¢G if it is degree 2 over ¢. The troukle is that for A to be

quadratic over 4, all t{x),n(x) must be scalars in g, not

just in ¢. B

1.4 Remark. The conditions {(l1.2) are not automatic conse-
guences of (1.1): 4if A = ¢l has dimension 1 then (1.1) holds
for ' (A) = 23+ eh; n'a) = 2% + 32 but t'(1) = 2 + &
n'(l) = 1 + £ where € can be arbitrary.

However, as socn as A has dimension 2 or more then (1.2)

does follow automatically: setting y = 1 in (1.1') gives

2x = %el = £(1)x + ti{x)l - n{x,1)1, or
{£{1) - 2ix + {t(x) = nix,1)}1 = 0

so if there exists x ¢ ¢1 both coefficients must vanish by
linear independence, t{l) = 2 and k(%) = ni{x.,1). Then U==12rdﬂillﬂﬂ1]l
= in{l}- 1} 1 shwsnil) =1,

Thus (1.2) is automatic if A % ¢l1, and the =ffect of (1.2)

is merely to insure that we have chosen the proper trace and

norm when A = gl. From our point of view, a t and n which don't



satisfy (1.2) are not really the trace and norm for A, i

1.5 Remark. In the course of the previous remark we ineci-

dentally deduced
(1.6} tix) = nix,1)

from {l.l) when x € 31. When x = al € ¢l we have t(x) = at(l) = 2a,
n{x,1) = on{l,1) = 2on(l) = 20 by (1.2), so {1.6) holds for

all elements in a degree 2 algebra. [l

1.7 Remark., If we do not assume t, n arec linear, guadratic

then ﬂq need not remain of degree 2. For example, if ¢ is the
L]

fi=ld & ., then any Boolean (associative) ring is an algebra

over Hz satisfying :-c2 = x for all x, i.e.

xz = E{x)x + n{x)1l = 0 for tix)

11

1, nix) =0

Clearly t is not linear in this case, and if @ is a proper
extension field of ¢ (containing @ # 1,0) anéd A has dimensian > 3
then An is no longer of deqree 2: if 1,a,b € A are independent
then: ¥ = a + wh € Aﬂ.is not of degree 2 {x2 is not linearly

dependent upon 1 and x) because xz = az + wiab+ba) + mzbz =

a + mzh = ¥ + [wz-m}h and {ME—M}b is independent of 1,

x{i.e. of 1, a). B

By Problem Set 1.3, this is the only alternative example

where t is not linear. HNotice in this example ¢ has only two



¢lements, and A has zerc divisors. If © were any bigger, or
A were free of zero divisors, then 2 would have been strictly

degree 2 because of

1.8 (Degree 2 Criteria) Let A be a unitlal alyebra over a
field ¢ such that every element x € A satisfies an equa-

tien of degree 2,

xz + ax + 31 = 0 (¢, @ &€ ¢, depending on x)

Then A will be of degree 2 if either of

(i) ¢ contains more than 2 elements

(ii) A is flexible and contains no zeroc divisors.
In this case we define t and n by t{x) = -¢, nix) = B

if % @ 81, and t(%) = 2%, nix) = 32 for ¥ = AL & ol

Proof. +t(x) and n(x) are well-defined by the abowve formula,
since if x @ %1 then the u,f satisfying x2 + ax + Bl = () are

uniguely determined by x, and it is just a question of whether

t is linear (if it is,n(x)1 = t({x)x - xz is automatically
quadratie).
Certainly t{ix) = At(x): this is trivial if % = 0 or

2 t{x)x + n{x)1l} =0

i

*» € 31, while otherwise Az{x

[I’.x}2 = t{Ax)Ax + n{ix)]l implies A{Xit(x) - t{ix)lx

{lzn{xj - n(dx) }1; since %, 1 are independent if x #@l both

coefficients must wanish, and since A # 0 we seec t(Aix)

At(x), ni{ix) = hzn(x}. It remains only ta show t(x+y) t(x) + t(y).



