§7. Representations and modules

A madule for an associative algebra A consiets of a space M tegether
with a homoworphism of A into the algshra End(i) of lincar transforma-
tiens on ¥, ‘The advantape of representing an algebra as an algebrs of
transformations is rhat it replaces the abstract product =-¥ in A by the
concrete and familiar composilion ST of transformations., By analyzing
the structurz of these representations we can gain penstratinpg infloruna-
tion about the srtructura o the criginal algshra,

Clearvly theare can he no =imilac program for anenasseciative algebras;
in Tepresenting A as an associative algebre of lincar transformations we
neglect cverything that makes A nonassociative., Representations, which
are central to the assaciavive theory, play almost ne rola in tha non-

%
agsocistive Lheory. A11 thalt remain in gensral ars birepressatations,
which play but a modest tole in the associctive theory; even 1n the
nonassociztive theory they serve wore as a3 convenience than as an exssns
tizl tool.

The metivating example of 2 bimodule fis the repolar bimoduls, which
consists of the alpehra topether with ite zction on itself., This leads
te the notion of & multiplication alpehra, If A i3 & subalpgebre of an

alternative algebra E (E for "extensien"), the multirlication alpebra of

]!'l. OTE & :l'_s !'.hf,’_ rISED‘[:'i_-'LI'_'i_'u""! .':!.-l_{:,-".h A
M (A

of linesar transformations on I gonerated by all multiplications Lx, ]
£ 3 =

for x€ A, {(Since 1o goneral LL 4L , RBRR®R 4R ,LE £RBL in
xy xy' Tx ¥ > Wy ¥ R

M

# :
This deos not apply to Lie algebras, where again the representation
theory ie decisive,
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the nenassociative case we must Lake all sums of products of such

L , R. To indicate that it ccutains more than just Lhe Lx and F_, it
=y 3

is often called the nultiplication envelope of A on E). When K = A

we spesk sinply of the multiplication alpebra
M)

of 4, If M is anv subspace of B dinvariant under the meltiplications of
A (for example, any two-sided ides] in E) we can restriert thase transfor—

mations to M and obtain an algebra

b, (AT)

of operators acting on M, (We include E in the notatiom to indicate all
multiplying is taking place within the eaveloping algehra E). Since
raskricticn ef operaters is alwsys a homomorphism, we have restricticn
hemomorphisms Hth} i PEEA]EH = ML{A[E}. al1 HE(Alih are thus homozor-
phir dimages of MH(A}l

Somebines we will nead to consider the multiplication ideal
AR

which is the ideal in M{E) generated by HEEA}; it thns rvonsists of 211
multiplicrations having at laast ecne factor from A

Often we are trylng to prove that if A is nilpotent then so is M(A),
so we definitely do not want MOA) te eantain the identity. Yowewsr, ak
other times it is convenleat to have the identity arcund., For thuse

occasions we Introduce the unital multiplication alpecbra HM{A), which is

the ordinary multiplication algebra with the identicy thrown in,
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L

M(A) = &7 + M(A) -

Similarly we can form HE(h|E . These are unital associstive alpebras
of operaters, As an application, the ideal gencrated by a subset XA

can be written suceoinotly as
TIX) = MIADX

M{ADY ig an ideal ten, hut if T @ 1(A) Lhis ideal need not contain Xj

it is the ideal "strictly" generated by X,
1) = M{ADE .

Enowledge of these multiplication algebras tells us something aboukb
how & multlplies, hence something about the algsbra struckure.
ol ‘*,'l

7.1 Example. The subspaccs of A invariant undey the operators in ML)

arc procisely the twa-cided ideals of 4, |3

We would like to characterize thess abstractly aod thereiore io-
triasically (so the action of A en M can be described withoeut dragging
in E as an iotcrmediary). HNew the multiplicatien algebra is penerated
by operators Lx’ Ex {2 & A) sartisfying certain relations. One obvious

1nt is N + B iy B 1ty the nap x + L d
relatlon 1 Lux+ﬁy L).L:'L FLF’ i lincarity of nap ¥ Jy, an

similarly for x - Rx' Unlike the situation in asscoiative alpehras,

x -r ]_.x and y i{}‘ noeedn't be homemorphisms or anti-homcuworphiswa.  Whet
relationg de they satisfv? Alternativity of multiplicaticen of & on M
is reflected in the alternating naturs [2,x,m] = [®,mx] = [m=,x] = 0,

[#,v,m] = - [x,m,v] = [myx,v] of the assecistor. (Holiee Lhat the [irst
¥ )



three won't suffice - because of the distinguished roles of m & M and
x,¥ € A, they only provide information zbout interchanging variables

from A, mot ahout interchanging a varianle from A with ona from M).

