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3. GSBeniprimanseas

A well behaved algabra contains no triviel idesls, which is equivalent
to the absence of solvable or nilpotent ideals. This property of semi-
primeness is inherited by ideals. We construct a semiprime radical as &
measure of non—eemiprimeness, In the presence af ehain conditionz on ideals
the semiprime radicel is nilpotent, so in this case gsolvability or nilpotence

or antiprimeness of an ideal are all equivalent.

Bemiprimenems

Although solvability, Jordan solvability and nilpotence for & particulay
ideal are not the same, presence or ahsence of golvability or Jordan solvability

la the pame as presence or absence of nilpotenca!

3.1 (Semiprime Equivalence Theorem), The following are aquivalent fpr an
alternatlive algebra A:
(1) A containe no nonzero nilpotent ideals B, B w0
(1i) A contains ne nonzero salwvsble ideals R, Dn(B} = {]
(1i1) A contains no nonzere Jordan solvable ideals B, J°(B) = 0 or P(B) = 0
(iv) A contains no nonzero Jordan triviasl ideasls B, UEB = 0 ar UBK = 0

(v} A contains no nonzare trivial ideals E, B2 =,

Proof. We heve seen nilpotence implias solwability, (11)=2(1), and
solvability implies Jorden-solvability, (1i1)=%(ii). We aleo nated that if
T°(B) = 0 but ¢ = ¥ (8) ¢ 0 then J(C) = 0 (similarly 1F P(B) = O then
Cm= Pn_l{ﬂ} hag P(C) = 0), so (iv)=2(iii). If P(B) = UE?: = { for an ideal
B ¢ 0 then by Corollary III.1.8 A contains trivial ideals: all Bb are trivisl,

and 1f they are all zera them I!t2 = () and B itpelf is trivial. Thus (v) =2(iv).
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Clearly (1)=2(v). @

In keeping with general terminology, am algebra without trivial ideals

could thus be described as trivia- free . H“pb'l'tht.! - free , or

Salvability = free , but se with associative algebras it is more customary

ta call auch an algehra £e mu'pr-l'mg. Almost any decent algebra will be semi-
prime: a trivial algebrs has mo structure (it 1s a mere module), so an algebra
with a trivial ideal has a worthless part,

It is very important that simple zlgebras are semiprime: since they are
not themselves trivial they contain no trivial ideals, hence are semiprime hy

3.1,

3.2 (Semiprimenasss Theorem for Simple Algebrms) A simple alternative algebra

is semiprime. [

We have seen that every ideal (dndeed, every subalgehra) inherits
solvability from its parent algebra. It is far more difficult to show semi~

primeness. la inhericed.

3.3 (SemiprimecInheritance Theorem) If A is a semiprime alternative alpebra

then any!ideal Bad A is semiprime too.

Proof. The unlon of an inereasdng chain of trivial ideals is still
trivisl, so by Zorn's Lemma we can choose a maximal trivial ideal C=} B, We
elaim C ia necepsarily an ideal of A, C=d}, which by semiprimencss will ferea
C to be zere and B ta ba semiprime.

We will check only that C is a right ideal in A, What we will da ia
prove that ﬂ; ig apain & trivial idssl in B; then by maximality of C we will

hava CA = C and CAL C as desirad.
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Our tool will be middle ammihilation. Recall from ITI.1.3 that the

middle annihilator D""H = {xlllnx = 0} 18 an ideal in A whenevar D s, so
oM oL oM
E=DRD 18 a Jordan-trivisl ideml of A contained inside B CEIEE & TJDD

= (). For semiprime A we can use 3.1(1v) to conclude E = D/ p+M 2 0 far

any ideal D:

(3.4) LTDz = 0 dmplies z = 0 (z2& D<A for A semiprime),

As an application we obtain the following associativity result:
(3.5) I[=,y,D] = 0 implies [x,y,4] = 0 ([x,7,A]¢ D=l A semiprime).

Indeed, UD[E,F-A] = [x,y.UDﬂ] = Uﬁ" [x,y,n]h since ssgociatar maps are Jordan
derivations by I.3.8, so if [x,y,D] = D we have Unz = 0 for all z & [x,y,A],

hence by (3.4) z = 0 if z €D; 1f [z,y,A]¢= D we Bee all z vaniah and
[x,y,4] = O,

As a first instance of this, for arbidrary X,y € C and D = B we have
[x,y,B] = 0 sdnce [C,C,B]C €% = 0 4F G2 B in trivial; by (3.5) we get
[x,v,4] = O and [C,C,A] = O.

