§4. Ideal-building

An ideal in a Peirce space generates an ideal in the whole algebra which can be described explicitly. The connector ideal generated by \mathbf{A}_{10} is a measure of how close $\mathbf{A}_{10}\mathbf{A}_{01}$ is to \mathbf{A}_{11} , the alternator ideal generated by \mathbf{A}_{10}^2 measures how close \mathbf{A}_{10}^2 is to 0, and the ideal generated by an ideal \mathbf{B}_{ii} of \mathbf{A}_{ii} measures simplicity of \mathbf{A}_{ii} . From such considerations we show a Peirce subalgebra \mathbf{A}_{ii} inherits simplicity, primeness, or semiprimeness from A.

In this section we will use the Peirce relations to build ideals. We will be able to see that a Peirce subalgebra Aii inherits many of the properties of A. Throughout we consider a Peirce decomposition relative to a single fixed idempotent e. All indices are either 0 or 1, and i and j are always assumed distinct.

We begin by investigating the ideal generated by a subspace of an off-diagonal Peirce space.

4.1 (Off-diagonal Ideal-Building Lemma) If B_{ij} is a subspace of A_{ij} such that $A_{ii}B_{ij} \subset B_{ij}$, $B_{ij}A_{jj} \subset B_{ij}$, $[A_{ij},A_{ji},B_{ij}] \subset B_{ij}$ then the ideal in A generated by B_{ij} is

$$T(B_{ij}) = B_{ii} + B_{ij} + B_{ji} + B_{jj}$$

for

$$B_{ii} = B_{ij}A_{ji}$$
, $B_{jj} = A_{ji}B_{ij}$, $B_{ji} = B_{jj}A_{ji} + A_{ji}B_{ii} + A_{ij}B_{ij}$.

Proof. It suffices to prove the above sum B is an ideal, since it clearly is generated by B_{ij} . We check only that B is a left ideal.

We have $A_{ii}^B = A_{ii}^B_{ii} + A_{li}^B_{lj}$ where $A_{ii}^B_{li} = A_{ii}(B_{ij}^A_{ji})$ = $(A_{ii}^B_{ij})^A_{ji} \subset B_{ij}^A_{ji} = B_{ii}$ and $A_{ii}^B_{ij} \subset B_{ij}$ by Peirce associativity and our hypothesis. We have $A_{jj}^B = A_{jj}^B_{jj} + A_{jj}^B_{ji}$ where $A_{jj}^B_{jj} = A_{jj}(A_{ji}^B_{ij}) = (A_{jj}^A_{ji})^B_{ij} \subset A_{ji}^B_{ij} = B_{jj}$ and $A_{jj}^B_{ji} = A_{jj}(B_{jj}^A_{ji} + A_{ji}^B_{ii} + A_{ij}^B_{ij}) \subset (A_{jj}^B_{jj})^A_{ji} + (A_{jj}^A_{ji})^B_{ii} + (A_{ij}^A_{jj})^B_{ij}$ (Peirce associativity and Slipping Formula) \subset $B_{jj}^A_{ji} + A_{ji}^B_{ii} + A_{ij}^B_{ij} = B_{ji}$.

We have $A_{ij}^B = A_{ij}^B_{jj} + A_{ij}^B_{ji} + A_{ij}^B_{ij}$ where $A_{ij}^B_{ij}^B_{ji}$ by definition, $A_{ij}^B_{jj} = A_{ij}^A_{ji}^B_{ij} = (A_{ij}^A_{ji})_{Bij} - [A_{ij}^A_{ji}^B_{ij}]$

 $A_{ii}B_{ij} + B_{ij}$ B_{ij} by our stronger invariance hypotheses about B_{ij} , and $A_{ij}B_{ji} = A_{ij}B_{jj}A_{ji} + A_{ji}B_{ii} + A_{ij}B_{ij} = (A_{ij}B_{jj})A_{ji} + (A_{ij}A_{ji})B_{ii} + B_{ij}\{A_{ij}A_{ij}\}$ (Peirce associativity and Permuting Formula) $B_{ij}A_{ji} + A_{ii}B_{ii} + B_{ij}A_{ji}$ (A_{ij}B_{jj} B_{ij} above) B_{ii} .

