Chapter III
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In this chapter we obhbtain zome assoeciabivity results
about alternative algebras. The mosl important is Artin's.
Theorem which says that any lwe elsmenls generate an assocci-
ative subalgebra. Thus when we arce working with preduects

invalving cnly twoe elsments of an alternative algobra we can

act just as if we were in an associative algebra,

El., The nucleus, cenbker, and centroid

YThe nuclsus of an arhiirary linear algsbhra A is the

sael M{a) of elements n& which aszosicte with 211 =lemsnis of

Drerz

the alg

i

[n,x,v] = [x,n,v] = Ix,p,n) = 0.
For altermative algcbras it is enough if [n,x,¥] = 0.
The nucleus is clearly a linear subspace of A since it is de-
fined by linear conditions, and it is a subalgcbra sirce if
n,m are in N () £ﬂcn

[nie,x,v] = {{mm)x} ¥ - (am) (xv)

= {_n{m:-:}] ¥y ~ nimixy))

1l

n{{mx}y} - n{(mx)y}l = 0 .

and similarly when nm is in the middle or right of an associator.

Thus M{A) is an associative subalgsbra of A, In 2 product in-
volving a nuslear clement n we can drop parentheses, as in
nxy = (nx)y = ni=xy).

The eenter of A is the set C(A} of elements ¢ which bolh

commute and associale wilth all elements:



fc,x] = [e,x,v] = [x,e.x)] = [x,y,e] = 0 .
This again is a linear subspace of the nucleus, and it too
is a subalgcbra since if ¢,d are in O(A) Lhen the product od
belongs to the nuzleus and satisfics

[ed,x] = cdx - zcd = cxd - axd = 0 .
Thus C(A) is a commutative, associative subalgebra of A.

Meore generally, the nueleizer of any set E{:ﬁ:is
N(s) = {n]| [n,s,8] = 0}

and Lhe centralizeor is

c{s) {e| Ie,8] = [e,8,8] = 0} .

In general Lhese will not be subalgsbras,
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assoaiative algebras, the centreoid is is often nore
veeful chan the canter. Ths centrold of any linear algehra is
the set-j () cof linear transformations T on A which comuute
with all lafi and right naltiplications LX,RK; eguival ently;,
‘T (&} is the cesbrelizer of the malliplication algecbra M{A),
In bLerms of slements,

r(a) = {7|T({xy] = (Tx)y = =x(Ty) for all .v) .
Clearly T{A] is an alqébra of oparators containing oI, A is
naturally a T(a) - module, zaznd the defining formula chows
multiplication is ?(ﬂ} - bilinear, Thus (even if T (A} is not
commnutative) we can think of elements of the ceontroid as sanlar
@EliéplicaLinnﬁ i in fact, Lhe centroid concists precizsly of
the transformations which behave on ithe algebra like a scalar

mulbiplication should. For instance, [Tx,¥, 2] = [x.Ty,z] =

[x,v,Tz] = Tlz,v,z] and [Px,v]) = [%,Ty] = T[x,y¥] for TET(A).



In partisular, if A iz unital we see [T1,v,z] = [x,T1,z] =
[2,¥,Tl] = 0 and [1Tl,v] = 0 sincc we can meve the T outside,
and any associator or commutator involving a facter 1 wvanishes,
This shows T(1l) lies in the center. Alihough the centroid con-
sisté of operalbars and ths center of elements, the two can be

identified in the unital case:

1.1 (Centroid-Cenler Lemma) The centroid of a unital linear
algebra is isomorphis Lo Lhe canter, p{A) 2 C{A), under the
map T =+ 21(1l), In this casc the clemcnts of the cercroid are
Jusl Lhe multiplicaticons T = Lz_ = Rt by clements L = T(]l) of

the centor.

L

Proof. We just saw all T(l) arc central. The map T =
1"(1}) is clearly linear, and it is multiplicative since ST =+

S(E(L)) = S(L « T(1)) = S{1)7(1). Frow T(x) = (1l - x) = T{l)x

we sz2e T = L, for £t = T(l), similarly T = Rt. This ghowz the
e
map is injeekive, since t = T(1) = 0 implies T = 0 as vperator.