From thig G{C;.J = (I, hence [B.C.G;;] = 0 (using BC&= C), and by (3.5)
[C,CA,B] = 0 implies [C,CA,A] = O (noting [C;CA,A]C" [C,B,A]JC B).

' On the ather hand, from [C.B.Ea;.] = E[G;.) = O and linearizedlaft bumping
we have [(CA)C,B,B] = ~[BC,B,CAI+[C,B,B] (CAM[C,B,CAIB & [C, B, CA]+C(CA)
+[C,B,CA]B = 0, Then [(CA)C,B,B] = O implies [(CA)C,B,A] = 0 by (3.5) (using
[(CA)C.B,AJ¢C B}, and [(CAJC,A,B] = O implies [(CA)C,A,A] = 0 by (3.5) again
(uaing [(CAIC,AATC [B.A,AICCR), =0 (EE.}C lies in the nucleus of A, PFurther,
its elemente arae trivial since (CAYC-A{(ci)c} = (cA)c-{a(ch)}c (uging
[4,CA,C] = 0) C BC*BCC C° = 0 (using C<d B4 A). Therefere by T11.1.8 the
elements of (CA)YC penerste trivial ideals, so by semiprimeness they all vanish

and

(cA)C = Q,



25

From this we obtadn (CA)* = {(CA)CIA = 0 (ueing [CA,C,A] = 0), and
CA 1s trivial as claimed. W

The semiprime radical

We have indicated that most well-behaved algebras are semiprime. Tdeally
we would like to break an arbétrary algebra into two piesces, a nilpotent pleca
and 5 semiprime plece, and analyze the structure of the two placss separately.

The pracedura is to construct n.rndicnl, 8 maximal nilpotent ideal R in A such
that the quotient A/R is semiprime.

In Chapter VIII we will see that such a procedure works for finite-
dimensional altermative algebras: A can be decompused as the semi-diveet sum
of ite nilpotent piece R and its semiprime piece A/R (1f the latter is separable),
Without some sort of finiteness condition, however, there is in general no
maximal nilpotentc ideal,

This technique of lsclating an undesirable property in a radical R such
that the quotient A/R 1s uncontaminated by that property, occura fraquently in
algebra, Thers are a wide variety of radicals comstructed for different purposen,
depending on the undasirghle property one is teying te isolata in R or the
desirable property one 1s trying to attain in A/R. We will weturn to the general
theory of radicals in Section 10.

We have indicatad that there 1s dn geseral no maximal nilpotent or solvahle
ideal, so we define our radical as the smallest ideal we have to divide out by
tulget rid of nilpuiance. First obaerve that such a smallest ideal exista. Thers
always exist ideale B such that A/B is semiprime (at worst we could take B = A},
and the intersectiom B -r]Bﬁ of all auch idaalu-Bﬂ again has the propetfiy that

A/B is semiprime: indeed, if C is sn ideal in A such that C/B 1s trivial in AfR,
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c’C B, then C/8, i trivial in vy ¢*C B CB,, 80 by seniprinences of
Ajﬂu we have C!BH = 0 and ECBH for all o, so C& ﬂEu- B and G/B = 0,
Clearly B is the smallest ldesl with semiprime guotient.

Thies smallest ideal B of A such that A/B is semiprime is called the

sgmiﬂrfut radical S5(A) (more commonly but more confusingly it is called the

prime rodical ),

3.6 (Semlprime Radical Theorem) Every alternative algebra A centains a

unique amallest ideal 5(A) such that the quotient AfS(A) 1s semiprime. B

3.7 Proposition, A is semiprime 1ff S(A) = 0, W

If a largest solvable ideal exists, it coincides with the semiprime radical.

3.8 Proposition. If the alternative algebra A contains a maximal solvable
ideal B (e.g., if A has a.c.c. on ideals), then B coineides with thae semiprime

radical §(A).

