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Abstract. In this paper we are proposing a theory of Jordan superpairs defined over (su-
per)commutative superrings. Our framework has two novelties: we allow scalars of even and
odd parity and we do not assume that 1

2
lies in our base superring. To demonstrate that it is

possible to work in this generality we classify Jordan superpairs covered by a grid.

There has recently been a lot of interest in linear Jordan superstructures. One of the
major advances in this area is the classification of simple finite-dimensional Jordan su-
peralgebras over algebraically closed fields of characteristic 6= 2, due to Racine-Zelmanov
[39],[38] and Mart́inez-Zelmanov [25], extending Kac’s classification [15] ([10], [16]) of
the characteristic 0 case. Another important achievement is the classification of infinite-
dimensional graded-simple Jordan superalgebras whose graded components are uniformly
bounded, due to Kac-Mart́inez-Zelmanov [14]. Most the recent research has been devoted
to Jordan superalgebras, but one now has a classification of simple finite-dimensional Jor-
dan superpairs over algebraically closed fields of characteristic 0, due to Krutelevich [18]
and based on Kac’s determination of Z-gradings of simple finite-dimensional Lie superal-
gebras [15].

It is remarkable that most (probably all) examples of linear Jordan superalgebras and
superpairs in the papers mentioned above can in fact be defined over arbitrary superrings.
For some of them this was verified in the recent preprint [17] by King, for others like the
Kantor double with a bracket of vector field type or the Cheng-Kac Jordan superalgebra
one can use the speciality results of McCrimmon [27] and Mart́inez-Shestakov-Zelmanov
[24] to give a model over superrings. To the best of my knowledge, King’s preprint [17],
which I received after the research for this paper had been finished, is the only publication
devoted to quadratic Jordan superstructures. In this paper King introduces a notion of
quadratic Jordan superalgebras. Apart from the fact that King works over commutative
rings while we work over commutative superrings, there is also a difference in “characteris-
tic 2”: King’s Jordan triple product is only skew-symmetric in the outer two odd variables,
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hence 2{x1̄yx1̄} = 0 for an odd x1̄, while we require that it is even alternating and hence
{x1̄yx1̄} = 0 always holds in our setting. Our reasons for imposing the stronger condition
is that it holds for all reasonable Jordan superstructures we know of, for example for special
Jordan superstructures (see 2.14) or for King’s quadratic version of Kac’s 10-dimensional
Jordan superalgebra K10. (There is a small exception for Jordan superalgebras associated
to quadratic forms since King requires the form on the odd part to be only skew symmetric
and not necessarily alternating, as we do.)

Why Jordan superstructures over superrings? It is of course true that any Jordan
superpair over a superring is also a Jordan superpair over a ring, for example over the
even part of the base superring. Nevertheless, there are good reasons for working over
superrings. This setting naturally occurs in the class of Jordan superpairs classified in
this paper, Jordan superpairs covered by a grid (§4). For example, a Jordan superpair V
covered by an even quadratic form grid is in a natural way a quadratic form superpair over
a superring, even if one originally considered V only over a ring (see 4.14).

A description of the paper’s contents follows. Due to a lack of an appropriate reference,
the following section §1 provides the necessary background from the theory of supermod-
ules over superrings in as far as this is needed later on. This section also contains the
fundamental and new definition of a quadratic map between supermodules over super-
rings. In the next section §2 we define (quadratic) Jordan superpairs, Jordan supertriples
and unital Jordan superalgebras over superrings. We develop some basic theory and give
examples. This section could be considered as a super version of [20, §1]. In the following
section §3 we introduce grids in Jordan superpairs and refined root gradings. The final
section §4 gives the classification of Jordan superpairs covered by a grid, the super version
of results from [35], and – more generally – the description of refined root gradings. This
latter description is new even in the case of Jordan pairs. Our interest in Jordan superpairs
with a refined root grading comes from their connection to Lie (super)algebras which have
a refined root grading, see [41] for the case of Lie algebras graded by a simply-laced root
system.

There are three sequels to this paper, all jointly with E. Garćıa. Semiprimeness, prime-
ness and simplicity of Jordan superpairs covered by grids are characterized in [8]. The cor-
responding Tits-Kantor-Koecher superalgebras are described in [9], while [7] studies the
Gelfand-Kirillov dimension of Jordan superpairs and their associated Lie superalgebras.

I would like to thank Ottmar Loos and Michel Racine for helpful hints on a preliminary
version of this paper. In particular, it was Ottmar Loos who convinced me to include the
requirement {x1̄yx1̄} = 0 in the definition of a Jordan superpair, motivated by his crucial
example of a quadratic map in the supersetting (1.9).

1. Supermodules and their multilinear and quadratic maps.

In this section we introduce our terminology regarding supermodules and multilinear
and quadratic maps. With the exception of quadratic maps, these concepts have already
been introduced in the literature ([6, Ch. 1], [19, Ch. 1] and [23, Ch. 3]), but not in the
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form and generality suitable for this paper. One of the main differences is that our objects
will be defined over a superring not necessarily containing 1

2 .

1.1. Base superrings. We write Z2 = {0̄, 1̄} and use its standard field structure. We
put (−1)0̄ = 1 and (−1)1̄ = −1. Most objects studied here will be Z2-graded in a natural
sense. For example, a Z2-graded abelian group M is just a direct sum M = M0̄ ⊕M1̄ of
two subgroups Mα, α ∈ Z2. In this case, elements in M0̄ ∪ M1̄ are called homogenous.
For a homogenous m ∈ Mα, α ∈ Z2, its degree is denoted by |m| = α ∈ Z2. We adopt
the convention that whenever the degree function occurs in a formula, the corresponding
elements are supposed to be homogeneous.

An arbitrary (not necessarily associative) ring S is called Z2-graded or a superring if
S = S0̄ ⊕ S1̄ as abelian group and SαSβ ⊂ Sα+β for α, β ∈ Z2. A superring is called
commutative if st = (−1)|s||t|ts holds for s, t ∈ S. Some authors would call such a super-
ring supercommutative, but we have tried to minimize the usage of the adjective “super”.
In a commutative superring S we always have 2s2

1̄ = 0 for any s1̄ ∈ S1̄, creating a some-
times exceptional situation if 2 is not invertible in S. (One could think of adding the
condition s2

1̄ = 0 for s1̄ ∈ S1̄ to the definition of a commutative superring. This, however,
would impose restrictions elsewhere: several of the natural examples of Jordan superpairs,
e.g. quadratic form superpairs, are defined over a commutative superring not necessarily
satisfying s2

1̄ = 0. )
A superring S is called unital if there exists 1 ∈ S0̄ such that 1s = s for all s ∈ S, and

it is called associative if it is so as ungraded ring: (ab)c = a(bc) for all a, b, c ∈ S. We will
call S a base superring if S is a commutative associative unital superring. Analogously, a
base ring is a commutative associative unital ring.

Unless specified otherwise, S will always denote a base superring and
all structures considered here will be defined over S in a sense to be
explained in the following.

1.2. Supermodules. An S-supermodule is a left module M over (the associative ring)
S whose underlying abelian group is Z2-graded such that SαMβ ⊂ Mα+β for α, β ∈ Z2. It
will be convenient to consider S-supermodules also as S-bimodules by defining the right
action as

ms = (−1)|s||m|sm (1)

for s ∈ S and m ∈ M . Alternatively, one can define S-supermodules as S-bimodules
satisfying (1), or as right S-modules and then define the left action by (1).

Let M be an S-supermodule. A submodule of M is a submodule N of the S-module M
which respects the Z2-grading, i.e., N = (N∩M0̄)⊕(N∩M1̄). Then N is an S-supermodule
with the induced actions. The quotient of M by a submodule N is again an S-supermodule
with respect to the canonical S-module structure and Z2-grading: (M/N)α = Mα/Nα for
α ∈ Z2. The direct sum of a family (M i)i∈I of S-supermodules is an S-supermodule,
denoted ⊕i∈IM

i, with homogenous parts (⊕i∈IM
i)α = ⊕i∈IM

i
α for α ∈ Z2. In case all

M i = M this supermodule is denoted M (I).
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A new S-supermodule
∏

M is obtained from M by interchanging the parity of M :∏
M = M as abelian groups, but (

∏
M)α = Mα+1̄ for α ∈ Z2 and (

∏
m)s =

∏
(ms)

where s ∈ S and
∏

m is the element of
∏

M corresponding to m ∈ M . It follows that
s(

∏
m) = (−1)|s|

∏
(sm) indicating that

∏
can be viewed as an entity of degree 1̄, called

the parity change functor. A free S-supermodule is an S-supermodule isomorphic (in the
sense of 1.3) to

S(I0̄|I1̄) := S(I0̄) ⊕ (
∏

S)(I1̄)

for suitable sets Iα. Thus, M is free if and only if M is free as a module over the ring S
and has a homogenous basis.

1.3. Multilinear maps. Let M1, . . . , Mn and N be S-supermodules, and let α ∈ Z2.
An S-multilinear map of degree α from M1, . . . ,Mn to N is a map f : M1×· · ·×Mn → N
satisfying

(i) f(M1
β1

, . . . , Mn
βn

) ⊂ Nα+β1+···+βn for all βi ∈ Z2,
(ii) f is additive in each variable, and
(iii) for s ∈ S, mj ∈ M j and 1 < i ≤ n we have

f(m1, . . . , mi−1s,mi, . . . , mn) = f(m1, . . . , mi−1, smi, . . . ,mn) and
f(m1, . . . , mns) = f(m1, . . . , mn)s.

For readers preferring left modules we note that the conditions (iii) are equivalent to

f(m1, . . . , mi−1, smi, . . . ,mn)

= (−1)|s|(|f |+|m1|+···+|mi−1|)sf(m1, . . . ,mi−1,mi, . . . , mn).

We denote by LS(M1, . . . , Mn; N)α the abelian group of S-multilinear maps of degree α
and put

LS(M1, . . . , Mn; N) := LS(M1, . . . , Mn; N)0̄ ⊕ LS(M1, . . . , Mn; N)1̄.

We endow LS(M1, . . . ,Mn; N) with an S-supermodule structure by (s.f)(m1, . . . ,mn) =
sf(m1, . . . , mn).

As usual, the elements of LS(M1,M2; S) are called bilinear forms. We will use the
abbreviation HomS(M, N) = LS(M ; N), and call its elements homomorphisms or S-linear
maps. Specializing the definition above, an additive map f : M → N is a homomorphism
of supermodules if f(ms) = f(m)s for m ∈ M and s ∈ S or, equivalently, sf(m) =
(−1)|s||f |f(sm). The concept of an isomorphism is then just the usual one. It is easily
verified that S-supermodules together with S-linear maps form a category. It is in fact a
tensor category with respect to the tensor product defined in 1.4 ([23, Ch.3 §2]).

1.4. Tensor products. For two S-supermodules M and N we denote by M⊗S N the
tensor product of M and N in the category of S-bimodules. To recognize M ⊗S N as an
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S-supermodule we recall the construction of M ⊗S N (see e.g. [4, §11.5]). The S0̄-module
M ⊗S0̄

N has a Z2-grading given by

(M ⊗S0̄
N)0̄ = (M0̄ ⊗S0̄

N0̄)⊕ (M1̄ ⊗S0̄
N1̄),

(M ⊗S0̄
N)1̄ = (M0̄ ⊗S0̄

N1̄)⊕ (M1̄ ⊗S0̄
N0̄).

By definition,

M ⊗S N = (M ⊗S0̄
N)/Q =

(
(M ⊗S0̄

N)0̄/Q0̄

)⊕ (
(M ⊗S0̄

N)1̄/Q1̄

)
(1)

where Q = Q0̄ ⊕Q1̄ is the S0̄-submodule of M ⊗S0̄
N spanned by homogeneous elements

of type ms1̄ ⊗S0̄
n−m⊗S0̄

s1̄n with s1̄ ∈ S1̄. We denote by m⊗S n the image of m⊗S0̄
n

in M ⊗S N under the quotient map M ⊗S0̄
N → M ⊗S N of (1). Then S acts on

M ⊗S N by s.(m ⊗S n) = (sm) ⊗S n, ms ⊗S n = m ⊗S sn and (m ⊗S n)s = m ⊗S (ns).
This action fulfills the condition 1.2.1 with respect to the Z2-grading (1), thus giving
M ⊗S N the structure of an S-supermodule. By abuse of notation, we will occasionally
write Mα ⊗S Nβ (α, β ∈ Z2) for the span of all mα ⊗S nβ where mα ∈ Mλ and nβ ∈ Nβ .
We then have (M ⊗S N)0̄ = M0̄ ⊗S N0̄ + M1̄ ⊗S N1̄, which is in general not a direct sum
of S-supermodules, and similarly for (M ⊗S N)1̄.

For S-supermodules M, N and P there are canonical isomorphisms of S-supermodules

(M ⊗S N)⊗S P
∼=−→ M ⊗S (N ⊗S P ), (2)

L(M, N ; P )
∼=−→ HomS(M ⊗S N, P ), (3)

ψM,N : M ⊗S N
∼=−→ N ⊗S M, (4)

S ⊗S M
∼=−→ M, (5)

given by the maps (m⊗S n)⊗S p 7→ m⊗S (n⊗S p), b 7→ [(m⊗S n) 7→ b(m,n)], m⊗S n 7→
(−1)|m||n|n⊗S m and s⊗S m 7→ sm.

1.5. S-superalgebras. An S-superalgebra, also called a superalgebra over S, is an S-
supermodule A together with an S-bilinear map m: A×A → A of degree 0̄. It is usual to
abbreviate m(a, b) =: ab and call ab the product of A. A homomorphism of S-superalgebras
is an S-linear map f : A → B of degree 0̄ such that f(aa′) = f(a)f(a′) for all a, a′ ∈ A.

Let A be an S-superalgebra. It is in particular a superring as defined in 1.1, hence
the concepts defined there (commutative, associative and unital) apply to A. Let Λ be
an abelian group. A Λ-grading of A is a family (Aλ : λ ∈ Λ) of S-submodules of A
satisfying A = ⊕λ∈Λ Aλ and AλAµ ⊂ Aλ+µ for all λ, µ ∈ Λ. Note that the Λ-grading is
compatible with the Z2-grading of A by our definition of S-submodules. The opposite of an
S-superalgebra A is the S-superalgebra Aop with product · defined on the S-supermodule
underlying A by the formula a · b = (−1)|a||b| ba where the product on the right side is
calculated in A.
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The tensor product A⊗S B of two S-superalgebras A and B is again an S-superalgebra
with respect to the product

(a⊗S b)(a′ ⊗S b′) = (−1)|a
′||b|aa′ ⊗S bb′. (1)

To see that this is indeed a well-defined product, one can, for example, use 1.4.3. In the
following, tensor products of superalgebras will always be equipped with the product (1).
We note that the S-supermodule isomorphism

ψA,B : A⊗S B −→ B ⊗S A : a⊗S b 7→ (−1)|a||b|b⊗S b

of 1.4.4 is an isomorphism of S-superalgebras. The following lemma is easily verified.

1.6. Lemma. Let P be one of the properties commutative, associative or unital, and
let A and B be S-superalgebras. If both A and B have property P, then so does A⊗S B.

1.7. Superextensions. An S-superextension is a commutative, associative and unital
S-superalgebra. Superextensions of S form a category whose morphisms are the superal-
gebra homomorphisms preserving the unit elements. It is tensor category by Lemma 1.6:
A⊗S B is an S-superextension if A and A are S-superextension.

An example of a Z-superextension is the algebra of dual numbers Z[ε] = Z⊕Zε where
ε is a homogenous element satisfying ε2 = 0. It gives rise to the S-superalgebra of dual
numbers S[ε] = S ⊗Z Z[ε]. We have

S[ε]0̄ =
{

S0̄ ⊕ S0̄ε if |ε| = 0̄,
S0̄ ⊕ S1̄ε if |ε| = 1̄,

and S[ε]1̄ =
{

S1̄ ⊕ S1̄ε if |ε| = 0̄,
S1̄ ⊕ S0̄ε if |ε| = 1̄.

(1)

Another example is the Grassmann algebra over S, to be discussed in 1.11.
We note that an S-superextension T can serve as a new base superring. If A is

an S-superalgebra, the tensor product superalgebra AT := T ⊗S A (1.5) becomes a T -
superalgebra, called the base superring extension. In particular, AT is a T -superextension
if A is an S-superextension.

