£4 Classiflication of composition algehras
W. R. Hamilton discovered quaterniens in the 15407=z, and showed

x
they were solutions to the 4-squarc problem: weite the product (x] +

1
2 e Fen 2 2 2 . "
X, + xg + Eﬁj{yl + ¥q +'F3 + FQ} of two sums of 4 squares as a sum of
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g =gl ok 221 +z.,] E&k is the product z = %« In the gquatemmions.)
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Shertly thereafter, A. Cayley (and dndespendently J, T, Graves) discover-

ed the fayley nuzbers, which were saoluttdions to tha analogous f-square

IL{xll + }:Ei + :-13j
21-|.-2+y?+2+-2J-2’-2J-v
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Thege vesulbs Jed many peonle to look for solutions to the next

praoblem: n(in(v) = alz) for o)
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step, the l6-square oroblem. Several erronsous constructlons were gpiven,

and 1f was not until 1898 that A, Hurwitz showed that real guadratic

forwg peormitting composition Olx-y) = G(x)00x) are possilile only in

=

'

diwensions 1, 2, 4, &,

Howewver, this result did net describe the alpehraie astructure of
the product x.y. This was done by A, A, Albert, who showed that in the
finite—dimensicnzal ecasze cver an arbitrary field the algebras were tlhose
shtained by the Cayley-Dickson process: fields, quadratic extensions,
quatcrnion elpebras, and Cavley algebras. The coastructive proof we
ghall piwve 1s due to N, Jacobsen, and 48 walid without vestriction on

dimension.
4.1 (Hurwitz Theovem) A cowposition alpebra over a field & {s either

(0) a purely inscparable extension field T of & of gxpoment 2 and
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characteristic 2, with ldeatity iovolution
(@) | the bhase field &, with identity inwvalution
(11} a guadratic extensien C = ¢+ te* (e + a* = 1)
(III) a guaternion algebra O with standard inwvelurien

{IV) a Cayley algebrs l: with standard ianvelution.

Proof. The radical » of rhe bilinear form nix,¥) is an id=al (zoe

2.11%. By nondegeneracy of the quadratic form, n{z) ¥ 0 for zg¢g R ; =uch
; =L =-1- ; - g ; 4 I

# have invarses = = nfx) "=, sc either R = 0 or R contains invertible
glemants and thus is all of A,

We [irst got vid of the case R = A, where the polarized norm form
n(i,y) is identically zero. In this cass = o n{x) is a ring howomoarphism
of A dnto 4, since n{xy) = n{x)nly) and nixty) = alx) + alogy) + nly) =

n(x) + n(y), and it ic an iscmorphism since n(z) = 0 fmplies = = 0 by

&

nondegeneracy. Thus A is a field & eontaining 51, Since t{x)} = nlx,1)

vanighas ddentically we have 2 = t{l) = 0, s¢ 9 has cheracteristic I,
hence % + x = t(x) = 0 impliecs x = % and the involubion is Lhe identizy.

Then }:?' = ww = (=)l € 91 80 i is purely inseparable of exponent 2, This
iz case (0.

From now on we assume R = 0, so n(x,y) is nondegenerate. We will
show that 4if B is zany proper finite-dimensicnal nen-isotropic subalgebra
{containing 1) there iz L @ B with ;'_2 = ul such that: L (B,u) T 4.

Indead, we have A =R & b ginee B ie Finite-dimensional and non-isotro-
ple.  Eince B £s gssumad proper, R # 0, snd since n remnins nondegpene-
rate on B we can find & Bl with nfi) = =p # 0, We have Bp B+ (hence
BMBRL = 0 by non-isotropy) since nih, 420 = n(BE, 1) (by 2,93 n(i,e) =0

as B = t(BY1 - BCB (B contains 1) and B is a subalsebra. In parvticular,
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t{Bi) = a(2:,1) = 0 {fmplies the clements of BEL are skew. By 3.0 we
have ©(B,u) = B & Bi (C A constructed by the Cayley-Dickson process.

