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84, Loecal nilpotence

Although solyability and nilpotence are not equivalent in peneral, they
coincide in the presence of certain finiteness conditions, We haye already

seen this for algebras with a.c.c. or d.c.c.; in the present section we eatahlish
Zhevlakev's Equivalence Theorem that for finitely generated algebras solvability,
nilpotence, and nilpotence of all multiplication alpebras are squivalent. This
shows that local solvability and local nilpotence are equivalent, and allows us

to define the locally nilpatent ar Levitzki radical.

Finitely generated algebras

The methods to be used in the finitely generated case have a combinatorial
flavor. We begin by obtaining a "monotone normal form" for miltiplication
operators, where we linearly order the monomials in Tyt TRy in such a way as
to respect degree: we linearly order the monomials p = plfxl,---,xn] of a given
degree in some (arbitrary but fixed) fashion, snd define p < g for monomials

of different degrees deg p < deg q.

4,1 (Monotone Normzl Form Theorem) Every multiplicatlion operator of degree
m in the variasbles ¥y,°*",%, can be written az a linear combination of monomlal

operators

L tae], B Caawa
e }’1 !'fr jrﬂ (Fl YI:’

of degree m for suitable monomials F12°4 %Y, &€ A and }rﬂEﬁ.

Proof, By the Left Normal Form Theorem I.7.9 we know any multiplication

of degree m can be written as a linear combination of operators L:; ---LY R}_ of
il r 0
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degree m, where the ¥, are first-order monomials in the Xy in left-normal form
but are not necessarily increasing. When we start to gtraighten them so
Y Sates ¥, we will introduce gome left-ahnormal monomials.,

For glven degree m we show L ."LP' R can be written as a linear

5| vl
combination of L_ **<L_ R of degree m with zy <rre< 2, by induction on the
24 2. % 0
length r, Ifr=1 than.l? E? is already straight. Assume now all
170

Ly v--I? lv':.Tllr of degree m but length 8 < r ean be setraightenad, and consider
1 8 "0

L, aas] E? of length r. If at some point ¥y

then L L
Y1 Ye ¥p

" Yin
¥y Yina

= [ L +L + L shows we can interchange L.  and L modulo
i1 Y1 Y Yy Y1 Y141

terms of the same degree but shorter length r-1 (which we can straighten by
the induction hypothesis on r). Repeating this we ean arrange it so

¥y Et*r2 ¥ .. If at some point v, = v then L L =L L =1L 2 can
1 r i ¥y Yi+1 ¥y Fi Fi
again be replaced by a shorter term, Thus the piven L =+*L R can be
1 Yr ¥o
expredsed as a sum of cerms L resl, R with z, <++v< p together with shorter
z B 1 s
1 e
(hence inductivelw stralghtenahle} terms. lI

i+l

Using this normalization we conatruct certain constasnts. Recall from I.7

the definition of the multiplication ideal M(B;A) generated by M(B) in M{A).

4.2 (Zhevlakov's Constants) There exist wniversal constants Z{n,m), Win,m)

such that whenever A is an alternative algebra with n generators we have
() AR = pmy,

(1) MeayTEm e =10
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Proof. We fix n and induct on m, The result for m = 1 is trivial:
Z(n,1) = 2 has A . D(A), W(n,1) = 1 has M(A) = }I{Dﬁ(ﬁ] 1A).  Assume we have
found Z(n,m-1) and W(n,m~1) satisfying (1) and (11). We will use Z(n,m=1)

to construct W(n,m) (this explains why we have m-1 instead of m in (11)),

then use W(n,m) to construct Z(m,m).
Sat

Win,m) = {N(,Z(,n-1)1+1}Z(n,m1)

where in general W(n,d) denotes the number of (nonassociative) monomials of
degree <d in n variables. By the Monotone Normal Form Theorem 4.1, the span

