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Summary. In this paper we show that a Lie superalgebra L graded by a 3-graded irre-

ducible root system has Gelfand-Kirillov dimension equal to the Gelfand-Kirillov dimension of

its coordinate superalgebra A, and that L is locally finite if and only A is so. Since these Lie

superalgebras are coverings of Tits-Kantor-Koecher superalgebras of Jordan superpairs covered

by a connected grid, we obtain our theorem by combining two other results. Firstly, we study the

transfer of the Gelfand-Kirillov dimension and of local finiteness between these Lie superalgebras

and their associated Jordan superpairs, and secondly, we prove the analogous result for Jordan

superpairs: the Gelfand-Kirillov dimension of a Jordan superpair V covered by a connected grid

coincides with the Gelfand-Kirillov dimension of its coordinate superalgebra A, and V is locally

finite if and only if A is so.

Introduction

The Gelfand-Kirillov dimension is an interesting invariant for any algebraic
structure. For a nonassociative superalgebra A over an arbitrary field k it is defined
as follows. For any subspace B of A and any n ∈ N we put B(1) = B, B(n) =∑

i+j=n B(i)B(j), B[n] =
∑

1≤i≤n B(i). Then the Gelfand-Kirillov dimension of A
is defined as

GKdimA = sup
B

(
lim sup

n

ln(dim B[n])
ln n

)
, (1)
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where the supremum is taken over all finite dimensional subspaces B of A. The
Gelfand-Kirillov dimension has been widely considered for Lie algebras. Concern-
ing Jordan algebras the main advances in this area are the investigation of Jordan
algebras of Gelfand-Kirillov dimension one by Martinez-Zelmanov ([14]) based on
earlier work of Martinez ([13]) and the recent classification of graded simple Jor-
dan superalgebras of growth one by Kac-Martinez-Zelmanov ([8]). The motivation
for the paper [8] is a conjecture on the structure of Z-graded simple Lie superalge-
bras, and it confirms this conjecture in the special case that the Lie superalgebra
is the Tits-Kantor-Koecher superalgebra of a Jordan superalgebra.

In this paper we study both varieties of superalgebras mentioned above, Jordan
and Lie. Our preference is with Jordan structures, and we will use the superversion
of the fundamental Tits-Kantor-Koecher construction to translate our results from
“Jordan to Lie”. For Lie algebraists, Jordan superpairs over a field of characteristic
6= 2, 3 can be introduced as follows: We call a Lie superalgebra L over k Jordan
3-graded if

(i) L = L1⊕L0⊕L−1 is a so-called short Z-grading, i.e., [Li, Lj ] ⊂ Li+j for
i, j ∈ {0,±1}, and

(ii) L0 = [L1, L−1].
Here the Li are Z2-graded subspaces and [., .] denotes the product of L. In this
case, we have well-defined trilinear maps on V = (L1, L−1), namely

Lσ × L−σ × Lσ → Lσ : (x, y, z) 7→ [[x, y], z] =: {x y z}
for σ = ±1, satisfying two basic identities, one of which is

{x y z} = (−1)|x||y|+|x||z|+|y||z|{z y x}
for homogeneous x, y, z of degree |x|, |y| and |z| respectively. Taking these two
identities as axioms one arrives at the definition of a Jordan superpair (see [11]
or [16, 3] for the supersetting). There are in general many Jordan 3-graded Lie
superalgebras with a given Jordan superpair, but all are central extensions of a
“minimal” one, the so-called Tits-Kantor-Koecher superalgebra K(V ) of the Jor-
dan superpair V . Thus, the importance of the Tits-Kantor-Koecher construction
lies in the fact that every abstractly defined Jordan superpair V = (V +, V −) arises
in this way from a Jordan 3-graded Lie superalgebra.