As hafore {only now everything taken place inside an algzbra A
given at the start) we can begin with Hl = gl. If El = A we have Case
Iy B1¥ & but Hl is non-isetrepin we have B2 = Q:{El,;1j = pl & 24
A by the forapeing. I B.i 1s dzotropic (i.e¢. the characteryistin is
2) therve is ¢ & A with t(g) = nfe,1) = 1 by nondszgeneracy of n{x,v), so
B2 = ¢l 8 e is a subalgebra (ei = ti{ele — n{e)l & Hz) and iz non-
isotrepic (if n{z,1} = niz,e) = 0 for = = g1 + pe then gn{l,c) = an(l,=)

=0, a= =0 as n({l,1) = nfe,e) = 0). If B2 = A we hawa case TIL., TF

EZ # A we have EB = ﬁ:{:z,uzjf: A 33 1z associative but nolb commutsative

bacause the dnvolution on Hz is nontrivial., Elther B, = A, and we have

cage I1I, or B, o

i

A znd we have Fi‘ﬁ = ﬁ:(ﬁq,pa}ﬁi A, B, i alternative
AR5 é

but neb-associative. We wust have Eﬁ = A or else AT 'E'fH‘.*:.H‘.i]' wheTaas

" " . 17 4 » . A
E:ﬂﬂa,uﬁj is not alternative sincse K, 15 not assooiative. [

Kotice that 4 is forced to be {iaite-dimensicnal (ef dimension 7,
2, 4, or B) except in tha desensrate case (0],

Tt 48 dmpossible to averstress the fact that (excluding the inscpa-
rable ficld extensicns) A COMPOBITION ALGEDRA HAS DIMENS1O0H 1, 2, 4,
U B, These are magic numbers, and should he dutifelly wershipped. For
exampla, by a bopological resoll of Bobl and Miloor any [inite-dimensicnal
(nonasseciative) division algebra cver the reals has dimension 1, 2, 4, or
8 (though it need not be related to the particular division alpebras ﬁ%,
¢, . L), These migle nunhers ar{-*.- inpredients in the constructicn of

the Freudentha! Masie Square of Lie theory,
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we will ecall the algebras of Type I-IV the crdinary oo

S el S

mositien

algebras. A purely inseparahle extension of Type 0 will be called

an extraordinary compositien alpelbra; note that 1t occurs only in

characteristic 2, and is the only compositicn slgebra which can be
Infinite—dirensional over 4. The ordinary composillon algzbras have

a5 their %-centers just &, but the extraovdinary algebra has “—penbzr .
Furthermore, Type O becomes Type I when considerad over the field g
rather than 2} in some sense it Is unusual only hecauss w2 considered

it over the "wromg' field,

VWe can exlraclh a Job more information from Lhe proof o the theoren.

Onee wore (compare 3,14)

4,2 Coroliary. The bilinear norm form nix,y) = t{xy) of an extra-
crdinary compositien algehra (including Type 1 in charscterisile 2)
vandehes fdentically, and = o nix) iz a rinp isooorphizo of § inte

w, Orheryiss the bilinear norm form of =0 ordinary composition

£, Corallary. If A is an ordinary compositiaon algebra over &, then
; " S G .
for any nonisotropic unital subalpedra of dimension dim B = E-dlm &
the algelbra A has the form A = (o(E,u) = B & Bi, llere & may be

a [ » 'L‘
chogen arnitracdly i B, and v = & i}

Thus a Cayley alpehra can be Luilt out of any of its qualeruion

subalpebras by the Cayley-Dicksom process,

4.4 (Sdmpliclty Theorem) Any composition algebra over a field ¢ ds



(-gimplz, and all are simple except for the vass of a split 2-

dimensional composition algehra fe + de*.

Tronf. YWote that *—sinnlinity 15 sasy to prova: the Cayley-Dickson
Formula (3.3} shows that it C is z proper #=ideal in P then € + CL is &
propey #=jdeal Lﬁ @Cih,u), o thal if at any stage of the Cayley-Dickson
process there were a »roper #-idzal there would remain ope at the [inal
f-cdimensional stage, whoersas a Cavley algebra hasn't ews=n gnl propcl one-
gided ideals by 2,15,

The inseparahle extensions & (ineluding & = %) ave trivially simple,
and by 3,16 thz Cayley alpebras arc too., If A of dimension 2 or 4 has a
proper ideal © then n(C) = 0 since € # A has no invertible elemencs, yet

E(0) T = (CAY = n(C,A) # 0 by 2.7 since C # 0 and nix,¥) is nondegenerate.