1.8. Superextensions of supermodules and multilinear maps. Let T be an S-
superextension, and let M be an S-supermodule. Then the T -superextension of M

MT := T ⊗S M

has a canonical left T -module, namely t(t′ ⊗S m) = (tt′) ⊗S m) for t, t′ ∈ T and m ∈ M ,
with respect to which it is a T -supermodule.

Taking extensions of supermodules is transitive: If U is a T -superextension, then be-
cause of 1.4.2 and 1.4.5 we have (MT )U

∼= MU . Moreover, using the isomorphisms for ⊗S

exhibited in 1.4 one easily verifies that there is an isomorphism of T -supermodules

MT ⊗T NT

∼=−→ (M ⊗S N)T

given by (t⊗S m)⊗T (t′ ⊗S n) 7→ (−1)|m||t
′| tt′ ⊗S (m⊗S n).
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Let M1, . . . , Mn and N be S-supermodules. For t ∈ T and f ∈ LS(M1, . . . ,Mn;N)
there exists a unique T -multilinear map t̃⊗S f : M1

T × · · · × Mn
T → NT satisfying, with

obvious notation,

(t̃⊗ f)(t1 ⊗S m1, . . . , tn ⊗S mn)

= (−1)|f ||t1···tn|+
∑n

i=2
|ti||m1⊗···⊗mi−1| tt1 · · · tn ⊗S f(m1, . . . , mn)

where of course |t1 · · · tn| =
∑n

i=1 |ti| and |m1 ⊗ · · · ⊗mi−1| =
∑i−1

j=1 |mj |. Moreover,

˜ : T ⊗S LS(M1, . . . , Mn;N) −→ LT (M1
T , . . . ,Mn

T ; NT ) : t⊗S f 7→ t̃⊗S f (1)

is a T -linear map of the corresponding T -supermodules. We call fT := 1̃⊗S f the T -
superextension of f ∈ LS(M1, . . . , Mn;N).

In particular, for every t ∈ T and f ∈ HomS(M, N) there exists a unique T -linear map

t̃⊗S f : MT −→ NT : (t′ ⊗S m) 7→ (−1)|f ||t
′|tt′ ⊗S f(m)

This gives rise to a T -linear map of degree 0̄

˜ : T ⊗S HomS(M,N) −→ HomT (MT , NT ) : t⊗S f 7→ t̃⊗S f. (2)

1.9. Quadratic maps. Let M and N be S-supermodules. A homogeneous S-bilinear
map b: M ×M → N is called symmetric-alternating if

b(m,m′) = (−1)|m||m
′|b(m′, m) and

b(m1̄,m1̄) = 0

for m, m′ ∈ M and m1̄ ∈ M1̄. We note that the second condition on b follows from the
first as soon as it holds for a spanning set of M1̄. It is of course satisfied if 1

2 ∈ S.
An S-quadratic map from M to N , written in the form q: M → N , is a pair q = (q0̄, b),

where q0̄: M0̄ → N0̄ is an S0̄-quadratic map and where b: M ×M → N is a symmetric-
alternating S-bilinear map of degree 0̄ such that

b(m0̄, m
′̄
0) = q0̄(m0̄ + m′̄

0)− q0̄(m0̄)− q0̄(m
′̄
0) (1)

for all m0̄, m
′̄
0 ∈ M0̄, i.e., b|M0̄ ×M0̄ is polar of q0̄ in the usual sense. We therefore call b

the polar of q. An S-quadratic map q: M → S will be called an S-quadratic form.
We note that 2q0̄(m0̄) = b(m0̄,m0̄) and hence q0̄ is determined by b if 1

2 ∈ S. Also
4q0̄(s1̄m1̄) = 2b(s1̄m1̄, s1̄m1̄) = −2s2

1̄b(m1̄, m1̄) = 0. For a finite family (si, mi)i∈F ⊂
(S0̄ ×M0̄) ∪ (S1̄ ×M1̄) we have

q0̄

(∑

i∈F

simi

)
=

∑

|mi|=0̄

s2
i q0̄(mi) +

∑

|mi|=1̄

q0̄(simi) +
∑

|{i,j}|=2

(−1)|sj ||mi|sisjb(mi,mj) (2)

where
∑
|{i,j}|=2 is the sum over all two-element subsets of F . This makes sense since

(−1)|sj ||mi|sisjb(mi,mj) = (−1)|si||mj |sjsib(mj ,mi)

is symmetric on i and j.
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1.10. Examples of quadratic maps. (a) (O. Loos) For an S-bilinear map a: M ×
M → N of degree 0̄ define

qa
0̄ (m0̄) = a(m0̄,m0̄) and ba(m,m′) = a(m, m′) + (−1)|m||m

′|a(m′,m).

Then qa = (qa
0̄ , ba): M → N is an S-quadratic map, called the quadratic map associated

to a. Over a free supermodule every quadratic form is obtained in this way (cf. [3, §3.4,
Prop. 2] for the classical case).

(b) Let q: M → N be an S-quadratic map and let f : N → P be an S-linear map of
degree 0̄. Then f ◦q = (f ◦q0̄, f ◦b): M → P is an S-quadratic map. Similarly, if g: L → M
is an S-linear map of degree 0̄ then q ◦ g = (q0̄ ◦ g, b ◦ (g × g)): L → N is an S-quadratic
map.

(c) For an S-quadratic map q: M → N define Rad q = {m ∈ M : q0̄(m0̄) = 0 =
b(m,M)} where m0̄ denotes the M0̄-component of m. Then Rad q is an S-submodule of
M . If F is a submodule of Rad q then q induces an S-quadratic map q̄: M/F → N given
by q̄0̄(m0̄ + F ) = q0̄(m0̄) and b̄(m + F,m′ + F ) = b(m, m′).

1.11. Grassmann algebras. We let GZ be the exterior algebra of the free Z-module
Z(N), i.e., the unital Z-algebra generated by the odd generators ξi, i ∈ N and subject to the
relations ξ2

i = 0 = ξiξj + ξjξi for i, j ∈ N. For a finite non-empty subset I of N, written in
the form I = {i1, i2, . . . , ir}, i1 < i2 < . . . < ir, we put ξI = ξi1ξi2 · · · ξir , and let ξ∅ = 1GZ .
Then (ξI : I ⊂ N finite) is a Z-basis of GZ, satisfying

ξIξJ = (−1)|I||J|ξJξI =
{±ξI∪J I ∩ J = ∅

0 I ∩ J 6= ∅
}

(1)

(the sign on the right hand side is described explicitly in [5, §7.8 (19)]). Let GZ0̄ (respec-
tively GZ1̄) be the Z-span of all ξI with |I| even (respectively odd). Using (1) it follows
easily that GZ = GZ0̄ ⊕GZ1̄ is a superextension of Z.

For a base superring S we put

GS = GZ ⊗Z S =
⊕

α,β∈Z2

GZα ⊗Z Sβ .

GS is a free S-supermodule with basis (ξI : I ⊂ N finite). By 1.7, GS is also an S-
superextension with respect to the Z2-grading

GS0̄ = (GZ0̄ ⊗Z S0̄)⊕ (GZ1̄ ⊗Z S1̄) and GS1̄ = (GZ0̄ ⊗Z S1̄)⊕ (GZ1̄ ⊗Z S0̄)

(direct sum of S0̄-modules). In particular

G(S) := GS0̄

is a commutative associative unital S0̄-algebra with a Z2-grading (note: G(S) is in general
not a commutative superalgebra).
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1.12. Grassmann envelopes of supermodules. Let M be an S-supermodule. Be-
cause of 1.4.2 and 1.4.5 we have

GS ⊗S M = GZ ⊗Z S ⊗S M ∼= GZ ⊗Z M =
⊕

α,β∈Z2

GZα ⊗Z Mβ .

In the future we will consider the isomorphism above as an equality. The GS-action on
GS ⊗S M is then given by

(g ⊗Z s)(g′ ⊗Z m) = (−1)|s||g
′| gg′ ⊗Z sm. (1)

The Grassmann envelope of an S-supermodule M is defined as the G(S)-module

GS(M) := (GS ⊗S M)0̄ = (GZ0̄ ⊗Z M0̄)⊕ (GZ1̄ ⊗Z M1̄)

with G(S)-module action given by (1).

Example. Let k be a base ring, M a k-module and S a k-superextension. Then
GS ⊗S MS = (GZ ⊗Z S) ⊗S (S ⊗k M) = GZ ⊗Z (S ⊗S (S ⊗k M)) = GZ ⊗Z (S ⊗k M) =
(GZ⊗Z S)⊗k M = GS ⊗k M . Hence the Grassmann envelope of the S-superextension MS

can be identified with the G(S)-extension of M :

GS(MS) = (GZ ⊗Z S)0̄ ⊗k M = G(S)⊗k M. (2)

1.13. Grassmann envelopes of multilinear maps. Let M1, . . . , Mn and N be S-
supermodules. Restricting the map 1.8.1 to the Grassmann envelopes, yields a G(S)-linear
map

˜ : GS(LS(M1, . . . , Mn;N)) −→ LG(S)(GS(M1), . . . , GS(Mn); GS(N)). (1)

In particular, for f ∈ L(M1, . . . , Mn; N)0̄ the restriction of the GS-superextension fGS

(see 1.8) to the Grassmann envelopes G(M i) is a G(S)-multilinear map

GS(f): GS(M1)× · · · ×GS(Mn) → GS(N),

called the Grassmann envelope of f . For example, the Grassmann envelope of an f ∈
HomS(M, N)0̄ is the G(S)-linear map

G(f): G(M) → G(N) : g ⊗Z m 7→ g ⊗Z f(m), (2)

and by restricting of the map 1.8.2 we obtain a G(S)-linear map

˜ : GS(HomS(M, N)) −→ HomG(S)(GS(M), GS(N)) : t⊗S f 7→ t̃⊗S f. (3)

If f ∈ HomS(M,N)0̄ is invertible it is immediate from (2) that G(f) is invertible too.
More precisely, we have

f is invertible ⇐⇒ G(f) is invertible. (4)

Indeed, if G(f) is invertible its inverse leaves all spaces ξI ⊗Z N|I| invariant. Since G is
free we have an imbedding

M|I| ↪→ GS(M): m 7→ ξI ⊗Z m (5)

for any finite I ⊂ N. Now invertibility of f follows from M ∼= M0̄ ⊕ (ξ1 ⊗M1̄).
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1.14. Grassmann envelopes of quadratic maps. The Grassmann envelope of an
S-quadratic map q = (q0̄, b): M → N is the G(S)-quadratic map GS(q): GS(M) → GS(N)
defined as follows:

GS(q)(
∑

I

ξI ⊗Z mI) = 1G ⊗Z q0̄(m∅) +
∑

|{I,J}|=2

(−1)|ξJ ||mI | ξIξJ ⊗Z b(mI ,mJ ) (1)

where the second sum is taken over all sets consisting of two distinct finite subsets of N,
including the possibility I = ∅. It has the following properties:

(i) The polar of GS(q) is the Grassmann envelope of the bilinear form b.
(ii) GS(q)|GZ0̄ ⊗Z M0̄ is the GS0̄-extension of the S0̄-quadratic form q0̄.

Example. Let k be a base ring, M and N k-modules and q: M → N a k-quadratic
map. Assume further that S is a k-superextension. As explained in 1.12.2, the Grassmann
envelopes of MS and NS can be identified with the G(S)-extensions of M and N . It
is well-known (see e.g. [3, §3.4, Prop.3]) that there exists a unique extension of q to a
G(S)-quadratic map qG(S): G(S)⊗k M → G(S)⊗k N . We claim that there exists a unique
S-quadratic map qS : MS → NS whose Grassmann envelope makes the following diagram
commutative:

G(MS) G(S)⊗M

?

G(qS)

?

qG(S)

G(NS) G(S)⊗M

(2)

Indeed, the map qS = (bS , q0̄S) is given as follows: q0̄S : S0̄⊗M → S0̄⊗N is the S0̄-extension
of q, while bS is the S-extension of b.

Remark. The definition of the Grassmann envelope of an S-quadratic map and the
definition of qS in (2) are special cases of the general fact that every S-quadratic map
q: M → N can be extended to a T -quadratic map qT : MT → NT for every S-extension T .
Since this result is not needed in the paper, we omit its proof which can be given along
the lines of the corresponding extension result for quadratic forms over rings ([3, §3.4,
Prop.3]).

1.15. Varieties of superalgebras. Let A be an S-superalgebra. It follows from
1.13.1 that the Grassmann envelope GS(A) is a G(S)-algebra. Moreover, 1.13.5 allows one
to compare identities in A and G(A). For example, it is easily (and well-known) that

A is associative (commutative) ⇐⇒ GS(A) is associative (commutative). (1)

In general, let V be a homogeneous variety of algebras, i.e., a variety of algebras whose
T -ideal is generated by homogeneous elements [42, 1.3]. An S-superalgebra A is called a
V-superalgebra if GS(A) belongs to V. Because of 1.13.5, V-superalgebras can be defined
by a set of homogeneous identities obtained from the defining identities of V. Rather than
doing the precise transfer from GS(A) to A one can simply apply the sign rule to obtain
the super version of an identity: Whenever the order of two symbols x, y is changed from
x . . . y to y . . . x, one must introduce a sign (−1)|x||y| in front of y . . . x.
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Let T be an S-superextension and let A be a V-superalgebra over S. If A satisfies the
super version of a homogeneous identity f defining V, the T -superextension AT will also
satisfy f , because of the uniqueness of superextensions of multilinear maps (1.8).

Example: alternative superalgebras. Recall that an algebra A is alternative if
(a, a, b) = 0 = (b, a, a) for all a, b ∈ A where (a, b, c) = (ab)c − a(bc) is the associator,
which can of course be defined in any S-superalgebra. Hence, an S-superalgebra A is an
alternative superalgebra if it satisfies the following identities:

(i) (a0̄, a0̄, b) = 0 = (b, a0̄, a0̄) for all a0̄ ∈ A0̄, b ∈ A and
(ii) (a, b, c) + (−1)|a||b| (b, a, c) = 0 = (a, b, c) + (−1)|b||c| (a, c, b) for all a, b, c ∈ A.

2. Jordan superpairs: basic definitions and examples.

2.1. Quadratic maps and supertriple products. The notation introduced here
will be used throughout the paper.

Let V = (V +, V −) be a pair of S-supermodules and let Qσ : V σ → HomS(V −σ, V σ) be
a pair of S-quadratic maps. We write Qσ = (Qσ

0̄ , Qσ(., .)) and recall that Qσ is S-quadratic
if and only if the following holds:

(a) Qσ(., .): V σ × V σ → HomS(V −σ, V σ): (u,w) 7→ Qσ(u, w) is a map that is
(a.1) additive in each variable,
(a.2) of degree 0̄, i.e., Qσ(V σ

α , V σ
β ) ⊂ HomS(V −σ, V σ)α+β for α, β ∈ Z2,

(a.3) symmetric-alternating: Qσ(u,w) = (−1)|u||w|Qσ(w, u) and Q(u1̄, u1̄) = 0 for
u,w ∈ V σ, u1̄ ∈ V1̄, and

(a.4) S-bilinear: Qσ(su,w) = sQσ(u,w) for s ∈ S.
(b) The map Qσ

0̄ : V σ
0̄ → (HomS(V −σ, V σ))0̄ has the following properties:

(b.1) Qσ
0̄ (s0̄u0̄) = s2

0̄Q
σ
0̄ (u0̄) for s ∈ S0̄, u0̄ ∈ V σ

0̄ ,
(b.2) Qσ

0̄ (u + w)−Qσ
0̄ (u)−Qσ

0̄ (w) = Qσ(u,w) for u,w ∈ V σ.