H{MH{n'm} of operators of degree >W(n,m) can be spanned by monomial operators

M=1L rer], E
Y1 . Y 7

of degree >W(n,m) for sultable distinct monomials ¥y << 2 in the generators
Appteey X for A. If all the ¥, were to have degrge < Z(n,m-1) }?g?nce the ¥y
arae distinct, and there are at most N{n,Z(n,m1)) such distinct monomials of
degree <Z2(n,m1)) we must have r % W(n,2(n,m=1)) in which case M would have

total degpree
deg M = deg ¥j teevk deg Y. + deg Yo < (r+l)2(n,m1)
= W@, 2(a,m1))H1}Z2(,n-1) = W(n,m)

whereaa it actually has dagrae *W{n,m}. Thua when we apportion Lhe EETIBTACOTE
among the yl,ff-,yr,yﬂ at least one aof these ¥, must raceive & portion of

> Z(n,m-1) generatoras by the Pigeonhole Principle. By the induction hypotheais
(1} on Z(n,m1), auch.a ¥y of degree >Z(n,m-1) falle in Dmhl[a}, #o the multi-
plication operator M involving ¥y fall; in the multiplication ideal
MO™ L eA)54) a8 Tequired by (11).

Once (ii) has been verified, set
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Z{n,m) = W(n,m) + Z(n,m=1)

Then A% =y P ZEaD 40 gy e v Ly ™l (b
(11) and induetion (1)) C:IFPI{AJE (note that if we hit Durliﬂg by a multipli-
catlon from A we stay inside the idesl Dm'lih}, hitting 1t with Dm'l{.&,} moves

it into Dmblta}z, and this ideal remains impervious te further hitting with 4)

= DP{AJ as required by (i), This completes the inductive construction of 7 and

v. B

4.3 Remark. The basic ldea of Zhevlakov's proof 1s that a multiplicaticn
operator of high tetal degree invelving distinct momomials must involve BOme
monemials of high degree, for there are only a small number of different monomials
of low degrea.

Thus the idea 1s to build up the Ly until at least one has = high degree.
This is just the opposite of the procedure used in the Ceneration Lemms ) o
where we tried to tear down L}T's Into pieces L]‘:l of degrea one, B |

By their form these Z(n,m) and W{(n,m) are universal: they depend only on
the W(n,d) and the previous Z's and W's, Another way to see their universality
is to observe that If we have found patrticular Z's and W's for the free alternativa
algebra A on n generators, the same Z's and W's will work for any algebra X with
n peneratora: 1 is a homomorphic image of 4, so gimply apply the homomorphism
to (1) and (1i) for 4 to obtain the corresponding relacions for E.

This 18 a3 gener&l phenomenon: particular constants for the free algebra
are universal because the free algebra is universal.

Thia combinatorial result leads directly to

4.4 (Zhevliakov's Equivalence Theorem) The following are equivalent for a finitely

generated algernative algebra:
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(1) A ie solwvable
(11) A 1s nilpotent
(111) M(A) is nilpotent
(iv) A acts nilpotently on all bimnﬁulen

(v) all multiplication algebras I-IE(;Q.fI-i} are nilpaotent,

Proof. To say A acts nilpotently on M means My (A|M) is nilpotent for
0

EL'I = A ® M the split null extension. But In I"IE(AIH} for an arbitrary enveloping
algebra E, only the action of A on M 1s relevant, so we get the same multiplica=-

tion algebra

M (Al) =10 (afm)
0

from the split null extension E, that we do from E. Thus we see (v)<lp (iv),
When M Is the regular bimodule, I{E(AI M) reduces to the ordinary multiplicacion
algebra M(A), so (iv) & (11i). By Etherington's Theorem (1i1) @y (41), and
always (1i)=3 (1).

To show ()= (iv) and close the cycle of implications, we will prove that

if A has n generatore and is solvable of index d then
k-1
M. (Al =0 (k = Z(n+l,d+1)).
0
To show these operators are zero 1t suffices to show they kill everything they

act on, b%ﬂ{.!’.’}!}k_lz = 0 for all 2 & M, If B denotes the subalgebra of ED
generated by A and z, it suffices if B = (since M, iA[}-!}k_lzt': H(B}k—ll:'l{: Bk}.
But B has n+l generators (namely 2z together with the E generators of A), and is
solvable of index d+l (since Dd{AJ = 0 ilmplies Ild{ﬂ}f: Dd.(Eﬂ]C I!d(A)+H = M

and therefore Dd+l{B}CDU~‘I} = [}; here it is ecrucial that Er_1II 15 the aplit null
extension, for in a general enveloping algebra E the epace M need not be trivial),

k g2+l del) o d

go B +l{B} = 0 by choice of k as a Zhevlakov constant. [§
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Algebras which are finitely spanned are finitely generated, so