Similarly $A_{ji}^{B} = A_{ji}^{B}_{ii} + A_{ji}^{B}_{ij} + A_{ji}^{B}_{ji}$ where $A_{ji}^{B}_{ij} = B_{jj}$, $A_{ji}^{B}_{ii} \subset B_{ji}$ by definition, and $A_{ji}^{B}_{ji} = A_{ji}^{B}_{jj}^{A}_{ji} + A_{ji}^{B}_{ii} + A_{ij}^{B}_{ij}^{B}$ $\subset [A_{ji}^{A}_{ji}]^{B}_{jj} + B_{ii}^{A}_{ji}^{A}_{ji} + (A_{ji}^{A}_{ij})^{B}_{ij} - [A_{ji}^{A}_{ij}, B_{ij}]$ (Slipping Formula) $\subset A_{ij}^{B}_{jj} + B_{ii}^{A}_{ij} + 0 - B_{ij}$ (hypothesis)

where we just saw $A_{ij}B_{jj}$ B_{ij} above and $B_{ii}A_{ij} = (B_{ij}A_{ji})A_{ij}$ $= (B_{ij}A_{ji})A_{ij}$ hypothesis).

Thus AB ⊂ B and B is a left ideal.

Important: note the ij-component of $I(B_{ij})$ is just the B_{ij} we started with.

Certainly B $_{\rm ij}$ = A $_{\rm ij}$ is as invariant as can be. Adding I(A $_{\rm 10}$) and I(A $_{\rm 01}$) gives

4.2 (Connector Lemma) If e is an idempotent in A then the ideal generated by ${\rm A}_{10}$ and ${\rm A}_{01}$ is the connector ideal

$$c = A_{10}A_{01} + A_{10} + A_{01} + A_{01}A_{10}$$
.

This has the very important result that idempotents in a simple algebra are "connected" (in a sense to be made clear in the next section.)

4.3 (Connector Corollary) If $e \neq 1$, 0 is a proper idempotent in a simple alternative algebra then $A_{10}A_{01} = A_{11}$, $A_{01}A_{10} = A_{00}$.

Proof. If C=0 then $A_{10}=A_{01}=0$, $A=A_{11}+A_{00}$ is by Peirce orthogonality a direct sum of ideals, so by simplicity either $A=A_{11}$ (whence e=1) or $A=A_{00}$ (whence e=0), contradiction. Therefore C=A and $A_{ij}A_{ji}=C_{ii}=A_{ii}$.

Since $A_{ij}^{}A_{ji}^{}$ is always in the nucleus of $A_{ii}^{}$ by (3.12),

we see that a proper Peirce subalgebra A_{ii} of a simple alternative algebra is always associative: the diagonal pieces are associative, and any non-associativity creeps in from the off-diagonal pieces. We proceed to estimate this non-associativity.

4.4 (Alternator Lemma) If e is an idempotent in A then the ideal generated by ${\tt A}_{j\,i}^2$ is the alternator ideal

$$B = B_{ii} + B_{ij} + B_{ji} + B_{jj}$$

for
$$B_{ii} = A_{ji}^2 A_{ji}$$
, $B_{jj} = A_{ji} A_{ji}^2$, $B_{ij} = A_{ji}^2$, $B_{ji} = A_{ji}^2$, $B_{ji} = A_{ji}^2 A_{ji} + A_{ji}^2 A_{ji} + A_{ij}^2 A_{ji}$.

Proof. This follows immediately from the Ideal-Building Lemma once we verify invariance of $B_{ij} = A_{ji}^2$. We have $A_{ii}A_{ji}^2 \subset A_{ji}^2 \qquad \text{and} \ A_{ji}^2 A_{jj} \subset A_{ji}^2 \text{ by Slipping Formulas (3.8),}$ and $[A_{ij}, A_{ji}, B_{ij}] = -[A_{ji}, A_{ij}, B_{ij}] = -(A_{ji}A_{ij})B_{ij} + A_{ji}(A_{ij}B_{ij}) \subset 0 + A_{ji}A_{ij}^2 \subset A_{ji}A_{ji} = B_{ij}$.