Thue tharve ig a proper ddemvolenlt o io G tfe) = 1 bur n{=) =0, 17 A
has digensicn 2 then o 4 eo¥ = t£fe) = 1 and esf = pdfn = nial = 0 showus

A= g + jeF ig a divect sum of two copies ol . TIf A has dimension &
thenm A DB = ¢e & 9%, so0 A = L (B,y) =« B+ B for anvy j L5 by 4.3,

Then ¢ & C ifmplies e and jo = e¥j lie In C, which contradicts isctropy

o j

of C: nlej,e®3) = un{e,e®) = y ¥ 0. Therefore no suweh C exists in dimen-

gion 4, b2

The proaf of the Homgit: theoren wakes It clzar Chat the nerm form
and the unit determine the strusture of the composition algebya. This

leads to o basic critevion for Ifscmorphism,

4.5 (Isomornhisn Thearen for Composition Algebras) Two composition
alpclbras ever a [deld ¢ are lsooerphic LII their norm forws axe

equivalent,
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®

Proof. Suppose Fii - :*': is an isomorphism of composition algebras.
Ve c.la{m.;q(F:-::J = n(x), 30 F 1s autcmatiecally an equivalence of guadratic
forms. (This is really a specizl ease of the result that the generic
norm and minimum polynomial of an algebra are invariant under Isomorphi-
"2
gms. ) We hawve }:2 - t{x)x + u(x)l = 0 in A, so applying F yields x -
ﬁu - T ’ r;_ My . "":-2
tx)% + n(x)l = 0 for all x = F(x) in A. But we already know x -
+ RGO = 0 4n X, so [EH - £(x))F = (7)) - n@) T for all 3. If

¥ ff 1&, independence gives 1:(%} - £{x) = ;f{r::i} - nfx) = 0, while if 2=

Fix) & 81 then fas F is bijectiva) x = sl & o1 trivially has FT'_JI:;;U} =
E(x) = 2a, n(¥) = n(x) = 32. Thus in all casss n(Fx) = nix), and F is

am aquivalencﬁ.

How suppose the guadratic forms o, o of A, 1 are eguivalent under
a bijection F: A E, E{F(x}} = n(x), First consider the degencrats
case of zn Inseparable f£ield extension A = 4, where n{x,¥) = 0. Then
n{x,¥) = 0 too and E = E is alsc an inseparable field. 1In this case
F must already be anlalgebra iscmorphism: 1t pressrves products, F ()
= F(x)F(y) bacause H{F{KF}) = n{xy) = n{xinly) = ﬁ[?x]ﬁ{Fy} = E{Fx-??},
end by Corollary 4.2 n(z) = n(w) forces 7 = % in G.

From now on we assums nix,v ) i3 nondegensrate. 1o general F itself
will not be an algehra isomorphism, but we will build an isomorphism along
with composition subalgebras as before, We start off with a rather pedes-
trian iscmorphiism Fl:{fl = 4] -» a;_- ¢R. In characteristic_f 2 this
foothold is enough, but in characteristic 2 the scbalgebra G:I is totally
isotroplc and (as whan buildinpg composition algebras) won't do for our

induction atep. We choose u € C[l'w'ith nf{u,1) = 1 by nondapgeneracy,

n{u) = - %3 We can always assume Fl = Y (if necessary, replace F by
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its transzlate Fo{x} = F(vx) where F(v) = T then niv) = nﬂ(‘E‘v} = gﬁ)
1 implies ;";(1~'ox} = T{{:F{'n:?r) = afvx) = n(v)alx) = n(x) sc Fu is apain an
isometry but now Fﬂ[l} = Flv)} = E]. Then % = Fu alao has E[h,?] =

i 3 ny n'L‘, "
rﬁ{'ﬁ'u,‘fl) = nfu,1d = 1, ?{(u‘j = n{tu) = nlu) = - Hys and T*‘E(ul-hiu} = ol +
: el ) Ly l
E-ﬁﬁ defines an isomerphism F, ¢ {EE =4l +m-C, = 31 + s of (now non-

i

{sotrople) subalgehras. Iadeed, all that is necessary for F, to he an

igomorphisn is that Fz{ug) = F?(ujz, which folleows from 1.'12 = t{u)u -
o ] L T Y] £ % E 3
s n{u)l = u + p,1 and u° = g (uia— n-.',n_iﬁf_ = ul‘i'
Wo matter what the charocteristie, Once we have an izomorphism Fi:

il
{Ei - G:i of proper non-isotropic susalpgshras we can enlarge Fi' Indead,

gince {EiJ' is also nen-isotropic (by nmtdegeﬁerac:: of n) we can find
4, i g = '

1 & @ with n(i,) u, # 0 2nd build € T, + €2 as before.