2 2
ator ions sa stat = = Ry e
As operator relations om m thesa state L 2 Lx [R}:,L}:] : R,
® b3
0 and L - L1 =[L,R]=RE —R .
xy  my SRy yx wy

M together with £ birepresentation of & cn M, a pair of lincar maps

xoe 3 and x - x, of A 1ntLﬂrnL$(M} salisfying the relations

2 2
(7.2} e f gy Rx s T g =T,
X X ”
(7.3) t —-28 =Jr,r]l=rE -T_ "
xy  xy e ¥Ry

{Natfce that in sn associative birspresentation, fhe three Lerwms in {7.3)
would not only bz cgual but equal to zero)., Eguivalently, a bimodule

[ q

is & space M together with twn hilinear products AxM =+ M, M = A =+ M
%

gatisfving

(7.2)' ="em = xr{x-m), m-x? = {mex)ex

(7.3 myem = 2o {yem) = xo(mey) - (xrm)ew = (mex)ey - m-xy .

for 211 =,y € A, u € M,

To show that.uur axions do characterize molbiplicalbion algsbras,
we would like to show an ahstract hirepresenbation le' T Comes from
concrete mulliplicallons L“{, Rx in soms alpebra.E. To find E, we take

the algebra and the bimodule and glue them together,
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7.4  (Bimodule Theorem) If M is an A-bimodule, the split null extenzion
E=A8H
with multipliecation

(2 @ m)(b 4 n) = ah & (f,an 4+ r.om)

b

is an alternative elgebra containing A as a subszpace, M as a Lrivial
ideal, and such that the restrictions to M of laft and right i b B

plications by & € A coincide with the given bireprescatation:
= 1 = 1 ; k]
a[m Lar Hlm Ta |

L

Troof. That A is a subalgehra of B, M a Lrivial ideal {ME = 0}, with
mulbiplication of A on M given hy _'La, - all this die obwicus from Lhe
definition of multiplication in E. The only thing te show 1s that the
bimodule condition (7.2), (V.3 forece alfernalivity of E.

Ve content curselves with cheching left alternativity, In expanding
[ &m, a i m b & n] we may foergel about toyms with two or more faciors
from M, since ¥ is 2 triviazl dideal, or with 211 three factors ﬁrcm A,
since A is an alternative subaleshra., This lsaves only the terms [a,a,n]

+ [a,=,B] 4 [m,a,b] with ene facter from M. By definition [a,a,n] =

It

nzn — afan) {2 5 = Lllﬂ}n =0 from {/.2Y, [a,mb]l + [ma.b] = {am)b -
A
alrb) + (pad)b —miab) = { - [z _,v ] + 7

= =0 p— - ; iy
a b ]_'.vra IEH-H'.'I. 0 from (7.3). Thus

[2@m afm b@n]l =0and E Is lelt alternative., B3

F is ealled the splic null cxtension of A by M since firstly it is

; i ar
an extonsion of A by M{0 = H X E + A+ 0 is an exact scquence), secondly
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L

it ig split {4 ie a semidlirect summand of E, there 15 2 subalpehra of
lsomorphic to A under =), and thirdly it is null (wa kave extandad Ly &
nitll ar triviai alpebra M),

In conseguence af this thecorem bimodules, birepresentations, and
multiplication algehras are esscentially equivalent concepts.