1t is suricoative, for 15 © is central the linear transformatiion

-

T = L_ lies in the ecentredid (T(xy) = o (x)vy
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alxy) = (cxly = #(ey)) and has T(Ll) = Lc* 1l = . 18

The reason Lhe centroid is more useful than the cernter is
Lhal it always exists; for cxample, a simple algesbhra may have

no center at all, but it always has a nice centroeid.

1.2  (Schurs! Centreid Lemmna) The ecenbreid of a simple linecar

algebra is a field.
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Proof. A simple aléebra has no proper ideals, ie no
subspaces invariant under all multiplications LH,R". Also
A J
ﬁz # 0 impliez M{A)A # 0. Therefofe ﬁ.is irreducible as
M{A} - moduile, and by Schur's Usual Lemma the Centralizeor T (&)
of M{a} (in End ¢fAJ} is a division ring, Commutativity Zollows

from a y=nweral
1.3 Lemma, If A" = A Lhen T{A) is commutative.

Frogf. If &, T lie in the ceatroid then

(8T — TS)AZ = 0 since by the HIDING TRICK ST({=y) = S{x T(v}} =

S(x) T(y) = T{5(=)¥} = T5(xv). When .'L'L‘J' = A the oparator ST - 1S

-

is zero, and 87 = T3, 315

Thus a simple linsar zlgebra (over an arbitrary ring of

scalars ¢) can alwavs be reintervnreted as a simple zluebra over

a field T (R). (Notice that & is even simplexr over I'(A) than ik
was over ¢, since T(A)TH¢ means it is harder to be a T(A) -ideal
than a #-ideal). Since veﬁto: spaces are nicer than 4-modules,
this is very helpful. In some sense [ (A) is the "natural® ring
of scalars fm; i

An algebra over & is centrolidal it its eenlroid is just
I'(x) = 41 and central if ik iz unital with center C(&) = pl.

Espeeially important are central simpls and centroid simple

algebras. A simple algebra A is alwavs centroidal when regarded

as an algebra over T (A).



The centroid behaves correctly under scalar extension.

1.4 Lemma. If §D9 is free as 'a t-module (for example,

if § and § are fields) then T(hpj = Tf{a)

i

TE I'(A) commutes with all multiplications by

{51

Procf, I
& elearly any w € T commutes with all multiplications by

Q@ A, so T(n)_ =
Aaf

e

8 Ti{a)cT(a).
bt
For the converss, Iy freedom wo can choose =Some bhasis {mi}

for §§ over &,

tn

o o= 8., og. and n = @, ., B A = @, . B A
g e Y $1{'L1 G 3.

whorse each w. @ 5

5 2 ¢-subspace invariant under mullinlica-
ticns by clementis of &2 (= 1 8 A). If T belongs to the centreid
T{Au} definz endomorpihisns Ty of A by the formuls T(1 ® a) =

L w; ©7T,(d)., Any multiplication operator M on A extends to a

multiplication aeperzstor I 8@ M on A, (observe I @ L, = Lipge

I8 Ha == ngﬂ}; sinooe e r(ﬁﬂ? we know Tl @& M) = (1 @ M)T.
Bub T() & M}{a} = T(l ® Ma) = T w; @ TiiMaj znd (1 @ M)T{al

= & MMT . T, = T oo M (T, so T, (Ma) = M([T::
(1L @ M)z wy 8 -l{aj Iowg B _I[I‘lia]] i B L_J_l:m:l b_{rldj.

Thiz says the endormorphism T, of A commutes with all MeMial,
4

a0 Tje:?ti}. Thus T eoincides withz.-_uL & T. on A and both are

R=lincar, they coincide on @A = A, Thus T =E]mi 5] Ti lies in

o
Q @ r(h) and I'(A )G T(2) &
 To see why ecerntreid-sinmple algebras are nics, say that an

algebra A over a fisld & is slrictly simple 1f it is simple and

Stoys simple under scalar extonsion: ﬁr =0 & MAils simple for
: ¢

all fields 024a.