Proof. If B is any golveble ideal its imape BfS{Aj 1s by 2.6 solvable in
the semiprime algabra E..{S{ﬁ} s hence B/S(4) 1a zero and BiZ S(a). If /B 1=
solvable in A/B for selvable B then by recoversbility 2.6 C i1s solvable in 4,
so if B ig maximal C = B and A/B has no nonzero solvable ideals: thus A/B is

gsemiprime and B 2 S(A) for maximal solvable B, B

3.9 Remark, A maximal nilpotent ideal (if such exists) need not coincide with
the semlprime radical. The above proof breaks down because of the non-recovers-

ability of nilpotence (see 2.10). M

So far all we lmow about the semiprime radical is that it is the bare
minimum we must jettison to reach semiprimeness. If B is an ideal in A which is

trivial, nllpotent, solvable, or Jordan-soclvable then so is ite image in the
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semiprime algebra A/S(A), so by 3,1 this image must be zero: 5(A) contains
all nilpotent, solvable, or Jordan solvable ideals of A.
Semiprime algebras ave ones vhose semiprime radlcals vanish, S(A) = 0,
At the opposite extreme are the anti prime (also S=radical or Baer- radical)

algebras, those which are all radical:
S{A) = A,

By definition this means that in order to attain gemiprimeness we must get
rid of the.whole algebra, as all nonzero quétients are still contaminated by
nilpotance, and the only semiprime quotient or image of A is zero: puo algebra

is antiprime iff it hes no nonzero gemiprime images.

For example, & nonzero gemiprime algebra has itseli as nonzero semiprime

image, =20
{3.10) A semiprime and antiprime impliee 4 = 0.

This can alsa be seen by noting S(A) = 0 and S(4) = A imply 4 = 0. By Semiprime
Inheritance 3.3, any 1deal B in a semiprime A is sgain semiprime, so the only
antiprime fdeal in A 18 B = 0, In fact {ex, 3,15), an alternative algebra is
semiprime 1iff it contains no antiprime ideals.

Any homomorphic image A of an antiprime algebra A is again sntiprime, aince
any nonzera semiprime imsge of A ia at the same time a nonzero semiprime image
of A,

It 1m also true (Ex. 3.17) that any ideal in an antiprime ideal is antiprime,

and (Bx. 3.16) S(A) is precisely the maximal antiprime ideal of A.
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Algebras with c¢hain conditions

Solvability and nilpotence coincide in the presence of the a.c.c, or
d.c.c. on ideals. 1Indeed, in these cases the memiprime radical turns out to

be nilpotent.

In general a trivial ideal need not act trivially on a bimedule; we begin
by finding conditions under which a trivial ideal scts nilpotently. Firat we

have a general comstruction.

3,11 Lemma, If Bed A is & trivial ideal, 3 0, and ¥ an A-bimodule, then

for any b & B

Hb = b (BN} = B(bN)

ok
1s & sub-A-bimodule with BN, = 0, and LN = OgpL L "N = 0.

Proof. The two expreseions for }iLb colncide aince I'.thLH = L];!.:L.17 w Lb“B

where beB C B’ - 0 by hypothesis. This N_ 1s left-invariant under A because

.u{h - LﬁLELbR = {-L LpL, * Lu.{blmg}ﬂ (Left Moufang) I..bLBI-IC Nb (gince

U‘b,.ﬁ.ﬂc BE mw § if BadA). It is right invariant becausa Hb.ﬁ = {h{EH}]A.

= Lyeay® = Clycmy)y * Lplply + Lylply 14 (Left Moufang) © L LN = N (since

Bh and LBLbﬂ. are contained in ]32 = 0). We have bN,_ = bE(BR) = () gince l:u2 = 0,

b
and LN, = OEHLI(L LM = u:-ﬁLbL;"’lu -0 (recall LL_ = QLcLb). i

From this we can show a trivial idfal acts nilpotently in the presence aof chain

conditions,

3,12 Lemms, If A has a,c.c. on ideals or its bimodule M has d.c.c. on submodules,

then any trivial ideal B<} A acts nilpotently on M: M(B)™¢ = O for some n.
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Proof, If B does not act nilpotently on M then it can't act both left-
nilpotently and rightenilpotently, by Left-Right Nilpotence 1.16; let us

agsums B s nét left-nilpotent on M.

Firet consider the d.c.c. case. Choose a submodule N<J M minimal among

those on which B acts non-left-nilpotently. By IIT,1.11 LBH is a smbmodule
contained in N on which B does not act left nilpoteatly (since L:{LHH) = Lg-ﬂH
4 0 if B i¢ not left nilpotent on N), so by minimality LN = W. Then

1.1;!1 w i for all k. We can choose b so Hb = LbH ¥ 0., By Lemma 3.11

Hbe:j H<]M is a submodule contsined in W on which B deesn't act left nilpotently,
Tl