A subgpace N C M is a sub-binpodule if it is invariant under the

bireprescntation, i.e, under all LEI and Ra:
AW + MeA T ML

If N is a sub-bimedule we can form the gquotient or factor himodule M/,
which is just the ordinary guoticnt of linezr spaces together with rthe
induced hirspresentation: that 1z, the himodule action of A on the

cosats m = m - N is

1f M, are bimodules we can form their direct sun 2, M, which is the
ordinary dJdireet sum of linear spaces together with the obvious hirepre-
gentation »{x) = mi Ai{x}, riz) = ﬁi rj{x}, frhus the bimordule acrdoa
is just componenlwisc action a=[i13:ni} = Fﬂfaﬂi], -."E?rli]-a = Eif_mj._'ﬂ}}.
We can turn any ¢-module M into a trivial A-bimodule for any A by taking
the trivizl hirepresentationf= v = 9; a'm = m-a =0 for all a € A,
n € M.

A DLimodule M 1g ivreducible (or simple) if it contains ne proper

sub=bimednles N # 0, and M Is wot a trivial bimedule., M dis indecomposable

if it caannot be written as 2 direct sum M = Hl i H? of proper sub-bimadules,
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It is completely reducible (or semisimple) if It can be written as a

direct sum M = &, M, of irraducihle nodules Hﬁ‘
ik 1

F iy . . ~
A homomorphism M -+ M of A-bimedules is a linecar wap which preserves

the bimedule operatioans
F(awm) = a<F(m), F(nea} = ¥{m)-a

”,
The kernel Ker ® and lmape Im ¥ are sub-bimodules of M and M respectively.

4w always we can talk about il srphicws, monomorphisws, and isomerphisns.

. , . T . . . ;
For cxample, the canomica]l projection ¥ <+ M/H is an epimerphilszx:, and

wa have a canonical isomnrphism ¥/Her F ¥ Im F for any homomorphism F,

These concepks for bloedules can be reduced to the crdinary concepls

S lar
for alzebras: M k M is a homemorphism of A-himedules iff E = A § M ——>

AGH="T1e a homomorphism nf split null estensions sinez (14F) [(a@n) (bin)
- {187} {atm)} [ (LeF)(bFn) } = &b & Flasntmb) = {azi{m) har{n}} =
0@ {{a-n) - a-Fén) + Fln-b} - ¥(x)-%}, Vdis an epimcrphismn ccte. 1IfE
1 & ¥ is, the kernel nof F s the same as that fer 1 @ F, the dimage of T
is Im F = H{VIw (1 # F), and s0 forth.

Eractically anything that makes sensa for alpebras also mskes seusc
for khimodulers. Veor dinstance, if ﬁ ig an A-bilmedule a derivaticon of & in
M is a lincar wap A E M gatisfving the formal analepue of the condition

for a derivation of an algehra,
Dfak) = Bla)-& ' a-Nhlh} {a,b ¢ A)

though this tiwe D(a), (1) lie in M and the product on the right is the
bimodnle product. 7The notien of dervivation into a2 himodnle can be re-

duced to the ardinary notien of devivation of an algebra: D iz a
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Ly & .
derivation of A in M iff the map D{afm) = 0 & D(a) is a derivation of
the splir null extension E = A & M, since Of(adm) (bEn)t - {D(asm)} (beEn)

(a%m}{ﬁ{hﬁn}} = E(abé{an+mb}} - (080(a)) (b¥n) — (aém} (04D{h)) =

0@ {niab) - Dladb = 28(b) Y. We dennte the colleetion of dariwvaliocns

A E M by

Dcr{h,H} ;

We van abstract even Turther the nolion of bireprszsentation A

It

End¢(ﬁ}, The relavant fact is that D is an associative alpebra; ics

particular nature z2s an alpebra of transformations is dvrelevant. This

leads us to define a bispecialization of an alternative algebra A In an

arbitrary associative algebra D In he a pair (L,p) of linear meps from
|

4
«

A to D satisfying _ ! P

o8y MY =P, B =t

(7.6) Axy) = Ax)2(w) = [AG),ely)] = olydn(x) - pi=y) .

Tireprosentalions are just bisvecislizations in Endﬁ(H}, with ﬂx = Af{x),

&

r. = p{x). Oa the other hand, any associavrive alpgebra van be Ldentified
x

with an algebra of linear transformations, so & bispeclalizatieon is

"essantially' equivalent Lo a bircprescotation, Bispecializations are

Just abstroact birvepresentations,
Composing hispecializarions with howmomorphlsws provides a convenilent
2 T ; = : : . Laap]
method of penerating new bisveciglizations. For example, 1f 4 ——— 1)

Lo § :
iz a blspecialization and & * A o homomorphism of alternstiwve alpebras,

r,o#,
o e : ) B
the composites A = ded and p = peo provide a hispeclalization A L—l—l i}
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k Ay
. (hpd

o \
[h,u}_‘

A L.