This too has important consequences for simple algebras.

4.5 (Alternator Corollary) If $c \neq 1$, 0 is a proper idempotent in a simple alternative algebra A then either $A_{10}^2 = A_{01}^2 = 0$ and A is associative, or else $A_{10}^2 = A_{01}$ and $A_{01}^2 = A_{10}$.

Proof. If $A_{10}^2 = A_{01}^2 = 0$ then (since we already know $A_{10}A_{01}$) = A_{11} , $A_{01}A_{10} = A_{00}$ by the Connector Corollary 4.3) we can

conclude A is associative by the Peirce Associativity Criterion 3.16.

On the other hand, if (say) $A_{01}^2 \neq 0$ then the alternator ideal B determined by $B_{10} = A_{01}^2$ is nonzero, hence by simplicity must be all of A; in particular, $A_{10} = B_{10} = A_{01}^2$ and $A_{11} = B_{11} = B_{10}^A = A_{01}^A = A_{01}^A = A_{01}^A = A_{10}^A = A_{10}^A$

What if $A_{01}^2 \neq 0$ but $A_{10}^2 = 0$? It seems strangely messy to rule this out directly (see Ex. 4.4), but with a little help from some radicals we can dispose of it. Since A contains an idempotent it is not nil; if its nil radical is not everything, by simplicity it must be nothing, and in particular A is strongly semiprime (no trivial elements; see V.4). But if $A_{10}^2 = 0$, $A_{10}^2 = A_{10}$ the elements of A_{01} are trivial: $U_{\mathbf{X}_{01}} = 0$, $A_{10} = 0$, $A_{01} =$

4.6 Remark. The Peirce relations $A_{10} = A_{01}^2$ and $A_{01}A_{10} = A_{00}$ or a simple not-associative alternative algebra provide another demonstration that a Cayley algebra (split or not) contains no proper one-sided ideals. If B is proper then n(B) = 0, if t(B) = 0 as well then $n(C,B) = t(C^*B) \subset t(B)$ (left ideal!) t(B) = 0 would contradict nondegeneracy of t(C,C), so we must have t(C) = 1 (and of course t(C) = 0) for some t(C) = 0. Then t(C) = 00 idempotent; in the Peirce decomposition t(C) = t(C) = t(C)1 in t(C) = t(C)2 in t(C) = t(C)3.

we have $\mathbb{C}_{11} \oplus \mathbb{C}_{01} = \mathbb{C}_{e} \subset \mathbb{B}$, hence also $\mathbb{C}_{10} = \mathbb{C}_{10}^{2} \subset \mathbb{B}$ (the trick of getting \mathbb{C}_{10} from \mathbb{C}_{01} is impossible for associative algebras) and so $\mathbb{C}_{00} = \mathbb{C}_{01} \mathbb{C}_{10} \subset \mathbb{B}$. Thus $\mathbb{B} = \mathbb{C}$, which is most improper.

4.7 (Diagonal Ideal-Building Lemma) If B_{ii} is an ideal in the Peirce space A_{ii} then the ideal generated by B_{ii} is

$$I(B_{ii}) = B_{ii} + B_{ij} + B_{ji} + B_{jj} = B_{ii} + B_{ii}A_{ij} + A_{ji}B_{ii} + A_{ji}B_{ii}A_{ij}$$

Proof. Clearly B_{ii} generates the above subspace B, so it is enough to verify it is an ideal, and as usual we only check it is a left ideal.

We have $A_{ii}B = A_{ii}B_{ii} + A_{ii}B_{ij}$ where $A_{ii}B_{ii} \subset B_{ii}$ since B_{ii} is an ideal in A_{ii} , and $A_{ii}B_{ij} = A_{ii}(B_{ii}A_{ij}) = (A_{ii}B_{ii})A_{ij} \subset B_{ii}A_{ij} = B_{ij}$ by Peirce associativity. Similarly $A_{jj}B = A_{jj}B_{jj} + A_{jj}B_{ji}$ where $A_{jj}B_{ji} = A_{jj}(A_{ji}B_{ii}) \subset (A_{jj}A_{ji})B_{ii} \subset A_{ji}B_{ii} = B_{ji}$ by Peirce associativity, so $A_{jj}B_{jj} = A_{jj}(B_{ji}A_{ij}) = (A_{jj}B_{ji})A_{ij} \subset B_{ji}A_{ij} = B_{jj}$.

