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We ean turn alternative ¢-algebras into a category by taking

marphisms to be hemomorphisms of linear algebras in the usual sense,

F £

i.c. linear maps A - A which also prescrve multiplication
Fxy) = F(x)F(y) .

W= have corresponding notions of monomorphism, epimorphism, isomorphis=m,

endaomorphism, automorphism. The identity automorphism on A is donoted

A
by Ijll or I, We write A 2 A to indicate A is isomorphic to A, An

* e
involution * is an anti-automorphism of peried 2, (xy) = ¥ x and

e
;1 = x. A derivation of A is a linear map from A to itself satisfying

Dixy) = D(x)y + xD(y) .

We have the usual notions of suhalpebra, left

“real, right ideal, and (two-sided) ideal. We will abbreviate the

oot that B is an ideal in A by

B <l A

|Liw

Fo
The imapge Im ¥ = F(A) of A under a homomorphism A + A is a subalpebra
o E, and the kernel Ker F = Ful[ﬂ) = ix e ﬁ]FfH] = 0} 45 an ideal of

4. A and 0 are trivially ideals of A; a proper ideal is an ideal

B # 0, A. Each subalgebra of an alternative algebra is agaln alterpa-

|cive, since it inherits the alternative law from 1lts parent algelrza,

iTnu same is Lrue of the quotient alpebra A = A/K of A by an ideal D

i{which consists of all cosets % = % + B with praducf if = ;§]. Wo have
i .
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the eanonical projection epimorphism A » A/D with kernel D, and for

any homomorphism F we have a canenical isomorphirm
A/fer F 2 Im F ,

The Tirst Isomorpliism Theorem says that under this isomorphism

there 18 a 1-1 correspendence between suhalpebras B fresp. left, right,

or two-sided ideals) in the lmage and those B in A which contain Ker V7,

1"..-

piven by B = I'(B) and B = F "(B). The Second Tsomorphism Theorem says

B 2B+ e (CAA, DCA a subalgebra)

and the Third Isemorphism Theorem

(AfeY(B/C) 2 A/D (B,0=<J A with C = B) .

All these theerems are proved exactly as in the asseciative case, indeed
are walid in any linear algebra. In general, any theorem whose proof
never involves products of 3 elements is independent of associativity.

A trivial alpgebra is one whese multiplicaﬁinn ig completely
trivial, »¥ = 0 for all x and y. (These are sometimes called zero
algebras, but this could cause confusion with the zero alpehra 0.
Clearly any module can be given the structure of a trivial alpebra,
and any trivial algebra is alternative (even associatlive, and what's
nore commubtative), ﬁn algebra is gimple if it has no preper fdeals
and s not trivial. These are to be regarded as basic Luilding
blocks, since they cannot be bullt up from an ideal D and its qumfienr
A/B. Our peneral goal in structure theory is to describe these simple
clpebras and show how a sultably well-behaved algebra can be bullt up

out of simple algebras.
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Constyuctien 1. Direct sums.

A useful way of hnilding new alpebras out of old 15 by means ef

the direct sum., The direct sum
o= AlII]hz

of two alpebras A, A, is defined to be the ordinary divect sum A, & Az'

as module, and with multiplication

{al g HEJEhl i hzl = “lhl & azhz .

Thus hl' hz are ldeals in the direet sum, and any product of an element

of hl wilh one from hz-iﬂ ZeTO: hl and ﬁz are put together "nrrhogonally',
Hotiee that multiplication in the dircet sum ig completely derermined

by multiplication in the pieces. This is impertant in using dirveck sumd
o tear an alpebra down: 1if we have decomposed an algebra into a dircct
um, the structure of the algehra ls completely determined by the sbiuc-
‘ture of the individual pieces,

A more common but less precise way of decomposing an algebra is

into a semi=-diraect sum

h=A_ 8B
o

where B is an ideal bul AD merely a subalgebra, and A ig Lheir direct

wum as a module. MNere multiplication is (a; ® bj)(a, ® by} =

o] {albz + b.a. + b.b.), so It depends not only on the products in

P12  fy ol 1

the pleces A and B but also on how they are put tegether {how hb

multivliecs with B). We will bhe wvery careful to distinguish between i
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direct sum as module and direct sum as algebra, denating them by dif-
ferent syrbols @ and [ .

e can generalize this to more than one summand. The direct sum
A= B M of an arhitrary collection of algebras is just rhe direct
sum & A, as module, with componentwise multiplication (B jai){ 151 ihi}

1

m inih‘i_‘

Less useful In alpebra is the direct product A = “iﬁi'
which asg module is the direet product of the modules A, and which
apain has compenentwise multiplication, The direct sum EiAi can be
identified with that subalgebra of the direct product ﬂﬁi comsisting
of those clements ma, (formally, functions f: I - UAi with (i) =
al,ﬁ Aij such that a; = 0 for all but a finite numbher of indices.