First consider the case where 1,x,v are dependent: i.e.
they lie in a 2-dimensional subspace @1 + %z. It will suffice

if t is linear on this subspace, t(oal+fz) = at(l) + gt(=z) for
all a,B; clearly we need only consider a8 # 0, and dividing
by o (recall t(ix) =_1t[xj} reduces the problem to showing
t(l4w) = t(1) + t(w) for any w. Here we may assume w € §l,
g0 t(w+l) (w+l) - ntw+i]l = {w+1}2 = wE + 2w + 1 =

E(wlw -niw)l + 2w + 1 implies {equating coecfficients of w)
t{w+l) = t(w) + 2 = t(w) + t{1).

Now assume 1,x,y are independent. Then {x+ly}2 = KE - {ijg
= Alxy+yx) = ﬁ{{x+y]2-x2—y2} and the formulas for squares give
{t(x+dy) (x+A¥)-n(x+Ay) 1} - {t{x}x-n(x)1] - {t(Ay)Ay-n(iy)1l} =
ME (x+y) Gety)=n(x+y) 1} - A{t(x)x-n(x)1} - A{t(y)y-n)l}. By

indeperndence we can equate coefficients of x and of ¥y to get

Elx+dy) = t(x) = Ati{x+y) - At(x) ,

At (x+ay) = 22E(y) = At(xdy) - Atly) .

50 far we haven't used (i} or (ii). If we assume || » 2
we can choosa A # 0, 1 in %; dividing the second relation by

A and subtracting from the first gives
(A1) {t(x+y) - ti{x) - t(¥)} =0

and we can cancel A-1 # 0 to get t(xty) = t(x) + t({y). Thus

linearity is easy in case (i).



Suppose now § = 2!2 Lut that A is flexible without zero

divisors. For 1,%,y independent as bhefore We can rewrite

2_ 2 _ 2

ey = ({uty) v asg

(%) xoy = {b(x+vi-t(x)}x + {t{x+y)-t(iy)iy - {nixty)-n(x)-n(y)31

by the formula for Squares (compare with (1.1')).

Firgst assume [x,¥] = 0. Since = 2 Wwe are in cha-

2
racteristic 2, so [x.y] = 0 is equivalent to xsy = (. Because

1,%,v are independent the coefficients in ( * ) must all vanish,
Elxty) = (%) = £{y), nix+y) = n(x) + niy).

Now the assumption that A has no zero divizors guarantees
n(z) -# 0 for z ¢ 3l: if n(z) = 0 then 0 = zz = EifE)e
= 2{z - t(z)1} forces z = 0 ar z = t(=z)1. If we also assume
§ = z.? then the only nonzero scalar is 1, 50 ni(z) = 1 for
z € $1. By independence cf l,x,¥y we know x,v,x+y & ¢l, conse-
quently n{z+y) = n(x) = n(y) = 1. Tut this contradicts
ni{xty) = n(x) + n(y), and therefore l2x,¥] = 0 is impossible
for 1l,x.,y independent.

Thus [x,¥] # 0. Commuting the relalian ( * ) with x gives

[X,xoy] = {t(x+y)-t(y)}[x,v]. On the sther hand, when A is

flexible [x,xey] = - [y,xz] (linsarizing [x,xEJ = 0, or using
flexibility directly X(xy+yx) = (xy+yx)x = ®ixy) = (vxix =

xzy = [xe,y1 =~ [y,x.x] - yx2 = [xE,y]} and - Iy,le =

= ly.tix)x - n(x)1] = - tix)[v,x] = tix)[x,v]. Identifving



coefficients of [x,y] # 0 gives t(x+y) - t{y) = t(x). Thus

linearity holds in case (ii). B

Involutions
We can introduce a standaprd invelvtion

{L.9) ¥ = t({x)l - x

in any degree 2 algebra. The meEp ®x -+ X¥ is clearly lincar
of period 2, x** = {t(x)1-x}* = t(x)1% - x* = £{3)1 - x* = x
singe 1% = £(1)1 - 1 =2 - 1 = 1 by (1.2). Thus * is a linear
involutien,

2

The degree 2 equation (l1.1) becomes n{x)l = t(X)x - x° =

x{t{x)l - 2} = xx*, s0

(1.10) % gk =0t ix)]
(Trace and Horm Formolas)

(1.11) Xx* = x%x = n(x)1
Thus the standard involution has the property that all norms
xx* and traces x + x* lie in ®1. In general, an involution *
on a linear algebra A is called a $cxlar yavelvtion if all
norms and traces are scalars in ¢l: xx* = n(x)] and x + x* = t{x)1.