We have $A_{ji}B = A_{ji}B_{ii} + A_{ji}B_{ij} + A_{ji}B_{ji}$ where $A_{ji}B_{ii} = B_{ji}$, $A_{ji}B_{ij} = B_{jj}$, and $A_{ji}B_{ji} = A_{ji}(A_{ji}B_{ii}) = B_{ii}(A_{ji}A_{ji}) \subset B_{ii}A_{ij}$ = B_{ij} by Slipping Formula (3.8).

We have $A_{ij}B = A_{ij}B_{jj} + A_{ij}B_{ji} + A_{ij}B_{ij}$ where $A_{ij}B_{ji} = A_{ij}(A_{ji}B_{ii}) = (A_{ij}A_{ji})B_{ii} \subset A_{ii}B_{ii} \subset B_{ii}$ as usual, $A_{ij}B_{ij} = A_{ij}(B_{ii}A_{ij}) = (A_{ij}A_{ij})B_{ii} \subset A_{ji}B_{ii} = B_{ji}$ by the Slipping Formula (3.8), and $A_{ij}B_{jj} = A_{ij}(A_{ji}B_{ij}) = (A_{ij}A_{ji})B_{ij} = (A_{ij}A_{ij})B_{ij} = (A_{ij}A_{ij})B_{ij}$

Again, it is very important that the ii-component of $I(B_{ii})$ is just the original space B_{ii} we began with. Thus $I(B_{ii})$ is a proper ideal in A if B_{ii} is a proper ideal in A_{ii} . As an immediate consequence,

4.8 (Simple Inheritance Theorem) If Λ is a simple alternative algebra, so is any Peirce subalgebra A_{ii}.

To see that $\textbf{A}_{\textbf{i}\, \textbf{i}}$ inherits properties other than simplicity from A we need a

4.9 Lemma. If B_{ii} , C_{ii} are ideals in A_{ii} then the ideal generated by their product is the product of the ideals they generate,

$$I(B_{ii}C_{ii}) = I(B_{ii})I(C_{ii})$$
.

Proof. Containment one direction is easy: as the product of ideals, $I(B_{ii})T(C_{ii})$ is itself an ideal, containing $B_{ii}C_{ii}$ and therefore $I(B_{ii}|C_{ii})$. In the other direction, by the explicit expression for $I(C_{ii})$ we have $B_{ii}I(C_{ii}) = B_{ii}C_{ii} + C_{ii}A_{ij} + A_{ji}C_{ii}A_{ij} = B_{ii}C_{ii} + (B_{ii}C_{ii})A_{ij} \subset I(B_{ii}C_{ii})$, so B_{ii} belongs to the left transporter of $I(C_{ii})$ into $I(B_{ii}C_{ii})$; since this transporter is an ideal by the Transportation Lemma IV.2.4, $I(B_{ii})$ also belongs to the transporter, and $I(B_{ii})I(C_{ii}) \subset I(B_{ii}C_{ii})$.

From this we see that if $B_{i\,i}$ is trivial, solvable, or nilpotent so is $I(B_{i\,i})$. Therefore

4.10 (Inheritance Corollary) If A is simple, prime, or semiprime so is any Peirce subalgebra A; .

We can sum up by saying that the correspondence $B_{ii} + I(B_{ii})$ is an injective map from the ideals in A_{ii} to the ideals in A_{i} , which preserves sums and products. If B_{ii} has a property definable in terms of inclusion, sums, and products then $I(B_{ii})$ will inherit this property. If A is free of ideals with this property, the same will be true of A_{ii} .