1.5 (Btrict Simplieity Theorem) A linsar algebra cvar a
field ¢ is strictly simple iff it is centroid simple. When A
is centroid simple over &, agll extsnsions i, arc centroid sim-
ple over §.

Proof. Assume A is strictlv simple over & with centreoid
I' = T'{a), By strictness, nr =T a. A iz simple. On the other
hand, the linsar map ' & A T & dstermirzd by T ® a» Ta is a
homemorphism of ' algebras since F{(S « ¢ % a) = F(5T ® a) =
ET(a) = 5 = (T & a) and F{(8 © a)(T & D)) = B{5T & abh) = BT(ah)
= S{a (b)) = S(a) T = F(5 8 a} F{T @ b) hecause of the way

the eclements &, T in the centroid bshave relative to products,

and because of the way operations in the [-zlgebra I' @

il
M|

ki =

H=

delined, The kernel of the homomorphism F is an idezl in dif-

bay
=

LI |

ferent from nr since F(I & a) 2, 50 it musl be wero, But if

TE&T did not belong te & then ' ® a -~ I & Ta would he nenzero in

Lo when a#d (since we tensor over §), yet F(T € & - T @ Ta) =

T{a) - I{Ta} = Ta - %a = 0 , conbtradicating Her F = 0 . Thus all

T belong to & and ID{a) = ¢I.

From the Lemma 1.4 it is immediate that if B is centroldsl

‘over &, I'(A) = &, then ﬂq is penlreidal over 22, P(An} = T{a). =
i =

0 o8B e = G,

If A is simple in addition to being centroidal over ¢, we

show ﬂn is simple too. We will use a minimal length argument,



Suppose B is a nonzero ideal in Aﬂ.ﬂs hefore, any slemert can

be expressced unicucly 2z b = LW, 8 bi four somea bLE;A : choose
by =i i s

b#0 in B with minimal possible number of nonzero by, s.

{(What follows should remind you of ths Densily Thecorem). Say

b, # 0 ., If M&M[{A) is any multiplication we have (I @ Mlb =

=

I by 2 Hbi ;3 if Mb, = € then there arc fewer nonzgero Mb., than
there zro nonzoero bi’ apnd (I @ Mk is still in B if B is an
ideal, so by minimality this can only happen when (I ® Mlb = 0

Mb, = 0 = Mb

i

0 for all i, But this makes 7. (Mbg} = dMb, a
T4

well-difined linear map M({2}b. - &, Singa M(A)bh, iz an ideal in

A containing b, # 0, by sinplicity il is all of A. Thus T, isg

i a i T - 1 1 " 1.! - !r'| —
endeonorphism of A, which by ceonstruetion T, (M M b,) = MM b, =

MT (}:'bh,) commutes with all MEM(a), sc T, helonygs Lo the centreild

[A) = 7. Than "I‘j_ = o, i bi = ’l'iibu} = r_u',ib“_- and b = F.ml 5] '“\le""‘:'
= L Wit @ b, = uh, . Since by 0 we havew ¥ 2, s0 w b =Db, lies

"in B and in &, and BNA ¥ 0; but BMNA is an ideal in A, so hy

simplicity BOA = h, BD3A, and (siﬂcu B is .an g-ideal) B =
Thus the only ideals are B=0 and Hahﬂ, andd & ?#D 1% AE#H, so A
iz simple.

: : ' . . . . =2
Consaguently, if A/ is centreid sinpls so is ﬂﬁfn. (I
Sl

In any alternative algebra, an slement n ¢f the nucleus o

glip in and cul. of associalors:

(1.6) n{x,-y;zj [nx,y,z] = [un,y,z] = [x,ny.z]

li

[x,¥yn,z] = [x,y,nz2] = [x,v,2n] = [x,y,2]n.