As is customary, we make no distinction hetween the external
divect sum (where we start with the A, nol a priori contalned in any

————— £

larger algehra, and construct an enveloping alpebra A = (& Ai} and the

incernal direct sum (vhere we start with A and decompose it into a
ldirect sum A = :'L].. pf ideals hi in A).

We should, of course, make sure direct sums oY products of alter-
mative alpebras are atill alternative. It suffices to do the direct
‘product, sinee it contains the direct sum as subalgebra, and subalgebras

Hinhexit altemativity, If x= Tx.,, y = Ty, are clements of A = ﬂﬂi,

{ 2
then %7y and x(xy) arc the same hecause they hoth have exactly the same

ith cemponents xiyi = xi{xiyi) for all indices i, (Similarly A is right
1 2
altemmative, vx = (yx)x.)

! b
ILT: Fi: Ai % Ai are homomorphisms it is immediate that Fl Eiiz:

A u
h'l E"b‘i Ay 3] ‘""2 {5 a homomorphism of direct sums.




Constyuction 2. Adjunction of a unilL.
inother construction which dees nmeb take us out of the class of
'ﬂiieinative algcbrés is adjunction of a unit, In any linear algebra
we have the usual netions of left, right, and (two-sided) unit elements,
(These arc usually ealled identity elements, but we want to reserve the
term identity to refer to a law or identical relation,) Tf A has a
1eft unit ¢ and a right wnit f, ex = x = xf for all x e A, then e =
“ef = [ is a two-sided unit. The unit elewent is unique 1f it exists;
1t will always be dencted by 13 Ix = x1 = x for all x. An alpebra is
unital if it has a unit, |
If a unit doesn't exist, we can create one! we form the unital

A= ol @A

of A, whose module structure is a divect sum of A with a copy el of &
ﬁnd whose multiplication is given in the natural way by
i
(nl & ¥)(R1 & ) = afl ¢ (oy+Bxixy) .
A has wnit 1 = 1 & 0, contains A as subalpebra, and 1s still alternatiwve:

Ffor example, we still have left alternativity
[aya,b] = [ol+x,o0l+x,fldy] = [x,%,9] = 0 (0,B & &)X,y @” Ad

'gince A itself is left alternative, and any assoclator involving 1

.Epllapsns in any linear algebra. (For example, (l<a):b - 1-(arb) =
|

ng - asb = 0,)

————— — e TE——————— ¥ r—— — ..
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Ay homonorphism Al + Az extends unigquely to a homomorphism

- #

by =+ By

[ J: "‘ i

.of unital alpcbras by %{ull + al) - c:l2 + F(a]].

2.1 Remark: The fact that any commutalor or associator involving 1

is zero inn}inoar alpebra,
[1,a) = [a,1]= B !
5 : [1,a,b] = [a,1,b] = [a,b,1] =0 ,
is trivial but worth remembering. )

Tt is frequently convenient to have a unit around {as we saw in
Pare 1), =o we often pass without comment from A to A. Mote that A
is an ideal in A, so that a product (al+a)b makes sense as an clement

of A (even thouph al+a only exists in 3}.

Construction 3. Ecalar extension.

St111 another construction we can perform is scalar extension.
This is frequently useful in @nsuring we have "enough" ot "the right
vand of" scalars, If @ is an extension of ¢ (usually thought of as
a ring of scalars containing . § as & unital subring, § D ¢, although
cverything_wurks if 0 is mercly a unital $-algebra, contalning a
homomorphic rather than isomorphiec copy #l of &), we can farm the

sealar extension

hn_ﬂ i G¢ A .

As a medule this is just the usual tensor pruduﬁt of Y-modules, with

rultiplication defined in the natural way on a spanning sct by

2=6




(wox)(pBy) = wu XY .