For example, any hispecialization or hirepresentatien on & guetient AR

lifts to one on 4. On the other end, 1f T YD is e hompomorphizsm of

i . LT ., T 5
associative algebras the composites L = ged, p = agep form s bispecializa-
Wy Ny .
XOEY %
tion A eh 1}U

One advantape of thig shstractness s thal we can Jdefine a uandversal

gadeet for bispecializations., A universal mudtiplication algebra MulA)

censists of an associztive algebrs (apain densted MulAl) snd o uniwersal
bispecializarion {:‘-u, ﬂ”']l af & in “ue{a), which iz uwniversal in the sensc
that any olhoer blspecialization (%,0) of A in D can be factored uniguely

through the universal one

A 1
u

(x,2) _ :
\ 3
AN /

Hulad

(A usﬂ

where © 15 o homomorphism of associztive alpgebras., The condition that g

be vnique is just the condition that the lu{xj, nu[x} penorvate MulAd,



7--10

Such a Muli) always exists: bLake MulA) = U/K where U is the free
associative alpsbra generated by clements gix), r(x) (one Tar each
% € 4A) and ¥ the ideal generated hy the relatiens £{=x) = atl{x), alxty)

1
Lix} + Wy}, () = orlx), rixdy) = r(x) + vy, p(x") = L{:-:}z. r{x")

T{H}E, Sluy) — L0 Aly) = [284=), o(y)] = v(¥ivix) - v{xy) for all

X,y €A, a € €. Then 2A;(x) = i(x) + K, pulx) = r(x) + K constitute a
bilspecialization (by definition of E), which is universal sinece any
A, A= B induce an algebra howonorphism U $1 by S(ei{=}) = Aa(x),
sl{r(x)) = o{x), with EL£o ker § sinee 5 tabkes the delining relaticons for
¥ into the defining relatiovns for {(A,p) Lo be a bispzciaslization se 3
=
passes Lo U/K + D. (This is a very gencral method of constructing
universal gadgets: form a free object and divids out by the relations
you necld,  Coopare wilth the delfinilion of Lhe Free alternative algclira.)
Sinece bispecializations, bircprescntations, and bimodules are
equivalent, the universal multiplication algebra nupght o corressond io

eomz universal bimodule. If we compose the umiversal bispecializalion

1::]"11 5‘.‘.-1,} - .
A /5% MudA) & Mu(d) = M with the ls=ft regular representaticon
il o poom o (i) .
ﬂ—+—Lnd¢fH} we gt oa hispecizalization A———uwf-hnﬂ¢(ﬂﬁ, by A=) = lj ()"

Ay
plx) = Lp Ly This is ealled the universal birepresentaticr and M the
u— . - 5 N ﬂ E
universal binedule for A, Hote that M is Just Mu(A) = 31 + Muld) as
Iinear space, with hiwadule operations
a'm = ), (adm mea =g (am .

The uvniverzal property for M 1s not quite what vou might expect: it is

nob true that all bimodules are homomorphic images of M, hocause bimadules
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can get arbitrarily big, but it is true that every cyeclic bimodule

(generated by one elemsnt) is an image of M. HNamely, we wap M= Hula) 1
2 T . z

cyelie module HM(A)m generated by m by M = Mu(a) » M(A) = HM(A)m, Thus M

iz at Jeast wniversal for cyclic bimodules.

The reason for intrvoducing the universal gadget is that information
sbout all possible bispecializaticns, birvepresentarions, and himedules
is locked up inside this one ckject. Further, the birepreseulsaticn
theory of A 1s egquivaleat to the asscclative representaticen theory of
Mu(a) (i.c. to the poszible hemomorphisms o). This explains why all
the cencepts of ordinary assoclalive module theory carvried ovver Lo theory
of altemative bimodules,