Given such maps Qσ we define a supertriple product

{. . .}: V σ × V −σ × V σ → V σ: (u, v, w) 7→ {u v w} (1)

and an S-bilinear map of degree 0

Dσ(., .): V σ × V −σ → EndS V σ

by the formula
{u v w} = Dσ(u, v)w = (−1)|v||w|Qσ(u,w)v. (2)

The triple product {...} is an S-trilinear map of degree 0 which is symmetric in the outer
variables,

{u v w} = (−1)|u||v|+|u||w|+|v||w| {w v u} and {u1̄ v u1̄} = 0. (3)

We note that, conversely, given S-trilinear maps {...} : V σ × V −σ × V σ → V σ of degree 0̄,
which are symmetric in the outer two variables, one can define S-bilinear symmetric maps
Qσ(., .) of degree 0̄ by (2).
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In the situation above we consider the Grassmann envelopes of Qσ, see 1.12. Abbrevi-
ating G(.) = GS(.), we have a G(S)-quadratic map

G(Qσ): G(V σ) → G(HomS(V −σ, V σ))

which we compose with the G(S)-linear map (see 1.13.3)

˜ : G(HomS(V −σ, V σ)) → HomG(S)(G(V −σ), G(V σ))

to obtain, by Example 1.10(b), a G(S)-quadratic map

Q̃σ := G̃(Qσ): G(V σ) → HomG(S)(G(V −σ), G(V σ)). (4)

Let Q̃σ(., .) be its polar. As usual, we associate to the pair (Q̃+, Q̃−) a G(S)-trilinear triple
product G(V σ) × G(V −σ) × G(V σ) → G(V σ) and G(S)-bilinear maps D̃σ(., .): G(V σ) ×
G(V −σ) → EndS G(V σ) . (We leave out the ˜ in the notation for the triple product
since this will most likely not lead to confusion with the triple product of V .) We then
have the following formulas for homogeneous u,w ∈ V σ, v ∈ V −σ and g ∈ GS such that
gu ⊗ u ∈ G(V σ) etc.

Q̃σ(ξI ⊗ u) =
{

0 for I 6= ∅
Id⊗Qσ

0̄ (u) for I = ∅
}

, (5)

Q̃σ(gu ⊗ u, gw ⊗ w) = (−1)|u||w| gugw ⊗Qσ(u,w), (6)

D̃σ(gu ⊗ u, gv ⊗ v) = (−1)|u||v| gugv ⊗Dσ(u, v), (7)
{(gu ⊗ u) (gv ⊗ v) (gw ⊗ w)} = (−1)|u||v|+|u||w|+|v||w| gugvgw ⊗ {u v w}. (8)

Of course, ⊗ = ⊗Z in the formulas above. In particular, it follows from (8) that the triple
product on the Grassmann envelope

GS(V ) := G(V ) := (G(V +), G(V −))

is just the Grassmann envelope of the triple product of V (1.12). In the following we will
leave out the superscript σ if it can be inferred from the context or if it is unimportant.

2.2. Jordan superpairs. A Jordan S-superpair, also called a Jordan superpair over
S, is a pair V = (V +, V −) of S-supermodules together with a pair (Q+, Q−) of S-quadratic
maps Qσ: V σ → HomS(V −σ, V σ) such that its Grassmann envelope GS(V ) together with
the quadratic maps (Q̃+, Q̃−) of 2.1.4 is a Jordan pair over G(S).

The condition that G(V ) be a Jordan pair can be expressed in terms of identities as
follows. Using the notation of [20], G(V ) is a Jordan pair if and only if the identities (JP1)–
(JP3) and all their linearizations hold when substituting elements from the spanning set
ξI ⊗ vσ (ξI ∈ GZ, v ∈ V σ

|I|) of G(V ) (a total of 15 identities). Since v 7→ ξI ⊗Z v is an

12



imbedding, we can pull back the identities to V . It follows that V is a Jordan superpair if
and only if the super versions of (JP1)–(JP3) and all their linearizations V . One obtains
the super version (JSPx) of the Jordan identity (JPx) by using the sign rule (1.15) and by
replacing any quadratic operator Q(x) by Q0̄(x0̄) with an even x0̄. For example:

D(x, y)D(u, v)− (−1)(|x|+|y|)(|u|+|v|)D(u, v)D(x, y)
= D({x y u}, v)− (−1)|x||y|+|x||u|+|y||u|D(u, {y x v}) (JSP15)

As in the classical theory the definition of a Jordan superpair simplifies if 1
2 , 1

3 ∈ S.
Indeed, assuming this, let V = (V +, V −) be a pair of S-supermodules with a pair of triple
products 2.1.1 which is supersymmetric in the outer variables. Define D(., .) by 2.1.2.
Since (JSP15) for V is equivalent to (JP15) for G(V ) it follows from [20, 2.2] that

If 1
2 , 1

3 ∈ S then V is a Jordan superpair if and only if (JSP15) holds for V . (1)

This characterization is taken as the definition in Krutelevich’s paper [18] which contains a
classification of simple finite-dimensional Jordan superpairs over algebraically closed fields
of characteristic 0.

2.3. Basic concepts. A homomorphism f : V → W of Jordan S-superpairs is a pair
f = (f+, f−) of S-linear maps fσ: V σ → Wσ of degree 0̄ satisfying for x0̄ ∈ V σ

0̄ and
arbitrary u,w ∈ V σ and v ∈ V −σ

fσ(Q0̄(x0̄)v) = Q0̄(f
σx0̄)f

−σv and fσ({u v w}) = {fσ(u) f−σ(v) fσ(w)}. (1)

There is a useful homomorphism criterion. Suppose f : V → W is a pair of S-linear maps
of degree 0 and let G(f): G(V ) → G(W ) be its Grassmann envelope (1.13.2). Then

f is a homomorphism ⇔ G(f) is a homomorphism. (2)

The definition of an isomorphism respectively automorphism between Jordan superpairs
is obvious, and clearly (2) also holds for them.

A pair U = (U+, U−) of Z2-graded S-submodules of a Jordan superpair V over S is a
subpair of V if

Q0̄(U
σ
0̄ )U−σ ⊂ Uσ and {Uσ U−σ Uσ} ⊂ Uσ. (3)

In this case GS(U) imbeds as a subpair of GS(V ) and hence U is a Jordan S-superpair
with the induced grading and the induced quadratic maps. In particular, V0̄ is a subpair
of V considered as Jordan superpair over S0̄. Similarly, a pair U = (U+, U−) of Z2-graded
submodules is an ideal of V if

Q0̄(U
σ
0̄ )V −σ + Q0̄(V

σ
0̄ )U−σ + {V σ V −σ Uσ}+ {V σ U−σ V σ} ⊂ Uσ .

In this case, V/U = (V +/U+, V −/U−) is a Jordan superpair with the induced operations.
It is clear that U ⊂ V is a subpair (respectively ideal) if and only if GS(U) ⊂ GS(V ) is
a subpair (respectively ideal). Once calls V simple if V has only the trivial ideals and if
Qσ 6= 0.
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Let Γ be an abelian group. A Γ -grading of a Jordan S-superpair V = (V +, V −) is a
family (V σ[α];σ = ±, α ∈ Γ ) of S-submodules such that

V σ = ⊕γ∈Γ V σ[γ]

and the following multiplications rules hold for all α, β, γ ∈ Γ

Q0̄(V
σ
0̄ [α])V −σ[β] ⊂ V σ[2α + β], and (4)

{V σ[α] , V −σ[β] , V σ[γ]} ⊂ V σ[α + β + γ], (5)

see [21] for the classical situation. In this case, V will be called Γ -graded and the V [α] =
(V +[α], V −[α]) will be referred to as homogeneous spaces. If V and W are Γ -graded Jordan
superpairs we will say that they are graded-isomorphic and denote this by V ∼=Γ W , if
there exists an isomorphism f : V → W with fσ(V σ[γ]) = Wσ[γ] for σ = ± and all γ ∈ Γ .

We call u0̄ ∈ V σ
0̄ invertible if Qσ

0̄ (u) ∈ HomS(V −σ, V σ) is invertible. In this case,
its inverse is defined by u−1 = Qσ

0̄ (u)−1(u) ∈ V −σ
0̄

. Since Q̃σ(1 ⊗ u) is the Grassmann
envelope of Q0̄(u), it follows from 1.13.4 that u is invertible if and only if 1⊗u is invertible
in the Jordan pair G(V ). In this case, 1⊗u−1 = (1⊗u)−1, Q−σ

0̄
(u−1) = Qσ

0̄ (u)−1 and u−1

is again invertible and has inverse u.

For (x, y) ∈ V σ
0̄ × V −σ

0̄
the Bergman operator is defined as

B(x, y) = Id−Dσ(x, y) + Qσ
0̄ (x)Q−σ

0̄
(y) ∈ EndS(V σ).

Observe that the Grassmann envelope of B(x, y) is the Bergman operator of the pair
(1⊗ x, 1⊗ y). Hence, by 1.13.4 and the elemental characterization of quasi-invertibility in
Jordan pairs we see that the following conditions are equivalent:

(i) B(x, y) is invertible;
(ii) (1⊗ x, 1⊗ y) is quasi-invertible in the Jordan pair G(V );
(iii) (x, y) is quasi-invertible in the Jordan pair V0̄;

In this case, we call (x, y) ∈ V quasi-invertible, and note that

β(x, y) = (B(x, y), B(y, x)−1) is an automorphism of V, (6)

called the inner automorphism defined by (x, y). Indeed, this follows from the homomor-
phism criterion (2) and the corresponding fact for Jordan pairs ([20, 3.9]).

2.4. Proposition (Split null extensions). Let U be a Jordan pair over k, M =
(M+, M−) a pair of k-modules, dσ: Uσ ×U−σ → Endk(Mσ) bilinear maps and qσ: Uσ →
Homk(M−σ,Mσ) quadratic maps. On V = U ⊕ M = (U+ ⊕ M+, U− ⊕ M−) we define
quadratic maps Qσ: V σ → Homk(V −σ, V σ) by

Qσ(x⊕m)(y ⊕ n) = Qσ(x)y ⊕ qσ(x)n + dσ(x, y)m. (1)

Then the following are equivalent:
(i) V is a Jordan pair with respect to Q defined in (1).
(ii) V is a Jordan superpair over k with homogeneous parts V0̄ = U , V1̄ = M and

quadratic maps (Qσ|Uσ, Qσ(., .)) where Qσ(., .) is the polar of Qσ.
(iii) (M, d, q) is a U -module in the sense of [20, 2.3].

14



One calls V the split null extension of U by M ([20, 2.7]).

Proof. We start out with a general observation. For a fixed Grassmann generator, say
ξ1, the pair W = (W+,W−) ⊂ G(V ) given by Wσ = (1 ⊗ Uσ) ⊕ (ξi ⊗Mσ) is a subpair
of G(V ), i.e., 2.3.3 holds which makes sense even if G(V ) is not necessarily a Jordan pair.
Moreover, the canonical map

V → W : u⊕m 7→ (1⊗ u)⊕ (ξi ⊗m) (2)

is an isomorphism of pairs in the sense that 2.3.1 holds which, again, makes sense for
arbitrary pairs.

(i) ⇒ (ii): To prove that G(V ) is a Jordan pair we have to verify that the Jordan
pair identities and all their linearizations hold for elements from the spanning set ξI ⊗ uσ

I

of G(V ). The product formula (1) implies that in G(V ) all products with more than one
factor from G1̄⊗M vanish. Thus, it is sufficient to check that the identity holds in W . But
this is indeed the case, since W ≈ V by (2) and since V is a Jordan pair by assumption.

(ii) ⇒ (iii): By the observation above, W is a subpair of the Jordan pair G(V ) and
hence itself a Jordan pair. Using the enumeration of [20, 2.3], the defining identities (1),
(3), (4) and (5) of a representation, follow by evaluating the Jordan pair identities (JP1)
– (JP3) on W while (2) is a consequence of (JP12).

(iii) ⇒ (i): this is [20, 2.7].

2.5. Corollary (First approximation of Jordan superpairs). Let V be a Jordan
superpair over a base superring S. Then V1̄ is a V0̄-module, and hence the split null
extension V ′ of V0̄ by V1̄ is a Jordan superpair over S as well as a Jordan pair over S0̄,
called the first approximation of V .

Proof. Let V ′ be the pair obtained from V by putting all products with more than
one factor from V1̄ equal to zero. By 2.4.2 the pairs V ′ and W are isomorphic. Since
by assumption G(V ) is a Jordan pair, so is W ≈ V ′. By 2.4 we then know that V ′̄

1 is a
V ′̄

0 -module with respect to the canonical maps which, by definition of V ′, means that V1̄

is a V0̄-module.

2.6. Proposition (Superextensions of Jordan pairs). Let V be a Jordan pair
over a base ring k and let S be a k-superextension. We put VS = (S⊗k V +, S⊗k V −) and
denote by VG(S) = G(S) ⊗k V the base ring extension of V by G(S). By 1.12.2 we can
identify G(V σ

S ) = G(S)⊗k V σ = V σ
G(S) as G(S)-modules.

There exist a unique Jordan S-superpair structure on VS = (S ⊗ V +, S ⊗ V −), called
the S-extension of V , such that G(VS) = VG(S).

Proof. We let QS = (Q+
S , Q−

S ) be the S-extensions of the structure maps Qσ (see
Example 1.14) followed by the S-linear map η: S ⊗k Homk(V −σ, V σ) → HomS(V −σ

S , V σ
S )

of 1.8.2. It is then straightforward to verify that G(VS) = VG(S).
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2.7. Jordan supertriples. Let T be an S-supermodule with an S-quadratic map
P : T → EndS(T ). As in 2.1.4 this gives rise to a G(S)-quadratic map P̃ : G(T ) →
EndG(S)(G(T )). We call T a Jordan supertriple over S if G(T ) together with P̃ is a
Jordan triple (system), as for example defined in [20, 1.13]. Homomorphisms of Jordan
supertriples, ideals and simplicity are defined in the obvious way.

The relation between Jordan supertriples and Jordan superpairs is the same as in the
classical theory. To explain this, we need some more definitions. The opposite of a Jordan
S-superpair V = (V +, V −) is the Jordan superpair V op = (V −, V +) with quadratic maps
(Q−, Q+). That V op is indeed a Jordan superpair follows from G(V op) = G(V )op. An
involution of V is a homomorphism η: V → V op such that (η− ◦ η+, η+ ◦ η−) = IdV .
It is clear that η is an involution of V if and only if its Grassmann envelope G(η) is an
involution of G(V ). One can now easily verify:

(a) If (T, P ) is a Jordan supertriple then V (T ) = (T, T ) with the quadratic maps (P, P )
is a Jordan superpair with involution η = (Id, Id).

(b) Conversely, if V is a Jordan superpair with involution η then T = V + together with
P defined by P (x) = Q+(x)η+ is a Jordan supertriple whose associated Jordan
superpair (T, T ) is isomorphic to V via (Id, η+): (T, T ) → V .

As in the classical theory one can, conversely, imbed the category of Jordan superpairs
in the category of Jordan supertriples by associating to a Jordan superpair V = (V +, V −)
the Jordan supertriple T (V ) = V + ⊕ V − with quadratic maps determined by

P0̄(x
+
0̄
⊕ x−

0̄
)(y+ ⊕ y−) = Q+

0̄
(x+

0̄
)y− ⊕Q−

0̄
(x−0 )(y+) and

{x+ ⊕ x− , y+ ⊕ y− , z+ ⊕ z−} = {x+ y− z+} ⊕ {x− y+ z−}.

That T (V ) is indeed a Jordan supertriple follows from G(T (V )) = T (G(V )) and the
corresponding fact for Jordan pairs ([20, 1.14]). One then has the super version of the
well-known simplicity transfer (see for example [30, 1.5]):

2.8. Lemma (a) A Jordan superpair V is simple if and only if the Jordan supertriple
T (V ) is simple.

(b) A Jordan supertriple T is simple if and only the Jordan superpair V (T ) is either
simple or a direct sum of two simple ideals, V (T ) = W ⊕W op, such that T = T (W ).

2.9. Example: Quadratic form supertriples. To motivate the definition below
we first recall quadratic form triples. Let k be a base ring, X a k-module and q: X → k
a quadratic form with polar b. Then X becomes a Jordan triple system over k, called a
quadratic form triple, with quadratic map P (x)y = b(x, y)x− q(x)y.

Let now S be a base superring and let q = (q0̄, b): M → S be an S-quadratic form.
Define for m0̄ ∈ M0̄ and arbitrary homogeneous m,n, p ∈ M

P0̄(m0̄)n = b(m0̄, n)m0̄ − q0̄(m0̄)n,

{m np} = b(m,n)p + mb(n, p)− (−1)|n||p|b(m, p)n.
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Then M together with the quadratic map and triple products defined above is a Jordan
supertriple over S, called the Jordan supertriple associated to q or sometimes simply a
quadratic form supertriple. Indeed, the Grassmann envelope of the supertriple M is the
quadratic form triple on G(M) with respect to the G(S)-quadratic form G(q) of 1.14. The
Jordan superpair (M, M), see 2.7, will be called the quadratic form superpair associated
to q.