(8ince this is ¢-bilinear, it uutomatl:ally ExlEﬂJS Lﬁ 1 l-h[l[lﬂﬂl

product on 211 of o @ A)., Such an extension of an alternative g-alpebra

is now anfﬂ-nInéhra: for example, left alternativity is

[ﬂ,ﬂ.h‘l = [?.mlﬂ‘xi, Ztﬂjﬁle Eukﬁ}rk]

1

E [miﬂl}:i i mjfﬂxj ) uk@?k]

2
= Ei uiukﬂixi.xi,yk] + Ei}j Wi“j”kﬁ{[xi'xj'}k]

+ E}:j 'Pxi 1 }'k]}

by [x.x.v] = [x,2,v] + [z,%,7v] = 0. Roughly, %1 consists of g-lineat
combinations Lu a, of elements of A, multiplied in the natural way.

Tf A g R is a homomorphism of 4-alpehras, the ordinary linecatr
F .

£
gxtension ¥_ = 1 8 F is a homomorphism A — ﬁ%ﬂf n-alpebras:

i i

}ﬂ{x'F] = Pﬂ({EmiEai}fEujﬂbj}) - Fﬂfimiuj@aihj} = 7 miujﬂF(Hibj} =

T uj@F{niFF(hj) = {EmiHF(aiJ}(:uj@F{hj}} = anx}ﬁniy).

e
Suppose that A is an algehra aver {3 then it is also an alpebra
over any wunital subring © of 0. We denote these algebra structures by

A/0 and Af¢ (there can be no confusion el this with some sort of quo-

tient). The f-alpebra Afi should not be confused with the R-algebra

= Ae A, which is the scalar extension of A as p-alpgebra, The

wmderlylng space of Af@ is just A, whereas that of A, is the larper

famaco LA
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These scalar extensions are the only type of tensor produets that
will be of interest to us: in general the tensor product of Ltwe alterna-

tive algebras will not be alternative,

2,2 Remark. The tensor product AG¢E of two unital alternative algebras
AB over a field 4 will be again altemnative only 1f (i) both A and B
are associative, or (ii) one of A or B is commutative assoclative

fsocnlar cxtension of ©).

Proof, If A8 B is left altemnative then for ay = A, bjii I

g , , &
0= ldl@nl, nzﬁbz, a3@b3] + Tazﬁhz, al(bl, aj_h3]

i

(alnz)aaﬂfblbz}bz - a, azaa}ﬂbl(bzbaﬁ + (3231)33@{b2b1}h3

- aE(HlBB]BbE{hlhj}

It I
= [al.az,aa]aihlhz]hB - ai{azaEJE[hl.bz,hj] - [az.al,njlﬂ{hzh]]hB

+ 32{n1a3}dez.hl,h3]

[al.ﬂg,aa?ﬁ[bl,bzlh3-+ {aliazaa}-azialaa}1H[b1,h2,b3]

Suppose nedther (i) nor (i1) holds, so A (=ay) is not associative and

I 1s ecither not assovclative or not commuLative. By non-associativity

of A we can flnd [ai. an 331 ¢ 0., If B is not commutative we can find

2,
ey a- i o o
[nl, hz] # 0, henee [?1, Ay

vector spaces, and this contradicts the above with bg =1, If B is

3;1 @ [h;. b;] £ 0 gince we are tensoring

commutative but not associative, [bi, bg,

. 0= - o
eollapscs to ialinzaa} az{nlaal} & [hl, b

Li] # 0 then the above

[a] s}
o+ Bol and a;(a,a,) = ay(a;a,
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for all ai(i A.  In partiemlar, lor dq = 1 we sce a8, = A,y and A is
_ L0 B Oy ben0.0p . 00,00 0 a0y _
commutative, But then O al{azaE] nzidlaj) {3233)31 u2f331l)

0 L4} o
I[nzl 331 ﬂ']]

of az. 5

= [a?, ug, agl by altemnativity, centradicting our choice

Construction 4. The coposite algebra.

o . op 3
The opuosite alsmebra A P of any linear algebra 1s Ehat alpehira

which has the same: linear structura as A, but the reversc or opposite

multdplication ,

X0 Vo= oyex .