4,5 Enfullary. Solvability and nilpotence coincide for algebras which are

finitely spanned (eg. finite-dimensional over s field). [

Local nilpotanca

4 nonassoclatlve algebra is lﬁl:ﬂ.": nilpu-l':nt if all its finditely
generated subalgebras are nilpotent, Similarly we can define leecal
Snlun.hili'ij + Since a finitely generated subalpebra of an altemative

algebra is nilpotent iff it is solvable, local solvability and local nilpotance

coinclde in the alternative case,

Our previous equivalence concerning nilpotence in a finitely genersated
algebra translates into an equivalence concerning local nilpotence in an

arbiltrary algebra.

4,6 (Equivalence Theorem for Local Nilpotence) The following are equivalent
for an alternative algebra A:
(1) A is locally nilpotent
(11) A 1is locally solvable
(111) (A) is a loecally nilpotent algebra of transformations
(i¥} A acts locally nilpotently on any blwodule .,

(v) all multiplication algebras HE{AIM) are locally nilpotent.
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Proof, We already observed (1) & (i1) and (v) &y (1v) since any
HE{A]H] coineides with I-IE (AfH} for the split null extension ED; (1v)=lp (ii1)
0

by taking the regular bimodule M = A, (111) e (1) since 1f AO 1s a finitely

generated subalgebra of A the multiplication algebra Hﬂ(.ﬂﬂ} iz a finitely
generated subalgebra of MAfA} (by the Generation Lemma), thevefore is nilpotent

1f HA{.A.} is lecally nilpotenti but then its restriction H{AD} = T-Iﬁ[AD}! to

AI]'

the invariant subspace ""‘EI Is also nilpotent, so that AD ie nilpotent by
Etherington.

Finally, we show {i)=dp (v). Let HD be a finitely generated subalgebra
of HE{.A[H}; the finite number of generators of M, involve only a finite number
cf elemants Hyp oty from A, so Aﬂ = ¢[x1,---.xn] is & finitely genarated
subalgebra of A and My 1s contained in the subalgebra Hﬁ(ADFHD of HE(AFH}
generated by all .Ex.rx for x5 *ﬂ"[]' If A is locally nilpotent, &ﬂ is nilpotent
and go (by Zhevlskov Equivalencs) the multiplication algebra Hﬁ{ﬁﬁiﬂﬂ is
nllpotent too, as is ite subalgebra MO Thua every finitely generated subalgebra

My of M (A[M) 1 nilpotent. I

In dealing with local solvability, it is important that the derived

algebras of a finitely generated algebra remain finitely genetrated.

4.7 Lemma, If an alterhative algebra A is finitely generated, =a ig any

derived D" [A).

Proof. It suffices to prove D(A) remains finitely generated, since we
can then repeat the procedure n times. If A has n generatore A b, we
claim D(A) 1= generated by all pl‘_’al,---,an} where p(x ,---,xn] is 8 free monomial

of dagree 2 < deg p < Z(n,2).
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Since D{A) = AE is spanned by monomials q{al,---,an,‘l of degree > 2, it
suffices 1f each such q is generated by the p's. We induct on the degree of q.
If 2 <deg q < Z(n,?) then trivially q 1a generated by p's, since it 1s ope -
of the p'sl On the other hand, if deg q > Z(n,2) then by definition of the

Zhevlakoy constants (in the frea algebra B = Fralt[x sterex Datx 1070 )

Z{n,2) implies q(x),=v+,x ) = Eq:‘l{xl,---.xnlqifxl.-'-,xn}E p*(8) = (8%)2

EE
for monomials qi, q) & B® of degrea >2: BY DEGREE CONSIDERATIONS TN THE FREE
ALGEBRA we can assums dep qi + deg qI = deg g, s0 2 < deg qi,qx < deg q. By

- Anductien these lower-degree qi(al,---,aﬁ}, q;(al,---,an} are genarated by the

P(alr”"jan}'aj =ao q{ﬂlsil.!an] £ EQi(a :“':lan}q:":{'alp"'lan} is too, .

