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5. Strong semlprimeness

Bacause Ideals are so messy to construet in an alternative algebra (the
ideal generated by z does not have the simple form 'f(z) = 123], it is desirable

to have an element-condition for semiprimeness rather than an ideal conditiom.
Strong semiprimeness (the absence of trivial elements) is a convenilent and use=
ful concept, which always implies semiprimeneas and is equivalent to it in
characteristic # 3 situations. Slinko's Theorem asserts that en alpehra generated
by trivial elemente is locally nilpotent, se an algebra with no locally nilpotent

ideals is mecessarily atrongly semiprime,

We say A is !"I‘r-nnalj semiprmme if It contains no trivial elements, an
element z being Yrivial if U A = 0. Before III,1.11 we noted that the
existence of trivial elements was equivalent to the existence of S+riatly
trivial elements Uzg = 0,

A strongly semiprime algebra is certainly semiprime, for if it were tg
contain a trivial ideal B any element b& B would be trivial: U A = h(ab) ¢ BB
= (), In the assoclative case it is easy to show that a trivial element generates
8 trivial ideal, s0 & semiprime algebra is alsc atrongly semiprime, This does
not quite work in the alternative case, although trouble only occurs in charsc-
terigtie 3 (uhiech 42 the troublesome characteristie for alternative elgebraal,

Since e do not want to reatrict ourselves to algebras ovar fields, by
“eharacteristic ¢ 3" we could mean " %i.-b", i.e,, multiplication by 3 is a

bijective linear transformation. However, it is actually emough if 3 is

aurjective or injective.

5.1 (Eleinfeld's Strong Semiprimeness Theorem) If A is a semiprime alternaetive

algebra on which 3 is injective or suriective then A {is strongly semiprime: 1f A
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contalng oo trivial {ideals HE = (] it containg no triviasl elements zAz = 0,

Proof. Suppose A is semiprime but does contain trivial slements, hence
a atrietly trivial z 4 0; zAz = 0, In the associative case a trivial z would
belong to Il:z)J' o {u|whz = zhw = 0}, hence z g 1(z) N I[z}"L = () by semi-

primeness.

This suggests wa lock at the alternative analogue
(5.2) W(z) = {w@ |l (wA)z = w(Az) = (zA)w = z(Aw) = O}.

Since zw = wz = 0 and any associator [z,A,w] = 0, such w alse satisfy

z(wA) = w(zA) = (Az)w = (Aw)z = 0. Thus any product of z,w and one other factor
vanishea. In partlecular z g W[:}“' , and z & W{z) by strict triviality§

g0 pnce more z & W(z) N WE,‘!}J" . We atill have B\ B> = 0 for an ideal B in a
pemiprime alternative alpebra, so if z ¥ 0 the trouble must be thhe W(z) 1is net
an ideal. How close is W(z) to being an ideal in the altarnative case? It
certainly is a linear subspace, and how far it is from heing closed under multi-
plication is measured by how far each Aw + wA is from satisfying the dafining
conditions (5.2) for W(z), namely how far W(z,w) = {(Aw+wajﬁlz -k (am+wﬁj{iz}

+ {zA} (Awhwd) + ={A(Awhed)} 18 from baing zaro. Thus if W{z) 4s not an idesl
there must exist w & W(z) with AwheA & W(z) and W(z,w) ¥ 0. Note, however,

that we cannot specify which is the offending w. Holding z and w fixed -

let ua set
£{a,b) = [w,a,h]z, g(a,b) = z[a,b,w].
We claim W = W(z,w) has the simple expression.

5.3 We £0A,0) + g(a,A) < zA 0\ Az
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This follows immediately from the following expressions for the terms con-

gtituting W:

£(a,b) = [(ra)b)z = {b(aw) }s = 2{(aw)b} =
= Uzlhiaw] = (za)(wb) = (bw)(za) = (az) (bw)
(5.4) gla,b) = zfhiaw)} = 2{(wa)b} = [b(wa)lz

= “a,b(m] = (bw) (az)

£(a,b) + gla,b) = {(bw)al=

{az} (wb) = (wb)(za)

(wa) (bz) = z{alwb)} = (zh) (aw).

The first of these follows from the following calculations, recalling that any

product of z,w, and one other factor ia zero!