Associnators and commutators in the opposite alpebra ate expressed as
o
[,y = [yyx] = = [x,¥]
n
[%,7,2]°7 = = [=,7:%]

since [x-upy}'ﬂpz - x-opiyrupx? = (yx}-ﬂ?z - x.DF{zy} = z{yx) = (2y)x.
This shows that AT 45 commutative or assoclative or a}ternatiue if A
i5. 1In general, siﬁ:u multiplicatlien in A" is reversed, whenever A
satiefies a collectien of identities which Is left-ripht syimetrie then
APP 4i11 satisfy the same identities. This is not true for asymmetric
axioms: if A is aqu left alternacive, AT 45 only ripht alternative,
The impurtnncF of Lhe ophcsite alpebra is that it leads to A
notion of duality for alternative alpebras: whenever a general state-
ment about nlternﬁtivé alEEh;ﬂs is true, so 1s the dual statement
abtained by everywhare Interchanping e fe" and "ripht" and reoversing

all multiplications., The reason for this is that 4f A is any alternative

=




2-10

o ,
algebra, the truth of the peneral statement for A" is equivalent ko
the truth of ics dual for A,

As an example, we will state and prove theorems about left ideals,

but will feel free to nake use of the dual theorems for right ideals.

(ir we may state a theorem (wlth symmekbric hypotheses) about all one-

gided ideala, but prove it only for left ideals. Duality allows us to
apply the magle words "similarly", "by symmetry", "dually", ete, in

proofs.

Construction 5, Free algehras.

In keeping with alacnernl terminology for algebraic systems, we
define the subalgehra #[¥] of an alternative Z—alpebra A penexrated by
4 subset ¥ te he the smallest d-subalgebra of A containing X. Abstractly,

#1%] is the intersection of 211 subalgebras of A which contaln X; con-

erately, #[%] consists of all finite sums of finite products x; ...%,

i
L n

(with somr distribution of parentheses) of the penerators x, & X. Thus

#[¥] consists of the "alternative vpolynomials" in the elements x, . We

aay a subset X penerates or 1s a set of penerators for an almebra A
if A = 4{X]. (Thés ¥ always penerates 3[X]!)

Cne usefonl fJ;t ahout gencrating sets is that il two homomorphians
agree on a generating set they apres everywhere: the set {a|F(a)=G(a)]
where P oand € agree is a subalgebra, so if it contains a-generating
et X it contains all ef ¢[¥X] = A
' If ¥ {8 just a set, not contained a prieri in any alternative

alpebra, we can still form an alternative algebra F[X] "freely generated"

by X, analogous to the free asgociative alpebra on a set H.
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More generally, for any set X we can construct the free nonasso-

cintive alpebra Fn[x] on the set % ("alpehra" always beinpg understood

R o o 11

the variables x € X, taking the monomials ef degree 1 to be the elements

as "{-alpebra

.uF ¥, those of depree 2 to be all symhols Goy) for %,y € X, and in
gencral those of degree n to be all symhols {(pq) where p,q are menomials
of degrees %p,%gq > 1 with ap + 8q = n. {For example, in depree 3 we get
all (x(yz)) and ({xy)z).) Roughly, the monomials consist of all formal

products xi ey for xi G % with gome distribution of parentheses.
1 n

We rake FDIK] to Le the free t-module with hasis all monomials, where
sultiplication is defined on basis elements p,q by p-q = (pg). The

mapping B =B - B on the basis B pxtends unigquely teo a Lilinecar multipli-

|
;atinn on all of Pﬂ[x].
FH[H] has the universal property that any set-theoretic map X -+ A

of X into a lincar alpehra A extends uniquely to a homomorphisn

-

&D[xj E A, Indeed, to define a homomorphism I on FB[K] it suffices to
define T on the basis B satisfying Florq) = F(p)-F(q) and then cxtend
ﬁf liﬂeﬁrity. wa do this inductively, deflining %{X) = F(x) in degree 1
and F((pq)) = Flp)-Flq) in depree n 1f ap + 39 = n. Less formally,

F(IUI xi].-.xiﬂ] = ¢y r(xil}...foiﬂ} where we dist;jhute parentheses
'lﬁ X, bueex, 1n some fashion and in the same fashion in F(x, J...F{x, }.
‘ i 1n lk i irl