B3]



1-§.
To sea this
note that nlx,v,z)] = n{l{xy)z} - n{x[yz]} = {n{xv)}lz = [nxliyz)

= {(nx)viz - (nx){iyz} = I[nx,v,z] in any algebra, and similarly
[xn,y,2] = [=,ny,z] and [x,yn,z] = [x,v.nz] and [x,v.,2n] =
{5 T T ] [ becaus=s n slips in and out of parcntheses (baing care-
ful te kecp the same order). What is unigue to alternative al-
gebras is the ability of n to climb over a wariable, [nx,y,z] =
[¥n,v,2]) (and similarly it can climb oves vy or z): Inx,v,z] =
nlx,;¥,21 = = nly,x,2] = - [ny,x,=z] = [x,ny,2] = [#n,v,2] by
slipping in and cut of parcntheses, z2s well as interchanging
variables.

nn immediate consequence of this is the fact that in the

glternative czze the nucleuws commubtes with associztorsg

(1.7 IN{a) ,[A2,A)] =0

and thal

{1l.8)} [B{R) AT MR
since [[n,x],v,2]1 = [nx,y,z] - [xn,v,z] = 0 . Yot only dees

"

[R,x] lie in the nuelzus, it kills zssooiztors involving x:

(1.,9) [x,n] [2,v,2] = 0 . {(Hucleus-Center Idanlity)
Indaed, [ﬁﬁ}[xyz] = xinfaxyz]} = 2{Ixysln} = {xixvzlln = [x,v.zxln
= nlx,¥y,zx] = n{xix,y,s1} = (nx) [xyel.

This is anothzor example of the Hiding Trick - we hid the variable

® inside an associator until we had commuted n past the associator,

then brought it ocut of hiding.



This mutuwal antagonism bebween commutators and zssociateors

has an impertanl conssguencs.

1.10 (Nucleus = Center Theorem.} If A is an alternative algebra
withoukt zero divisaors; then sither A is associative,N(A) = A or

else 1ts nueleus and center goincide, N(A) = C(Aa).

rool.  Suppose A 1s not asscoiative, so Lhare exist ela-
ments x not in the nucleus. For such an X some associator
[x;v,2] # 0 , 30 [x,nllx,y,2] = 0 and the asbsence of zero di-
vizsors foress [x,n] = 0 for any ne N{(A). Thus the nucleus com-
nmubes with any x€ H(A); on the olher hand, il we xN{A) then
® o+ owet B(A) dnpliss [z + w,n)] =0 by the above, and sinoe
[#,n] = 0 we have [w,n] = 0 for weN(s), vhus [A,N{A)] = 0 and
everylhing in the nucleus iz alresady in the center. (This is a
standard sovlk of argument: i1f somcthing lincar happsns whenever
x isn't in some subspace, then it also happens when = is in that

subspacae) .,

Another way to argue for arbitrary w is to use the lineari-
zatiaon,
(1.9) [x,n] [v,y,2] + [w,n]lx,y,z] =0 ;
here [x,n] =0 , so [w,n]lx,v,2] = 0 bnt [#%:,v¥,2) # 0 , forcing
[w,n] = 0 for all w and 211 =n.

Still another proof uses the Twe Kernels Lemma explicitly

(sce Part 1). If [%,¥,2] ¥ 0 then Ker ([, v,2z)]) is not ali A,



yet [w,n]lw,v,2z] = 0 implies either [w,n] = 0 or [w,yfz] =0
for any w, any w lies in cne of ths two kernels, and A = Ker |-,nl LJ'
¥er [+,v,z]. This is impossible Zf bhobih kernels are oroper, and
Ker [+,v,z] is proper, so Ker [«.n] must not be, and [A,n] = ©

for any n€ N(»). [J

We nhave seasn something like this baefore - in 11, 3.19% wo saw

that the nucleus and center of a Cayley algebra ceoincide, NI(A) =
ClA) = ¢1l. This is the real recason the Nucleus = Centesr Thoorom
holds: the only algebras without zero divisors {(or marely prime:

gee Appoendix II) which zre not sssocistive are Cayley algebras.