[wya,blz = {(walblz - {w{ab)lz
—[blanw]Z w —f{(ba)wlz + {blaw) }z
U, 4 (aw) = z{(aw)b} + b{{aw)z} = {z(aw) b + {blaw) }=

= (za) (wb) + (ba) (wz) (Middle Moufang)
Upa,u¥ = (za) {wb} + biw(za) } = {{za)w}b + {bwl(za)

Ua*wa = g{z{bw) } + (bw){zal = {ax}(bw) + {(bw)z la.

The specond follows by writing everything down backwarda, i.e., applying the
fivar to A" (note £(a,b)°F = {(wea) blez = z{b(wa)} = -z[b,a,w] = z[a,b,w]
= g(a,b)). The third follows from f(a,b) + gla,b) = {b(awtwa) }z
= [{(ba)w]z + [(bw)a)lz and also = {(wa)b + b(wa)lz = (wal{bz} + b{(walz}, then
ﬁ.ﬂing duglity.

We want to find the ideal generated by W. We hegin by showing W is

closed under commutators,

[Aawlew,
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By symmetry in (3,3) we need only show [a,f(b,c)] @ W for all a,b,c& A, We
are claiming af(b,c) = £(b,c)a modulo W, But by (5,4) af(b,c) = a-Uziﬂ{hw)
= {{az) (bw)}e + {(mc)(bw)}z ~(Right Moufang) = £(a,b)c + £(b,ac) = £(a,b)e
since £(4,4) C W, This shows f£(a,b)e 1is an alternating function of its

arguments, congruent to zere if a=b or b = ¢, so af(h,e) = f(a,b)c = £(b,c)a
a8 claimed.
This closure under commutators allows us to define B = AW = WA without

ambiguity, Note
(5.5) zB = 0

since zB = z{ﬁi}c z{i(zﬂ}! (by (5.3)) = (zAz)A (by left Moufang)
= 0 (by strict triviality)., Now in a semiprime algehra ?{z}n z“"i‘ contains
no nonzero ideals (if C ¢ T(z) has zC = 0 then =z & AnnLtC) =] A implien
ceitz) Ann, (€} 80 CC = 0 and C would be trivial). In our case C = T(W) is
contained in i(s) gince W f{z), and E{U} le nonzero since W is nonzero, so

I(W) must not be snnihilated by z: 2T 0.

Thus z kills B but not all of 'fEW) = f(BL From the Commutator Derivation
Formula III.2.10 we conclude 3[A,W,A] = [W,A*Al-[W,AlA~A[W,A]C W-WA=AW C AU.

Therefore 3AB = 3A(AW) = 3(AA)W-3[A,A,W] € AW, and similarly on the right, so
(5.6) - 3AB + 3BACC B,

and B 1a close to being an ideal. TF 3 is surjeetive then 3A = A and by (5,6)
B is already an idesl; but then z kills B = I(B) . by (5.5), which is
impassible, If 3 18 injective then z killa 3-.13 = {xi Al'."lnx € B for some a}
gince 3%zx = :-.:(Elnx} & zB = 0 (by (5.5) implies zx = O by injectivity, and
37" 18 an 1deal by (5.6) aince 1f I"x €8 then 3™ (uarar) = 3{¢I™m)ArA(3%00}
C 3{BA+AB} C B and xivhx € 37'B; but then 2 kills f(w) = T(8) € 3°"B, which ie
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Thus Lf 3 is injective or sutjective, no z ¢ 0 exists, |

A
in the associative case a trivial z generatea a trivial L(z) by a trivial
proof. In the alternative case the proof ls not only highly nentrivial, it

does not show ?(z) ig trivisl -~ indeed it does not construct any epecific
trivial ideal out of =z.

As with semiprimeness, we would like to be able to take an arbitrary
algebra and remove an undesirable piece T(A) to obtain a strongly semiprime
algebra A/T(A). The Strongly semiprme rodical T(A) of an
alternative algebra im the smallest ideal B A such that A/B is strongly
samiprime, Soch a B always exists: the intersection B = N Bu of all ddeals
B“ with strongly semiprime guotients A!Eﬂ is certainly contained in all ideals
with that property, yat it has the property itself pince if &A= A/B 1a
trivial (U-i = § or U A CB) then z 1s trivial mod all B (U AC B B,), so
belonga to all B, by strong semiprimenesa of AIBﬂ. hence z belongs to r'IBu = B

and z = 0 .