To get the free alternative alpebra F[%] on the set X we sinply

Eorm F[X] = rn{x]fa where ¥ is the ideal penerated by all elements of
the form [a,a,b] or [b,a,a] for a,b arbitrary elements of F [X]. In

re quotient F[X] we have the relations la, &, b} = [b, &, a] = 0 for
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all cosats a = a+ ¥ since [a, a, bl = [3; @, b) and [n, a, b]E K.
We have taken the free nonasszociative alpebra on X and divided out by

the relations necessary to make it alternative (namely the left and

right alternative laws),

The freedom or universality of the free alpgebra consists of the

[ollowing:

3.3 (Universal Property of the Free Algebra) Any sef-theoretic map

F
% + A of ¥ inte an alternative algebra A extends uniquely to a homo-

S s
morphism F[X] + A

: F
| X ——+ A

o aN T

: P

Proof. Since A is a linecar algebra, X extends uniquely to a

honomorphisam Fa: FD[E] + A, Since A is alternative we have FD([a.ﬂ,b]}

e [Fu(n),FD{a},FD(h]] = 0 and Fﬂ{[b,n,a]} =0 for all a,b & Eu[I];
therefore all [a,a,b] and. [b,a.a] lie in the ideal ¥erx %ﬂ, so the ideal

-

¥ they generate iz contained in Ker ?D, and Fo passes uniquely te a
homemorphism ¥ from the quotient F[X] = FDIKIHK to A. Unigueness of

Ha

T follows from the faet that its action on the generating set X is

_PrEﬁurihcd, F(x) =IF(K)- |

In practice this allows us to think of elements of the free alpebra
gas-"nlternativu_pulynaminls" in the variables x. We obtain polynomial
funetions on an alternative alpebra A by specialization of the wvaria-

sl L i a 5
.Elga. if p(xl"']‘xn) is an Elnmnnt of F[¥] {xi & ¥) and SRTRERL

I|-| |

y =T
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alements of A we can "evalusnte p{xl,...,xn} at al,....un” by forming
p{al,...,an}. Informally p{al,,..,uu} is just obtained by replacing

each xy by a0 buk Formally p{al,-..,nn} is defined as F(p{xl.....x“}},

where ;:'F[E] + A 1s the extension of Fi X + A given by FiHiL = D
(What T does to the x not appearing in p is immaterial; we ecan take
Flx) = 0 if we 1like.) 1

In Appendix I we will investipate algebras satiefying a polynenial
identity, i.e. for which there exists a nonzero p{xl,....xn] in the
free algebra such that p(ﬂl....,ﬂ“} = 11 identically on A. Eince the
epecializations f{xl,...,xn} -+ f(al....,ﬂn} are preci;ely all homo=-
morphisms F[xl,....xn] + & (there is a 1-1 correcspondence between
homamorphisms F(X] » A and maps X + A), another way of putting iL is
that F{p(xl,...,xh]] = ) for all homemorphisms F([X] f A. Hote that
plx,¥) = [x,%,y] does not count as a polynomial idemtity; it is cer-
tainly satisfied by A, but it is zero as an element of the free
alpebra.

Free alternative algebras behave hadly. Their Lreuble is that
they have EEE_@ggx_idenﬁities, they are too close to assecilativity.
Th?IF ave some "would-be" identities p(xl,...x“} which den't wvanish

fdentically but whose squares do:  the free algebra has nilpotent

e —

elgments] As a consequence it can't possibly be dmbedded in a division

a.heﬁ;q, which is very diffcrent from the situation with free associa-

1
;Lvé algebras.
{l

We confine the misbehavior of free algebras to Appendiz III.

e g T ——
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Fxerclscs

Prove the seb of automorphisms of a linear algebra A forms a group.
Prove the set of derivations of A forms a Lie algebra.

Prove that L B, © are left, right, or two-sided ideals pf a linear
alpebra, so is their sum B4C. What if B, C are subalgebras?
Refresh your memory of linear algebra by proving the Firat, Second,
and Third Isomorplhism Thenrems,

1f 34 A and A/B, B are trivial as algebras, is A trivial?

Formulate and prove a universal property for the direct sum hl i Az.

Show (Al.hzj Ay E}ﬁz, {Fl,FE] “ Fllﬂ F, dofines a funetor on

suitable catesories.

TE Hi are ldeals of A such that A = %Hi ig their direct sum as

L -
module, shew A = [ B, is necessarily them direct sum 2s algehra.
i

If B, are ideals in ‘6.1_,. show B = 3 Ei is an ideal in A =@ "’“i and

i

B = Th, in X = vhy. If Cis an ideal in D, is it an ideal in a

seml-direct sum A = A @ 37 Generally, if B<l A it is not true

that all B-ideals are A-ideals: G B AFHCAA .
f i
Formulate and prqu a universal property for the unital hull A.