By Witt's Theorem (which is applicable even in characteristic 2 since

.
n(x,y) is nondegencrate; ses Part I) the fact that n, n ars equivalent
Fav ut

. L
and Fi an iscmetry from Ei to {Ei implies ﬂ:i and EI:;LL are aiso isoma-

L
o A Lo A
trie, so corrasponding to £, we con £ind :ii = ‘:Ii with o(e,) = - uy

# 0 and build Ii:i-t-l

I

i
= G::T. + ':E'.E:j_. But then by the Becessity Proposition

i
e
3,8, muleiplication i=n ¢i+l’ aC is given by the ngleyvilickscn formula.

i+l
Hence ri+l{ci+diai} = ri(c.} + Fi(d}!ai defines an algebra isomorphism

" H
{I:i-ij_lq_?{j:i-!-l (using Fi(ci} - t'i{c] since ¥, is actually a #—{igpmorphism).
This is the essential peint — once 2 and p are given, the nultiplication
follows. Thus we can keep bullding up larger and larger isomorphic non-

igoltrople subalgebras wuntil ewventually (5y flnite-dimensionality when

A
nix,y) # D) we have an isomorphism T-C. 8

4.6 BRemark: If ¢ is a fleld of characteristic £ 2 the 1lnvolution, Lrace,
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and norm of any degree 2 algebra are complately determined by the
algshra s.tructure, therefore are preserved hy any algebra Lsomor-
phism. Indeed, =* = x &5 2x - .t(x)l &% % € %1 (characteristic # 2)
and x% = ~x S t(x) = 045> € ¢ but x & ¢l or x = 0. Thus the
symmetric and skew elements are deflined zlgebraically, hence are
preserved qu-:ler any iscmorphism, so the whole involution is too:

x =X, + %_ has S(x*) = f{x+ -x )= f(x+] - £z} = {f[}:+} + f(x_)1*

= f(x*}. If f preserves * it also preserves t(z) = x + =% and n{x}

= xx*, B

As an immediate conseguence of the theorem we find that changing the

parametar 1y by a worn decsn't change the algebra @Cir, u).
]

4,7 lemma. If nfa) € ¢ is invertible then b & (ac)i }!- B & i is an
igomorphisn of L (B,p) with C(#,un(=z)). Thus the isomorphiswm class
of @L(B,u) depends only on B aad the ceset of © moedule the norm

suhgroup of 4, i.e. the imspe of p in ¢/n(B).

Proof, Clearly T im an iEﬂl‘l‘I.E.!;I‘:-.’: ofb + (ac)e) = nfb) - inlac) =
n(b) - pala)u(e) = o(b + ef). Thus by the Isomerphism Theorem L(E,y)
end L (B,unla)) are isomorphic.

"In this case we can actually show directly T is an ilsomorphism, over

an arbitrary ting %: F{(b, + acli}(hz + ac,i1) = F((h.h, + uzﬁﬁacj} -

iy 172

— - - W
a(czb + e, b 323 = (h. 'k, + pn{n}uzcl} <+ {Egbi + Glbz}h = {bl + ¢1Q} -{bE

1 12 172
2 i Yriom o+
+ cEE.} F{hl + a_lse.} I'{;-Z aczﬁ.}. )

4n another conseguence we can cstablish the fact, alludad to in

Chapter I, that all isctopes of a Cavley alpebra are dsomonrphle. By the
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Tsomorphlsm Theorem it suffices if they have equivalent norm forms. But
in the Isotecpe Formula 1.14 we saw that the Isotope d:{u’?} kad norm

(x) = nf{uwwIn{x), so the bijection I'uv: !I:(u’v} + (@ satisfies
n{Luv?‘] = nl{uv+x) = afuvin(x) = nfu,v) (¥). Thus Lm- iz an equivalence

and the isctope 1s isomorphic to B

4.8 (Isotopy Thaorem for Cavley Algebras) All isotopas ﬂ:(u'v] of a

Cavley algebra L are igomorphie Lo C. B

As soon as the norm form represents rzern, the whole composition alge-

bra dissolves into a very simple lorm.

4.9 (Splicting Bguivalence Theorem) The fellowing conditions are equi-
valent for a composition algebra A over a field 3.
.(4) A 1s not a divisien algebra
(11} 4 has zerc divisors
(111) the morm form represents zero, nix) = 0 for some % # 0

(iv) A contains a proper idempotent e # 1, 0.