Onz final, unrelated rasult:

G L — _ . , N,V
1.11 (Unigueness Proposition for Isotopes.) Two jisotopes n (B
P
u ’ ; : . 1 1 =1
atid A[ V) Coancide as algebras iff uw — uwn, v = n v for

some invertible element n of the nuclaug,

A

(un,n” v o o luw)

Proof, Immedizlely from the definilion .
i PV

Txfun) My} = f{xu)dln (vy) = () fnfvy)] = x- we see

w,nv ¥
ﬂ{un,vj _ Eiu,nv}

for nuclsar n, proeving bhe "if" part of the proposition.

For the "L‘ﬂ‘:_’i-_y g Fari, suppose

e amy Ixul{vyl = {x0'dv'y)

¥ T . e 1 !
for all x,¥ (where u,v,n ,v are invertibkle). Then 1 = un for

— | -
some 11 (namely n = u lu'}; setting x = u 1 and v = 1 in (1,12}



1-11

lzads to r."]'v = v . We muskt show n relongs to the nucleus.
Eetting v = v'"l in (1.12) wyields (xu)n = xu1 for all x, and
similarly = =_u'_l vialds n-l{vy] = v'y ; 20 that (1.12) becomes

. _l " ] [
ead vy}l = {(xu)n}{n"{vy)l. Given x' ,vy we set ¥ = x u =

¥ = v'_]'{ny Y {so xu = x ,vy = ny ) and obtain x'{ny'l = {x'n}v'.

Thus n€ ¥{a). [



1.1 The left nucleus in a linear algebra A is ¥

Exsrecizes

{n|Tn,H;h} = 0}, the middle ruecleus is Hm{hj

and Lhe yight nuclsus iz Hr

YOV (&),

Mo[A) il A
E{ 1M I“[P 5

algohras.

Show all

three nuclei are associalive

(a) ‘= fn] 88,01 = b

1-12

5 (A

{H][E,n,é] = 0},

thus m{a)

q -
Jr

sub—

If = helongs to one of the nuclei, and comnutes with

everything, does il. belaong te the other nuclei as well?

1.2, If ¢ iz cenlral in & linear algebra (unital or not) show
R, = L, kelongs te the centroid.
1.3 If ¢ centralizes a subalgebra BC A (A alternative) and
de B also gentralizes B, show ad and du also ventralizs B,
If d € B this need no longsr be true: the cerntralizer in A of
& subalgebra B is net uvsually a subalacbra. Construcl an exam-
ple with B = &lb] generated by a single element b, S0 evary-
thing in & automotically nucleizes B: [A,B,B] = 0 , but
[»,b] = [¥,b] = 0 without [xy,b] = 0 .

: ;

1.4

n& N{A). Conclude [x,n)[x,v,z] = 0 for all X,v,;7Z and nuclear n;

L+5 Show that the left,

o nuclear elenznt n are
y P

1£f n is trivial, Ur Pyie=

1.0

Show M{Aﬂ} = M{a)

In an alternative algehra A

show [x=,n] = e&N(a) for all

right, two-zideal idecals generated by
a*u aty "y ",
An, nA , AnA os In ssspclative algebrac.
0 , show the ideal Ard is5 also Lrivial,
for any scalar extension 29, and any
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linear algebra A. TIf we regard 2 as algebra cover I'(A), show the
multiplications M(3/T) of A as T-alyebrao colngide with Lhoseo

M{n/0) of A as I-algebra.

1.7 .If A is finite -dimensional simple linear algebra, show

MiA) = Endﬁthj(ﬁ}- In particular, 1€ M(A) and M{A) = M{A].

1.8 Re-prove the Strick Simplicity Theorem by means of thie

Density Theorem of Part I.

1.9 In the gase of a unital algekra, reprove the Strict Sim-
cplicity Theurem in Lkerms of central simplicity. Aveold Densily
(prove an alement is central by showing it coumetes and asso-

ciates with everything).

1.10 Frove (as in 1.4, bubk not using 1.4 expliecitly) that

C{h.) = Cia}, if R0 is o frce extension.

bd
1.11 If » is algebraie over a ficld ¢ but w6 &, show
@ () a& 5(w) has zero divisors. Conclude Lhat 1if ' (&) conTains
i element algsbrals over (but not in) ¢ then ﬂr has wero di-
visers 'in its centroid and is not simple. TC0A is finite-

dimensional over a field &, show I' () is algebraic.