5.8 ({(Strong Semiprime Radicel Theorem) Every alternative algebra A contains

a unique smallest ideal T(A) such that A/T(A) is strongly semiprime. |

5.9 Corollary. 4 is atrongly semiprime iff T(A) = 0, [

T({A) is the smallest ideal we can divide out by and still gat rid of trivial
slements. We would like a better idea of exasectly what must .be removed. Certainly
we must get rid of tha ideal Triv(A) generated by all trivial elememts. In fact,
ag in 5.9

A 1is strongly semiprime <m=» Triv(i) = 0.
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WARNING: In general T(A) > Triv(A). Just because we have divided out by all

trivial elements in A doeen't mean the result is trivig-free: there may well

exist elaments which sre not themselves trivial, UA # 0, but become trivial in
R = A/Triv(A), UAC Triv(4).

In case there is trivia laft over aftar dividing sut by Triv(A), we must
rapeat the procedure, After a (possibly) tranafinite number of steps we will
reach T{i). (Bee Ex. 3.9 Y.

This gives a fairly concrete plcture of hew ta build T{A), but we would
prefer dome intrinsic information about T(A) and Triv(A). The first thing to

note is that we can replace "generated by trivia" by "spanned by trivia'.

5.11 Lemma, Triv{A) consists of all finite sums 24 EREEE 2 af trivial elements
Z—i.

Proof, Triv(i) certalnly contsins all such finite suma, Conversely these
finite sums form a submet closed under additicn (obviously!), scalar multiplica-
tiem (sinnce each oz, is trivial i1if zg i8), and left or right multiplications
(since each az;, 2,8 is trivial if zy is: both Uaz = Lgﬂzﬂa = 0 =nd
U = RhUzLa =0 1f Um = 0 by the Left and Right Findamental Formulas). [l

za
From this it 1A oot hard (see Ex, 5.15) to derive one useful bit of infag-
mation about Triv(A) — although it need not be nilpotent ss an algebra, at
least its elemants are nilpotent: Triv(A) is a nil ideasl.
We can actually do much batter if we are willing to work at it: Triv(A) is
locslly nilpotent. The proof of this involves some combingtorial techniques which
will come in handy later in studying polynemial identities (Appendix I). We bagin

with some praliminarles on Jordan polynomialas.
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Let Fralt{xl,"',xﬂ} and Frass{xl,'-*,xn} be the free alternative and
free asgociative algebras respéctivaly on gensraters ®patttX . We have a

o
canonical paventhesis - deleting homomorphism Fralt + Frass given by
X, x5 ve denote the image of f = f{xl,"'.x“} € Pralt by £ = fa(xl.-",xn}
& Frasa, If &y belong to an alternative slgebra A we can evaluate £ at the

a f(al,"'.an). Similarly we can evaluate fI:r at ii in an asscclative

5
algebra E:fdlfi-l.-“,.tﬂ}- A Jordan palynomial in Fralt is an element which
can ba huilt up from the geunerators %y by taking linear cembinations and Jordan
products (x?',::ny,xyx] L

The Left Moufang formuls says the map x -+ T.x prasaervas linear combinstions

and Jordan products, so it also preserves Jordan polynomiala,

5.12 (Generalized Left Moufang Formula) Left multiplication by a Jordan poly-

nomial is the Jordan palynomial of left multiplications,

d
Ly PR =P rRE L }
Blayieersa) T2 e L

whenever pfxl,-n.xn} iz a Jordan polynomial end al,.-u,anE A

Proof, Since the Jordan polynomials in XpaomeaX are the elementa of the
gmallest subspace of Fralt{xl.“'.xn} cantaining the Xy and closed under Jordan
products, it suffices to prove the set P = {alternative polynomials

Pixl,"',anL . pg(Li "-:Lx- 3} = {pILﬁ = p7(L)} is such a subspace.