Proof. Fv Corollary 2.8 te the Inverse Thaoram, (i) and (1ii) are
equivalant; clearly (ii) implies (1) (zero divisors xy = 0 destroy injec-
t:f_‘ﬂtlit}r of Lx}, and (1ii) implies (i1} since if ni{x)} = 0 for = # 0 then
sx = 0 where % # 0 (recall % =% ).

If e # 1, 0 is idempotent then & £ al, =0 0 = e?' - tiele + nia)l =
{1 - e(e)le + n{e)l implies t(e) = 1, nle) = U, and n represents zero
nontrivially. Thus (Iv) =» (iii). Conversely, suppose n(x) = 0 for = # 0.

Then A 1s not an inseparable field, so by 4.2 the hilinear norm ferm is



4=
|

=

o

nondegensrate, nix,A) # 0, and we can find y with alx,v) = 1. Thus

e = xy has trace t(e) = tlxy) = n{x,?} =1 fsee 2.1) and nerm nie) =

9
nl(xy) = n(x)nly) = 0, so that e” = t(=)e - nfe)l = e is idempotent.
Clearly & # 1 since nfe) # n(l) =1, and e £ 0 since tie) # c(d} = 0.

Thus (1ii) = (iv). B

4.10 (ldempotent Criterion) An element e In a composition algebra over

a field iz a proper idewpotent iff tfe) = 1, n(e) = 0. B

We say a compositinn'algebra over an arbitrary ring of =scalars is
splic if it centains a proper ldempotent e # 1, 0. By the above, a
composition alpgebra over a field % 1s either split or a division algebra
(this isn't true for genzral - indead 1 already may be neither a divi-
glon algehra ncrr:cntain proper idempotents).

It-is wvery impmrtant that COMPOSITION ALGERRAS OVER A FIELD COME IN
THO KINDS, DIVISION ALGEBRAS OR SPLIT ALGEERAS (according as n dozs not
or dees represent zera). Another important faect is that ALL SPLIT COMPO-

SITION ALGERRAS OF 4 GIVEN DIMEHSION LOOK ALTEE.

4.11 (Split Isomorphism Theorem) Any two split composition algebras of

the sams dimension over a field ¢ are isomorphic.

Proof, We will show that the norm form of a split algchfa necessarily
has maximal Witt index. Since any two quadratic forms of the same (even)
diﬁenSicn having maximal Witt index are equivalent, and since equivalesnce
of norm forms impli=s isomorphlsm of algebras by the Isomorphism Theorem,

this will establish our Tesult,
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If A is splic it I:D'.I.'I.Jl.:i.".ins an idempctent & with t(e) = 1, n{e) = 0,
g0 8 + e* = 1 and e*e = 0, Thus A = A1 & Ac + Az® is 3 sum of twe sub-
spaces; this sum iz direct because ze = he* implies ae = aez = {ag)z
{(be*)e = bie*e) = 0. (This is a particular czse of the Peirce Decompo-
sition velative to two anhcgoual'iﬁem#atenté, which we will discuss in
more detail in Chaster VII.) Thus we have decomposed A into a direct
sum A = Ae @ Aeh of totally isotropic subspaces (note n{de) = n(a)n(e) =

L

0, nfie*) = n(a)n(e*) = n{a)nf=) = 0)so that by definition it has maxinal

witt index. B3 fo ot

Thus 1f you've seen one split algsbra, vou've szen them all. One
way of building a split algebra is to take @(B,p) for y = 1 (whether
B ia splic or n;:vl::] because far any h £ 0 the element = b + bz # 0 has
nlx) = a(b) - (k) = 0. Therefore we chtain the following {axhaustive)
list of split composition algebras over a fiald 4.

Disension 1. A one—dimensional compssition algebra 41 is nevaer
eplit according to ocur definition.

Dimenstien 2. If the characteristic # 2 the split two-dimeasicnal
composition algebras lock like L(2,1) = 21 + ¢i with 12 = 1. Then

C = % & te® 45 a direct sum of twno copies of # with exchznge inwvelution,

1 1 : 3
whare & = E{l + 1), et = El:l - 1), If the characteristic = 2 one takes
(e, 0) = 31 + du where £(u) = 1, n{u) = 0 (u = 0 rather than y = 1}
su agaln ¢ Is a proper ddempotent and L' = #u O $u* conaists of two
coples of *.