The interplay between Jordan superpairs and Jordan 3-graded Lie superalge-
bras has been very fruitful, and there are many papers where this is used, for
example in Zelmanov’s fundamental paper on the classification of finite gradings
of simple Lie algebras [21], or see [19], [5], [4] and [7] for more recent examples.
Generalizing a result of Martinez for Jordan 3-graded Lie algebras ([13, Thm.
3.2]) to the supercase we prove:

Transfer Proposition. (2.10) Let L = L1 ⊕ [L1, L−1] ⊕ L−1 be a Jordan
3-graded Lie superalgebra over a field of characteristic different from 2. Then
the Gelfand-Kirillov dimension of L and the Gelfand-Kirillov dimension of its
associated Jordan superpair V = (L1, L−1) coincide.
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As the class of Jordan superpairs for which we want to study the Gelfand-
Kirillov dimension, we have chosen Jordan superpairs covered by a connected
grid. This is at present the only class of arbitrary dimensional Jordan superpairs
for which one has a structure theory ([6], [16]). Two features of this class of
Jordan superpairs are important for the following:

(1) There exists a 3-graded irreducible locally finite root system R = R1∪̇R0∪̇
R−1, the root system associated to the connected grid covering the Jordan super-
pair V , such that V has a grading V =

⊕
α∈R1

Vα. Locally finite root systems,
simply called root systems in the following, are the direct limits of finite root sys-
tems, and therefore include not only the usual finite root systems but also the
canonical infinite rank analogues of the finite root systems (see [12] for an ex-
position of this theory including a classification). Imposing the condition of a
3-grading excludes R = E8,F4 and G2.

(2) One can associate a supercoordinate system C to V which together with
R in (1) above completely determines V . This supercoordinate system always
consists of a unital superalgebra A, called coordinate superalgebra, which is either
Jordan (R = A1,B2) or alternative in the other cases (even associative for R = AI ,
|I| ≥ 3, and R = CI ,|I| ≥ 4, and supercommutative associative for R = BI , |I| ≥ 3,
R = DI ,E6 and E7). If R is simply laced then C = A but in the other cases some
additional data, e.g. an involution of A, are part of C. We can now state our main
result.

Theorem A. (2.9) Let V be a Jordan superpair covered by a connected grid
and let A be the associated coordinate superalgebra A. Then the Gelfand-Kirillov
dimensions of V and of A coincide.

Combining now the Theorem A above and the Transfer Proposition determines
the Gelfand-Kirillov dimension of the Jordan 3-graded Lie superalgebras whose
associated Jordan superpairs are covered by a connected grid. In [7, 2.9] we have
given a characterization of these Lie superalgebras which does not use Jordan
theory: they are exactly the Lie superalgebras graded by a 3-graded irreducible
root system. Lie superalgebras graded by a root system are a superversion of
the concept of a Lie algebra graded by a root system. These Lie algebras were
introduced and classified by Berman-Moody [2] in the simply-laced cases 6= A1

and for the other cases by Benkart-Zelmanov [1]. Our description for the case
of 3-graded root systems is the superversion of a result from [19]. We define the
coordinate superalgebra A associated to L as the coordinate superalgebra of the
Jordan superpair V . Summarizing the above, we now have:

Corollary A. (2.11) Let L be a Lie superalgebra over a field of characteristic
6= 2, 3 graded by a 3-graded root system. Let V be the associated Jordan superpair
which, as we know, is covered by a connected grid and let A be the coordinate
superalgebra of L. Then L and A have the same Gelfand-Kirillov dimension.

The last part of this paper is devoted to the study of local finiteness of the
superstructures mentioned above. Recall that a nonassociative algebra over a field
k is locally finite if every finitely generated subalgebra is finite dimensional, and this
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definition makes also sense for superalgebras and other algebraic superstructures
like Jordan superpairs. We prove the analogues of Theorem A and Corollary A
above:

Theorem B. (3.7) Let V be a Jordan superpair covered by a connected grid
and let A be the associated coordinate superalgebra. Then V is locally finite if and
only if A is so.

Corollary B. (3.16) Let L be a Lie superalgebra over a field of characteristic
6= 2, 3 graded by a 3-graded root system, and let A be the coordinate superalgebra
of L. Then L is locally finite if and only if A is so.