Despite its name, the standard involution need not be an
involution of algebras. To measure how Ffar it deviates from
the involution condition (xy)* = v*x* we write v = z* and
compute (xz®)* — zu* = £(xz*)1 - xz% - zyx% = tl{xz*)1l - nix,z)1.

The condition that * be an involution is therefore



(1.12) n(x,y) = tlxy*) = t{x)tly) ~ t(@w){Involution Condition)

Notice that since nix,y) is symmetric, (1.12) implies
(1.13) S tlxy) = tiyx)
For a flexible algebra the involution condition is always met.

{1.14}) (Scalar Involution Criterion) If A is a flexihle
degree 2 algebra the standard involution x* = t(x)1 - x
is a secalar involution on A. Conversely, if an al-
gebra A has a scalar involution * it is of degree 2
over ¢ and the standard involution associated with A

is just *,
Procof. Assume A is flexible of degree 2. We know

0 = 2(xey) — Xoxy {Lx{Lx+Rx] = ELH+RKILK by flexibility)
= xft(x)y+re¥l=n (2, v) 1} - {Lixvtt(my)a-nilx, 2yl (by (1.1")

t{y}{t{x)x-n(x)1] = nix,yIx - tixy)lx + ni{x,xy)1l {(by (1.1)
on %)

I

Il

{tlx)ely) = tilxy) = nlx,y)Ix + in{x,xy)-t(yv)in(x) 1.

If x € ¢1 then by independence the coefficients of x and 1 must



vanish, hence t{x)t(y) - t(xy) - n(x,y)

0 as in (1.12), On

the other hand, (1.12) ig trivial for x ¢l € ¥1 since

Il

t(l) = 2 by (1.2) and n(l,y) = t{y) by (1.6). Thus the In-
volution Condition is met for all x,v when A ia [lexible,
Tf A has a scalar invelution we can run bthe trace and
norm formulas x + x* = t(x)1, xx* = n{x)l backwards to get
2

the degree 2 eguation: nix)l = =x* = x{t(x)]1 - x} = £f{x)x - x

becomeas

x% - t{x)x + n(x)1 = 0

where t, n are automatically linear and guadratic. This gives
1

(1.1), and (1.2) comes from t(1)1l = 1 + 1%* = 2, n(l)l = 1-1* =

Therefore A is degrec 2. Its standard involution x% = t£(x)l1 - x

coincides with the original invelution. [

In particular, all Cayley algebras are of degree 2, which
is the reason we are interested in degrec 2 algebras.

In the first part of the akbove proof the coefficient

ni{x,xy) - tf{yln{x} of 1 vanished for x @ ¢1; on the other hand
nix,xy}) = t(y)n{x)
is trivial for x = ol € %1 since n{l) = 1 by (1.2) and n(l,y)

= tiy} by (l1.6) again. Thersfore the relation holds for all x.
Linearization gives ni{x,zy) + n{z,xy) = t{yin(x,z) or n(xy,z)

= nix,tly)z) - nlx,zv) = nix,zv*).

10



1]

Thus right multiplication R? by y becomes right multipli-
cation by v* when moved across the bilinear norm form, or in

other words the adjoint relative to the bilinear form is

Changing notation we have

R* = . D ¥ = 5

& RY* ually Ly Ly*
ni{xa,b) = nla,x*b)

{1.15) : (2djoint formulas)
n{ax,b) = nl{a bx*)

in any flexible degree 2 algebra. These formulas are very
useful for shifting factorsz from one side to another.

When the algebra is alternative of degree 2 the norm has

the additional property that it permits cempesition in the
sense that it is multiplicative: the norm of a product is the

product of the norms,
(1.16) nixy) = n(x)n(ly)

This most useful property will be used to characterize degree 2
algebras in the next section; it can be derived directly from
alternativity and the involution: nixy) = (xy) (xy)* = (xy) (y*x*)

= (xy) (yrit(x)-xh) = £ (xy)y* - (xy) (y*x) = £()x(yy?) - x(yy*)x

(middle Moufang) = {t(x)x-x"In(y) = n{(x)n(y).