The radical Rad q of q, see 1.10(c), is an ideal of the quadratic form supertriple M
defined by q whose multiplication is trivial. Hence, a necessary condition for simplicity of
M or (M, M) is that q is nondegenerate in the sense that Rad q = 0. The techniques to
establish the following simplicity criterion are well-known, see e.g. [13, Th. 11] and [17,
Th. 6.1] for the case of Jordan algebras and superalgebras. Its proof will therefore be left
to the reader, but we note that because of 2.8 it is sufficient to consider the quadratic form
superpair (M, M).

2.10. Lemma. Let S = S0̄ be a field, let M be a non-zero S-supermodule and let
q: M → S be a nondegenerate S-quadratic form. Exclude the following situation: S is a
field of characteristic 2, M = M1̄ and dimS M = 2.

Then the quadratic form triple M is simple, while the quadratic form pair V = (M, M)
is either simple or M = M0̄ has dimension 2 and q is hyperbolic. In the latter case, if h±
is a hyperbolic basis of M , the Jordan pair (M,M) = W ⊕ W op is a direct sum of two
ideals W and W op for W = (Sh+, Sh−).

2.11. Unital Jordan superalgebras. A unital Jordan superalgebra over S is a triple
(J, U, 1J), where J is an S-supermodule, U : J → EndS(J) is an S-quadratic map and 1J

is a distinguished element in J0̄ such that the Grassmann envelope G(J) together with the

G(S)-quadratic map G̃(U): G(J) → EndG(S)(G(J)) is a (quadratic) Jordan algebra with
unit element 1G ⊗ 1J , as for example defined in [12, 1.3.4]. It follows that

U0̄(1J ) = Id. (1)

Since a unital Jordan algebra is the same as a Jordan triple with an element satisfying (1),
unital Jordan superalgebras can also be characterized as Jordan supertriples containing
an element 1J satisfying (1).

Basic concepts like homomorphism, ideal and simplicity are defined in an analogous
manner as in 2.3 for Jordan superpairs. Details can be left to the reader but, for later use,
we mention explicitly the definition of a grading. Let Λ be an abelian group. A Λ-grading
of a unital Jordan S-superalgebra J is a family (Jλ : λ ∈ Λ) of S-submodules such that
J = ⊕λ∈Λ Jλ and the following multiplication rules hold for λ, µ, ν ∈ Λ:

U0̄(Jλ)Jµ ⊂ J2λ+µ and {Jλ Jµ Jν} ⊂ Jλ+µ+ν (2)

where {...} denotes the Jordan triple product of the Jordan supertriple underlying J .
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Remarks. (a) If 1
2 ∈ S one can define a linear Jordan superalgebra as an S-superalge-

bra with the property that its Grassmann envelope is a linear Jordan algebra (1.15). As in
the classical case, they coincide with quadratic Jordan superalgebras defined above. The
relation between the quadratic structure and the linear Jordan superalgebra product is
given by

U0̄(a0̄)b = 2a0̄(a0̄b)− a2
0̄b (3)

{a b c} = 2
(
a(bc) + (ab)c− (−1)|b||c|(ac)b

)
(4)

(b) The same approach that we have used to define Jordan superpairs leads to a def-
inition of not necessarily unital (quadratic) Jordan superalgebras: one requires that the
Grassmann envelope is a non-unital quadratic Jordan algebra. For the case of base rings,
details can be found in the recent paper [17] which also contains a discussion of some of
the standard examples of Jordan superalgebras.

The relation between Jordan superalgebras and Jordan superpairs is the same as in the
non-super case [20, 1.6, 1.11]:

2.12. Lemma (Isotopes). (a) Let J be a unital Jordan superalgebra over S. Then
V = (J, J) with Qσ = U is a Jordan superpair with invertible element 1J ∈ V −

0̄
and inverse

1J ∈ V +
0̄

. If J is simple then so is V .
(b) Conversely, let V be a Jordan superpair over S and suppose that v ∈ V −

0̄
is invertible

with inverse u ∈ V +
0̄

. Then J = V + together with 1J = u and quadratic maps given by
U0̄(x) = Q+

0̄
(x)Q−

0̄
(v) and U(x, y) = Q+(x, y)Q−

0̄
(v) is a unital Jordan superalgebra, called

the v-isotope of V . Moreover, (IdJ , Q−
0̄

(v)): (J, J) → V is an isomorphism of Jordan
superpairs. If V is simple then so is J .

2.13. Example: quadratic form superalgebras. Let V = (M,M) be the quadra-
tic form superpair associated to an S-quadratic form q = (b, q0̄) : M → S. If 1 ∈ M0̄ is a
base point, i.e., q0̄(1) = 1, then 1 ∈ V − = M is invertible with inverse 1 ∈ V + = M : the
map Q0̄(1)m = b(1,m)1 −m =: m satisfies m = m. Hence, by 2.12.b, the S-module M
together with the quadratic map

U0̄(m0̄)n = b(m0̄, n)m0̄ − q0̄(m0̄)n,

{mn p} = b(m,n)p + mb(n, p)− (−1)|n||p|b(m, p)n.

is a unital Jordan superalgebra with identity element 1. For S = S0̄ these superalgebras
are studied in [17, 6].

2.14. Example: special Jordan supertriples. Every associative algebra A be-
comes a Jordan algebra, denoted A(+), with respect to the quadratic operation U(x)y =
xyx, where the product on the right hand side is calculated in the associative algebra A.
The corresponding triple product is {a b c} = abc+ cba. We will describe the super version
of this example but since we did not define non-unital Jordan superalgebras we will work
with Jordan supertriples instead.
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Let A be an associative superalgebra over some base superring S with multiplication
ab for a, b ∈ A. For a ∈ A we define the left multiplication L(a) respectively right multi-
plication R(a) by

L(a)b = ab , R(a)b = (−1)|a||b| ba.

Then L(a), R(a) ∈ EndS(A) and L(a)R(b) = (−1)|a||b|R(b)L(a) for a, b ∈ A. We have an
S-quadratic map P : A → EndS(A) given by

P0̄(a0̄) = L(a0̄)R(a0̄) and

P (a, b) = L(a)R(b) + (−1)|a||b|L(b)R(a) = L(a)R(b) + R(a)L(b).

Indeed, P is the quadratic map associated to the S-bilinear map A×A → EndS(A) defined
by (a, b) 7→ L(a)R(b), see Example 1.10(a). The corresponding triple product 2.1.2 is

{a b c} = abc + (−1)|a||b|+|a||c|+|b||c| cba.

These formulas imply that the Grassmann envelope of (A,P ) is the Jordan triple system
G(A)+, hence (A,P ) is a Jordan supertriple, denoted again A(+). Note that A(+) is
a Jordan superalgebra if A is unital. In any case, by 2.7.a, (A,A) is always a Jordan
superpair.

An involution of an S-superalgebra A is an S-linear map π: A → A of degree 0 satisfying
for a, b ∈ A

(ab)π = (−1)|a||b| bπaπ and (aπ)π = a.

Obviously, π is an involution if and only if its Grassmann envelope G(π) is an involution
of the algebra G(A). Any involution π of an associative A is also an involution of the
supertriple A(+) in the following sense

(P0̄(a0̄)b)
π = P0̄(a

π
0̄ )bπ {a b c}π = {aπ bπ cπ}, (1)

and hence induces an involution of the associated Jordan superpair (A,A) as defined
in 2.7 . We denote by H(A, π) = {a ∈ A : aπ = a} the symmetric elements and by
S(A, π) = {a ∈ A : aπ = −a} the skew symmetric elements of A. Then (1) implies that

(H(A, π),H(A, π)) and (S(A, π), S(A, π)) are subpairs of (A,A). (2)

Special quadratic Jordan superalgebras are also considered in [17]. For a description of
involutions of simple or primitive associative superalgebras see [8, Th.2.10] and [37].
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3. Grids in Jordan superpairs.

Unless stated otherwise, V = V0̄ ⊕ V1̄ will denote a Jordan superpair over some base
superring S. We will write Q for Qσ and D for Dσ if σ can be inferred from the context.
We will frequently consider elements e = (e+, e−), f = (f+, f−) or g = (g+, g−), in which
case it is often useful to employ the following abbreviations

Q0̄(e) := (Q0̄(e
+), Q0̄(e

−)) (for even e),
D(e, f) := (D(e+, f−), D(e−, f+)) and
{e f g } := ({e+ f− g+}, {e− f+ g−}).

3.1. Idempotents. This subsection is the super version of [20, 5.4]. All unexplained
results follow from there. Using the abbreviations above, an idempotent of V is an ele-
ment e = (e+, e−) ∈ V0̄ satisfying Q0̄(e)e = e. To an idempotent e we associate Peirce
projections Ei = (E+

i , E−
i ), i = 0, 1, 2, given by

Eσ
2 = Q0̄(e

σ)Q0̄(e
−σ), Eσ

1 = D(eσ, e−σ)− 2Eσ
2 , Eσ

0 = B(eσ, e−σ).

Let V ′ be the first approximation of V (2.5). Since the Ei are the same for V and the
Jordan pair V ′, the classical theory implies that they form a complete system of orthogonal
projections onto the Peirce spaces of e,

Vi(e) = (V +
i (e), V −

i (e)) , V σ
i = Eσ

i (V σ),

and hence give rise to the Peirce decomposition V = V2(e)⊕ V1(e)⊕ V0(e). Of course this
direct sum has to be understood componentwise. We will abbreviate Vi(e) by Vi if the
idempotent e is clear from the context. The Peirce spaces are S-submodules, and they are
the same for V and V ′. Therefore we have the following characterizations:

V σ
2 = Im(Q0̄(e

σ)), V σ
1 ⊕ V σ

0 = Ker(Q0̄(e
−σ)),

V σ
1 = Ker(Id−D(eσ, e−σ)),

V σ
0 = Ker(Q0̄(e

−σ)) ∩ Ker(D(eσ, e−σ)),
V σ

i ⊂ {v ∈ V σ : {eσ e−σ v} = iv}, (i = 0, 1, 2)

where the inclusion above is an equality if either i = 1 or i = 0, 2 and V has no 2-torsion.
The element 1⊗ e = (1⊗ e+, 1⊗ e−) is an idempotent of the Grassmann envelope G(V ).
Since the Grassmann envelopes of the Peirce projections Ei are the Peirce projections of
the idempotent 1⊗ e ∈ G(V ) it follows that

G(Vi(e)) = G(V )i(e), (i = 0, 1, 2). (1)

Using (1), the multiplication rules between the Peirce spaces of 1 ⊗ e can be pulled back
to V . Setting Vi = 0 for i 6= 0, 1, 2 we therefore have

Q0̄(Vi)Vj ⊂ V2i−j and {Vi Vj Vk} ⊂ Vi−j+k , (2)
D(V2, V0) = 0 = D(V0, V2). (3)

In particular, (2) says that every Vi(e) is a subpair of V .
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For two idempotents e and f in Jordan superpair V we say
(i) e and f are associated (e ≈ f) if e ∈ V2(f) and f ∈ V2(e) or, equivalently, the

Peirce spaces of e and f coincide,
(ii) e and f are collinear (e>f) if e ∈ V1(f) and f ∈ V1(e),
(iii) e and f are orthogonal (e ⊥ f) if e ∈ V0(f) or, equivalently, f ∈ V0(e),
(iv) e governs f (e ` f) if e ∈ V1(f) and f ∈ V2(e).

3.2. McCrimmon-Meyberg superalgebras. Let e, f be two collinear idempotents
in in a Jordan pair U . By a result of McCrimmon-Meyberg ([28, 1.1]) the pair (e+ +
f+, e− + f−) ∈ U is quasi-invertible and gives rise to the exchange automorphism te,f =
β(e+ + f+, e−+ f−) which has period 2, and satisfies te,f (e) = f and te,f (f) = e. We also
recall from [28, 2.2] that the algebra A, defined on U+

2 (e) ∩ U+
1 (f) by

A : ab = {{a e− f+}f− b} (a, b ∈ U+
2 (e) ∩ U+

1 (f)), (1)

is an alternative algebra with identity element e+. We will call A the McCrimmon-Meyberg
algebra of the pair (e, f).

These results immediately generalize to the setting of Jordan superpairs. Indeed, let V
be a Jordan superpair and assume that e, f ∈ V0̄ are two collinear idempotents. Applying
the above to the Jordan pair V ′, the first approximation of V , we have the exchange
automorphism te,f of order 2. Also, A = V +

2 (e) ∩ V +
1 (f) together with the product (1) is

an S-superalgebra. By 3.1.1 and the definition of the algebra respectively triple product in
the Grassmann envelopes (1.5.1, 2.1.8) the Grassmann envelope of A is the McCrimmon-
Meyberg algebra of the collinear pair (1 ⊗ e, 1 ⊗ f) in G(V ). Therefore, by 1.15, A is
an alternative superalgebra. It is unital with identity element e+ and will be called the
McCrimmon-Meyberg superalgebra of the collinear pair (e, f).

3.3. Grids. Grids in Jordan triple systems have been studied in [31] and [33]. By
considering the polarized Jordan triple system associated to any Jordan pair, this theory
can be applied to Jordan pairs, see [35, §1] for a review of grids in Jordan pairs. Since by
definition an idempotent in a Jordan superpair V lies in the Jordan pair V0̄, the theory of
grids is also available for Jordan superpairs, by considering the subpair V0̄ ⊂ V . For the
sake of completeness we give a short review below. We will use some concepts from the
theory of 3-graded root systems for which the reader is referred to [22, §17 and §18]. A
summary of some results is also given in [32], [33, §1] and [35, 1.1], but note the following
changes: in [22] 0 is considered a root and the Cartan integers are denoted 〈α, β∨〉.

A cog in V is a family E ⊂ V of non-zero idempotents such that two distinct idempotents
e, f ∈ E satisfy exactly one of the Peirce relations e>f, e ⊥ f, e ` f or e a f . A cog E

is closed if there exists a 3-graded root system (R,R1) and a bijection R1 → E: α 7→ eα

which preserves the Peirce relations >,⊥ and `. Such a 3-graded root system is uniquely
determined up to isomorphism and called the associated 3-graded root system of E [33,
3.2]. We fix one such bijection and enumerate E = {eα; α ∈ R1}. Since eα>eβ ⇔ α>β
and similarly for ⊥ and ` we have

eα ∈ V〈α,β∨〉(eβ) , in particular {eα eα eβ} = 〈β, α∨〉eβ . (1)
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A cog E in V is called connected if every two idempotents e, f ∈ E can be connected by a
finite chain (e = f1, f2, . . . , fn = f) ⊂ E with fi 6⊥ fi+1 for every 1 ≤ i < n. A closed cog
is connected if and only if its associated 3-graded root system is irreducible [33, 3.4]. One
calls two cogs E and E′ associated (E ≈ E′) if there exists a bijection ϕ: E → E′ such that
ϕ(e) ≈ e for every e ∈ E. Two associated closed cogs have isomorphic associated 3-graded
root systems ([33, Thm. 3.4.a]).

A closed cog G ⊂ V is a grid if it has the following two properties:
(G1) whenever (g1, g2, g3) ⊂ G is a family of pairwise collinear idempotents such that

{g1 g2, g3} 6= 0 then there exists h ∈ G such that g1 ` h a g3 and h ⊥ g2, i.e.,
the Peirce relations in (h; g1, g2, g3) are the same as in a diamond of roots, and

(G2) if g1 a g2 ` g3>g1 then {g1 g2 g3} = 0.

For covering grids another characterization will be given in 3.4.2. Special examples of
grids will be studied in detail in section 4.

A collinear family is a family of pairwise collinear non-zero idempotents. A cog E is
called pure if {e f g} = 0 for any collinear family (e, f, g) ⊂ E. A collinear family is a grid
if and only if it is pure. It follows from the classification of grids in [31, Ch. II] that any
connected non-pure grid is associated to a so-called hermitian grid as defined in 4.8.