Theorems A and B and their corollaries are very similar, not only in their
statements but also in the method of their proofs. Moreover, under the additional
assumption that the base field has characteristic 6= 2, Theorem B actually becomes
a special case of Theorem A. Indeed, we prove that in this case local finiteness is
equivalent to Gelfand-Kirillov dimension equal to 0 for the varieties of associative,
Lie, unital alternative or Jordan superalgebras and also Jordan superpairs (3.9,
3.14, 3.15.

The authors gratefully acknowledge helpful comments by Efim Zelmanov on a
preliminary version of this paper.

1. Review: definitions and general results.

1.1. Superalgebras. Unless specified otherwise, all algebraic structures are
defined over an arbitrary base field k, and everything is Z2-graded in the natural
sense. In particular this is so for vector spaces, called superspaces, subalgebras of
superalgebras, etc. For a superspace M = M0̄ ⊕ M1̄ we will denote by M0̄ and
M1̄ the even – respectively odd – part of M . For m ∈ Mµ, µ ∈ Z2 = {0̄, 1̄},
we put |m| = µ the degree (or parity) of m. We denote by G the Grassmann
algebra over k in a countable number of generators. It is Z2-graded, G = G0̄⊕G1̄

where G0̄ and G1̄ are spanned by monomials in an even – respectively odd –
number of generators. The term “algebra” or “superalgebra” without further
specification will always mean an arbitrary nonassociative, i.e., not necessarily
associative, algebra or superalgebra over k.

Let A = A0̄ ⊕ A1̄ be a superalgebra. The Grassmann envelope G(A) =
(G0̄ ⊗ A0̄) ⊕ (G1̄ ⊗ A1̄) ⊂ G ⊗ A is an algebra with respect to the product
(ga ⊗ a)(gb ⊗ b) = gagb ⊗ ab for homogeneous elements ga, gb ∈ G, a, b ∈ A
satisfying |ga| = |a| and |gb| = |b|. One can then define varieties of superalgebras
by requiring that the Grassmann envelopes lie in a specific variety of algebra. For
example, A is an alternative or associative or supercommutative or Lie superal-
gebra if and only if its Grassmann envelope G(A) is, respectively, an alternative,
associative, commutative or Lie algebra. For example, supercommutativity sim-
ply means ab = (−1)|a||b|ba for homogeneous a, b ∈ A. For a superspace M the
Grassmann envelope G(M) is defined as for superalgebras.

4



This approach to defining varieties of superalgebras also works for Jordan su-
peralgebras in case 1

2 ∈ k, because then Jordan (super)algebras can be defined via
a bilinear product. However, since several of our results do not need the assump-
tion char k 6= 2, we will use the approach to Jordan superalgebras via quadratic
maps ([9], [16]). For those readers who are happily willing to assume 1

2 ∈ k, the
relations between the bilinear product and the quadratic product U = (U0̄, U(., .))
are given by the formulas

U0̄(a0̄)b = 2a0̄(a0̄b)− a2
0̄b (1)

(−1)|c||d|U(b, d)c = 2(b(cd) + (bc)d− (−1)|c||d|(bd)c) =: {b c d} (2)

where a0̄ ∈ A0̄ and b, c, d ∈ A are homogeneous. Note that U0̄ is a quadratic map
in the usual sense and that we do not have a U(a1̄) for odd a1̄.

A superextension of k is a supercommutative associative unital superalgebra
over k. For example, G is a superextension of k. A basic recipe to create superalge-
bras in a given variety is to take an algebra B in the variety and a superextension
S of k, and form the superalgebra S ⊗B. Its product is given by

(s1 ⊗ b1) · (s2 ⊗ b2) = (s1s2)⊗ (b1b2). (3)

We will call S ⊗B the S-extension of B.