+
151 7 2%

are t(x) = oy + @, and n{x)} = oy Mobice that n{:-:lr'-rxg} = n[xl}n{}:zj

In A = ":'el & 111;'2 the trace and norm of an slemant x =
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is the pfnduct of norms ni(aei} =z on ¢Ei.
Eiggnsfnn 4. TWWe obtain a split four-dims=nsionel algebra C(e31,1)

= {ga + te*} & {fc + do*}f = Gu .+ e, % 24 + $c71which is isomorphic

11 2

to the aleebra H?f¢] of 2% 2 matricaes aver & with standard involution

a B é¢ -0 "
-+ = = ® oo = o = E {ko
. 8 b " Here 251 2485, e¥,e “j’EZl e*4 act 1lik

matrix unlts, This can be checked directly, or note that we hawve an

12

o 0
£ T <] - 3 o4 - i C T +
1mbedding & & fe® - ¢L11 -+ @EEZ by oe 4 de* =+ (n 6]5 gince j e
and jz =1, by

92
1.9 we have an isom.::.rp'hism C (s @ se*, 1) » M,(¢4) via (ce + Ge®) + (fe +

n o1
“21 " l1 G) satisfies jb = b*] for all b & deyq + ¢

& £ - E = 3 - -
ve¥)] + (eey, + feyy) + (Regy + veg ey, + ey ) = ey + ey,

e g
PRy > G)'

It might be well to stop for a moment and consider the involution

! +
Feyq

in the {split) gquaternion algebré Hz{¢} in more detail. Here

H1 M 39 ik b

]

Sy3 g L5 8 %14

Note that this is very different from the transpose involuticn = -+ "

or any isctope = -+ txtE_l therenf. The essential fact is that all traces
t{x) = % + x* are scalars in 3l. No other matrix algebra ané}, o2y
can ecarry such an involution., Indeed, vou will rezall frowm the associa-
tive theory (the Cartan-litauer-Hua Thecram, for example) that these

quaternion algebras with standard involution are the unique exceptions

to many general statements zbout associative alpgebras with involutlion.

2 ud
11 12)
1

The norm and trace are the usual ones for matrices x = [u
21 a2
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t(=) = trace x = 2

= - = + v
o) deat = o 1 Ghn o

13955 T8y lays

Dimension 8. The wmique eight-dimensienal split Cﬁyley algebra

Cev,1,1,1) is obtained as HE('CI‘»:J + ]-fz',’&t-j g = {*Z"El] + te,, + ';"EJ{E%) +
(1) R 1 LA . L . (3) (1) _ (1) _
te,) } + {Qalz +deyt et F ¢ezl } for €15 = €yps €51° = €7
(2): - o XY £33 T i [ (k) (k)
Bys % Cypts Byl S - epaks BnT = Bppde @400 8508 WRSIE Ey57s By

again act 1ike mactrix unilts €11 Coqs but we have in addition products

Y Getl) | (kt2) (k1) (k) _ (k2D

e“‘}e["’:’ =04if k # & and = &5

12 T12 Epartyn o T B %0 S
(indices med 3). (HMore about these "Cayley matrix units” in Section
VII.5).

5t111 another way of looking at the split Cayley algebra is ro

think of it as the Zorn wvector matrix alpshrs eensisting of all matrices

L -

o KR 5
o L e Ed BYE c;( }]
¥ ]
sz ; U 25 (2] (3)
by means of rhe iscmorchism By o e + £1%19 F 52212 + 1219 +
(1) {2} (3) (“ XJ . =
'rlle-zl + Tlgf-zl + TLB'E'Z:L -F ¥ 2 IroTr = (Ell rz! 53)1:?' - (Tll}-'lzl' L3}l'

Here the multiplicatieon is

ayay Ry, agEy FoxgE, Py,
Ayl *

Fi8a % By¥p F I BB T

where x'y is the ordinary inner product (E]'EQ’EB}'[“l’“E’ﬁ3) = gy ¥

(3}
TH 3
EE 2 + !:_'}HE on @

{”1’”2’“3) = {Ezna - Eanz, Efjl - 51“3’ £1n2 - 52”3} {which mavy be casier

and x xy the crdinary vactor cross procuct {El,gj,ﬁjjx

to recall 1f you write x = (51,52.53} = gli + 52j + g3k with rules
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1= =k, ]=xk =1, kx1 = 3 cyclically, with anti-commutativity ixdis=
jxd=kxk =0, jri=-4=x3, kx] =~ j=k, 1k = = kx 1),

In thig notation the norm and trace take the sugpestive form
t(A) = ¢+ B = tr (&), n(d) = of + nx,¥) = a3 — x+y = det A.