L L, H-Lbﬂin-bLgHbin. vet LN, = 0 go N # N and N < N. But this

contradicts the minimality of N. Thus non-nilpotence leads to a contradiction.
Now suppose & has a.c.c.. For any submodule N<JM the left annihilators

.A:mL(H} b AnnL(LBN}*C"'CAmLL{L:ﬂ} form an increasing chain of idsals in A,

by IT1I.1.11, sa terminate by a.c.c. at some AnnL(Lgm. which we ghall denote by

.ﬁ.nnm{bl]. Non-laft-nilpotence means B (L .ﬁnnm{l{) , 80 by the a.c.c. we can choose

BN mnih.ﬂatnr Ann (N} maximal amomg those not containing B, Then some b@ B

doesn't belong to Ann_(N); by Lemma 3,11 I:Fb = LbLBH is a submodule contained in

M, so énnm{N]C Annﬂ{ﬂb], and in fact the ineclusion is etriet sgince

h&E %Lﬂb} C mwmb} but b € Ann (N). Again by Lemma J.11

b & &nn, (1520 abr 15 # 091Xy, 4 0 Bt Aun (LEW) > B A (D). Bat

Ann (H) < .!n-mm('ﬂ.b'_‘l and BReE .é.nnwfﬂb] contradicts the maximality of Ann (W}. Thus

non-nilpotence of B leadsuko a contradiction, [ |

We can strengthen this to the case where D(B) acts nilpatently, not merely whare

D(B) 1ias zero.
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3,13 Leuma, Let A have a.c,c. on idesle or its bimodule M have d.c.c. on

submodules, and ot B A be an ddeal. Then 1f the derived algebra D(B) = El

acts sllpotently on M, so does B,

Proof, By nilpotence H{Ez}n+1u = () we have by III,1.11 a chain of sub-
modules M = Hﬂ :H-Il:?'" :?Hn_l_l = ) for Hk = H(Bz)kh[. If wa can find integers
£(k) guch that H{B}fmnkc M, Cthen we will have p(p) E(F e 0y _ gy En)

£(0)

(eo=M(B) " MO C ()t ™) (-..H(B)fmul:nz:' e M{B}f(“JHnr: M. = 0 and M(E)

will act nilpotently. Thus we only need teo be ahla to baast Hk into HE+1.

Finding the £ (k) with'H(B]f(k)def Hk+1 amounts to finding integers such
that Htﬁ]f(k)ﬁk = 0 on HR = kaHk+1, which 1s a bimodule over & = A/B° by

117.1.11 asince H(Bz:ll{.k = M . implies H(Eztﬂ'-'fk = ( and BE:' Ann(ﬁkj. Now A

inherits the a.c.c. from A or Ek inherits the d.c.c. from M, (and in turn
from M), and B 1e a teivial ideal in A, so by the previous lemms M(BE) is

nilpotent on ER: H(E)fik}ﬁk = 0 far soma f(k)} as desired, B

In terms of the regular bimsdule this becomes the

3.14 (Zhevlakov-Blater Nilpotence Theorem) If A is an alternative algebra with
8,0.¢. 0r d.c,c. on two—sided ideals, then an ideal in A is solvable 1ff it is
nilpotent, and the eemiprime radical S(A) is the largest nilpotent ideal, con-
taining all other nilpotent ideals.

If M is an A-bimedule where A has @.c,c. on ideals or M has d.c.c. on sub-

bimodules (whether A has d.c.c. or not), then any solvable ideal in A acts nil-

potently on M.

Proof. If A has a,c.c, or M had d.c.c. then by Lemma 3,13 whenever D(B)

acts nilpotently so does the ideal B, hence by induction wvhenever Dn(B] acts
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nilpotently o does B, so in particular 1f B 1s solvable (D"(B) = 0) it acts
nilpotently on M.

Agplying this to the repgular bimodule M = A we see that 1if A has a.c.c.
or d.c.c. on idéals then all solvable ideals act nilpotently on A, so an ideal

ias solvable 1ff it is niipntenl:. The a.c.c. case is now easy: in the presence
of the a,c.c. 8(4) 1s by 3.3 the unique maximal solvable ideal, which by our
rematks is nilpotent.