1.2. Jordan superpairs. We now come to the main object of this paper:
Jordan superpairs over k. Suppose we have a pair V = (V +, V −) of superspaces
together with a pair Q = (Q+, Q−) of quadratic maps Qσ: V σ → Homk(V −σ, V σ),
σ = ±. By definition ([16, 2.8]), we therefore have supersymmetric k-bilinear maps
Qσ(., .): V σ×V σ → Homk(V −σ, V σ) of degree 0 and k-quadratic maps Qσ

0̄ : V σ
0̄ →

Homk(V −σ, V σ)0̄ which are related by Qσ(u,w) = Qσ
0̄ (u + w) − Qσ

0̄ (u) − Qσ
0̄ (w)

for u,w ∈ V σ
0̄ . Since 2Qσ

0̄ (u) = Qσ(u, u) the maps Qσ
0̄ are determined by Qσ

in case chark 6= 2. These quadratic maps induce canonical G-quadratic maps
Q̃σ: G(V σ) → HomG(G(V −σ), G(V σ)), and one calls V a Jordan superpair if its
Grassmann envelope G(V ) = (G(V +), G(V −)) together with Q̃ = (Q̃+, Q̃−) is
a Jordan pair in the usual sense ([16, 3.2]). We will follow common practice in
Jordan theory and leave out the superscripts σ if no confusion can arise.

It is sometimes easier to define a Jordan superpair via the supertriple products,
which are k-trilinear maps {...}: V σ × V −σ × V σ → V σ related to the maps Q
by {u v w} = (−1)|v||w|Q(u,w)v (in the introduction we have explained how these
maps arise in the setting of Jordan 3-graded Lie superalgebras). Subpairs of Jordan
superpairs are defined in the obvious way ([16, 3.3]).

For a Jordan superpair V = (V +, V −) we define dim V = dim V + + dim V −,
where by dim we mean dimk.

1.3. Jordan supertriple systems. Jordan superpairs are closely related to
the so-called Jordan supertriple systems (or Jordan supertriples for short) which
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have the sometimes useful advantage of being defined on a single vector space (or
k-module in the general setting). In the classical theory this is well-known and
can for example be found in [11, §1] (for the supercase see [16, 3.9]).

For the convenience of the reader we shortly review the basic construction
without however giving all details. Let T be a superspace together with a su-
perquadratic map P : T → Endk T . As in the definition of Jordan superpairs, one
then has a quadratic map P̃ on the Grassmann envelope P̃ : G(T ) → EndG(G(T ))
and one defines T to be a Jordan supertriple if G(T ) together with P̃ is a Jor-
dan triple in the classical sense. In particular, we then have a trilinear map
{...}: T × T × T → T given by {u v w} = (−1)|v||w|P (u,w)v. This so-called super-
triple product is supersymmetric in the outer variables,

{u v w} = (−1)|u||v|+|u||w|+|v||w|{w v u} (1)

for homogeneous u, v, w ∈ T . It also satisfies the superversion of the so-called
5-linear identity (JP15), [11, 2.1].

If k has characteristic 6= 2, 3 then Jordan supertriples can be defined by (1)
and this 5-linear identity. In our set-up, a unital Jordan superalgebra is the same
as a Jordan supertriple containing an invertible element ([16, 3.11]).

To explain the connection between Jordan superpairs and Jordan supertriples
let us first define an involution of a Jordan superpair V to be a homomorphism η =
(η+, η−): V → V op from V to the opposite Jordan superpair V op satisfying η−σ ◦
ησ = Id on V σ, [11, 1.5] for Jordan pairs or [16, 3.9] for superpairs. Any Jordan
supertriple T gives rise to a Jordan superpair V (T ) = (T, T ) with involution
(Id, Id). Conversely, if V is a Jordan superpair with an involution η one can
define a Jordan supertriple Tη on V + by P0̄(u0̄)v = Q0̄(u0̄)η+(v) and P (u, v) =
Q(u,w)η+(v) for u, v, w ∈ V +. The associated Jordan superpair V (Tη) is then
canonically isomorphic to V . In this way, Jordan superpairs with involutions are
the “same” as Jordan triple systems. Subtriples of Jordan supertriples are defined
in the obvious way.