The fact that local nilpotence coincides with local golvability makes it

a radieal property.

4,8 (Radical Property for lLocal Nilpotence) Local nilpotence is a very
strongly hereditary radical property for alternative algebras: (4) 4f an
alternative algebra 4 is locally nilpotent ss is any subalgehra and every
homomorphic image, (i1) 4f B and A/B are locally nilpotent, so is A, (iii)

the ﬁnian B HI*JBn of & chaln of locally nilpatent ideals is locally nilpotent,
Therefore each alternative algghra 4 containe a largest locally nilpotent ideal
L{A), which 1s also the smallest ideal whose quotient has no loeally nilpotent

ideals.

Proof. (1) If B i5 a subalgebra of a locally nilpotent A, any finitely
generated subalgehbra EG of B is a finitely generated subalgebra of A and
canseﬁuantly nilpotent. This shows B ia loeally nilpotent. _

Any finitely generated suhalgebra ED of a homomorphic image K = F{4) 1g

M fa
the image of Aﬂ = F(AD) of a finitely generated aubal pebra Aﬂ {pick preimages of
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the generators of 10]. and since an 1s nilpotent by hypothesis on 4 so ia
its image XD. Thus X is locally nilpotent,

(11) Suppase B and A= AfB are locally nilpotent, If AD 1s a finitely

genarated subalgebra of A then Eﬂ 1s & finitely generated subalpebra of A, hence
nilpotent by local nilpotence of A, In particulsr it is solvahle, say
Dn{Eﬂ} =0 or Dniﬁn} = B,C B. WNow by the Lemma B, remains finitely generated
(which 18 one Teazson we used DH(AU} inatead of AE]. g0 by local nilpotence of
B we have Dm{Bu} = 0, Therefare Iln+m(ﬁo} = n“‘(n“'{aﬂ}) = Dm{Bﬂ} = ) {this i=a
the other reasson we deal with derived algebras rather than powers), and Aﬁ is
at least solvable., Because it is alsc finitely generated, it is nilpotent by
Zhevlakn% Equivalence, Thus all finitely generated Aﬂ ara nilpotent, and A is
locally nilpotent,

(111) Any finitely generated subalgebra B, of B =L,IB& is contained in some
Ba when 4 is large esnough to contain the generators of Bﬂ’ therefore is nilpotent
1f Ba ie locally nilpotent. This shows B itsclf is locally nilpokant,

From (i)-(4i1) it follows as ususl that the sum or union of all lacally
nilpotent ideals is the unique maximal locally nilpotent ideal L{A), and

A/L(A) contains no locally nilpotent ideals. '

Thus there always exista a maximal locally nilpotent ideal in A, the hull,
nilpetent o Levitzi redical
L{A).
We have L(A/L(A)) = 0, so that A/L(A) contains no locally nilpotent ideals.
Since a (globally) nilpotent ideal is most certainly aslso locally nilpotent,

A/L(A) is semiprims, By minimality of the semiprime tradical we have

S(AJCC L{A)

and these coincide 1f L(A) 1s finitely generated (eg, 1if A ia finite-dimensional
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ovar a g .
Simple algebras could conceivably be nil, but they can't be nilpotent or
antiprime (by 3.2 ); it is Important that they can't even be locally nil-

potent, For arbitrary nonassociative algebras we have

4.9 (Zhavlakov-Slater Lemma) If z& M(A)z where & is a locally nilpotent

linear algebra, then z = 0,

Proof, If z = Mz then 2 = Mz = ]'.-129: = saam MY, If Aﬂ is the aubalgebra
generated by 2 together with the finlte number of elements 1n the multipli-

cation cperator M, then by local nilpotence eventually z = an EAE+1 =0, B

4.10 (Wonsimplicity Theorsm for Local Nilpotence) A simple nonassociative

algebra cannot be locally nilpotent.