Mow consider the d.c.c. case. 1In the presence of the d,c.c. the descending
chain S{AY 2 DAY DY Dz{s{a.}}:i *=s must terminate at B = D'lu‘_'S{A}} - Duﬂis(ﬁ]]
= »+s with D(B) = B. We will show B = 0, so S(A) is solvable {therefore by pur
ramarks nilpotent),

It ie 8 genaral fact (independent of d.c.c.) that S(4) annihilates all
minimal idesls C«] A. Indeed, a minimal ideal C is an irreducible A-bimodule,
so rather trivially has d.c.c. on sub-bimodules, Therefore if D ia an ideal in
A such that D° acts trivially (M(D®)C = 0) we know by 3.13 that D itself acta nile
potently on €. But if M(D)"C = 0 we can't have M(D)C = C, yet M(D)C is by
III.1.1 an ideal contained in C, so by minimality M(D)C = 0 and D& €. Thus
1]21'.'_"' el #BL"..EJ" , 86 A/C* has no triviel ideals. By construction of the
semiprime radical S(A), A/C* semiprime implies C* =3 §(A), so S(A) aunihilates
C as claimad.

Thus the semiprime radical S(A) of A = A/B annihilates all winimal ideals
€ of A, and if X is nonzero it has lots of monzero minimal ideals G # 0 sinca
it inherits the d,c.c. from A, On the other hand, B doesn’t annihilate aoything:
X € Bl MER = D4 M(B)x B @H HEME)x = 0apU(E)x = 0 (by 1.7)
SM(BIx = 0 tﬂz = B by choice of B)=px & E"":.#E =0, vYet E ::E!Eﬁ]._..bec&use
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if D denotes the preimape of §(A) in A the faet that A/D & (A/ES) [ (D/38

= A/S(R) i semiprime implfes D =>8(A) by construction, therefore B < S§A) < D
and feeD=s(h), The only way out of this apparent contradictlon is for A

to be zero, A = B, Then B = B> = M(B)BC M(B)B = 0 and 8(A) is solvable, @
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Exerecises IV.3

In the Semiprime Equivalence Theorem, take any two conditions and prove
directly that one implies the other,

Wa.could define an algebra to he Jordan. Semipeime if it contains

no (nonzers) Jordsm-solvable Jordan-ideals, Prove the Jordan Semiprimencss

Theorem i An alternative algebra is Jordan—semiprime iff it is

gamiprime.

Show that A is semiprime L1Ef B B* = 0 for all ideals B« A.

If C<1B <] A whera C is trivial and B AJ‘mLI:B] = 0 (a8 when A 1lg seml-
prime), show C(CA) = 0 by ahowing {C(CA)}B = 0.

In the Semiprime Inheritance Theorem show that (CA)C is spanned by trivial
nuclear elements (da)e by using the Fundamental Formulas.

If z & W(B) ahow [z.UBB,.ﬁ.] = (}. Conclude z'UBB iz a right ideal in A.

If B is semiprime and z € C\N(B) for C<33B triviasl, conclude z*UB = 0;
deduce Uz = 0 and 2 = 0, so C MN(B) = 0, Use this to give an alternate
proof of {CAYC = 0.

Given G(GEJ = (CAJC = O, show B(Cﬁ}z = (1, go that l[i‘l.ﬁ.';l»2 = (} when

B ﬁnu.a(ﬁ:l =,

Prove CA ig trivial in Semiprime Inhericance by showing (i) 'LTE[G,E.A] = [,
(11) [c.C,Al = C{CA) = 0, (111) [B.C,CA] = 0, (iv) [{CA)C,B,B] = 0,
(v) [(CAYC,B,A] = 0, (vi) {(CA)CIB is a trivial right ideal in A,

(vii) (CAIC = 0, (vidd) U 5(CA)® = O using V.0.0.

Show that Semiprime Inheritence holds if A is merely assumad to be

B-Ellﬂirprimt in the sense that there are no trivial ideals of A which

ilie wholly inside B.
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1,10 Show that any subdirect sum of semiprime algebras is semiprime (see
0.00 for tha definitton), snd use this to establish the existence of
S(A) in 3.1,

3,11 Although a Jordan-solvable ideal B need not be solvable, show 1t 4s st

least antiprime:r S{B) = B,
2,12 To see why we use the term "antiprime" instead of "antisemiprime", show
A has no gemiprime images iff it has no prime imsges, (Hint: given
x $# 0 choose a sequence By aEy, with x, = x and 0 g X 11 & I(xnflz;
iFf B 15 on ideal maximal with reapect to B {xl.:l:z.'--} = ¢, then
AfB 1is prime).
3.13 By first removing all nilpotent ideals from A, then removing 8ll nilpotent
ideals from the remaining quotient algebra, end repeating until there are
no nilpotent ideals left, we eventually reach the semiprime radical. Prove

this Inductive Comstruction of the Semiprime Radical: If A is an

alternative alpgebra we define an increasing chain of ideala SJ.{A'} far each
ordinal number A by setting Sﬂ(ﬂ} =, Slfﬁj = the sum of all ideals of A
which are trivial (resp. nilpoteat, solvahle) modulo Eu{.ﬁ.} if A = pbl 4 a

guccessaT, and Sl{h} B Iﬁﬂsu{” = U (a) 1f A is & limit ordinal., Then

pea®y
the chain breaks off at the pemiprime radical, Sl{A} = G(A) for
[1a]] = 14 (| |x]] = cardinality of the segment {uln < ab).