1.4. Jordan superalgebras associated to alternative superalgebras.
An important source of examples for Jordan superalgebras, hence Jordan super-
triples and Jordan pairs, are the so-called special Jordan superalgebras, i.e., the
subalgebras of A(+) for A an associative superalgebra. We will need a slight gen-
eralization of this class of Jordan superalgebras, which is associated to alternative
superalgebras.

Thus, let A be an alternative unital superalgebra. For a0̄ ∈ A0̄ and homoge-
neous a, b, c ∈ A define

U0̄(a0̄)b = a0̄ba0̄ and {a b c} = a(bc) + (−1)|a||b|+|a||c|+|b||c|c(ba). (1)

Then A together with the operations (1) form a unital Jordan superalgebra, de-
noted A(+). Indeed, this can either be seen by considering the Grassmann en-
velopes of A and A(+) (or by observing that A(+) is the McCrimmon-Meyberg
algebra of the collinear pair e, f in M12(A), see 1.6).
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1.5. Jordan superpairs covered by grids. A grid G in a Jordan superpair
V is a family of idempotents g ∈ V0̄ satisfying certain properties which we are
going to explain now.

As in the classical theory ([11, 5.4]) every idempotent c = (c+, c−) ∈ V0̄ gives
rise to a Peirce decomposition V = V2(c)⊕V1(c)⊕V0(c). A family C of idempotents
is called a cog if for two distinct c, c′ ∈ C we have exactly one of the following
possibilities:

(i) c ∈ V0(c′) or, equivalently, c′ ∈ V0(c) (one says that c and c′ are orthog-
onal);

(ii) c ∈ V1(c′) and c′ ∈ V1(c) (one calls c and c′ collinear);
(iii) c ∈ V2(c′) and c′ ∈ V1(c) (one says that c′ governs c);
(iv) c ∈ V1(c′) and c′ ∈ V2(c), i.e., c governs c′.
For any family C of idempotents we have simultaneous Peirce spaces

VI(C) =
⋂

c∈C

Vi(c)(c), I = (i(c))c∈C

a family of numbers in {0, 1, 2}. The sum of all VI(C) is direct but in general not
all of V . In case of a cog C, every c ∈ C lies in a certain VI(C) and one calls
C a covering cog if V is the sum of the simultaneous Peirce spaces VI(C) with
C ∩ VI(C) 6= ∅.

It turns out that every cog C can be enlarged to a so-called closed cog which
has the same simultaneous Peirce spaces [17, 4.11]. These closed cogs can be
defined in terms of closure properties with respect to forming idempotents ([17,
4.1]) or, equivalently, with the help of (locally finite) root systems ([18], [12]).
We will review the latter definition. A 3-grading of a root system R is a partition
R = R1∪̇R0∪̇R−1 such that (Ri +Rj)∩R ⊂ Ri+j for i, j = 0,±1 and (R1+R−1)∩
R0 = R0. Then a cog C is defined to be closed if there exist a 3-graded root system
R = R1∪̇R0∪̇R−1 and a bijection R1 → C : α 7→ cα such that cα ∈ V〈α,β∨〉(cβ)
for all α, β ∈ R1 where 〈α, β∨〉 denotes the Cartan integer in R. In this case
we abbreviate Vα = VI(C) if cα ∈ VI(C), and then have the simultaneous Peirce
decomposition

V =
⊕

α∈R1

Vα . (1)

Finally, a covering closed cog G is called a covering grid, and in this case V is said
to be covered by G. (One can also define grids in general, see [16, 4.3].) A covering
grid whose associated 3-graded root system R is irreducible is called connected.

Every locally finite root system R is a direct sum of irreducible locally finite
root systems R(i), i ∈ I. If R is 3-graded, every irreducible component R(i) is 3-
graded too. Suppose V is covered by a grid G with associated 3-graded root system
R. Corresponding to the decomposition R =

⋃
i∈I R(i) in irreducible components

R(i) is the decomposition of V in a direct sum of ideals

V =
⊕

i∈I

V (i), V (i) =
⊕

α∈R(i)

Vα (2)
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where each ideal V (i) is now covered by the connected grid G(i) = G∩V (i). The de-
composition allows one to reduce questions on V to the case where G is connected,
see for example 2.2 and 3.5.