The above proof shows how useful the invelution can be in
proving results about degree 2 algebras., The involution also leads

to succinct formulations for inverses, U-operators, and isotopes,



11

1.17 [(Inverse Criterion) 2an element x of an alternative

algebra of degres 2 is invertible iff its norm is Nonzero,

in which case

x_l = n(x]_l xr o,

Proof. The relation xx* = x*x = n(x)1l shows ¥ o= n{x]—1 >
is the inverse of x (xy=yx=1) when n(x) # 0, and when n{x) = 0
the relation xx* = 0 shows x is a zero divisor (note x*#0 if
*x#0) and therefore not invertible. {Alternately, if x iz in-

vertible then 1=n(l)=n(xv)=n(xin(y) shows n(x)#0.) [ |

1.18 Corollary. An alternative algebra of degree 2 iz a

division algebra iff itas norm form is anisotropic (dees not

represgent zsarog);

n{x) = 0 only for x = 0 . B

In the case of an alternative degree 2 algebra, the U-op-
erator alsc takes on a particularly simple form in terms of

the standard involution:

(1.19a) Uy = n{x,;y*)x - n(x)y*

(1.19b) ny* =ni{x,yv)x - n{¥)y (U-formulas)
(1.19e¢) ux® = nix)x

It suffices to prove (k) (for (c) recall nix,x) = 2n{x)):

nyi = X¥¥*x = (xy* + yx¥)x - v(x*x) (by alternativity [v.x*,x]
= ly.t(x)1l - x,x] = - [y¥,x,x] = 0) = n(x,y)x - n(x)y (using

{1.11) and its linearization).



13

Aty isotope of a deqree 2 alternative algebra remains

degree 2, indeed

1.20 (Isotope Formula) If & is a dagree 2 alternative

algebra then any isotope A{u’v} is again a degrae 2

algebra,
xzfu.v} - t{u'V}[X}K i n(u,vlix}ltu.VJ =0
where t{u’v){x] = ni{x, {uv)*) and n‘u’Vj{x} = n{uv)n({x).
Procf. 1In ﬂ{u,vl the sguare is g (V) Ux{uvi =

n(x, (uv)*)x = n(x) (uv)* (by the U-formula 1.19) where (uw)*

1 {u,v) 2(u,w)

= n(uv) (uv) (by 1.17) = n{uv)l s BD X = nf{x, (uv)*)x

- n{x)nuv) 1 MeV) _ o luev) AN TR L R

L t{u,v}’ niu,vl

wWwere. -

are linear and guadratic if the old Ones
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Example; Construction of Degree 2 Algebras

We now construct all degree 2 algebras A over & field ®
of characteristic # 2. Since t{l) = 2 # 0 by a&sumpticn on

the characteristic, any such algebra has a vector Spaca

decompesition
(1.21) A= 0l 5 A (a_ = xer t = {xg al t(x) = oh.

We define a bilinear form O and an alternating bilinear
rroduct * on the space Aﬂ by
(1.223 gfa,b) = Lt(ab)

ta,bE-Aﬂ}
E:qh Lo ﬂb g ‘}(arbllu

Claarly beoth of these are bilinear. HNote that ax*b is back in
A bacauvsa t(a*b} = t(ab) - 2c{a,b) = 0. To see the product

is alternating, chserve first

(1.23) gla,a}) = -nla)
since taking traces of a.2 = tl{a)a - nf{all = -nf(a)l far aEhc‘
vields t[a.2) = -2Zn{a), or Jla,a) = -nla). Thus a<a = a2 - J{a,a)l
= a2 + niall = az - t{a)a + ni{a)l = 0 for -a.E.ﬁG.

Conversely, if we are given a bilinear form 0 and an
alternating product » on a vectar space AG we <an form an algebra
I!.{I-‘.D,CF, =)
Ly tLaking A ta ke 41 & JJ.D a5 a wvector space, where the product of x

= gl + a and v = A1 + b (g,RE€ P, a, bEAD}I is defined as

{1.24) ¥y = {af + cla.p) ]l & {ab + Ba + axh}.
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Clearly & is a linear algebra with unit 1, and it is degree

Z because
xz = [l + a}2
= {a® * o(a,a)}1 @ {202 + axa}
= {a® 4+ ola,a)ll @ 2aa (¥ is altarnating)
= 20{al & a} - {g® - ola,a)l}1
= ti=)x - ni(x)l
for
(lL.25} t(x) = t{al + a) = 2u
ni{x) = nial + a) = 32 - agla,a).