Az an example of universz]l gadestry we show that if 2 collection of
elemants generake A, Lthelr wultiplications generate any multiplication

algebra of A

7.7 (Genervallen Lowma). I {xi}'iE ¥ generare rhe algebra A then the

elements {4 'I:}x_f} o [:»;_[ 31 cnerate MulAd,

11 B
Proofi. Let Ho be the subalgebra of M peneratad hy the ltxi} and
p[xi}. If we can prove all A(x),p{x) for all = & A belong Lo Ha, then

HD will ke 211 of M. Wow (7.5) van be rewritton to say

MEIa) + [a(),ply)]

ALxy)

pluy) = pldplx) + [A(x),p(¥)]

by

Thege show that if =, v & .fl.a e {z € :‘Lla.liz}. ple) e ]'ID}, so that )02},

olx), Aly), piy) & HD, then also afay),pixy) & Ho and xy & A , Trivially
8]
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A is a limear suhspace, so it is actually a subslpehra. As ﬂu contains
o
the genevrating

sel [x,] by defindtion of l‘!D, AD mu=tl be all of A, and’
i

consequently all i(x),;(x) belong to M_. 3

As a corvollary, if the {x.} generate universally they generate any
1

particular wmultiplication algebra.

7.8 Corollary. I0 fx ] gcncréte A then {Lx . Rx 1 penerate HE(ﬂ[H). B
& i Tz
7.8 Eorollary. TIE [xi} gencrate A then the {Lx . Rk } generate MEA), [3
i e
7.10 tCorollary. If A is finitely generated so 1e M(A) and any MF{AIH).ﬁﬁ

In practiece wa will Lry Lo aveid the universal multiplicatinn alpa-
bra and deal as much as po

.}_.
HEd

ble wirth "real" multiplications, because it
13 mere comfortable desaling with honest-to-peoodness multiplication opera-
tors than with tha highly formal “universal" ox "ideal" multipiicalions.

There ls an analogous theory for modules (as cpposed to bimedules).

4 lefr gzpacializarion, or simply spacialization, of an gliernative

5

algehra A in an associatlve algebra D is a homemorphism A - Do Bimdlarly
a ripght specialization or anti—specializotion of A In 1) is an anti-

. Eo
homoinerphism A -+ D, In cass 0 =

I*Indﬁ{'.‘ﬂ we spesk of a left or right

representation of A on M, and call ¥ (topether with 2 or )} & left or

right moedule for A

any lefr specializarion i can be turned dnco & hispectalization

5
by taking ¢ = 0. TIndead, the rtelations A(x")

5
a(x)T and pf=yy = 2a0GOA(y)
follow From the lact that X

is & hemomerphism, while the other velations

in (7.%), (7.6} 211 iavolve a facter o and hence vanish trivially,



Comversely, if (), p) is a bispecializaticn such that p = U thea by
{7.6) 2 must satisfy Afxy) = Ax)aly) = 0§ and iz therefore a l=ft
specialization. In swomary: specializations are precissly those bi-
gpecializarions {3, p) for which o =0, In parcicular, left medoles are
precisely those himndules M such that m-a = 0 for all o & H, 2 & A,
Unlike the sssociative case, alternative algebras nezed not pnﬁséss
any modulas at 211 - fer excmple, a simple but not associative algehra
has none {since A is not associative ) and ; cannot he injective, so by
gimplicity they wnst he zerol)., Thus an algebra must be slightly asscocia-
tive Lo hawvwe leflt or right wodules.

& specizl universal cnvalope for A is an associative algebra Suld)

topether with a uniwversal spacizlization i cf A in g, through which 211

other specializsations factor unigquely

g%
o J
1

EufA)

5 gL 2 = 2

vihere o is a homomorphism ot associntive alpebros and the diasvam com-
; 2 o H o i = .

miles.  The (LN EREHTER 2 of g i HQH1U31H5? toy e comaition Lnat gu i:
surjective, cu(A} = Bu(A)., The speeizl universal envelupe is casy to
consbruct: Bu(A) = a/T0[A 8,010 with €y the cancnical orojecticn, where
TOLALAALY Ls the didanl pencratod by the colleetion of all asgeciatars
[#.v,2z]. Certaivnly this ., is surjective, and any spacialization

o . ’ : 2 3 .
A= T fzctors thraugh o becpuse ¥er 2 i3 an ideal (if 5 ig a hooomor—

18]

phism) which eontains all sssociateors, oflx,v,2)) = [2(=),s{y),clz)] = 0
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{(in an.nssaciative alpshra D, all associators vanish), therefore coatains
the 1deal i{[A,A,AJ} they generate. Once g kill f{LA,A.A]} it factors
throngh AIEKEE,A,A]}.