The classification of connected grids ([17]), or equivalently 3-graded root sys-
tems, shows that there are the following seven types of connected grids (for a
definition see e.g. [16, 5]; I, J and K are arbitrary sets):

(i) rectangular grid R(J,K), 1 ≤ |J | ≤ |K|, (R,R1) is the rectangular grad-
ing AJ,K

I where J∪̇K = I∪̇{0} for some element 0 /∈ I and R is a root
system of type A and rank |I|;

(ii) hermitian grid H(I), 2 ≤ |I|, (R, R1) is the hermitian grading of R = CI ;
(iii) even quadratic form grid Qe(I), 3 ≤ |I|, (R, R1) is the even quadratic

form grading of R = DI∪̇{0};
(iv) odd quadratic form grid Qo(I), 2 ≤ |I|, (R, R1) is the odd quadratic form

grading of R = BI∪̇{0};
(v) alternating grid A(I), 5 ≤ |I|, (R, R1) is the alternating grading of R =

DI ;
(vi) Bi-Cayley grid B, R = E6;
(vii) Albert grid A, R = E7.

Corresponding to each type of covering grid is a coordinatization theorem which
describes the corresponding Jordan superpair up to isomorphism. These so-called
standard examples will be described in 1.7 below.

1.6. McCrimmon-Meyberg superalgebras and supercoordinate
systems. Let V be a Jordan superpair over k covered by a connected standard
grid G with associated 3-graded root system (R,R1). For the further develop-
ment the concept of a McCrimmon-Meyberg superalgebra [16, 4.2] is important.
This is an alternative superalgebra defined for every collinear pair (gα, gβ) on
V +

α = V +
2 (gα) ∩ V +

1 (gβ) by the product formula ab = {{a g−α g+
β } g−β b}. Modulo

isomorphisms and taking the opposite algebra, the McCrimmon-Meyberg super-
algebra does not depend on the chosen collinear pair gα, gβ (see [6, 1.4]).

We will associate to V a supercoordinate system C. Its definition depends on
the type of R. However, for a simply-laced R of rank R ≥ 2, equivalently G is an
ortho-collinear family with |G| ≥ 2, we have the following uniform description

C = McCrimmon-Meyberg superalgebra of some collinear pair gα, gβ ∈ G. (1)

This superalgebra is associative for rankR ≥ 3 and even associative supercom-
mutative, i.e., a superextension of k, for R of type D or E. For non-simply-laced
root systems, C will have more structure and will be defined in the review of the
coordinatization theorems below 1.7.

1.7. Standard examples. The coordinatization theorems of [16, §5] de-
scribed in (a) – (i) below can be summarized by saying that a Jordan superpair V
is covered by a grid G if and only if V is isomorphic to a standard example V (G, C)
depending on G and a supercoordinate system C.
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(a) For the rectangular grading of R = A1 with |J | = |K| = 1, we have |R1| = 1
and G just consists of a single idempotent G = {g} which covers V in the sense that
V = V2(g). Any such Jordan superpair is isomorphic to the superpair J = (J, J)
of a unital Jordan superalgebra J over k. In this case C = J .

(b) The standard examples for the remaining rectangular grids R(J,K), |J |+
|K| ≥ 3, are the rectangular matrix superpairs MJK(A) = (Mat(J,K;A), Mat(K,
J ; A)), where Mat(J,K; A) denotes the J × K-matrices with finitely many non-
zero entries from the unital superalgebra A which is alternative in case R = A2,
i.e., |J | + |K| = 3, and associative otherwise. In the alternative case the product
is described in [16, 5.4]. In the associative case MJK(A) is a special Jordan
superpair canonically imbedded in (Mat(J ∪ K; A), Mat(J ∪ K; A)), hence has
Jordan supertriple product

{u v w} = uvw + (−1)|u||v|+|u||w|+|v||w|wvu.