These constructions ars inverses. If wa start from a
degrea 2 alﬁebra A, construct ¢ and % an Aa’ then construct
A{AG,G,X} we get A back again: p = 91 & AD is canonically isomorphic
to ﬂ{ﬂﬂ.q,x} as a veator space, and the products in bBoth
algebras are the same 5ince 1 acts as unit and the Product Aﬂ is
given by
ak = o(a,b)l + axb (2,b€a )

according to (1.22) for A and (1.24) for E{EO;H;N}. Note also

that the trace and norm given by (1,25) are tha ariginal trace

and norm: for = = wl + a @A we hava t(x) = 20 since t{g] = 0

by definition of a.E.FuD, hence n{x) = -1211{1:! + un(l,a) + nla)
2 2

= o + atla}) + n(a) (by (1.2) and {1.68)) = & + nia)

uz - d(a,a) (by (1.23)).

On the other hand, if we start with g0 and ¥ on hu, canstruct

A = Athn,ﬁ,x} of degree 2, than the form ¢' and product x!



constructed from A on Xer t = Au {by (1.25)) are g'(a,b)

= ht{ab) (by (1.22)) =% « 2{¢(a,b)} (by (1.25) and (1.24))

gfa,b) and ax'b = ab - ¢'(a,b)1 (by(l.22)) = ab = gla,b)l

axb (by [(1.24)).

Thus there is a 1-1 correspondence between triples

{AG,G,XI and degres 2 algshras & = A{ﬁg,g,x}. This establishes

the first part of

(Degree 2 Construction Theoresm) The degree 2 algebras over a
field ¢ of characteristic # 2 are precisely all
A = RIEG.GIW}
where 0 is a bilinear form and % an alternating hilinsar product
on AO.
The standard involution * on A = EIAD,G,NI iz a true
involution of algehras 1iff
(i) o is symmetric.

R is flexible iff g ig symmetric and

(ii) og{axb,a) = 0
A is alternative 1£ff ¢ is symmetric, satisfies (1i), and also
satisfies

(iid) ax({axh) = gl{a,a)b - gla,pla.

Proof. Tha Inwvolution Condition {(1.11) shows * is an

involution iff ni(x,y) - t{x)t{wv) + t{xy) = {288 - g(a,d) - T(b,a)}

16

- {2 t28) + 2{aB + Y(a,b}] (by (1.25) and (1.24)) = 0 (a,b}] - O{h,a)

vanishes identically, i.e. iff ¢ is5 svmmetric.
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In (1.12) we saw a necessary condition for * to be an

involution was t(xy) = t{yx). B8ince t{xy) = tiyx) € o(a,b)

= Glbsa) by (1.25] 69 (1.84), %e now-see 1t is necessary and

sufficient in characteristic 2.
Flexibility means [x,y,x] = [0l + a, 81 + b, ol + a]

= [a/b,a] wvanishes identically, or L, commutes with R_on bg A
equivalantly La commutes with La + Ra oan b: a(boa) = {abloa. Here
alboa) - (ablea = a{t{a)b + t{bla - n(a,b)1} - {t(abla + t(a)ahb
- nlab,a)l} (by 1.1")) = -n(la,b)a - t{ab)a + n(ab,a)l (tl{a) = t(b)
= 0] = {ola,k) + d(bya)la - 20(a,bla - olaxb,a)l (by (L.23), (1.24),
(L.25)). TIdentifving coefficisnts in B_ and 21, the conditicns
for flexibilitv are
{1} ofa,b) - g{bsa) = 0
{ii) ofaxb,a) = 0
Wota that this gives an alternate proef of (1.13) that
flexibility implies * is an inwvolution.
Left alternativity means the vanishing of [x,%x.v]
= [l + a, ul + a, A1 + b] = [a,a,n] = azh - afab) = ota,alb
- a{o{a,b)l + axb} = c(a,alh - c{a,b)a - {ola,axb)l + ax{axb)}.
Identifying compenents in &1 and HD, the conditions for left
alternativity are
{(ii} ' ola,axb) = ©
(idii) ax*{axb) = ogf{a,alb - gla,mla
Thus alternativity (= left alternativity + Fflexibility) is=s

ezguivalent te (i) + (ii) + (iii).