An alpebra A is special if it has an injective specialization g,
thet is, & wonomorphisn into an asscelative algebra, This jusL means A
is associative, Tnjectivity of ¢ forces injectivity of s S0 3, iz
bijective and Suli} 2 A, This Jjust means f{[hﬁh,h]] =0 or [A.4,2] =0,
An alpebra which is not speci:t.ﬁzaijggjijgﬂﬂlj it is purely exceptional
if SufAd = 0, which wesns the ideal A[AAA] gonerated by the associators
ig all of 4, A purely exceplional algebra has ne specializztions what-
goaver znd hence no module theory. For example, ws observed that a

simple but not-associative algebra s purely exceptional,

Tf A has unit 2 we call an A-Limcdule M unital if e.m meE = 1

for . all @& M Eae = r& = IJ, in other words if e aclks Iike a unit on ¥
as well as on A, This dis precissly the conditicn that o remain the
unit for +the split null extension: M is undtal oz bimodule 1f: H =
A6 ds unitel as algebra., In the zame way a Jeft mednle is unital

if eom = m for all ¥, and similarly for a right wmedule.

Ve essentially need only venslder unital Limedules beecause ot

7,01 funital Deconsositien of a Bimodule) Aoy blucdulc ¥ for a uvnital

alpebra A décomposes into a divect sum

M=>X z M ﬁbiﬂlﬂ"ﬁ

10 0o

of sub-bimodules, where Hll 1z a wndtal Himoduls, HIU a uniral

a Frizvial modulea,

left madule, M a unital righr moduls, and “ﬂD

0l
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Proof, I1f & iz rthe wnilL for & we define
LY

= A R e = ifn — = — ] = - -‘.-.'[__
Hll E.M e er] esM- (1-e) Hujl (1-a) e Eﬂg (1-2) .I:' &)

vhere 1 is the ghest unit for I, f.e. 1€ I, M decomposes Into the

dreect sum of thse M, ,: M = 1§ Mii since any m can he writbten m = lewl =
B o | 5

o

e + (l=ed}bimrfae + (1-ad} = gm0 + e w- (1-e) + {(1-clmc +

= =11 -2} =t Y - 3 - oo 5 [
{1-e)-m {1-) ty 4 + moa Fon + e for H‘-ij = Hij’ end the sum is direc

since if m=m +m -i-'--:-rl-___ we necesssrlily have m = g mne,
T ¥ L

+
11 7 Mo 01- 11

= {1-6}':‘1'.9., m = {(J-a) m' {l-&)] haecauzse of Lhe

My = erme (el my, o0
multiplication roles
esma,, =1 m,, m,,ce = j m,, e, o &8 0D
L] ij 1] J ij i] i
2 _ o N S
from e« (gem) = pTvm = avn, eff{I-e)im) = {e(l-c))jn = 0 and similarly on

the ripght.

Thus H]'I_ is unital, and it is 2 sub-himadule since (For exanple)

as = e & oo i i & oand M = ofam o=, .. M is
army 4 {ea) l:mll] (i unit on A an 1_?_|} _ {T”.} = 11 a0

trivial since qra =

U spag = {rt_l I,,E:Ia;]e = and the sarte on the l=fL.

10

The same argussnt shows Myt @ T b, Inm much the same way Aem g =

e{ﬂ(-!‘.‘:‘-.lt])} = F.‘.{E.ﬂ'llr]'} and 0 = -El't".?:l“ﬁ o I_'.'.J.[-'.][rlll__l_;e = {E'”'lr_r}e’ 50

. b A is 2 uni :f glly F is a unital
a0 = '{lf'l and ]’Eln iw unital left modele Duzlly ]{'!] is a Jl'.r.tt

right medule. 3

7.12 Remark. This decowposition is & particular casz of the Peirce
decomposition rvelative to an Ldempotent, which we will consider

in Chapter VIT.