3.4. Covering grids. For a closed cog G = {eα : α ∈ R1} ⊂ V and α ∈ R1 we define
the (joint) α-Peirce space of G by

Vα := ∩β∈R1 V〈α,β∨〉(eβ)

where, of course, the intersection has to be taken componentwise. Observe that eα ∈ Vα ⊂
V2(eα). The sum of the joint Peirce spaces is always direct, and one says G covers V if

V = ⊕α∈R1 Vα. (1)

By [31, Thm. I.4.14],

a covering closed cog is necessarily a grid, (2)

and hence in the future we will only speak of covering grids instead of covering closed
cogs. Recall that two associated closed cogs have the same Peirce spaces ([33, (3.8.1)]).
In particular, one is a covering grid if and only if both are covering grids.

In view of 3.1.1, the Grassmann envelope of the joint α-Peirce space of a grid G is the
α-Peirce space of the closed cog 1 ⊗ G = {1 ⊗ g : g ∈ G} ⊂ G(V ), from which it easily
follows that

G covers V ⇐⇒ 1⊗ G covers G(V ). (3)

The Peirce multiplication rules 3.1.2 and 3.1.3 for a single idempotent imply

Q0̄(Vα)Vβ ⊂ V2α−β , {Vα Vβ Vγ} ⊂ Vα−β+γ and (4)
{Vα Vβ V } = 0 if α ⊥ β. (5)

where Q0̄(Vα)Vβ = 0 if 2α− β /∈ R1 and analogously for the triple product {Vα Vβ Vγ}.
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Suppose that G is a covering grid. The multiplication rule (4) can also be interpreted
by saying that (1) is a grading of V by the root lattice Z[R] of R. Indeed, (4) becomes
2.3.4 if one defines

V σ[α] =

{
V +

α σ = +, α ∈ R1,
V −
−α σ = −, α ∈ R−1

0 otherwise.
(6)

This grading will be denoted by R and called the root grading induced by G.

Let (α, β) ⊂ R1 be a pair of collinear roots, hence eα, eβ are collinear idempotents.
(Such a pair does not exist if and only if R = Ȧ1 or R = B2). The McCrimmon-Meyberg
superalgebra of (eα, eβ), as defined in 3.2, is defined on the Peirce space V +

α since

Vα = V2(eα) ∩ V1(eβ). (7)

Indeed, Vα ⊂ V2(eα) ∩ V1(eβ) since 〈α, α∨〉 = 2 and 〈β, α∨〉 = 1. For the other inclusion,
we note that always V2(eα) ∩ V1(eβ) = ⊕{Vγ : γ ∈ R1, 〈γ, α∨〉 = 2, 〈γ, β∨〉 = 1}. For any
γ ∈ R1 satisfying γ 6= α and 〈γ, α∨〉 = 2 we have γ a α>β and therefore γ a β or γ ⊥ β
by length considerations ([22, 18.6.b(ii)]). In particular, 〈γ, β∨〉 6= 1 which implies (7).

The following lemma is immediate from (5). It reduces the classification of Jordan
superpairs covered by a grid to the case of connected grids.

3.5. Lemma (Direct sums). Let V be a Jordan superpair with a covering grid G

whose associated 3-graded root system (R, R1) is an orthogonal sum of 3-graded root sys-
tems (R(i), R

(i)
1 ), e.g. the decomposition of (R,R1) into its irreducible components. Put

V (i) = ⊕
α∈R

(i)
1

Vα. Then V = ⊕i V (i) is a direct sum of ideals.

3.6. Standard grids. In an arbitrary grid G the relations between idempotents are
controlled by the associated 3-graded root system, but products of type Q0̄(e)f or {efg} for
e, f, g ∈ G may fall outside of G even if Q0̄(e)f or {efg} are idempotents. Roughly speaking,
standard grids are characterized by the condition that Jordan products of idempotents in G

which are idempotents lie in ±G. To define standard grids, we need the following concepts.

A family (e0; e1, e2) of non-zero idempotents in V is a triangle of idempotents if
(i) e0 ` e1 ⊥ e2 a e0, and
(ii) Q0̄(e0)e1 = e2, Q0̄(e0)e2 = e1 and {e1 e0 e2} = e0 (by [31, I.2.5], the first of these

three equations implies the remaining two).
A family (e1, e2, e3, e4) of non-zero idempotents in a Jordan superpair V is a quadrangle

of idempotents if for all indices mod 4 we have
(i) ei>ei+1 ⊥ ei+3 and
(ii) {ei ei+1 ei+2} = ei+3.
A family (e0; e1, e2, e3) of non-zero idempotents in V is a diamond of idempotents if
(i) (e1, e2, e3) is a collinear family and e1 ` e0 a e3, e0 ⊥ e2;
(ii) {e0 e1 e2} = e3, {e1 e2 e3} = 2e0, {e2 e3 e0} = e1, {e3 e0 e1} = e2 (the first of these

four equations actually implies the remaining three, see [31, I.2.8]).
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In the three definitions above the conditions (i) coincide with the definition of a triangle,
quadrangle or diamond of roots ([22, 18.3]). To distinguish them from triangle of idem-
potents etc., we will refer to the configurations of roots as root triangle, root quadrangle or
root diamond respectively.

A grid G = {eα : α ∈ R1} in a Jordan superpair is a standard grid ([33, 3.5]) if
(SG1) the idempotents corresponding to a root triangle (α;β, γ) ⊂ R1 form a triangle

of idempotents;
(SG2) the idempotents corresponding to a root diamond (α; β, γ, δ) ⊂ R1 form a dia-

mond of idempotents;
(SG3) for every root quadrangle (α1, α2, α3, α4) ⊂ R1 there exists a sign ε ∈ {±1} such

that (eα1 , eα2 , eα3 , εeα4) is a quadrangle of idempotents.
Clearly, triangles and quadrangles of idempotents are examples of standard grids. A
diamond creates a standard grid, namely a hermitian grid H(3) as defined in 4.8, see
[31, Thm. I.2.11].

Every grid G is associated to a standard grid ([33, 3.7 and 3.8]). Such a standard
grid is not unique, but one example can be constructed as follows. We choose a grid base
B of (R, R1) (see [32] or [33, 1.5]) and define G̃ = {g̃α : α ∈ R1} by induction on the
height. For β ∈ B we put g̃β = eβ . For α ∈ R1 with ht(α) ≥ 3 we choose a decomposition
α = γ − β1 + β2 with βi ∈ B and γ ∈ R1, ht(γ) = ht(α)− 2, and define g̃α by

a) g̃α = Q0̄(eγ)eβ1 in case γ = β2 and (γ; β1, α) is a root triangle;
b) g̃α = {eγ eβ1 eβ2} in case (β1, β2, α, γ) is a root quadrangle or (β1; β2, α, γ) is a root

diamond.
Then G̃ is a standard grid with G̃ ≈ G. It is called the standard grid generated by {eβ : β ∈
B}. It is unique in the following sense: if G′ is another standard grid with {eβ : β ∈ B} ⊂ G′

and with the same 3-graded root system as G (and G̃) then the idempotents in G̃ and in G′

differ by a sign only ([33, 3.7]).

3.7. Refined root gradings of Jordan superpairs. Suppose that V is covered by
a standard grid G = {eα : α ∈ R1} with associated 3-graded root system (R, R1). We then
have an induced root grading R of V with grading group Z[R] as defined in 3.4.6.

A refined root grading of (V, G) is a grading (V σ[γ] : σ = ±, γ ∈ Γ ) of V with grading
group Γ , written additively, such that the following two properties hold:

(i) There exists a group homomorphism ϕ: Γ → Z[R] such that for every α ∈ R1 we
have

V σ
α = ⊕γ∈ϕ−1(α) V σ[σγ] .

(ii) Every eα is homogeneous: eα ∈ (V +[α̇+], V −[α̇−]) for suitable α̇± ∈ Γ .
Throughout we will use the following notation for a refined root grading with grading
group Γ . Since 0 6= eσ

α = Q0̄(eσ
α)e−σ

α ∈ V σ[2α̇σ + α̇−σ] it follows that α̇σ = −α̇−σ. Hence,
with α̇ := α̇+, we have eα ∈ (V +[α̇], V −[−α̇]). We put

Γ̇ := the subgroup of Γ generated by {α̇ : α ∈ R1}
Γ 0 := Ker ϕ.
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We can therefore write
V σ

α = ⊕λ∈Γ 0 V σ[σα̇ + λ]

for α ∈ R1. Our notation is influenced by the notations used in the theory of extended
affine Lie algebras, see for example [2] or [1]. Indeed, for suitable choices of Γ and V the
TKK-algebra of V is the core of an extended affine Lie algebra.

Remarks. 1) The definition above makes perfectly sense for an arbitrary covering grid
G which is not necessarily a standard grid. This will however not lead to a more general
structure. Indeed, let B be a grid base of (R, R1) and let G̃ be the standard grid generated
by {eβ : β ∈ B}, see 3.6. Then G̃ has the same root grading as G since G̃ ≈ G. By the
description of G̃ given in 3.6, every idempotent of G̃ is Γ -homogeneous. It is therefore no
loss of generality to assume in the definition of a refined root grading that G is a standard
grid. In fact, we can even assume that G is the standard grid generated by {eβ : β ∈ B}
for some grid base B of (R, R1).

2) Refined root gradings naturally occur in the following set-up. Suppose, for simplic-
ity, that k is a field of characteristic 0. Let hG denote the span of all inner derivations
(D(e+

α , e−α ),−D(e−α , e+
α )), α ∈ R1. Then Z[R] imbeds as a subgroup of the dual space of

hG via α(∆(e+
β , e−β )) = 〈α, β∨〉, [34, 3.2.c]. Assume further that h ⊂ (Der V )0̄ is an sub-

algebra of the derivation algebra Der V which acts diagonalizably on V and contains hG.
The weight spaces of h in V then define a refined root grading with grading group h∗. In
this case the map ϕ can be taken to be the restriction of λ ∈ h∗ to Z[R] ⊂ h∗G.

3) Generalizing 2), one can define refined root gradings of Lie algebras graded by a
root system R ([41, §2]). For the case of a 3-graded R, refined root gradings are described
in [9, 2.11].

4) For an easy example of refined root grading see 3.9. We will describe refined root
gradings in terms of graded supercoordinate systems in section 4.

3.8. Lemma. (a) Let (V ±[γ] : γ ∈ Γ ) be a refined root grading with grading group Γ .
Then:

(a.i) ϕ|Γ̇ is a group isomorphism onto Z[R] and Γ = Γ̇ ⊕ Γ 0.
(a.ii) Put

V σ(λ) := ⊕α∈R1V
σ[σα̇ + λ], σ = ± .

Then (V ±(λ); λ ∈ Γ 0) is a Γ 0-grading of the Jordan superpair V as defined in 2.3. In
particular, V (0) is a subpair of V containing G:

(b) Conversely, assume that Λ is an abelian group and that (V ±〈λ∨〉 : λ ∈ Λ) is a
Λ-grading of V which is compatible with the root grading R in the following sense:

(b.i) V σ〈λ∨〉 = ⊕α∈R1 (V σ〈λ∨〉 ∩ V σ
α ) for every λ ∈ Λ;

(b.ii) G ⊂ V 〈0∨〉.
Put Γ = Z[R]⊕ Λ (direct sum of abelian groups), and for % ∈ Z[R] and λ ∈ Λ define

V σ[%⊕ λ] :=
{

V σ
α ∩ V σ〈λ∨〉 if % = σα, α ∈ R1

0 otherwise

Then (V ±[%⊕ λ] : %⊕ λ ∈ Γ ) is a refined root grading of (V, G).
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A refined root grading of (V,G) with grading group Z[R] ⊕ Λ will be called a refined
root grading of type (R, Λ). We will say V has a refined root grading of type (R, Λ) if there
exists a covering grid G with 3-graded root system (R, R1) = R such that (V, G) has a
refined root grading of type (R, Λ). Because of the result above, every refined root grading
of V is of type (R, Λ) for some suitable R and Λ.

Proof. (a.i) Let B be a grid base of (R,R1). Because of the uniqueness of standard
grids we may assume that G is the standard grid generated by {eβ : β ∈ R1}, see 3.6. Then
an induction on the height, using the formulas of [22, 18.4], shows that Γ̇ is spanned by
{β̇ : β ∈ B}. Since Z[R] = ⊕β∈B Zβ, it follows that ϕ|Γ̇ is an isomorphism onto Z[R], and
this then implies the second claim.

(a.ii) It is clear that V σ = ⊕λ∈Γ 0 V σ(λ). The multiplication rules 2.3.4 and 2.3.5 hold
because for α, β, γ ∈ R1 and λ, µ, ν ∈ Γ 0 there exists δ ∈ R1 such that

Q(V σ[σα̇ + λ])V −σ[−σβ̇ + µ] ⊂ V σ[σδ̇ + 2λ + µ] and (1)
{V σ[σα̇ + λ] V −σ[−σβ̇ + µ] V σ[σγ + ν]} ⊂ V σ[σδ̇ + λ + µ + ν] . (2)

Indeed, since we have a Γ -grading the left side of (1) lies in V σ[σ(2α̇− β̇)+2λ+µ]. We can
assume that it is non-zero. Then, because of 3.4.4, we have ϕ(2α̇− β̇) = 2α− β =: δ ∈ R1

whence 2α̇− β̇ = δ̇ by injectivity of ϕ|Γ̇ . (2) is proven similarly.
(b) is a straightforward verification.

3.9. Split Jordan superpairs. Because of [31, Thm I.4.3] and the defining proper-
ties of standard grids, the Z-span of any standard grid G in V ,

Z[G] = ⊕g∈G (Zg+,Zg−)

is a subpair of the Jordan superpair V considered as a superpair over the integers. It
follows easily from the properties mentioned above that the following are equivalent for a
Jordan superpair V over some base superring S:

(a) there exists a grid G ⊂ V0̄ such that {gσ : g ∈ G} is a basis of the S-supermodule
V σ;

(b) there exists a standard grid G ⊂ V0̄ such that {gσ : g ∈ G} is a basis of the S-
supermodule V σ;

(c) there exists a standard grid G ⊂ V0̄ such that V is isomorphic to the S-superexten-
sion Z[G]S of Z[G] by S as defined in 2.6.

Generalizing a concept from [36, 3], V is called split or split of type G if the conditions
(a) – (c) are fulfilled. In this case, G is a covering grid of V .

Let G = {eα : α ∈ R1} be a standard grid and suppose that S has a Λ-grading as defined
in 1.5. The split Jordan superpair V = Z[G]S then has a Λ-grading with homogeneous
parts Sλ ⊗ Z[G] which is compatible with the root grading of V . Hence, by 3.8.b, V has a
refined root grading with grading group Z[R]⊕ Λ.

26



4. Refined root gradings of Jordan superpairs.

4.1. Preparation. Unless stated otherwise, in this section V will denote a Jordan
superpair over some base superring S. Suppose V is covered by a grid G with associated
3-graded root system (R, R1). Every grid is the union of connected, pairwise orthogonal
grids or, equivalently, every 3-graded root system is the orthogonal sum of irreducible
root systems. Hence, by 3.5, V is a direct sum of ideals each covered by a connected
subgrid. For the purpose of classification we may therefore assume that G is connected, or
equivalently, that R is irreducible.

Connected grids in Jordan triple systems are classified up to association in [31, II].
As explained in 3.3, this can be applied to G ⊂ V0̄. Since idempotents are associated in
V if and only if they are associated in V0̄ and since a grid associated to a covering grid
is still covering, it follows from the classification of grids that we may assume that G is
exactly one of the seven types of grids listed below. For the convenience of the reader the
definition of these grids is given in the subsections indicated. All of these seven grids are
connected standard grids. Their associated 3-graded root systems are the ones with the
corresponding names, see for example [22, 17.8, 17.9].

To classify Jordan superpairs covered by a grid now means to define for each of these
seven types a so-called standard example of a Jordan superpair covered by G and to prove
a coordinatization theorem, i.e., to show that an abstract Jordan superpair covered by G is
isomorphic to a standard example. For the convenience of the reader the list of the various
coordinatization results is indicated in the column “coordinatization”.