Ramark. From this we can easily construct examples of degraea

2 algebras A whersa
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(1) * is not an involution
(take any non-symmetric o),

(i) * is an in volution hut A is not flexible
(take 0 symmetric but choase ¥ so T{axb,a) Z 0),

(iii) B is flexikle but not alternative

(for example, choose 0 = 0 but a%(axb) Z 0).

In Proklem Set VIT.1.2 we will see how to construct all

degree 2 algebras in characteristic 2.
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VII. 1 Exercises

Show that any (unital) subalgebra and any homomorphic

image of a degree 2 alyebra is degree 2.

Show that any 2 elements in an alternative degree 2

algebra generate (together with the unit) a subalgebra
spanned by 4 elements. Write down a multiplication table.
Conclude that any 2 elements generate an associative
subkalgebra.

Show that any unital algebra of dimension 2 over a field o is
automatically of degree 2,

Multiply (l.1') on hoth sides to show eimultanecusly that
in an alternative degree 2 algsbra ni{zy) = n(x)n(y) and
nix,yl = tixy*).

show that the standard invelution in & degree 2 algebra

is a true involution iff [x,v,x] € ¢l for all x,y, and
deduce anew that the Involution Criterion is met by all
flexible algebras.

Show that a degree 2 algebra is flexible iff nix.¥)

= t(xitly) = tixy) and nix,xv) = ti{yv)n(x) ftor all x,vy.

Give an example of a degree 2 algebra which is not flexible

vet * 15 a true involution.
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In A = MRD.G.KJ of degree 2 derive a formula for
n{xy) - n(x)n(y) and use it to show n permits composition iff
(i) d&{a,b) = 0(b,a)
(ii} O(axb,a) = 0
(1ii) O(axb,axb) = O(a,b)> - 0(a,a)T(b,b).
Deduce that if n permits compocsition then A is flexibla
If & is alternative (soli),(ii) hald), apply ¢ to

ax*(a*b) = o(a,a})b - 0fa,bla and use linearized (ii} teo derive

(1ii} dizectly.



VII,1l.1 Problem Set on Arbitrary ¢

Define degree 2 algebra A and standard involutions * over

an arbitrary ring of scalars #. Show that all scalar
extensions A remain degree 2.

Show (1.1} need not imply (1.2) whenever & does not act
faithfully on A,

If t,n satisfy (1.1) show £{1)l = 2 iff n(1)1 = 1. If &
acts faithfully, conclude t(l) = 2 iff n(l) = 1.

If A contains "independent” elements 1, x such that

el + Bx = 0 implies w = [ = 0, show (l.1) implies (1.2).

Do Ex. 1.2 over general o.

If A has a scalar involution, show A is of degree 2 over ¢l.
(WARNING: Since we are not assuming ¢ acts faithfully on

A, cannot identify ¢ with #1; in general, n(x),t(x) € al
can't be lifted to guadratic and linear fi({x),¥(x) € ¢ satis-
fying M(x)1 = n(x),¥ (x)1l = £(x).)

Find the Involution Condition, and show that it reduces to
(1,12) when & acts faithfully.-

Show that if A is a flexible degree 2 algebra and & contalns
no nilpotent elements then the standard involution is a

true involution.

Show that an element of an alternative algebra with scalcr

involution is invertible iff its norm is invertible in ¢.
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L2,

Deduce that if A is an alternative division algebra of

degree 2 over ¢, where ¢ acts faithfully on A, then ¢ must

be a field.

un-field.

The nexkt series of exercises lead kLo a conskbruction

of an associative degree 2 zalgebra which deoes not permit

Give an example where ¢ is unfaithful and an

composition and on which * is not an inweoclution. Throughout

wa let M be a f-moduls and O: M=M == ¢ a bilinear form on M,

If we take A = $1 @ M with product determined by l+a

= x=1 = x and mimz = d{ml.mz}lr show & is a degree 2 algebra

2

over & with ®i(x) = 2a, nl(x) = & - gi{m,m) £for x = pl + m.