The bimodule theory for a unital alpehra A hreaks inte thrae narts!
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the trivial bimodules HGD are just 21l possible d-modules and bear ao
relation to the strueture of 4, henece are of lictle interest; tha
unital left and risght modnles for A are just the assocliative specializa-
tions and anti-specializaticns of A; while the most impertant bimedules
and bireprasentatlicns arc the unital ones,

e leave to the reader the definiticn of unital bircpresentations,

mitzl bispecializations, mnits] universal mulciplication algebras, ete.
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Exercize

If B is & subkalgebra of A, shaow H«{H}IB = M(B) as alpgcbras of opera—
%

tors, (Note, howsver, that certain products of multiplicatiens

From B can wenden on T hot nel on 211 A, f.0. the restriction homo-

motphism ¥ (Kl o thﬁ}fu nead not be an isomarphisml,

A
If % is any elemznt of E, shew its imzge M(A;E)x under Lhe cperators

in the nmultiplicacion idzal forms an idezl 4n tha Algebra E.  Show

It

At 48 also an ideal in =Z.

Ts MIAIEIA Wm{ﬁ}h Lrue in a general lincar algebra?

If M is an A-bimodule show A+M + M4 and {m|i:n = mid = G} are
sub-Thinodules of M.

What kind of a dimodule could have wo proper sub=bimndules and yet
Fall to be irreducible? Describe them all,

IF Dt A+ M ig o derivatrion, show Eer DI's {(m & AF Dx) = 0+ is &
sukalpehrra of A Is Iw I a sub-biloedule of M7

Show Der (4,M) can be identified with the zet of derivatieme ff of
E= A& M asuch that ?‘.ﬂ:_‘-l} = Il and Ii".ll[ﬂ'jt:, M. Do these 5 form a Lie
svbalgebra of Ber (E)? Do they form a Lie module for Der (A)7 Is

Ner (A S Der (E}Y in any seunse?

If ¥, ave sub-bimodules of M shov N4, and ¢ M, ars too. 1s the
1 e

rr

Yeyelic bizmadule” Asm + med a sub-bimcdule of M for all e=lemsnts
me MY If W iz a sub-bluwodule of M, ds the same true ol AN, H-A,

AW 4+ Nepar IF 2l A is the annihilator ﬁnnmﬁ = {wfj-m = m-L} a

sub-bimadule of M7
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Lxercise (Unontinued)

9, ConstrucL 5ufA) by gencrators and relations in the way we did for
MufA). Why dida't we define a universal gadpet for anti-ppecializa-
tiona?

10, Show TC[A,A,41) = A[A,A,A] = [A,A,A]4.
11, What is rhe relation hatween ﬁ(h} anil H{i}? Aotwesn ﬁu(ﬁ] {the

universal unital moltiplication algcbra} and Mu(a)?

Fi, i ‘ R ATY . ! o o po Ik
P -{) Fharys ’ r.-”-l.. P L ot CR PR S el { iyl 3 ) L £ L L8
¢ i -3 : s C Vo . o .
r - - g i g
A W L S, IR e A B, R ol o i oA
fod "
# EFE X
o f < 5 - P, L B e,

SHENE FARCL., DRl Cae
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Show Xer X 4s an ideal io A. Define right kotnel and prove the
eorresponding result, The kernel ef (A,p) 4s the intarsection

Eer (*,p) = Har 1FW Eer p, which is an ideal Loo.

if Ker (h,2) = 0. I a bhispecializaticn is nmet fzithiunl te A, show
it will at lcast be faithful to A = A/Ker(2,n).

Iz the repgular hirepresentation ever faithful?  Always faithiol?
Conclude Chat every alLernative algebra has a faithful birepresenta-
tion. Show the upiversal bispsacialization is always faithful.
Deseribe g recipe for obtaining all biﬂ‘_.‘-e;:'ialﬂzar':'nnE of A4 whonga
kernel contains a given ideal, Convince yoursell {theal an wmifalthfiul
A-blspeclallization is not really an A-lLispecitalizstion, but rather a
faithiul :a‘:—b’_'»;pn_'—:ui.;:li?.atiun which has bean artificiaily blowa up to
an A-bhispecializacion, Tn this sense we would be justifizd in ra-
gtrleting cur attention to faithful ones.

Obgerve that a birepresentation of a simple algebra is perforee

faithful.