1t L

o
Clearly P contains p(x '“"In:' = x, aince p {xn.---,xn,‘.l = x, and

blxjireaix)

g
L = L = is 1 L
5 in = xi{in} =p ( xi} It 1s linear since 4

= mpg{L}+Bqﬂ{,L) -{'r:-p+Bq}c{L] from the fact that p - p'—: iz linear. Sinee

pHeq ~ TPl

p -+ Pcr is also a homomorphism of alternative algabras, qup = LPLqLP {left
Moufang) = p° (L)q" (L)p“ (L) = {p%¢"p%} (L) = {pqp}®(L) and similarly
LP;.: = {pz}d{L], g0 P 1s closed under pgp and pz and consequently under Jordam

products, [
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5,13 (Leading Term Theorem) If w = A 1s 4 word on an orderad alphabet
xl <onag xﬁ which begins with X but ends with X, for k < n, then there exiats

& Jordan monomial F{xls”' ;Ku} such that the associative polynomial pu (xl,“' . ,:-:“)

has w as its lexicographically leading constituent: p':!f =yt Ewﬁ for

W, < @ in the lexicographic order.

Proaf, HNote that a Jordan monomial need not be en alternative monomlal:
xoy e a Jordan monomial but zy+yx is an slternative polynomial rather than

monomial ,
&3 %r
Weite w = ®_ wl'--xn"wr far w, = wi(xl,"'.xn_l} words not involving X5

by hypothesis e. > 1 and Eiwr 2 1l. We will show there is p with 1:nn|:F =y Ewu

1

where w_ begins with =, for 1 < n (hence LA w), and wa do this by induction

-

onr., Ifr=l, wmw lxi LA %y {ik_ < mn), then the only term beginning with
1 cTE

j=]

2

1 _
ﬂxil}ﬂ }nxiﬂ is X xil xia = 3, If the only term

o | ®r-1
beginning with x in Py is X Cwiteer U W

o

X, in pi for Py = {(x 1

a1

i then the only term beginning

' =)
U r-l. LIS |
With'.-ﬂn in PI for P].' = ({'[Up ,X Kn ;ﬁxi :'l-a ]qxi ia that of
r-1 il o .
Er E E.r_l E‘I:' E]_ Er 1
Fr_lxn ::ilxiz ™ .xiﬂ . namaly LG e e M 53 xil "a .xiag-_,,_-n w o .xu -

=w, B

T
x W
-1"n r

5,14 Lemma, If Zys®* 'y are trivial elements in an alternative algebra then

any pru¢uct Lz --le of left multiplications La of length W = E“(n+1}! vanishes,

iy iﬂ i

Proof. We induct on n, the case n = O being vacuous. Assume the result for

n=-1

n=1l, so any monomial of length Hﬂ = 2 "nl| involving only Lz .-*-,Lz vanishes.

1 n-1
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We can write any monomial of length N = 2“(n+1)| in Lz ,'-',.Lz as

i 5 1

LR ] = iy LN =] e i
wr[I.-z i ’Lz ) Lz. Lz whera w[xl, ,xn] X, ey is an (associative)

1 n il iH 1 ]

word on the alphabet of letters xl,“',x“. We order this alphabet in the

natural way ® < x, <rres X and prove the result by induction on the

lexicographic order of the word w. This induction pets off the ground, since

i g=2

the lowast word of length K is xi y and Lz g

=]
. LEH = ) {note 2y = zi{z }51 = )
1 1
if e > 3, and here N 3_21[1+1]| = 4),

Agssume the result W'{LB ,"',LI } = 0 for lexicographically lower words
1. i
w!' <y, Write

a Er
Wos R TW, Yy L
ogn 1 =1"n "¢

for e, » 1 and WystttaW

i

p- DOREmpty words wi[xl,“-,xn_l} not involving x_.

Here w(L_ ,+**,L ) will vanigh 1f any e, > 3 (recall Li =Le=01f e 2 3)

1 e i 1
or 1f any wy has length i_Hu (by the induction hypothesls on n-1), Thus we may
r T r -
: n : .
agsume e, < 2 and 3w, < N - Then (n+l)2 n! = N = iy = je; + %Bwi iliz + IN

= 2ra(rHLN, < (pH1) (249 ) = (pH)2N = (x+1)2°nl  forces n < 1.