Name of grid Definition Coordinatization

rectangular grid R(M,N) (1 ≤ |M | ≤ |N |) 4.2 4.3, 4.5, 4.7

hermitian grid H(I) (2 ≤ |I|) 4.8 4.9, 4.12

even quadratic form grid Qe(I) (3 ≤ |I|) 4.13 4.14

odd quadratic form grid Qo(I) (2 ≤ |I|) 4.15 4.16

alternating (= symplectic) grid A(I) (5 ≤ |I|) 4.17 4.18

bi-Cayley grid B 4.19 4.20

Albert grid A 4.21 4.22

Once one knows the structure of a Jordan superpair V covered by a grid G, i.e., a
Jordan superpair with a root grading R, one can then easily describe the refined root
gradings of (V, G). We will employ the terminology of 3.8 and study refined root gradings
of type (R, Λ) where Λ is an abelian group.
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Although refined root gradings are more general than root gradings, i.e., the gradings
obtained from covering grids, we feel it is more natural to formulate our coordinatization
results first for covering grids and then indicate the necessary “refinements” for refined
root gradings – after all, this is what the terminology suggests. Let us point out that the
coordinatization theorems for refined root gradings are new even in the case of Jordan
pairs. Because of this they cannot be obtained by applying the Even Rules Principle ([6,
1.7]. Of course, with some good will this principle can be applied in the ungraded case,
i.e., the coordinatization of Jordan superpairs covered by grids. However, since the proofs
of the various coordinatization theorems are quite similar, we will only present three of
them as representative examples (4.5, 4.9 and 4.16).

4.2. Rectangular grids. For arbitrary (possibly infinite) non-empty sets M,N with
|M | ≤ |N | a family R(M, N) = {emn : m ∈ M, n ∈ N} of non-zero idempotents in V is
called a rectangular grid of size M ×N if it has the following properties:

(i) if |M | = 1 then R(M, N) is a collinear family, 3.3,
(ii) for distinct m,m′ ∈ M and n, n′ ∈ N the subfamily (emn, emn′ , em′n′ , em′n) of

R(M, N) is a quadrangle of idempotents, 3.6, and
(iii) R(M, N) is pure, 3.3.

For finite M, N with |M | = m and |N | = n we will write R(M, N) = R(m,n). The
3-graded root system (R,R1) associated to a rectangular grid R(M, N) is the rectangular
grading ȦM,N

I for I = M ∪̇N as defined in [22, 17.8]. We have R = {εi − εj : i, j ∈ I} and
R1 = {εm − εn : m ∈ M,n ∈ N}.

The classification of Jordan superpairs covered by a rectangular grid naturally leads to
three subcases: (|M |, |N |) = (1, 1), (|M |, |N |) = (1, 2) and |M | + |N | ≥ 4. The last one
will be dealt with in 4.6 and 4.7, for the second see 4.4 and 4.5.

In the first case we have R = A1. The standard example for such a Jordan superpair
is (J, J) where J is a unital Jordan superalgebra J , 2.12. Indeed, (J, J) is covered by the
grid G = {e} for e = (1J , 1J). A Λ-grading of J , as defined in 2.11, gives rise to a refined
root grading of (J, J) of type (A1, Λ). Conversely, if V is a Jordan superpair covered by a
single idempotent e then V = V2(e). Since Q0̄(eσ)Q0̄(e−σ) projects onto V σ

2 (e) it follows
that V = V2(e) if and only if eσ is invertible, and in this case we have (eσ)−1 = e−σ. Hence
we can apply 2.12 and obtain V ∼= (J, J) via the isomorphism (IdV + , Q0̄(e−)): V → (J, J).
In case V has a refined root grading, this isomorphism becomes a graded isomorphism,
where J has the induced grading given by Jλ = V +

λ . These results are summarized below.

4.3. A1-Coordinatization. A Jordan superpair V over S is covered by a single idem-
potent if and only if V is isomorphic to the superpair (J, J) of a unital Jordan superalgebra
J over S. More generally, V has a refined root grading of type (A1, Λ) if and only if V is
graded-isomorphic to (J, J) where J is a unital Jordan superalgebra with a Λ-grading.

4.4. R(1, 2) and alternative 1× 2-matrices. A rectangular grid R(1, 2) is the same
as a collinear pair (e, f). A collinear pair (e, f) covers a Jordan superpair V if and only if
V = V2(e)⊕ V2(f) and V2(e) = V1(f), V2(f) = V1(e).
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Before we describe Jordan superpairs covered by a collinear pair, let us recall the
classical situation. One knows ([28, 2.2], [35, (3.2.3)]) that a Jordan pair U is covered
by a collinear pair (e, f) if and only if U is isomorphic to the Jordan pair M12(B) :=
(Mat(1, 2;B), Mat(2, 1; B)) where B is a unital alternative algebra, which one can take
to be the McCrimmon-Meyberg algebra of the collinear pair (e, f). For (x, y) ∈ M12(B)
written in the form x = (x1 x2), yT = (y1 y2) the Jordan pair products are

Q+(x)y = x(yx) =
(
x1(y1x1) + x2(y2x1) , x1(y1x2) + x2(y2x2)

)

Q−(y)x = (yx)x =
(
(y1x1)y1 + (y1x2)y2 , (y2x1)y1 + (y2x2)y2

)T

Of course, because of the Moufang identity a(ba) = (ab)a, some of the brackets above are
superfluous. They are included for easier comparison with the supercase discussed below.

In the supercase, we consider a unital alternative superalgebra A over S. For natural
numbers m,n we denote by Mat(m,n; A) the m × n-matrices with entries from A. This
becomes an S-supermodule whose even part is Mat(m, n; A0̄) and whose odd part consists
of those m×n-matrices for which all entries lie in A1̄. (Warning: Matrices over A are also
defined in [19, §3] and [23, Chap.3 §1.7]. The matrices considered here all have even rows
and columns in the terminology of [19] and [23].) In particular,

M12(A) := (Mat(1, 2; A), Mat(2, 1;A))

is a pair of S-supermodules. There are canonical S-quadratic maps Q = (Q+, Q−) on
M12(A) such that the Grassmann envelope of (M12(A), Q) is the Jordan pair M12(G(A)).
Namely, for x0̄ = (x0̄1 x0̄2) ∈ Mat(1, 2; A0̄), y ∈ Mat(2, 1; A) with yT = (y1 y2) and arbi-
trary homogeneous x, z ∈ Mat(1, 2;A), y ∈ Mat(2, 1; A) we define

Q+
0̄
(x0̄)y =

(
x0̄1(y1x0̄1) + x0̄2(y2x0̄1) , x0̄1(y1x0̄2) + x0̄2(y2x0̄2)

)

{x y z} =
(

x1(y1z1) + x2(y2z1) + (−1)|x||y|+|x||z|+|y||z|
(
z1(y1x1) + z2(y2x1)

)
,

x1(y1z2) + x2(y2z2) + (−1)|x||y|+|x||z|+|y||z|
(
z1(y1x2) + z2(y2x2)

) )

One obtains Q−
0̄

and the other supertriple product {...}: V −×V +×V − → V − by shifting
the brackets in the expressions above one position to the left and taking the transpose.
With respect to this product

e =
(

(1 0),
(

1
0

))
and f =

(
(0 1),

(
0
1

))

are collinear idempotents which cover M12(A). Moreover, any Λ-grading of A, as defined
in 1.5, gives rise to a refined root grading of M12(A) of type (A2, Λ) by defining the
homogeneous λ-space as M12(A)〈λ〉 = (Mat(1, 2; Aλ), Mat(2, 1; Aλ)).
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4.5. A2-Coordinatization Theorem. A Jordan superpair V over S is covered by
a collinear pair (e, f) if and only if V is isomorphic to a Jordan superpair M12(A) of a
unital alternative superalgebra A over S. One can take A to be the McCrimmon-Meyberg
superalgebra of (e, f).

In this case, (V, {e, f}) has a refined root grading of type (A2, Λ) if and and if A is
Λ-graded. Then V and M12(A) are graded-isomorphic.

Proof. Suppose V is covered by a collinear pair (e, f), and let A be its McCrimmon-
Meyberg superalgebra. Thus V = V1 ⊕ V2 where Vi = Vi(f) and A = V +

1 as S-modules.
We define ϕ: V →M12(A) by

ϕ+(x1 ⊕ x2) = (x1 , {e+f−x2}) , ϕ−(y1 ⊕ y2) =
(

Q0̄(e+)y1

Q0̄(e+){e−f+y2}
)

and claim that ϕ is an isomorphism of Jordan superpairs over S. By the homomorphism
criterion 2.3.2 it suffices to show that the Grassmann envelope G(ϕ) is an isomorphism.
By 3.4.3 we know that G(V ) is covered by the collinear pair (1 ⊗ e, 1 ⊗ f), and by 3.2
the Grassmann envelope of A is the McCrimmon-Meyberg algebra of (1⊗ e, 1⊗ f). Since(
G(Mat(1, 2; A)), G(Mat(2, 1; A))

)
=

(
Mat(1, 2; G(A)), Mat(2, 1; G(A)

)
one then finds that

G(ϕ): G(V ) → M12(G(A)) is exactly the map used in the A2-coordinatization of Jordan
pairs ([28, 2.2] and [35, (3.2.3)]) and is therefore an isomorphism.

Now suppose that (V, {e, f}) has a refined root grading of type (A2, Λ) with homoge-
neous spaces V σ〈λ〉 in the notation of 3.8.b. Define Aλ = V +

λ ∩ A. Since e, f ∈ V 〈0〉 it
easily follows from the product formula 3.2.1 that A = ⊕λ∈Λ Aλ is a Λ-grading of A. More-
over, the isomorphism ϕ defined above is a graded isomorphism since ϕ(V 〈λ〉) ⊂M12(A)λ.
This proves one direction of the theorem, the other has been established in 4.4.

4.6. Rectangular matrix superpairs. Let A be a unital associative superalgebra
over S, and let M, N be arbitrary sets. A finite matrix over A of size M ×N is a matrix
x = (xmn)m∈M,n∈N where all xmn ∈ A and xmn 6= 0 for only a finite number of indices
m,n. Generalizing the notation of 4.4 we denote by Mat(M,N ;A) the left A-module
of all finite matrices over A of size M × N . By restriction of scalars, this becomes an
S-supermodule with even part Mat(M, N ;A0̄) and odd part Mat(M,N ;A1̄) (in obvious
notation).

Let P be the disjoint union P = M ∪̇N . With respect to the usual matrix multipli-
cation, Mat(P, P ; A) is an associative superalgebra over S. By 2.14 we therefore have a
Jordan superpair (Mat(P, P ;A),Mat(P, P ;A)) over S. The rectangular matrix superpair
of size M ×N and with coordinate algebra A is the pair

MMN (A) = (Mat(M, N ; A), Mat(N,M ;A))

which we consider as a subpair of (Mat(P, P ; A), Mat(P, P ;A)) via the imbedding of
MMN (A) in MPP (A) given by

(x, y) 7→
((

0 x
0 0

)
,

(
0 0
y 0

))
.
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Thus, the structure maps of MMN (A) are

Qσ
0̄ (x0̄)y = x0̄yx0̄ ; {x y z} = xyz + (−1)|x||y|+|x||z|+|y||z| zyx (1)

where on the right hand side of the equations we have the usual matrix multiplication.

Let Eij be the matrix whose (ij)-entry is 1 and whose other entries are zero. Then
eij = (Eij , Eji) ∈ MMN (A) is an idempotent and R(M,N) = {emn : m ∈ M, n ∈ N} is
a rectangular grid of size M × N which covers MMN (A). If we choose the obvious map
R1 → R(M, N) which sends εi − εj to eij , then the joint Peirce spaces of R(M, N) are

MMN (A)εi−εj
= (AEij , AEji).

In particular, for (|M |, |N |) = (1, 1) or (1, 2) we obtain special cases of 4.3 and 4.4: J = A+

in the first case and A associative in the second. It follows from 4.7 below that associative
coordinates are necessary and sufficient for |I| + |J | ≥ 4. In the ungraded case, this
coordinatization result is the super version of [28, 3.4] and [35, (3.2.3)].

We have seen that MMN (A) has a root grading of type ȦMN
I . If A = ⊕λ∈Λ Aλ is

a Λ-grading, we obtain a refined root grading of type (ȦMN
I , Λ) by putting MMN (A)〈λ〉

= (Mat(M, N ; Aλ), Mat(N,M ;Aλ)).

The proof of the following coordinatization theorem is analogous to the proof of 4.5,
using the rectangular coordinatization theorems of Jordan pairs [35, (3.2.3)].

4.7. Rectangular Coordinatization Theorem. Let V be a Jordan superpair over
S. Then V is covered by a rectangular grid R(M,N) with |M |+ |N | ≥ 4 if and only if, as
a Jordan superpair over S, V is isomorphic to a rectangular matrix superpair MMN (A)
where A is a unital associative S-superalgebra. As A we can take the McCrimmon-Meyberg
superalgebra of a collinear pair (emn, emn′) for some choice of m ∈ M and n, n′ ∈ N, n 6=
n′.

In this case, (V, R(M, N)) has a refined root grading of type (ȦMN
I , Λ) if and only if A

is Λ-graded, and we then even have a graded isomorphism V ∼=Λ MMN (A).

4.8. Hermitian grids. Let I be an arbitrary set with |I| ≥ 2. A hermitian grid of
size I is a family H(I) = {hij = hji : i, j ∈ I} ⊂ V of non-zero idempotents built out of
triangles and diamonds, as defined in 3.6: for distinct i, j, k ∈ I we have

(i) (hij ;hii, hjj) is a triangle of idempotents, and
(ii) (hii;hij , hjk, hki) is a diamond of idempotents.

A hermitian grid is a connected (in general non-pure) standard grid. Its associated 3-
graded root system is isomorphic to the hermitian grading Cher

I determined on the root
system R = CI = {±ε± εj : i, j ∈ I} by R1 = {εi + εj : i, j ∈ I}. The canonical bijection
between R1 and H(I) is given by εi + εj 7→ hij .

As we will see, the description of Jordan superpairs V covered by a hermitian grid
naturally falls into two cases: |I| = 2 and |I| ≥ 3. The latter case will be dealt with
in 4.12. In the first case, R = C2 = B2 and H(I) is a triangle of idempotents, say
H(I) = (h12; h11, h22).
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The standard example of a Jordan superpair covered by such a triangle is (J, J) where
J is a unital Jordan superalgebra containing a pair (c1, c2) of orthogonal even idempotents
which are supplementary, i.e., c1 + c2 = 1J , and strongly connected, i.e., there exists
an even element u in the Peirce space J12 such that u2 = c1 + c2. Indeed, in this case
h12 = (u, u), h11 = (c1, c1), h22 = (c2, c2) form a triangle which covers (J, J). For this
example a refined root grading is obtained by taking a Λ-grading of the Jordan superalgebra
J , 2.11, which is compatible with the C2-grading: we have J = ⊕λ∈Λ Jλ such that each
Jλ = (J11 ∩ Jλ) ⊕ (J12 ∩ Jλ) ⊕ (J22 ∩ Jλ). The following coordinatization theorem says
that this example is in fact the general case.

4.9. C2-Coordinatization Theorem. Let V be a Jordan superpair over S. Then V
is covered by a hermitian grid H(I), |I| = 2 if and only if V ∼= (J, J) where J is a Jor-
dan superalgebra over S which contains two strongly connected supplementary orthogonal
idempotents.

In this case, (V, H(I)) has a refined root grading of type (Cher
2 , Λ) if and J has a Λ-

grading compatible with the Cher
2 -grading, and then V ∼=Λ (J, J).

Proof. Suppose V is a Jordan superpair covered by a triangle (h12;h11, h22). Then
V = V11 ⊕ V12 ⊕ V22 where Vij are the Peirce spaces of the orthogonal system (h11, h22).
It follows that c = h11 + h22 is an invertible idempotent in V . Hence, by 2.12, V ∼= (J, J)
where J is the c−-isotope of V . It is then easily checked that c1 = h+

11 and c2 = h−22 are
supplementary orthogonal idempotents which are strongly connected by u = h+

12. In view
of what has been said in 4.8, this proves the coordinatization theorem for root gradings.
The proof for refined root gradings is then immediate (compare the proof of 4.3).

Remark. Examples of Jordan superalgebras with a covering triangle will be given
in 4.11 and 4.15. Even in the classical case, the structure of Jordan pairs covered by a
triangle is unknown in general. However, one has a classification in the case of a simple
Jordan pair ([29]) and also in the case of the coordinate algebra of an extended affine Lie
algebra of type C2 ([1, §4]).