4,12 Remark. TIn the split characteristic # 2 case the Cayley-DHiekson
2
farmula {2.3) can b2 straiphtensd out. If g = 1 then By =

%{l - L), &, = -;'--l_'l 4+ 2) are i.'--,-'.z:;.-;t&.‘-;ﬁE znd wa can write

2
= |

13 ” . _ X
(413 C Be, © Ba, te, @ 0, 8 B8, 6B e

instead of L = 31 @ B2, where H.:. are the trace zero elemsnts and |

multiplicatien iz given by

{bei) (r:ei} = {(bxele —

(4 .14 i STRESS)
(i # j, by & 503 |
{hei] (cej} = (b« e}ej =ﬁt{btl"j‘3ll :
L =ednisa = - RtE) = b tlhe) .
whers hec = E{hc + Cb}_.'l_and bwo = E’(bc — ¢ch). Indesd [bel}(cel} =

%-{h =By le - et = I-:.—{{I:u: 4+ T8y = (he + ch)ot = =I(ke - eb) + (be - ch);}

N I

and (be,) (ce,) = %(b - b2){c + ct) =-%{{bc - ob) + (ch - hcle} =
%{(bc 4+ ch) + (he + ch)e)}. The formulas for fbezlitaz} and (beg}{chl}

follow by replacing & by -5’..' [

© Although all split algebras of a given dimension look alike, the
same 15 by no means true of division algebras. The classification of
division algebras depends very much on arithmetic preperties of the

base fleld. We can say
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(1) cthere are n& compesition divisinn algebras of dimension > 1
over an aj.gahra'[n.;&'l].y closed Tleld
fii] there are no compesition division algebras of dimansion > 2
over a finite field
(111} the onlv composition division algebra of dimension 2 over the
"veal field R 12 the field € = LC(R,-1} of complex numbers;
the only guaternion divisien algebra over the reals is the
aigebra of ordinary quaternions QC([R,-1,-1); and the only
Cavley division algebra over the reals is the algzbra of
ordinary Caylay numbers €(R,-1,-1,-1).
The algebraically closed case (i} is trivial sirce any non-censtant form
n{xl,...,xnﬁ for n > 1 has nontrivial zeres in an algekraically clozed
fileld; similarly for a finite field ¢ the norm form n(xl....,xn} has more
varlables n = 4, & than its degree 2, hencs (by Artin-Chevally; see Tart
1) has = nentrivial zers. TFor the real case K. we know that if we ever
take p = 1 4in the Caylev-Dickson process, C(B,u) will be splic; but that
leaves us only p = =1 each tima, bszcause every real v can be written
U= * uz = & nla) (according as u is posiriwve a negative), =o C(B,u) 2

C(B,*1) by Lemma 4,6.

"
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Exercise

In the proof of the Simplicity Theorem 4.4, use *-simplicity of

to show that if € 1s a proper ideal in A then A= CH C*, In

dimension 2 show C = dc where ¢ wo fer v # 0: conclude C = fe.
Give an example of an Isometry A I X of 4-dimensicnal compositien
alpgebras such that F{1) = 1 but F is not an isemorphism. Is this
poesible in dimensiom 27

Cive an exampla of an {scmorphiswm B E E of 4-dimensicnal unital
subalgehras (izotropic, of course!} which cannot be extended to
an lzomorphism 4 - % 0% 8-dimensional composition algebras, Show
that neverthless A and I3 must he [zousrphic.

Nescrike all proper unilpetsnt elements in a composition algebra

(Wilpotent Criterion).
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#&. Problem Set: Wright's Theorem on Absolute-Vzlued Alpgebras

An absolute wvalue on an algebra A over the field [ of real numbers

is a real-valued functien |x| on A satisfying

(1) ]xl >0 forx# 0
(11 ]-::r::c] = |al|x| for ce R
(114)  [wty| = [%] + [¥]

-

(v)  |ey| = |x]|y].

The last relation shows A cannot have any zero divisors.

L.