3.14 Use the Inductive Construction of S(A) to show B /M 5(A)& 5(B) for all

Bl A, Deduce S(A)} ia antiprime for any alternative algebra,

S(s{a)) = 0.
3.15 Bhow A is semiprime iff it containe no antiprime ideals.

3.16 Upe Semiprima Inheritance to prove the Antiprime Radical Theorem:

The asemiprime radical S(A) of an alternative algebra A 1s the maximum
sntiprime ddaal of A, containing all other antiprime ideals. The

quotient A/S(A) has no antiprime ideals.
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Prove the Antiprimeé Inheritance Theorem: A&ny ideal B in an antiprime

algebra S(A) = A is again antiprime, S(B) = B,

Prove the Hemiprims Radical Inheritance Thaorem: The semiprime radieal

of an ideal Bl A is

S(B) = B 5{4).
Deduce B A S(A) D S(B) from Semiprime Inheritance. Deduce B M 5(4) ¢ S(B)
from Antiprime Inheritance.
Prove the Lemma: If M is an A-bimodule with a.c.e. on right annihilator
s%mhhsmﬁm-{mem&uﬂ}ﬂrSCHM,dedAHsMEM*U.
ghow B acta left nilpotently on M.
Prove the Lemma: TIf M ig an A-bimodule with a.c.c. on left and vight
annihilator submodules, show that any solwvable ideal B<] A acts nilpotently
on M.
Let 5 = {5} be a collection of linear transformations on a module M such
that

52 = 0, -a&at e «ta

for all s,t € S. Show 4f M has &m.c,c. on S—-invariant subspaces (or just
annihilator subspacea) then § acks nilpatently on M,
If B=1A, ¥ <IM show N‘h = b{BN) + H(EE:I'H'I:'IH for all b & B, with 'b'HhC H{BE}N.
If M{BI)N = W show Hbt.: H(B)n{hu} + H(E‘!}H for all n > 1, and alsgo
“b = B + H{HE}N.
Prove the Lemma: If C is a minimal ideal in A which is contained in the

prime radical, then M{S(A))C = 0.
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IV.3.1 Problem Set on Zhevlakov's Origingl Proof

If B] A, N M where 3% = 0, show all ’qb = H(BN) are left A-submodules

with Hbc N, b}[b = 0. If Mhas d.e,c, on laft A-submodules and BEH = {,

show B acts left-nilpotently on M, (We need left d,c.c. because the Nb
are not in general sub-bimodules 1f we don't assime }Ez = 0)., Prove that
in the presence of the left d.c.c., 1f D(B) acts left nilpotently so does
B. Conclude that every solwvable ideal B acts left nilpotently.

Prave that 1f M has d.c.c. on laft submodule and B=] A there are integers

Z{n) :
Z(n) such that I'B M LD"-{B)M' In particular, thers is m such that

2LME LF(m

Show that if B« A kills all minimal ideals C C B,y it kills all minimal
ideals of A whatscaver,

If A has d.c.c. on left submodules contained in W, where N is a minimal
sub-bimodule of M, show S(A) kills ¥ from the -left,

Show that 1f S(A) kills a minimal sub-bimodule ¥ from the laft then it
also kille N from the right, Here no chain conditions are needed. ({(Again,
Zhevlakov chose a minimal B in S(A), but this can ba avoided),

Prove the Lemms. If M has d.c.c. on left submodules then S(A) kills any
minimal sub-bimodule N <M.

Prove that if B,C,D<] A with M(B)Cc D" then L(OLY(8))D = 0. Con-
clude that Lf A has d.c.c. on left fdeals and B,C,D<l A with M(C)Be pbol
then for some m ZL(CYL(B)™D = 0.

Prove Theorem, Tf A has d,c,c. on laft ideals but no 2-torsion, than S(A)

iz nilpotent,