4.10. Ample subspaces. Let A be a unital alternative superalgebra over S. The
nucleus of A is the submodule N(A) = {n ∈ A : (n,A, A) = 0} where (. , . , .) denotes
the associator, see 1.15. Let π be an involution of A, as defined in 2.14. A S-submodule
A0 ⊂ A is called an ample subspace of (A, π) if

(i) 1 ∈ A0 ⊂ (H(A, π) ∩N(A)),
(ii) a0̄A0a

π
0̄ ⊂ A0 for all a0̄ ∈ A0̄ and

(iii) a(b0c
π) + (−1)|a||b0|+|a||c|+|b0||c| c(b0a

π) ∈ A0 for all homogeneous a, c ∈ A and
b0 ∈ A0.

Note that (i) and (iii) imply a + aπ ∈ N(A), from which it easily follows that a(baπ) =
(ab)aπ for all a, b ∈ A. We can therefore leave out the brackets in an expression abaπ, as
we have done in (ii).

All concepts in the definition of an ample subspace are compatible with taking Grass-
mann envelopes: π is an involution of A if and only if G(π) is an involution of G(A),
G(H(A, π)) = H(G(A), G(π)) and G(N(A)) = N(G(A)). It is then easily seen that A0 is
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an ample subspace for (A, π) if and only if G(A0) is an ample subspace for (G(A), G(π)) in
the classical sense, i.e. (i) and (ii) hold with obvious meaning. Because of this connection
and [11, page 1.47] we have the following criterion for the existence of an ample subspace:
An ample subspace exists if and only if π is a nuclear involution in the sense that

(a) a0̄a
π
0̄ ∈ N(A) for all a0̄ ∈ A0̄, and

(b) abπ + (−1)|a||b| baπ ∈ N(A) for all homogeneous a, b ∈ A.
In this case,

A0,min = S-span({a0̄a
π
0̄ : a0̄ ∈ A0̄} ∪ {abπ + (−1)|a||b| baπ : a, b ∈ A})

and A0,max = H(A, π) ∩N(A)

are ample subspaces, and hence A0,min ⊂ A0 ⊂ A0,max holds for every ample subspace A0.
In particular, if 1

2 ∈ k then A0,min = A0,max is the only ample subspace.
Examples. Let (A, π, A0) be an alternative algebra over some base ring k with in-

volution π and ample subspace A0. If S is a k-superextension then the canonical S-
superextensions (S⊗k A, Id⊗k π, S⊗k A0) are an example of an alternative S-superalgebra
with involution and ample subspace. More genuine super examples have been found by
Shestakov in [40]. With the notation of that paper, the superalgebras B(1,2) and B(4,2)
are simple alternative superalgebras defined over fields of characteristic 3 (!). Both have
a nuclear (even central) involution. The corresponding Jordan superalgebras of 3 × 3-
hermitian matrices are simple Jordan superalgebras ([40, Th.3] – these are examples ix)
and x) in the Racine-Zelmanov list [38]). The corresponding hermitian matrix superpair
of 4.11 are simple Jordan superpairs (2.12(a) or [8, 3.10]).

4.11. Hermitian matrix superpairs. To motivate the construction below we will
start with an example of a Jordan superpair covered by a hermitian grid H(I), |I| ≥ 2,
which, however, will turn out to be the general case for |I| ≥ 4.

Let A be a unital associative S-superalgebra with involution π. We have then seen
in 4.6 that Mat(I, I;A) is an associative superalgebra over S. The map x = (xij) 7→
x∗ := xπ T = (xπ

ji) is an involution of the superalgebra Mat(I, I;A). Hence, if we define
HI(A, π) = {x ∈ Mat(I, I;A) : x = x∗} then, by 2.14.2,

HI(A, π) := (HI(A, π), HI(A, π))

is a Jordan S-superpair with quadratic maps given by matrix multiplication. Note that
the diagonal elements of x ∈ HI(A, π) lie in H(A, π). More generally, let A0 be an ample
subspace for (A, π) and define HI(A,A0, π) = {x = (xij) ∈ Mat(I, I; A) : x = x∗, all xii ∈
A0}. Then

HI(A,A0, π) := (HI(A,A0, π),HI(A,A0, π))

is a subpair of MII(A) and hence itself a Jordan S-superpair. We recall from 4.10 that
HI(A,A0, π) = HI(A, π) if 1

2 ∈ k.
The S-module HI(A, A0, π) is spanned by elements of type

a[ij] = aEij + aπEji, (a ∈ A, i 6= j) and a0[ii] = a0Eii (a0 ∈ A0).
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The Jordan superpair product of HI(A,A0, π) is therefore known once it is known for this
spanning set. Because all products of elements in our spanning set lie in an HI′(A,A0, π)
for finite I ′ it is sufficient to consider I finite, in which case HI(A,A0, π) is the Jordan
superpair associated to a unital Jordan superalgebra J , whose quadratic map we will
denote by U . In the formulas below, a00̄ ∈ A0 ∩ A0̄, a0, b0, c0 ∈ A0, a0̄ ∈ A0̄, a, b, c ∈ A
(homogeneous if necessary) and i, j, k, l ∈ I are pairwise distinct.

U0̄(a00̄[ii])b0[ii] = a00̄b0a00̄[ii],

{a0[ii] b0[ii] c0[ii]} = (a0b0c0 + (−1)|a0||b0|+|a0||c0|+|b0||c0|c0b0a0)[ii],
U0̄(a0̄[ij])b[ji] = a0̄ba0̄[ij],

{a[ij] b[ji] c[ij]} =
(
a(bc) + (−1)|a||b|+|a||c|+|b||c| c(ba)

)
[ij],

U0̄(a0̄[ij])b0[jj] = a0̄b0a
π
0̄ [ii],

{a[ij] b0[jj] c[ji]} =
(
a(bc) + (−1)|a||b0|+|a||c|+|b0||c| c(b0a)

)
[ij],

{a0[ii] b0[ii] c[ij]} = a0b0c[ij],
{a0[ii] b[ij] c0[jj]} = a0bc0[ij],

{a[ij] b[ji] c0[ii]} =
(
abc0 + (−1)|a||b|+|a||c0|+|b||c0| c0b

πaπ
)
[ii],

{a[ij] b[ji] c[ik]} = a(bc)[ik],
{a[ij] b0[jj] c[jk]} = ab0c[ik],

{a[ij] b[jk] c[ki]} =
(
a(bc) + (−1)|a||b|+|a||c|+|b||c|(cπbπ)aπ

)
[ii],

{a[ij] b[jk] c[kl]} = abc[il].

(Some of the parentheses in the products are of course not necessary since A is associative,
but they will get their meaning below.) The formulas in particular imply that for i, j ∈ I
the elements

hii = (1[ii], 1[ii]) and hij = (1[ij], 1[ij]) = hji, i 6= j,

are idempotents such that H(I) = {hij : i, j ∈ I} is a hermitian grid which covers
HI(A,A0, π). The joint Peirce spaces are (A[ij], A[ij]) for i 6= j and (A0[ii], A0[ii]).

We now consider the case 2 ≤ |I| ≤ 3, and replace the associative superalgebra A by
a unital alternative S-superalgebra, also denoted A. As before, we assume that π is an
involution and that A0 is an ample subspace for (A, π). We put J = HI(A,A0, π) and use
the formulas above (with the exception of the last one since |I| ≤ 3) to define a quadratic
map U : J → EndS J . The Grassmann envelope of this U satisfies all the formulas of [35,
4.1] (or [11, page 2.15]) and hence J is a unital Jordan superalgebra over S. (That the
Grassmann envelope of J is a unital Jordan algebra has been proven by McCrimmon, see
[11, Ch. II.2, page 2.17]; for the special case when π is a central involution, i.e., all norms
aaπ are central, one can find a published proof in [26, Thm. 3].) As in the associative
case, the Jordan superpair (J, J) is covered by a hermitian grid.

The Jordan superpairs HI(A,A0, π) = (HI(A,A0, π),HI(A,A0, π)) with A alternative
for 2 ≤ |I| ≤ 3 and A associative for |I| ≥ 4 will be called hermitian matrix superpairs of
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rank I and with coordinate algebra (A,A0, π).
Suppose |I| ≥ 3 and let 1, 2, 3 ∈ I be three distinct elements. The algebra A can then

be described as the McCrimmon-Meyberg superalgebra of the collinear pair h12, h13. We
point out that the McCrimmon-Meyberg superalgebra of the collinear pair h12, h23 is Aop.

To obtain a refined root grading of HI(A,A0, π) we take a Λ-grading of (A,A0, π) in
the following sense: we have a Λ-grading of A, say A = ⊕λ∈ΛAλ, which respects A0 and
π, i.e.,

A0 = ⊕λ∈Λ A0 ∩Aλ and Aπ
λ = Aλ for all λ ∈ Λ.

Let HI(A,A0, π)〈λ〉 be the matrices in HI(A,A0, π) with all entries in Aλ. It is then eas-
ily checked that HI(A, A0, π)〈λ〉 = (HI(A,A0, π)〈λ〉,HI(A,A0, π)〈λ〉) defines a Λ-grading
which is compatible with the root grading induced by the covering grid H(I).

The proof of the following coordinatization theorem can be given along the lines of the
proof in 4.5, using the classical Hermitian Coordinatization Theorem [35, (4.1.2)].

4.12. Hermitian Coordinatization Theorem. Let |I| ≥ 3. A Jordan superpair
V over S is isomorphic to a hermitian matrix superpair HI(A,A0, π) if and only if V is
covered by a hermitian grid H(I) = {hij : i, j ∈ I} such that for all i, j ∈ I, i 6= j the maps

D(hσ
ij , h

−σ
jj ): V σ

jj → V σ
ij are injective, (1)

where Vij denotes the joint Peirce spaces of H(I). In this case, we may take
(i) as A the McCrimmon-Meyberg superalgebra of a fixed collinear pair (hij , hik),
(ii) as ample subspace A0 = D(h+

ij , h
−
jj)V

+
jj and

(iii) as involution π the map aπ = Q+
0̄
(hij){h−ii a h−jj}.

In this case, (V, H(I)) has a refined root grading of type (Cher
I , Λ) if and only if (A,A0, π)

is Λ-graded, and then V ∼=Λ HI(A, A0, π).
Concerning the condition (1) we note that (1) holds for all pairs (ij) if it holds for

one pair (ij) and that (1) always holds if V has no 2-torsion or if the (suitable defined)
extreme radical of V vanishes (see [28] or [35, 4.1.2]).

4.13. Even quadratic form grids. Let I be a set with |I| ≥ 2. An even quadratic
form grid is a family Qe(I) = {e±i : i ∈ I} of non-zero idempotents satisfying the following
relations:

(i) (e+i, e+j , e−i,−e−j), i 6= j, is a quadrangle of idempotents, 3.6, and
(ii) Qe(I) is pure, 3.3.

The reader should be warned that the terms “even” and “odd” quadratic form grids used
here and in the following subsections do not refer to a Z2-grading but rather to the type
of grid.

An even quadratic form grid is a connected standard grid. Its associated 3-graded root
system (R, R1) is the even quadratic form grading Dqf

I∪{0} as defined in [22, 17.8], where
0 is a symbol with 0 6∈ I. Thus, R = DI∪{0} = {±εj ± εk : j, k ∈ I ∪ {0}, j 6= k} ∪ {0} and
R1 = {ε0 ± εi : i ∈ I}. A canonical bijection between R1 and Qe(I) preserving the Peirce
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relations is given by ε0 ± εi 7→ e±i. For |I| = 2, an even quadratic form grid is the same
as a quadrangle of idempotents, after changing the sign of the fourth idempotent.

We will describe a realization of Qe(I). For a base superring S we denote by H(I, S)
the free S-module with an even basis {h±i : i ∈ I}, considered as an S-supermodule. Thus

H(I, S) = S(+I∪−I) = H+(I, S)⊕H−(I, S) for H±(I, S) = ⊕i∈I Sh±i.

The hyperbolic superspace over S of rank 2|I| is the S-supermodule H(I, S) together with
the hyperbolic form qI : H(I, S) → S which, by definition, is the quadratic form associated
to the S-bilinear form h: H(I, S)×H(I, S) → S given by

h
(∑

i (a+ih+i + a−ih−i),
∑

i (b+ih+i + b−ih−i)
)

=
∑

i a+ib−i ,

see 1.10(a). The Grassmann envelope of the hyperbolic form qI in the sense of1.12 is the
usual hyperbolic space of rank 2|I| over the commutative ring G(S). The quadratic form
superpair

EQI(S) :=
(
H(I, S),H(I, S)

)

associated to the hyperbolic form qI , 2.9, will be called the even quadratic form superpair
over S of rank 2|I|. In EQI(S) the pairs

ei = (h+i, h−i) and e−i = (h−i, h+i)

are idempotents, and the family Qe(I) = {e±i : i ∈ I} is an even quadratic form grid which
covers EQI(S). Indeed, writing e±i = eε0±εi the joint Peirce spaces of Qe(I) in V = EQI(S)
are Vε0+σεi = V2(eσi) = (Shσi, Sh−σi), σ = ± . For i, j ∈ I, i 6= j, the idempotents e+i, e+j

are collinear. The McCrimmon-Meyberg superalgebra of this collinear pair is defined on
V +

ε0+εi
= Shi and can be canonically identified with S. Observe that EQI(S) is a split

Jordan superpair of type Qe(I) in the terminology of 3.9.
The Jordan superpairs occurring in the following coordinatization theorem are only

formally more general: any S-superextension A can be considered as a base superring,
and hence the above also defines a Jordan A-superpair EQI(A). The Jordan pair version
of 4.14 is proven in [35, 5.2.3], based on the Jordan triple version of the quadratic form
coordinatization [31, III Thm. 2.6 and Cor. 2.7].

4.14. Even Quadratic Form Coordinatization. Suppose |I| ≥ 3. A Jordan su-
perpair V over S is covered by an even quadratic form grid Qe(I) if and only if V is
S-isomorphic to a quadratic form superpair EQI(A) for some S-superextension A. We
may take A to be the McCrimmon-Meyberg superalgebra of some collinear pair in Qe(I).

In this case, (V, Qe(I)) has a refined root grading of type (Dqf
I∪{0}, Λ) if and only if V

is graded-isomorphic to EQI(A) for some Λ-graded S-superextension A.
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4.15. Odd quadratic form grids. Let I be a non-empty set. An odd quadratic
form grid is a family Qo(I) = {e0}∪̇{e±i : i ∈ I} of idempotents satisfying the following
relations:

(i) (e0; e+i, e−i), i ∈ I arbitrary, is a triangle of idempotents, 3.6, and
(ii) if |I| ≥ 2 then the subfamily {e±i : i ∈ I} is an even quadratic form grid.

An odd quadratic form grid is a connected standard grid. Its associated 3-graded root
system (R,R1) is the odd quadratic form grading Bqf

I∪{0} where 0 is a symbol with 0 6∈ I, as
defined in [22, 17.8]. We have R = {0}∪{±εj : j ∈ {0}∪̇I}∪{±εj±εk : j, k ∈ {0}∪̇I, j 6= k}
and R1 = {ε0} ∪ {ε0 ± εi : i ∈ I}. A canonical bijection between R1 and Qo(I) preserving
the Peirce relations is given by ε0 7→ e0, ε0 ± εi 7→ e±i.

We will give a realization of odd quadratic form grids. Given two S-quadratic forms
qi = (qi

0̄, b
i): M i → N we denote by q1 ⊕ q2 their orthogonal sum , i.e., the S-quadratic

map (q0̄, b) from the S-supermodule M = M1 ⊕ M2 to N given by q0̄(m1 ⊕ m2) =
q1
0̄(m1) + q2

0̄(m2) and b(m1 ⊕m2, n1 ⊕ n2) = b1(m1, n1) + b2(m2, n2) for mi, ni ∈ M i. For
an S-superextension A we denote by

OQI(A, qX)

the quadratic form superpair associated to qI ⊕ qX , where qA: H(I,A) → A is the hyper-
bolic map defined in 4.13 and qX : X → A is an S-quadratic map on some A-supermodule
X with base point h0 ∈ X0̄, i.e., qX0̄(h0) = 1. We call OQI(A, qX) an odd quadratic form
superpair. This Jordan S-superpair contains the idempotents

e0 = (h0, h0) and e+i = (h+i, h−i), e−i = (−h−i,−h+i).

Note the minus signs in the definition of e−i which are needed to ensure that Qo(I) =
{e0} ∪ {e±i : i ∈ I} is an odd quadratic form grid. It covers V = OQI(A, qX). Writing
e0 = eε0 and e±i = eε0±εi the joint Peirce spaces of Qo(I) in V are

Vε0+σεi = V2(eσi) = (Ahσi, Ah−σi) , σ = ± and Vε0 = (X, X).