If one of the w, for 1 < 1 < r-1 has degree 1, w, = x,, then w(L ,"**,L )}
i i i 1 21 2

1 0
=[] by ﬂnﬁzn m (, Thus

e e a,~1 B
= () since already L ~ L L i, L 5 L - i 4 +#l
“n zj % “n “n i "n

we may assume the monomials Wiptt W which are surrounded by xn's have degree

r=1

» 2% there are r-1l > n-1 of these and only n-1 variables 1-:1.'”.::“_1. an two end

in the same x.: w, = wix , wj = w:'lxk for 1 =4 <] =r-1. By 5.13 there im a

®141 8
Jordan monomial Dfxl,"',xn) having v = x W 1“'xn

14 jw:i as lexicographically

leading monmomial,
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P(ﬂl,"'.Hn] =y Evu

for monomiale (words) vy of the seme degree but lexleographically lower than

e a
v, Here v 1g a middle segment of w, w = w'vw'" for w' = wnxul-'-xniui

e &
e, i T "o j+1 S X "
= (wa wi)Ik u'x, and w xkxn wj+1 X Cwo= o ut Because the v, are

lexicographically lower than v (but of the same degree) the o, = w'vﬁw" are

lecicopraphically lower than w = w'ww" (but of the sams degrea K): since thay
both begin with w', the first place w'vuw" and wlvw'" differ ls the firat place
where v, differs from v, and in that place v  has the lower letter, so w'vﬁw”
has a lower lettar than w'vw'" in the first place they differ, Thus by lexico-

graphic induction w (L ,"**,L_) = 0, TFrom
43 zl an

W= ' =y (p-Ev“)w" = w'pe" - Ewu
we see

wll_ ol ) =mowf(L  yee=,L dp(L 4tetiL JW'(L sern,L )
24 z z4 2" gy B 74 7

L] u'(Lz ."“LE }L

40 L) (by 5.12)
=
1 n

T

L L "L
zk Pizll"':zn) EkF ( El

a ' ras L )L "L i L lafic Moufan
4 {Lzl’ g En} katﬂls"'rznjﬂk“ ¢ 2y Eﬂj ¢ " &)

a 0,
Erom ;skAzk = (0, This completes the lexicographic subinduction on w and the

dagree inducticn on n. .

5.15 (Elinkeo's Local Theorem) An altarnative algebra generated by a finite

number of trivial elements is nilpotent.

Proof, Let A be gensrated by trivial elementa zl,---.z By the Hormal

a
Form Theorem for Elements I.7.10, every element of ﬁk ig 8 linear combimation of

?nd order monomlals Wy [sz.'“wr):l where each wy = 211{312{{“-515]} iz a lat order
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monomial in the generators 2, , and where the degrees of the Wy add up to at

j!

least k: Ewl e i Ewr > k.

By Lemma 5.14 we know there is an integer N = N(t) such that

L sl = ( whenever Ypootey, ere trivial and d > N. Thus all our
¥ y ==
i:il. id-—l
w, =L L =L {zi ) of degree g = awi > N(n) are zero. Consider the
1 i § a :
1 =2 s-1
finite numbex Wyttt of nonzern lst order monomiala W, of degree < W(nl).

Once more wil(wizt.“'wi 3 o= Lw Lw ---LW {wi } =0 for r * N(m). But

then AH(n)H[m} is spanned by wl{wzl'_“ -wr}} for &wl & e awr > H(n)H{m), where

r-1

this monomial wanishes if some 3w, > W(n), and 1f all Bw, < N(n) then

i i ]
Hin) » Bwl LEE Eur > N{m)N(n) implies r > N{(m) so wl{wzlf_'“wr}) = [} anyway.

2 ﬁH(n]H[m?

Thu = (0 and A is nilpotent. |

A plobal version of the theorem is

5,16 (5linka's Global Theorem) An alternative algebra which is genserated by

trivial elements is locally nilpotent.

Proof. Let B be s finltely generated subalgebra of an algebra A generated
by trivial elements; we must prove B is nilpotent. How cach of the finitely

many gencrators bl,"‘,bn of B i= a polynomial h:l. - piizil’“"zin{i]} in a

finite nusber of tiivial 31;1 by our hypothesis that A 18 generated by trivial

alements ao B 1s contained in the subalgebra C generated by the finite number

of triviagl elements zy (1 24 %n,1%1%oli)). By the local version of the

3
theorem C is nilpotent, hence its usubalpebra B is nilpotent too. |
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3,17 Corollary. If A is an alternative algebra then Triv(A) is locally