Proof. 1If A iz eimple we have ﬁ? # 0 by definition, so A?'i A: singe
AA' 1s slways an ideal, by simplicity the only other possibility ia £ = 0.
Thua z ¢ Owlpz @ AJ':"M(A:IE ¥ 0; since M(A)z is an ideal, by simplicity it
must be all of A. Thua z & M(A)z for all z + 0, sc by the Zhevlakov-Slater

Lemma A is not locally nilpotent. @

We have seen that L(A) = S5(A) for finitely generated algebras; the same

ig true for algebras with d.c.c. on ideals.

4,11 (Zhevlakov Nilpotence Theorem) If A has d.ec.c. on ideals then the Lewitzki
radical L(A) is nilpotent, In particular, L{A) = S(A) is the maximal nilpatent

ideal, and a semiprime algebra with d.c.c. contains no locally nilpotent ideals.
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Proof. Always S(A)E L(A), and to prove inclusion in the other direction
it suffices if fﬁ}‘ = 0 in A = A/S(A), 1e. ghow a semlprime algebra with d.c.e.
hag n¢ lecally nilpotent ideals. But if locally nilpotent ideals exist we can
choose a minimel one; since such an ideal can't be g gimple algebra by 4.10,

according to the Minimal Ideal Theorem IV,1.1l it must be trivial s contrary to
semlprimensss,
Thus L(A) = S(A). We know by the Zhavlakov-Slater Milpotence Theoram

2,16 that S(A) 1s the maximal nilpotent ideal in the presence of tha d,c.c., B
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Exerciaes

Prove the Theorem: A minimum idesl B of a locally nilpotent algebra A is
trivial, indeed M{A)B = 0,

Prove the Finite Genmeratlon Theorem: There are integere d(n,k) such that

vhenever an alternative algebrs A {s generated by n elements its derived
algebras Dk{h} are gemerated by d{n,k) elements.

Use the Zhevlskov-Slater Lemma and Wilpotence Theorem to show that if A is
locally nilpotent with d.c.c. on 1ideals then A is nilpetent {awoid tha
Minimal Ideal Theorem|)

This does not show L(A) is nilpotent when A has d,c.c. (we would meed d.c.c.
on all L(A)-ideals, not just on all A-ideala inside L{A)). Howawer, show
it does Imply L(4) is nilpotent when A has d.c.c. on inner ldeals,

An alternative proof avoids Zhevlakov-Slater Hilputénca. Show that if A is
any nonassociative algebra over a field ¢ with d.c.c. on idesls, then A!ﬂ;
1s finite dimensional. Conclude there is a finitely generated subalgebra

B with A = B+A™ far all m, If A ia alternative and B is nilpotent, use
Zhevlakov's Equivalence Theorem to show M(A)" = H{AJ“+1 = s++  for some n.
Using d.ec.c, snd the Zhevlakov-Slater Lemma, conclude HfAJnA = 0, therefore
egtablishing the weaker Theorem: If 4 1 a locally nilpotent algebra over
a field ¢ with d.e.ec. on idegls, then A is nilpotent.

1f B,C are ideals in a nonassociative algebra Show I(B,C) = {T & M(A) Tty ¢}
1= an ddeal in Hﬁ&). If A 15 such that squares of ideals are ideals, show

2 =
L?'RyE I(D(A),D (A)) for y & D(A). Conclude x{yl,"v,yr} = H?]_."H?r [Ear

fixed choice of cach M as an L or R) is an alternating function modulo
I{ﬂ[ﬁ}.DE{A}) of its wvarlables yl,--l,yriﬁ A vanishing on D{A}. IF A is
alternative with n generators show M[A)n+1ﬁ: I{D{A],DILﬁJ}; deduca
&n+3c DE{J\] . '
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IV.4.1 Problem Set on Dorofeev Equivalence

The initial part of the discussion of the equivalence between solvability
and nilpotence applies to a more general class of algebras than just the

alternative algebras. We have seen that the kth power Ak is always an ideal

h

in any linear slgehra A, MHowsver, the kt darived algebras DR(A} are not always

ideals in A: we restrlet our attention to algebras where they are,
(Ideal Axiom) D5(A) <l A for all k.