1,12 If 0 is a proper field extension of &, show i #, Q 1is
never a field. Conclude bthal. if T(A) » & then T (A} & A is not

slmple,



#10. Problem Sct on Nuclear Isclopes

1. If n lies in the nucleus of an alternative algebra A and

(1 ,v) -1 -1 . : ; W,
i+ ¥ Tu ig the unit »f the isctope 1( ! }, show
s {u,v) fu,v) .
nli ' X.= n¥ and - ' = %
— a o 1 I Tl
o i {u, v} S B I v — . fa,wv) ;
2. Show [nl P Y] = [ [(associator in A 1 s that
U,V 1 ; ; oo R T
[ l[ iv) igs oonlained i the nuclz=us N{L’V‘ of ﬁ{L’h]-
Show n(%rV) ooy . g (uev)
3. Shew clWevl ¢ o« aluev)
-. % S | e Lo SRy 3 {u.-'*-": 2 i - = =
4. Concluds that an isotope A id associaokive iff A i=

associative, and conmuitalive assooiative iff A is.

; 1 ; . .
5. Prove Tvix] =W X W defines an avtomorphism of A itf

w‘gt‘;'é_ Nia).,

6. Iiven though 'I‘“T necd noeit be an avtomorphism, prave T”{H[ﬂj}

N{&). Conclude wil = Hw.

7. Eslzblish the rela{ions Etu’vj =N L{U,V} = oL, T ud]
u,v) R = = I,V
= vy el e () Yool v p7T w PV o
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$11. PFroblem Sebt on Nuclear Radicals
We would like to break an allernative algebra into an
asscciative part and a purely allernative part.
1. The asscciator ddezl A(A) of any linear algebra A is the

ideal genexat by all assoclateors [x,y.,z]. Use (2.4) to show

AlA) = Aa[a,n,2] = [2,A,2)E. Show A(A) iz the smallsst ideal B
such that A/B ia3 aszocialive. Conclude A(R) = 0 iff A is asso-
cialive, and A[A) = A iff A is purely excepticnal (has no asso-

cliative homomorphaic images).

2. Show ths following are eguivaleni for an clzment z € H{a)
in an alternatiwve algebra A: (i) all #a are nuclear,{ii) all
sz are nuclear, (iii) zla,a,a] =0 , (iv) [Aa,4]l2 =0 ,
Ev]lzﬂ{ﬁj =0 , (vi) A(AYEZ = 0 . A nuclear slemenlk is propoerly

nuclear if it iz nuclesar and 11
Show tha set of properly nuclear

cdical

Lhe miciear

Hurd (&). Show MNuard () contains

Uf ﬂll

% Bhows Nusd (A) AR = o) Ward
prime algsbra (BT = 0 5> B = 0 or

, which for rezcons of euphony

mul Liples za stay nuclear.
glements forms a nuclear-ideal,
callead

is

211 ane-=sided nueelear ideals

feeteste o T ot
(&) = 0 , s5¢ that if A is &
' = 0 when B,0ak) either A

is assogiative or iL is purely alternative in the sense that

il has ne nuclear ideals: Hard (n)

a triwvial idezl, so ifI A is mereld

A
ul

unmi

ideal B is nuclear show B /1 A(A)

4 in ths sensce thet a{a)})MHurd{n) = 0

= 0, Show Werd{&)MyAala) is

y semiprims at lecast N is

one—-sided

[

L a

-

0 ., Conversely, in general



if BAA(A)Y = 0 then B is nuclear. Conclude thab if A is purely

alternative then A{A) hifts all nonzero ideals B.

4, Bhow that if z is properly nuclear in A, any homomorphic
image sz} is »ropexly nuclear in F{a)., Conclude F{Nurd(i))

5

CoNurd (' (a)), 1f A is unmixed, show Hurd {(A/ucd(d)) = 0 .