nilpotent: Triv(AJC L(a). @

5.18 Corollary, If A contains no locally nilpotent ideals, it is strongly

semiprimz, @

5.19 Corollary. TCAYC L(a), B
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5.2

3.4

243

5.6

Exercises IV.5

It is not in general true that if 8 €8 1g surjective on A then A can

1"
be imbedded in an algebra A on which o is bijective (sineca A itself can

have o-torsion); howaver, it 1s true when A is semiprime, Show

Alv] = {2 € Alva = 0} 15 & Y-invariant ideal, as 1s A[¥ ] = {a| some

Tka = 0}, and & = A}A[Tm] has no Y-toraion (¥ € I'(A) in the centroid).

If A 18 semiprime show Y"x = 0 Byx = 0, A[Y ] = A[Y]. Show that if

o is surjective on a semiprime A, it is bijective. If ¥,8 are relatively
prime (1 = ay+B&) show A[Y]y ALS] = 0.

If A has no 3-torsion show A is imbedded in A = AR QE

(3) 3y Qg =
rationals with denominator a power of 3). Show 3 iz bijective on

h'I:E)’ and A{B} iz semiprime 1ff A is.

Exerclges 5.1 and 5.2 Bhow we could have assumad %E ¥ without

logs of generality in proving the Strong Senmdprimeness Theoream.

Finish the proof of the Strong Semiprimeness Theorem as follows: using
(5.5) and (5.6) show 3VB = 0 and (3B} = 0. Use Semiprime Inharitance

to conclude 3VA = 0. If 3 is injective or surjective conclude V = 0,

Prove the Strong Semiprimeness Inheritarce Theorem. If A 1s strongly
semiprime, so is any ideal B=3 A or any Peirce subalgebra ehe

(e & ;.1dempntent].

Show by example that A strongly semiprime docs not imply all homomorphie
images F(A) = A/E are strongly semiprime,

Prove that strong semiprimeness is recoverable: 41f A/B and B are

strongly semiprime, so is A.
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5.7 TProve that a subdirect sum of strongly semiprime alpebras 1s again
gtrongly semiprime, Conclude that a direect sum or preduct inherits
gtrong semiprimeness from the factors.

5.8 Show directly from the definition that T(A) = A iff all nonzero
homomorphic images of A contain trivial elements, and T(&) = 0 1iff A
has ne trivial elements.

5.9 Establish the Recursive Comstruction: If we define T;.,_(A} for ordinala

A recursively by TO{A} =0, Ty (A) = Trivl:A,Tl{A)} = {ideal generated
by all elements trivial mod Tl(ﬁ}}, and Tl(A} #L{l‘:lTu(A} for a limit

ordinal 2, then T, (&) = T(A) for |[|2][ > [4].

A
5,10 If B is an ideal in A, show B/B/M\T(A) is atrongly semiprime; conclude
T(AYC B M T(A). Use the recursive construction of Ex. 5.9 to show

BN TEEA}C T(R) at each stage. DNeduca the Strong Samiprime Radical

Inheritance Theorem: If B ig an ddesl in 4 then

T(B) = BM T(4).

5,11 Prove Ex. 5,10 by showing B F\Tl{ﬂ} = TA(B) at each inductive stap.

5.12 An element 2 of an arbitrary nonassoclative algebra A da tyivial if
z{Az) = 0, Show there exlsts a smallest ideal T(A)<) A such that
AJT(A) has no trivial elements. Show z{Az)C T(Al=bz & T(A).

5,13 A y=Tequence is & sequence g s¥ys "t whara X 41 ™ xn{ynxﬂ) for soame Y3
the sequenca bcgin.s wich X4 and 'h'.rmil‘m-*e:s if one }:n = 0 (hence 511
% = 0 for m * n). BShow if x&€ T(A) there existe z non-terminating
y—gequence beginning with Xpye If B is maximel among all ddeals missing a

non-terminating u-sequance show B is prime in A, i.e., CDC B imply one

of the ideals € or D 1s comtained in B,



5.14 In an atbitrary nonassoelative algebra A, ahow
T{A) =2 {:»:|all u-gequences beginning with x terminate}
2 M (prime ideals)} = S(A).
5.15 Show that if vy is nilpotent and z trivial then x = ytz is w¥ipatent.

Conclude that Trdv (4) 1s a nil ideal.