If ¢ is chosen so that its walues annihilate M, o(M,M)M

0

(if & waere a fisld, or more generally M were torsicn-free,

this would force 0 = 0) show A is associative. If xi =

1

+ m,
o, 1 'ﬂ‘l

o

*
: =4 i = T I - 1 . ®
show lxlxz} ni{x ,le j{mz,m ] j{ml,mz}, deducae that

1

is an inwveolution i1ff o0 is symmetric. Show n(xlxzj - nlx

p 2
mlaz[ﬂfmlrmzl - U{mz,mll} - {Jtml,ml} - a{ml,ml}U[m

2

deduce that n permits composition iff g dis symmetric and

3 e
U{ml.mzl = G{ml;mljﬂtmz.mzl for all m
gaondition holde mutomatically: gi{M,MIM = 00 implies
FiM,Mja{M,M = 0. In particular, the elamsnts of o(M,M)
nilpotent) .,

Conecluds that if g is a non-svmmetric bilinear form with

1

}n[xz}

.mz}}:

l-szbL [Tha latter

are

gf{M, M} = 0 then A = a(M,g) is an associative degree 2 algebra

which n=ither admits composition neoer has ® an involution. A=

an

22



2
example take ¢ = 4 [¢] where " =0, M= ¢ m. & & m
0 ol o

@G with €M = 0, ¢ defined by acmi,mil = 0, G[ﬁlrmzl

Ufmz,ml} = uﬁa 7 E,

2

free over

Ey

23
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¥II.l.2 Problem Set: Construction in characteristic 2

We will show how to construct all degree 2 algebras &

aver a field ¢ of characteristic 2. We first consider the.

traceless case where t(x) = 0 for all x.

If o iz traceless cof degree 2 then xz = nix)1l for all =. Let
A = 81 @ A be any vector space deccmposition of A, with pro-

Jecztion T, on %1 and T, on B Defineg a bilinear fnim o and
alternating product * on AG by
akbh = o{a,b})l & a=b

[i.2, axh = ﬂa{ah] and gfl{a,.h]l = Tlfabjj. Show % is altarnating
and o(a,a) = nial.
Given a bilinaar form ¢ and alternating preduct % on B show the
algebra Aiﬂa,u,x] = &1 & AG with product

xy = (ol + al(Bl + b) = {af + c(a,b}}1 @ {ub + Ba + axh}
defines a traceless degree 2 algebra with norm nix) = n{al + a)

2 :
= a = 0(a,a). Coneclude all traceless degras 2 algebras in

e

characteristic 2 have the form & = a{nc,ﬂ,x} for saome hn.d.x-

Thus the construction which in characteristic # 2 gives
all degree 2 algebras gives, in characteristic 2, precissly the
traceless degreec 2 algebras. Horeover, the triple {ho.dfxi
is not uniguely determined by &, and the conditions under which

two such triples give isomeorphic algebras seem to be messy.
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In the traceless case the standard involution dagenerates,

x" = t{x)1 - x = x. Show B = EL{HD,-:F,:-:} i commutative iff

0 is symmetric i1ff n(x,y) = 0; show A is flexible iff n{x,y) = 0
1ff A is commutative iff (i) o{a,b) = 0O(b,a); show A is left

alternative iff (ii) C{a,axk) = 0, (iii) ax{axk} = ogla,alb
- Gf{a,b)a; show 2 is alternative iff (i), (ii1), (iii) (in
which case A 1s commutative and asscciative, thus merely a scalar

extension A of ¢ of "exponent™ 1}.

Agrocing that traceless degrss 2 altesrnative algekras

are unrewarding, we pass to the traceful case t # 0.

In such a traceful degrese 2 aloebra A we £ix & vector u with

t{u}) = 1. Show wa have & vector-space decomposition

(o1 + @uJJ‘u {xea|n{l,x} = nf{u,x} = 0}

A = &1l & Tu & A for A
L ]

ginge 91 + du is a hyperbolic plane relative to the bkhilinear

form n{*,*) (in the sense that n(l,1l) = nf{u,u) = 0, n(l,u)
= n{n:l) = 11, Ehow the product of a,heﬁg iz given by
(1} abk = gla.bjl @ 1{a,bju ® axk

whezxe 0,7 are bkilinear forms and % a bilinear product satisfying

gla,b)l = nlab,ul
(L'} Tla,b) = nlak,l) = +t{ab)
dla,a}) = nla) Tla,al = 0 a¥a = 0,
In particular, 1 and *¥ are alternating. Show the product of u
with ashA 1i=s
]
3] an = CO{al)l & Tt({a)u & axu

Tfall & T{alu & uxa

us



where ¢,T are linear functionale and uX,%u linear transformations

on A given hy
{E'{ o(a) = n(ua,u), T(a) = n(ua,l) = t(ua), axu + uxa = a.