5. Show [HM{a}, W(A)] and any [x,W{A)] [x,5(A)]) are contained
in Nurd(A). Conclude thzat i A is purely purely alternstive,

ikg nuolewas MIA) is commutative, (In the nexl problem geb we

show R(A} not only commuies wilh itaclif, but with all of o).

5. Just as A/A(A) is the maximal associaltive image of A, show
if A is sominDrime that lfﬁurd{ﬁj iz the maximal purely altsxr-—
native ilmage of A,

In sonw sense, ASA(A) s the assecictive "parl"™ of A

and h}ﬂurﬁ{ﬁj Lhe pursly allsrnative "part.
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#12. Problem Sst on Nucleus and Center

How far the nucleus is (rom being cantral is measured by

the ideal CN(A) generated by all commulbators [a,.n] for as A

and nEN{A): CHIA) = 0 iff 21l Ja,n] = 0 iff ®w{A) = C{A).
Yo Bhow CN(A] = &[AHEAY] = [JR,N{BR)]A.
2. Show CN(AL)C Nurd (A)==CH(a) Al2) =10 {—"L [, {a)) o, n 0]

= 0 & [CHlN) ,AL,]1 =0 . Usually CN{A) will bLe contained in
¥urd(&). Show that zlthough [CN(A),A,3] may nol always b=

zore, al least it is zlwavs contained in A,

iad

Show any m = [alxn] b,2] (fer a;b,e ,.he::n, nEHIA)) is a
trivial elemenl of the nucleus. Conclude thaot eithear CN(R)
C Nurdi{a) or elsse Lhers ig a trivial ideal I(m) where m is

%C}r_-taj_:]f_—'d in CH{A)MARIN H(R)

4. Deduce Blater's Gencral Nuelear Thaorem: TL CN{AIN A(R)N

THurdid] conbainsg ne trivial elements then CH{A) ¢ Wurd(z) ,

so that if A is also pursly alternative then W{A) = Q(&).

9.  Doeduce Elalex's Huclsar YWhsorem: If A is sendiprime Lhen
CH(A) CC Furdi{d). If A iz senmiprine and purely alternative

then its nucleus and center coinecide, M(A) = C(A).

6. Daducse MiA] = C(a)] alsc 1f A has no associabive ideals,

or b8 semiprine with no associative images (purcly excepbional).

Y. It A has no Lrivial nuclear elsments showe: (1) & is un-
mixed, (1) CN(A) & Wurd(a), {(iii) W(a) = C(A) if A is purely

alternative, (iv) A(AINNR) = AA)NOCIA), (v) [¥(A),a(A)] =0 .



PR Preulen Sot o Slater's Xuslear Coajaciures
Miehael Slater has made the folleowing senjccturcss about

puraely

i

& diztanen of the aucloeus from the centsr in th

S CRIRY M AR is zero or cenibains Lrivial

Huclear idcals
(Y 2 ol oot gy elsa CH{A) M A(R) containsz
{".-: 3:‘ &
L 4 - I
Lo ) i =Ll eh )
SEIONY If Kurd(a) is commutative without nilipotent
el emeEnns, thon N{A) = SR -
o 4 - P, . j . = oy Y -4
Ly Show in gonerxal 1 =P R w3 S/ 4 v o ior ali=srmacive
e PR s ST B B T e | e [Waeprna]l ftxes = 1)
3+ 3 p=1 " g ) i o s B v
& o oana 0. © NiAY. Show g is ilncependent oL
J J
e praer and assaclation 0f the ifasclors [x, ;7 s2.] and [w_.:0:
L Atk i )
Shuw its wvalues Iic in CHi{a) M W{A;. ~
Ha Lhow o is an alternabing function of 1.8 arguURents X . ¥..2. /W

walen vanishas if one of these variebies liss in qlA). IE

snow gl y.2:W) = g{x,yfz,w‘,n}w: + gl v, z,w" nlw

n™] where n' = w2, ] .« Conciude Lhat AE gtran—
2 2

]
i
]

cot of qEReraLors X,V Z,.wW Lor A modulo MIA), 1t
g ¥

vanisiies evarywhere.
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I A is generated mod N(A) by 3 el