£

Sliow & -+ ﬂ, T o % defines a funeter from the category of alternative
alpchras to the category of unltal alternative algebras., (What are
morphisms in the latter category?)

1f b is an ideal or subalgebra in A, show 1t is gtill an ideal or
subalpgebra in R..

Formulate and prove a universal property for ﬁﬂ '

Shiowr A - Aﬂ, F =+ F. defines a functor from the category of altema-

&

tive &-alpebras to the catepory of alternative f-algebras.
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2.15

2.17

Z,18

2.19

2.20

.21
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I I 15 an ideal in A, show 8B Is an ideai in A, Wy do we say
B instead of Eﬁ?
I1f ¥ 18 an automorphism (resp. D a darivatien) of A, show e, is
an auteworphism (resp. B, a derivation) of A.. 1If F is an suto-
morphiasm of @, is Iﬁlh an automorphism of G2A = A7

Shaw that a homomarphism of a simple algebra must be zero or a ’
menomorphism,

If ¥ is a homomerphism of any linear algebra, show Fllx,v]) =
[F(x),F({y)] and F([x,y,z]1) = [F(x),Fiy),F(z)]. If Dis a deriva-
tLon show D{[x,v]) = [DG,¥] + [x,D(y}] and D([x,¥,2z]) =

[n(x}lfﬂ':zl *+ ExID{}-]IZ] + [1‘313',]:’{:?.‘:']-

' ¥
Prove that if A -+ R is a homomarphism of alpebras it is alse a

homomorphism of their opposite algebras, and that the correspondence

Ao hop,-F + F determines a funector from alternative alpebras to

alternative alpebras,
)

¥ b |
Prove that A + A 18 an anti-howmomorphism iff it is a homomorphizm

"

AT+ Kor A4 K. Show A possesses an anti—avtemorphism (ef. an
H = "] “P

Imvelution) 168 A 2 AV,

Prove that X -+ ¥[X], F=+ F is a functeor I{rom sets to altemative

alpebras.
1f ¥ C X prove that the subalgebra ¢[¥] ©. F[X] generated by Y is

isomorphic to F[Y]; leosely F[Y] C F[X].
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1., TProblem Set on Dlreect Sums

Lt A 0 COTT

n
= Ai into a Finite direct sum of ideals, We investigate the
i=1 =

Suppose A Ls an arL

unigueness of this decomposition.

L.

&t

If A 18 Lﬂcmnatéqﬁ in the sense that Az = A, shaow Ai = ﬁi too.

If the A, are idempatent and indecomposable (can't themselwes be
written as direct ;ums hi = ﬁil_Eihiz} show any eother decomposition
A= B m1 Ei {nte indecomposables has the same constituents (up to
nrder).i Mote: tnls only characterizes uniquely those indeconposable

ideals Ai which appéar as part of a decomposition of A.

Conclude that 1if A = Eﬂ,ni where the A, are iderpotent mininal

ideals (contaln ne smaller ideals except 0%, then ths hi are uniquely

determined,

If A = E]Ai sliow A is unital AL cach Ai i1s, and 1 = EEi where e,

is the unit aﬂ'ﬂi. In this case show Ai e ﬁi. If the Ai are minimal
ideals too, show any idcai B of A has the form B = [ {6 l{ﬂ}ﬂi

(a sun of certain of the bullding blocks ﬁl}. In particular, conclude
there are only finitely many ddeals.

Cenclude thav 4f A = T Ai where A i1s unital and the Ai minimal,

then the hi are uniquely determined as precisely all minimal dideals

of A.
. .
Show A = [ A for A, simple ideals iff A, T AM, for M, maximal
=1 i i L i 1
!
fHoals with (101N, =0, GO BFR O M = A
i1 i °F 54 3

1f rﬁnﬂu = 0 where A has descending chaln condition on ideals, show

T
there 1s a subcollection satisfying (1) and {11).

. m
M, = 0 for some Finite subcollection, If [} M, = 0 show
i=1
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Conclude that a unltal alpebra is a finite direct sum of simple

{deals 4ff 1t has d.c.c. on ideals and the intersection r]M of all

maximal ideals 1z zero.

i

e s o L T