2
Show u” = u + Yl for Y = n(u). Deduce that the product of

x =0l + Yyu +a, y=081+ 8u+ b is given by the egregious formula
xy = {af + véuy + o{a,b) + voib) + So(a)ll @
{3) [ad + 8y + yB + tla,b) + ¥yT(b) + 87(a)lu &

1¢b + Bz + axb + vuxb + Saxul

Show the trace and norm of x #l + Yyu + a are

ti{x} N

(4)

ni{x) mz il b sz + gia,a).

Conversely, given bilinear forms ¢,T on AD with T alternating,
linear forme O,1 on ﬁc' @ bilinear alternating product * on
A, a scalar pe?®, and linear transformations u* and *u on Ac

o

with u¥a + axu = a, show that ths alosbra

A A{AD,G,T,D,I,p,x.ux.Ku}
which is A = ¢1 & du @ AD as vector space, together with the

product (3), is & degree 2 algebra with norm and trace (4) .

Show the constructions & e EAG,U,I,G,T,u,x,uX,Ku} are inverses,
Ba that the traceful degree 2 algebras in characteristic 2 are

wracisely the R[RG,G;T.Urﬂrerru“r“ui-

Show B = Alﬂg,U,T,U,T,ﬂ.W,uI,KuJ is commutative iff ﬁc = 0; show
* is an involutieon iff (i) T(a,b) = TJl{a,b) + oib,a) and (ii)
T{a) = 0 for all a,baacg show A is flexible iff (i), (ii), and

(1ii) o(a) = 0, (iv) ofa,b) = T{a,uxh), (v} T{a,axb) = 0; show

Adie alternative iff (i) -{v) hold a=z well as



(vi)

(vii)

{viii)

ux{uxa)
ux(axhb)

ax{axh)

]

u%a + Ja
ax{uxb) = axb

O(a,a)b + Cla,bla + T{a,b)axu.
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VII. 1.3 Problem Set: Algebras which are almost degree two

In this set of problems we investigate algebras in which

every element satisfies a guadratic equation, but the trace
iz not linear. Throughout A denotes a unital algabra over a

field ® which is almest degree 3 in the sense that each ele-

ment ® & & satisfies an egquation 22 ~ ax + Bl = 0 for some

o, B & E.

1. Define t(x) = 2, nix) = § if = &€ &1 and t{gl) = 2a,
ni{agl) = ag. Show t(Ax) = At(x), ni{ix) = Azn{xj, t{x+rl)
= ti(x) + 24, ni{x+Al) = n(x) + rt(x)} + n{Al).

2. To mecasure how far the trace t is from being linear, define

Alxey) = tix+y) - ti{x) - t{y). Thus t is linear iff
4 = 0. Show (1) A(x,y) = 0 if =,y are dependent; {ii}
Alxedy) = AAlx,y) = Alx,v) 1f 3 # 0, and concludse A = 0
if ¢ » 2; (iii) A(x,1) = 0; (iv) Alx,y+z) - Alx+v,z)
= A{x,¥) - Alyez): (v) Alx,y+ixtyul) = alx.y): (vi} if
¥, ¥.2,1 are independent A(xX,v) = a({v,2) = al=z,.x).

3, If A is not of degree 2 then ¢ = zzz ; 50 each Alx,v) is

1 or 0 (with at least one pair where A takes the wvalue 1).
Show that if ﬂ{KDrFD} = 1 then Alx,y) = 1 iff x,v,1 inde-
pendent. Bhow the "anti-trace" s(x) (defined to be 0 for
x € ¢1 and 1 + t{x) for x € 4l) is additive: s(x+y) =

s5(x) + s(y). Show s = 0 iff xoy = xy + yx € ¢l for all x,v.



If A is not of degree 2 show [x,x,y] + [x,v.x] + [v,x.,x]
= x9y for all x,y. Bhow A is commutative iff [x,x,v] +
[x,y,%x] + [v,x,x] S 0 (in which case s = 0 also). Give

an example where 8 Z 0 yet A is not commutative.

Frove Slater's Almes¥ =but-nmet —guite “ThesweM:Tf 2 is
alternative and almost degree 2, bhut is nat of degree 2,

then A iz Boolean: :-:2 = x for all x&A,.
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