We have seen from the Product Theorem that alternative algebras satisfy the
Ideal Axiom,
Consider the following 5 conditions on a varlety of algebras gatiafying
the Ideal Axiom:
(1) a finitely generated algebra of the varlety iz solvable 1iff
it is nilpotent
(11) a finitely generated algebra of the variety which is solvable
of index 2 is nilpotent
(i11) for each finitely generated algehra of the varisty there ia an
an integer d = d(A) that Adc: DE{EJ
(1v) for each finitely generated algebra of the variety thare are
integers d{k) = 4{k,A} such that Ad(k}{: Dk{..ﬂ.]
(v) an slgebra of the variety is locally solvable iff 1t ia locally

nilpotent,

1. Show (i) =p(ii)=y(iii) and {iv):}{v:l*(i].
2, Use the existpnce of free algebras in a variety and the notion of degree ta
prove that 1f an algebra A In the variety is finitely generated, so 1s its

square ﬁz.
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If for each finitely penerated algebra B in the varlety there is an integer

d(k,B)

d(k,B) with B < Bk(B) for some fixed k (and also for k = 2), show

Aigc D{A}i + Dkﬂ[ﬂ} for all 1 and all finitely generated A in the variety

(g = max{d(2,4),,d(k,4) ,d(k,a%0}),

[k+1,A}C

Conclude Aﬁ Dk+l£ﬂ} for d(k+l,A) = gz.

Deduce the Dorofeev Equivalence Theorsm, In a variety of algebras satisfying

the Ideal Axiom, conditicns (1)-{v) ara squivalent.

Show the Dorofeev constants d(k,A) depend only on k and the number of
generators of A, oot onm A 1tself,

Use Dorofeev Equivalence and Exercise 4,6 to ghow local nilpotence aguals

local solvability in alternative algebras.
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IV.4.2 Problem Set: Alternate Proof of Zhevlakov Nilpotence

If A is an arbitrary nonassociative algebra with d.c.c. which is not
nilpotent, show there is & minimal ideal B on which it is not nilpotent,

Shaw H{A}kB = B for all k, yet if A is locally nilpotent for each b & B
thaye 1s an n = n(b) with M(A)™b = 0. We would like to be able to chooge

a4 universal o that works for all b, thus reaching & contradiction,

To pass from the given ¢ to & fleld E. show there is an ideal =3¢ with

WB =0 for we & and AB = E for A @ 8. Conclude B iz a module over a
integral domain & = ¢/Q. Show ite torsion part Eﬂ = {b|2b = 0 for acme

A® fNlis an ideal with M(A)By = 0, using M(A,)B = B for A =M ARa,

Show that if ¥ is a torsion-free module aver an integral domain %, there

ie 8 lattice lsomorphicm between the P-gubmodules of # and the ?-—auhmdulea
of the module of fractiona M = § BE'E (3 the field of fractions of %). IFf
M has d.e,¢. on submodules, coneclude it also has the a.c.e.p in particular,
it is finitely spanned aver @,

When A is alternative, show K = {ag A| for all b& B, ab and ba lie in § ~%,
H{A]zb} (where 3 ix = {y|Ay = x for some A €@n}) is an ideal in A containing
Az and QA. Conclude A = A/K is trivial as an algebra and toreion-free as
8-module, with d,c,c. on ¥-submodules; in particular, it is finitely spanned,
Show A = (K for some finitely generated subalgebra C.of A. If & is alter-
native and locally nilpotent, show M{E]“ = [0 for some n, This is the
univeraal n we've been agecking. Show I{(&)k‘b e I{{G}k‘b + E“ll\ilﬁﬂ.)hﬂlb for any
PE B and k > 0, then M(A™C 7 M4 ™ for all g » 1, than

n+-1E " &

M(A) "B CBM Tl (0) = Eu. Conclude M(A&)

Deduce Theorem: If A Is a locally nilpotent alternative algebra with d.c.c.

0.

on ideals, then A is nilpotent.