VI.4 Exercises

- 4.1 Show that if B_{ij} , C_{ji} are subspaces of A_{ij} , A_{ji} satisfying the invariance conditions $A_{ii}^{B}{}_{ij} \subset B_{ij}$, $C_{ji}^{A}{}_{ii} \subset C_{ji}$ then $B_{ij}^{C}{}_{ji}$ is an ideal in A_{ii} . Conclude $A_{ij}^{A}{}_{ji}$, $A_{ij}^{A}{}_{ij}^{2}$, $A_{ij}^{A}{}_{ij}^{A}$, are ideals in A_{ii} .
- 4.2 Prove directly that $A_{10}A_{01} + A_{10} + A_{01} + A_{00}$ is an ideal in A.
- 4.3 Use the remarks after the Connection Corollary 4.3 to show that a simple alternative algebra with two nonzero non-supplementary orthogonal idempotents e_1, e_2 ($e_1, e_2 \neq 0$ and $e_1+e_2 \neq 1$) is associative.
- 4.4. If $A_{10}^2 = 0$ but $A_{01}^2 = A_{10}$ and $A_{10}A_{01} = A_{11}$, show $[A_{10},A_{10},A_{01}] = [A_{01},A_{01},A_{10}] = 0$. Show $B_{01} = A_{00}X_{01}A_{11}$ has the necessary invariance properties for the Ideal-Building Lemma 4.1 whenever $X_{01} \in A_{01}$, and $B_{01}^2 = 0$. Conclude $I(B_{01}) \neq A$. Deduce that $A_{10}^2 = 0$, $A_{01}^2 \neq 0$ is impossible in a simple algebra A. (There must be a better way !)
- 4.5 Show $z = z_{10} + z_{01}$ ($z_{ij} = \{z_{ij} \in A_{ij} | z_{ij}A_{ji} = A_{ji}z_{ij} = 0\}$ is a nilpotent ideal in A, $z^3 = 0$, consisting entirely of trivial elements z, $U_zA = 0$. Conclude that if A is semiprime then z = 0, so $A_{ij}A_{ij}^2 = A_{ij}^2A_{ij} = 0$ implies $A_{ij}^2 = 0$.
- 4.6 If B_{ii} is an <u>arbitrary</u> subspace of A_{ii}, find an expression for the ideal generated by B_{ii}. Repeat for an arbitrary subspace B_{ij} of A_{ij}.

- 4.7 Find an expression for the left ideal in A generated by a left ideal B $_{\dot{1}\dot{1}}$ of the Peirce subalgebra A $_{\dot{1}\dot{1}}$.
- 4.8 Show Rad(eAe) = eAe Λ Rad A without availing yourself of the elementwise characterization of the radical, by showing B₁₁ = Rad(eAe) generates a q.i. ideal in Λ.
- 4.9 Prove computationally that $T(B_{ii})T(C_{ii}) \subset T(B_{ii}C_{ii})$ as in Lemma 4.9.
- 4.10 Although it is not in general true that $I(B_{ii} \cap C_{ii}) = I(B_{ii}) \cap I(C_{ii})$ when B_{ii} , $C_{ii} \wedge A_{ii}$, show it comes close: $I(B_{ii} \cap C_{ii}) \wedge I(B_{ii}) \cap I(C_{ii})$ and $\{I(B_{ii}) \cap I(C_{ii})\}^2 \cap I(B_{ii}) \cap I(C_{ii}) \cap I(C_{ii})\}$.

VI. 4.1 Problem Set on Prime Algebras

- 1. If A is prime show zC = 0 (C a nonzero ideal) implies z = 0.
- 2. If $z_{ii}^{A}_{ij} = 0$ show z_{ii} kills the connector ideal.
- 3. Show that if A is prime and e \neq 0, 1 a proper idempotent then $z_{ii}^{A}{}_{ij} = 0$ or $a_{ji}z_{ii} = 0$ implies $z_{ii} = 0$. Conclude that a_{11} and a_{00} are associative.
- 4. Show that if Λ is prime and $z_{jj}A_{ij}^2=0$ then either $z_{jj}=0$ or $A_{ij}^2=0$.
- 5. Prove the <u>Theorem</u>. If A is a prime alternative algebra and $e \neq 0$, 1 a proper idempotent, then either A is associative or else $A_{10}^2 + A_{01}^2 \neq 0$ and A_{11} , A_{00} are commutative, associative integral domains acting faithfully on $A_{10}^2 + A_{01}^2$.

This generalizes the results for simple algebras (where the ${\tt A}_{ ext{ii}}$ are fields).