&ivisinn ?
If A is a compositieﬁmﬁlgebra aver ﬁi, show fx] = #HTET'TE a2 wall-
defined abéclute valus om A,
We want to establish the converss, that every absolute—-valusd
(nomassociative) division algebra is a composition algsbra wich

I 2

|x|w= vn(x),' What we must do is show nix) = ]xl iz a nondepenerata

guadratic form en A permitting composition. It certainly permits

|2:y|2 = nl{xInfr) by (iv}, and zl=o

cozpesition, a(xy) = Ixylz = |x
nfox) = azn(xj by (1i}. The vhole difficulty rasides in showing n

is quadratic, i.e. n{xy) is bilinear. |

(Jordan-von Neumann Characterization of Inner Product Spaces) Show
a funetion flx) on a d-module {%E &) which satisfies flax) = azf(x}!,
flxty) + flx—y) = 2f£(x) + 2f(¥) necessarily has the fom f(x) =

glx,x) whare glx,y) = %{r(x+y} - f(x-y)} 1s a symmetric & -bilincar

function. If ¢ = [R and £(xiy) < £(x) + (¥}, show g 1s [ -bilinear.

Conclude that a notmed linear space (or Banach space) 18 an ioner

product space {(or Hilbert space)} 1£f it saclsfies the parallelogram
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1aw]|x+y!|2 + ”x—§|}2 = 2|i:-:||2 +-2]:y]|2. Concluds further a norm-
ed.linear space X is an inner product space 1ff every Z-dimensional
pubspacs Kﬂ iz, Observe that a2 ?-dimensionzl normed space is an
inner product space ££f its unit sphers § = {x|||x[] = 11 is an
ellipse {x | zlx,%) = 1}, g a symmatric hilinsar forn.

. 2
Show that in a normed diwvision algebra |1£.‘+§.'|2 + |x—y;“ > 4 if |K| =

Iyl = 1.
Ehow that if 1 | is & norm on & 2-dimensional teal wvecktor space

2
2 4 |+%-5|= = 4 for =,v in the unit sphere 5, and

satisfving !x+y
|| || 2 norm with unit sphers an ellipse E (|]x|E2 = g{x,x}) such
that E lies drside 5 with intersecticn E M § consisting of more

than 2 points, then necessarily E = § and | ] = :[ [| igs given by
the inner preduct g,

Let [ : e a norm on a 2-dimsnsionzl space with unit sphere 5. Show
that 1f E is an ellipse {x | glx,x) = 1} = {x | q(x) = 1} (g quadra-
tic form) containsd inside 8§ zand having maximal area zmong such
ellipses, then E meets § in at least £ points.

Prove the Day-Schoenberg Theorem: If a normed linear space satisfies

]x+y|2 + |:c—3r|2 24 for [x' =

ar

v| = 1, it 45 an inner product soace.

Prove Wright's Theeren: An ahsolute valued real divisicn algebra Is

4 compositicn algebra, henee is either ﬁl, T y 3, 0T (: undexr |x| =

Yn(x).
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#9. Problem Sct; Albert's Theorem on Absolute-Valued Algehras

By techniques of lincar algebra (rather than geometIy) one can

estahlish the [inite-dinensional version of Wright's Theorem,
E

1.

then 2= 0 and S

Shew that if Lx gsatisfies an eguatien of degree 2 for each x In a
imital algebra A, then A is left alternative.

Thus we will try to prove Lx iz degrec 2 when A is absolute-
valued (a similar argument.oin f "will give right alternativity).
This leads us to investigaéé“the minimum polymonial of LR.

For a linear traasformation T on a finite-dimensional space over
IR let o(r), the spectrun of T, eonsist of the characreristic roots
A of T (roots of det 3T — T| = 0); o(T) is 2 subsat of L. Show
a(p(T)} = pla{T)) for any polynomial o(n)-
Show that 1f % ie 3 finite-dimensional normed space and T is a bowded
limear tranasformation, |Tx| E_!TI |£| for all =, than |5(T]| E_:TE
(1.e. the spectrum is coatained in a disc of radius [T[3.

_'EI

If T, T_j are bounded and [T = ['I‘|_1 (for emample, if |Tx| =q|x!

for all = then !T| = 7 and [T“ll = T"l} shaow

o (1) = [T] .eo o(T)
lies on tha circle of radius |T]).

If A is an absolute-valued finite-dimensicnal unital algebra, show
that any Lx has at most two (coenjugace) characteristic roots.

Show that 4f 8§ = T - Z for Z nilpotent has [8x| = [x| for all x,

n

I,
Show that any Lx for % in a2 wnital finlte—dimensional absolute-

valued algebra has depree 2.
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Show every finite—dimensional absclute—wvalued algekra has a unital

igotape.
Prove Albert's Thearem: Every finite-dimensional abselute—valuad

algebra gver R is an izctopa nfiﬂ, T, 0, or & (and every unital

ome 15 1teelf one of R, T, q, ox L ).