For i, j ∈ I, i 6= j, the idempotents e+i, e+j are collinear. The McCrimmon-Meyberg
superalgebra of this collinear pair is defined on V +

ε0+εi
= Ahi and can be canonically

identified with A. A refined root grading of this superpair is obtained from a Λ-grading of
(A, qX) in the following sense:

(i) a Λ-grading of the S-superalgebra A, written in the form A = ⊕λ∈Λ Aλ;
(ii) a Λ-grading of the A-supermodule X, i.e., a direct sum X = ⊕λ∈ΛXλ such that

AλXµ ⊂ Xλ+µ for λ, µ ∈ Λ, and in addition
(iii) h0 ∈ X0 (so h0 ∈ X0̄ ∩X0),
(iv) bX(Xλ, Xµ) ⊂ Aλ+µ and qX0̄(Xλ) ⊂ A2λ.

If we have such a Λ-grading, we can build a Λ-grading of OQI(A, qX) by defining the
λ-homogenous space as the submodule where all components lie in Aλ respectively Xλ.
This Λ-grading is compatible with the root grading and hence gives a refined root grading
of type (Bqf

I∪{0}, Λ) where, as above, 0 6∈ I.
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4.16. Odd Quadratic Form Coordinatization. Let |I| ≥ 2. A Jordan superpair
V over S is covered by an odd quadratic form grid Qo(I) if and only if there exists an
S-superextension A, an A-supermodule X and an S-quadratic map qX : X → A with base
point such that V is S-isomorphic to the odd quadratic form superpair OQI(A, qX).

More precisely, if V is covered by Qo(I) we denote by 1, 2 two distinct elements of I

and by ε0 the unique long root in the 1-part of the 3-graded root system Bqf
I∪{0} associated

to Qo(I). Moreover, we let e−1 ∈ Qo(I) be the unique idempotent satisfying e1 ⊥ e−1. The
data A, X and qX mentioned above can then be defined as follows:

(a) A is the McCrimmon-Meyberg superalgebra of (e1, e2) (note that A = V +
2 (e1) as

S-supermodule).
(b) X is the A-supermodule defined on the Peirce space X = V +

ε0
with the canonical

induced Z2-grading and the A-action given by

a.x = {a e−1 x} (a ∈ A, x ∈ X). (1)

(c) qX = (qX0̄, bX): X → A is the S-quadratic map X given by

qX0̄(x0̄) = Q0̄(x0̄)e
−
−1 and bX(x, x′) = {x e−−1 x′} . (2)

In this case, (V, Qo(I)) has a refined root grading of type (Bqf
I∪̇{0}, Λ) if and only if (A, qX)

is Λ-graded. Then V and OQI(A, qX) are graded-isomorphic.

Proof. We know that Ṽ = GS(V ) = G(V ) is covered by the odd quadratic form grid
Q̃o(I) = {ẽ0} ∪ {ẽ±i : i ∈ I}, where ẽ0 = 1⊗ e0 and ẽ±i = (1⊗ e+

±i, 1⊗ e−±i). By the odd
quadratic form coordinatization for Jordan pairs, [35, (5.3.1)] and [31, III Cor. 2.9], Ṽ is
therefore isomorphic to an odd quadratic form pair OQI(Ã, q̃) where Ã is a commutative
associative unital G(S)-algebra and q̃ is an Ã-quadratic form on an Ã-module X̃. We will
show that the data Ã, X̃ and q̃ are in fact the Grassmann envelopes of the corresponding
data A,X and qX defined above, thereby also proving (a), (b) and (c).

First of all, by [31, Thm. 2.8], we may take Ã to be the McCrimmon-Meyberg super-
algebra of the collinear pair (ẽ1, ẽ2). Hence Ã = G(A) which proves (a). In the classical
odd quadratic form coordinatization, the underlying abelian group of the Ã-module X̃ is
the Peirce space G(V )+ε0

= G(V +
ε0

) on which Ã acts by (1) interpreted for Ã, X̃. On the
other side, we know that V +

ε0
is an S-supermodule. All properties of an A-supermodule

are therefore clear, except that (ab).x = a.(b.x) for a, b ∈ A and x ∈ X. This means

{{{a e−1 e+
2 } e−2 b} e−1 x} = {a e−1 {b e−1 x}}. (3)

But since X̃ is an Ã-module, formula (3) holds for a, b, x replaced by ξ
|a|
1 ⊗ a, ξ

|b|
2 ⊗ b and

ξ
|x|
3 ⊗ x, which then implies (3). In other words, X̃ is the Grassmann envelope of X.
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Regarding (c), we observe that qX is an S-quadratic map in view of properties of the
quadratic map Q. Moreover, using 1.14.1, we find that the Grassmann envelope G(qX) of
qX is given by G(qX)(x̃) = Q̃(x̃)e−−1 where Q̃ is the quadratic map of the Jordan pair Ṽ

and x̃ ∈ Ṽ +. On the other side, by [31, III Thm. 2.8], this is exactly the form q̃ used in
the coordinatization of Ṽ , which proves G(qX) = q̃.

To show V ∼= OQI(A, qX) we define an S-linear map f : V → OQI(A, qX) given as
follows:

(i) on the subpair ⊕i∈I (Vε0+εi
⊕Vε0−εi

) it is the map used in the even quadratic form
coordinatization, and hence it maps this subpair onto the obvious subpair EQI(A)
of OQI(A, qX);

(b) on Vε0 it is defined by f+(v+
ε0

) = v+
ε0

∈ X ⊂ OQI(A, qX)+ and f−(v−ε0
) =

{e+
1 v−ε0

e+
−1} ∈ X ⊂ OQI(A, qX)−.

The Grassmann envelope of this map is the isomorphism used in the classical odd quadratic
form coordinatization (see the proof of [31, III Thm. 2.8]) and hence f is an isomorphism
by the homomorphism criterion 2.3.2.

Finally suppose V has a Λ-grading compatible with the root grading induced by the
covering odd quadratic form grid. The description of the data A,X and qX given above
then shows that (A, qX) is Λ-graded in the sense of 4.15. Hence OQI(A, qX) has a refined
root grading. It is straightforward to check that the isomorphism f : V → OQI(A, qX)
defined above is a graded isomorphism.

4.17. Alternating grids. Let I be a set with |I| ≥ 4 and a total order < . An
alternating grid of size I in a Jordan superpair V is a family A(I) = {eij : i, j ∈ I, i < j}
of non-zero idempotents in V such that, putting eji = −eij , the following properties hold:

(i) (eij , ekj , ekl, eil) for distinct i, j, k, l ∈ I is a quadrangle of idempotents, and
(i) A(I) is pure.

Alternating grids were called symplectic in [28], [31], [33] and [35]. Following a suggestion
of O. Loos, I have changed the name to “alternating”, since the standard realization of
these grids is in alternating matrices (see below), and since these grids have little to do
with symplectic Lie algebras or symplectic groups.

An alternating grid A(I) is a connected standard grid. Identifying eij with εi + εj

one easily sees that the associated 3-graded root system of A(I) is the alternating grading
Dalt

I of the root system DI , as defined in [22, 17.8]. An alternating grid A(I), |I| = 4 is
associated to an even quadratic form grid Qe(J), |J | = 3.

Let A be a superextension of S. Since the identity map is an involution of A the classical
transpose map is an involution of the associative A-superalgebra Mat(I, I; A), see 4.11. A
matrix x = (xij) ∈ Mat(I, I;A) is called alternating if xT = −x and if all diagonal elements
xii = 0. The set of all alternating matrices is an A-supermodule, denoted Alt(I, A). The
pair

AI(A) := (Alt(I,A),Alt(I,A))

is a subpair of the Jordan superpair MII(A) and hence itself a Jordan superpair over
A (or over S) called the alternating matrix superpair of rank I and with coordinate al-
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gebra A. Note that the product is given by 4.6.1. (One obtains an isomorphic Jordan
superpair by taking the quadratic product Q0̄(x0̄)y = −x0̄yx0̄ and {x y z} = −xyz −
(−1)|x||y|+|x||z|+|y||z| zyx, see [35, 6.1].) In the alternating matrix pair the family of all

eij = (Eij − Eji, Eji − Eij), i < j

forms a covering alternating grid. In fact, the alternating matrix pair AI(A) is the split
Jordan superpair of type A(I) over A. Conversely, using [35, (6.1)], we have:

4.18. Alternating Coordinatization. Let |I| ≥ 4 and let V be a Jordan superpair
over S. Then V is covered by an alternating grid A(I) if and only if there exists a su-
perextension A of S such that V is isomorphic to AI(A). In this case, we may take A to
be the McCrimmon-Meyberg superalgebra of some collinear pair in A(I).

More generally, a Jordan superpair V has a refined root grading of type (Dalt
I , Λ) if and

only if V is graded-isomorphic to AI(A) for some Λ-graded superextension A of S.

4.19. Bi-Cayley grids. A Bi-Cayley grid in a Jordan superpair V is a family B =
(eεi : ε = ±, 1 ≤ i ≤ 8) of 16 non-zero idempotents in V satisfying the following conditions:

(i) for 1 ≤ i, j ≤ 4, i 6= j and ε, µ arbitrary the following are quadrangles of idempo-
tents:
(1) (eεi, eµj , e−εi,−e−µj) and (eε(i+4), eµ(j+4), e−ε(i+4),−e−µ(j+4)),
(2) (eεi, eεj , e−ε(i+4),−e−ε(j+4)) and (eεi, eεj , eε(j+4), eε(i+4)),
(3) (e−i, e+j , e−(k+4), sgn

(
1234
ijkl

)
e+l), where sgn

(
1234
ijkl

)
is the signature of the permu-

tation
(
1234
ijkl

)
;

(ii) B is pure.
An equivalent definition is given in [31, II§3.1]. A Bi-Cayley grid is a connected standard
grid. Its associated 3-graded root system is the Bi-Cayley grading Ebi

6 of the root system
E6, see [22, 17.9].

We will indicate how to realize Bi-Cayley grids in Jordan superpairs. Let Ok be the
split Cayley algebra over k, see e.g. [42, 2.2] or [31, III.3.1], obtained from the k-extension
k ⊕ k by twice performing the Cayley-Dickson process using 1 ∈ k as structure constants.
Let S be a base superring. The S-superring extension OS := S⊗Ok is a unital alternative
S-superalgebra, which we call the split Cayley superalgebra over S. By 4.4, it gives rise to
a Jordan superpair

B(S) := M12(OS)

called the Bi-Cayley superpair over S. It contains the Bi-Cayley pair B(k) = M12(Ok) as
a subpair. By [35, 7.2], B(k) is covered by a Bi-Cayley grid B, in fact, B(k) is the split
Jordan pair of type B over k. It follows that that B(S) is the split Jordan superpair of
type B over S. In particular, B(S) is the S-extension of B(k) and is covered by a Bi-Cayley
grid.

More generally, we can replace S in the above construction by any Λ-graded superex-
tension A of S. We obtain a Jordan A-superpair B(A) which, by restriction of scalars,
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becomes a Jordan superpair over S. It has a refined root grading of type (Ebi
6 , Λ). Con-

versely, using the classical Bi-Cayley Coordinatization Theorems [31, III.3.3] and [35,
(7.2.1)], one proves:

4.20. Bi-Cayley Coordinatization. A Jordan superpair V over S is covered by
a Bi-Cayley grid B if and only if there exists a superextension A of S such that V is
isomorphic to the Bi-Cayley superpair B(A). In this case, one can choose A to be the
McCrimmon-Meyberg superalgebra of some collinear pair in B. Moreover, (V, B) has a
refined root grading of type (Ebi

6 , Λ) if and only if A is Λ-graded, and then V is even
graded-isomorphic to B(A).

4.21. Albert grids. An Albert grid is a family A of 27 non-zero idempotents which
we write in the form

A = ([1], [2], [3]) ∪ ([ij]εr : 1 ≤ i < j ≤ 3, ε = ±, 1 ≤ r ≤ 4)

such that, putting [ij]ε1 = [ji]−ε1 and [ij]εr = −[ji]εr for 2 ≤ r ≤ 4, the following
properties hold:

(i) for each i ∈ {1, 2, 3} the family (e±s; 1 ≤ s ≤ 8) given by eεr = [ij]εr, eε(r+4) =
[ik]εr, 1 ≤ r ≤ 4, i, j, k 6=, is a Bi-Cayley grid;

(ii) for each pair (ij), 1 ≤ i < j ≤ 3, the family ([ij]±1, [ij]±2, [ij]±3, [ij]±4, [i],−[j]) is
an even quadratic form grid (of size 10);

(iii) A is pure.
An equivalent definition is given in [31, II§3.2]. An Albert grid is a connected standard
grid. Its associated 3-graded root system is the Albert grading Ealb

7 of E7, as defined in
[22, 17.9].

Albert grids can be realized in 3 × 3-hermitian matrix superpairs. Namely, let A be
a superextension of S and let OA be the split Cayley superalgebra over A, 4.19. It is a
unital alternative A-superalgebra. The A-extension of the canonical involution of Ok is an
involution π of the superalgebra OA for which A.1 ⊂ OA is an ample subspace. Hence the
hermitian matrix superpair

AB(A) := H3(OA, A.1, π),

as defined in 4.11, is a Jordan superpair over A and by restriction of scalars over S. It will
be called the Albert superpair over A. Note that AB(A) contains the Jordan pair AB(k)
as a subpair. By [35, 7.3] we know that AB(k) is split of type A, hence so is AB(A).
In particular, AB(A) is covered by an Albert grid. Conversely, using the classical Albert
Coordinatization Theorems ([31, III.3.5] and [35, (7.3.1)]) one can easily establish:

4.22. Albert Coordinatization. A Jordan superpair V over S is covered by an Al-
bert grid A if and only if V is isomorphic to an Albert superpair AB(A) for some superex-
tension A of S. In this case, one can choose A to be the McCrimmon-Meyberg superalgebra
of some collinear pair in A.

Moreover, (V, A) has a refined root grading of type (Ealb
7 , Λ) if and only if A is Λ-graded,

and in this case V is graded-isomorphic to AB(A).
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[5] , Algèbre, chapitre 3, Hermann, 1970.

[6] P. Deligne and J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein), Quantum
Fields and Strings: A Course for Mathematicians (Institute for Advanced Study, 1996–1997), Amer.
Math. Soc., 1999, pp. 41–97.
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of the Canadian Mathematical Society, Les Publications CRM, 1990, pp. 213–225.

[17] D. King, Quadratic Jordan superalgebras, Comm. Algebra 29 (2001), no. 1, 375–401.

[18] S.V. Krutelevich, Simple Jordan superpairs, Comm. Algebra 25 (1997), 2635–2657.

[19] D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1–64.

[20] O. Loos, Jordan pairs, Lecture Notes in Math., vol. 460, Springer-Verlag, 1975.

[21] , Filtered Jordan systems, Comm. Algebra 18 (1990), no. 6, 1899–1924.

[22] O. Loos and E. Neher, Locally finite root systems, preprint 2002, posted on the Jordan Theory
Preprint Archive.

[23] Y. I. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematischen Wis-
senschaften, vol. 289, Springer-Verlag, Berlin, 1988.

42



[24] C. Mart́ınez, I. Shestakov, and E. Zelmanov, Jordan superalgebras defined by brackets, J. London
Math. Soc. (2) 64 (2001), no. 2, 357–368.

[25] C. Martinez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic,
J. Algebra 236 (2001), no. 2, 575–629.

[26] K. McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans.
Amer. Math. Soc. 139 (1969), 495–510.

[27] , Speciality and nonspeciality of two Jordan superalgebras, J. Algebra 149 (1992), 326–351.

[28] K. McCrimmon and K. Meyberg, Coordinatization of Jordan triple systems, Comm. Algebra 9 (1981),
1495–1542.

[29] K. McCrimmon and E. Neher, Coordinatization of triangulated Jordan systems, J. Algebra 114
(1988), 411–451.

[30] E. Neher, Involutive gradings of Jordan structures, Comm. Algebra 9 (1981), no. 6, 575–599.

[31] , Jordan triple systems by the grid approach, Lecture Notes in Math., vol. 1280, Springer-
Verlag, 1987.
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