The Z2-grading of Mat(J,K;A) – respectively, of Mat(K,J ;A) – is the one induced
from A: Mat(J,K;A)µ = Mat(J,K; Aµ) for µ ∈ Z2. Here C = A.

(c) The Jordan superpairs covered by a hermitian grid H(I), |I| = 2, are exactly
the J = (J, J) where J is a Jordan superalgebra with two strongly connected
supplementary idempotents giving rise to a Peirce decomposition P of J in the
form P : J = J11 ⊕ J12 ⊕ J22. In this case, the supercoordinate system of V is
C = (J, P).

(d) Examples of Jordan superpairs covered by hermitian grids H(I) are the
hermitian Jordan superpairs HI(A,A0, π) = (HI(A,A0, π), HI(A,A0, π)), where
HI(A,A0, π) = {x = (xij) ∈ Mat(I, I; A) : x = xπT, all xii ∈ A0}, A is an alter-
native superalgebra which is associative for |I| ≥ 4 and π is a nuclear involution
with ample subspace A0 ([16, 5.10]). We have A0 ⊂ H(A, π) = {a ∈ A : aπ = a}
and this is an equality if 1

2 ∈ S. For an associative A these are special Jor-
dan superpairs and in the alternative case the product is described in [16, 5.11].
The Z2-grading of HI(A,A0, π) is induced from the Z2-grading of A (see (b)).
Conversely, any Jordan superpair covered by a hermitian grid H(I), |I| ≥ 3, is
isomorphic to some hermitian matrix superpair HI(A,A0, π) as soon as the ex-
treme radical of V vanishes (this is always the case if char k 6= 2). In the following
we always assume this additional assumption when we consider Jordan superpairs
covered by a hermitian grid. We put C = (A,A0, π).

(e) For a superextension A of k and a set I 6= ∅ we denote by H(I,A) the
free A-module with even basis {h±i : i ∈ I} equipped with the hyperbolic su-
perform qI satisfying qI(h+i, h−i) = 1 and qI(h±i, h±j) = 0 for i 6= j. One can
make H(I, A) into a Jordan supertriple with quadratic maps given by P0̄(m0̄)n =
qI(m0̄, n)m0̄− qI(m0̄)n and {mnp} = qI(m,n)p+mqI(n, p)− (−1)|n||p|qI(m, p)n.
The corresponding quadratic form superpair EQI(A, qI) = (H(I, A),H(I, A)) is
covered by an even quadratic form grid Qe(I). Conversely, any Jordan superpair
covered by an even quadratic form grid Qe(I), |I| ≥ 3, is isomorphic to some
EQI(A, qI) ([16, 5.14]). Here C = A.
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(f) We let again A be a superextension of k and suppose that X is an A-module
with an A-quadratic form qX with a base point e ∈ X0̄ satisfying qX(e) = 1. For
I 6= ∅ we put M = H(I,A) ⊕ X, q = qI ⊕ qX . The corresponding quadratic
form superpair (M, M) = OQI(A, qX) is covered by an odd quadratic form grid
Qo(I). Conversely, any Jordan superpair covered by an odd quadratic form grid
Qo(I), |I| ≥ 2, is isomorphic to some OQI(A, qX) ([16, 5.16]). In this case we put
C = (A, X, qX).

(g) For a superextension A of k we denote by Alt(I, A) the A-module of all
alternating matrices x ∈ Mat(I, I; A), i.e., xT = −x and all diagonal entries
xii = 0. The alternating matrix superpair AI(A) = (Alt(I, A), Alt(I, A)) is a
subpair of MII(A); it is covered by an alternating grid A(I). Conversely, any
Jordan superpair covered by an alternating grid A(I), |I| ≥ 4, is isomorphic to
some AI(A) ([16, 5.18]). We put C = A.

(h) The examples (e) and (g) are superextensions of a Jordan pair U , i.e.,
have the form A ⊗ U where A is a superextension of k and U is a Jordan pair,
cf. 1.1. Moreover, U is split of type G, i.e., Uσ =

⊕
g∈G k · gσ. This is also so

for the remaining two standard examples. A Jordan superpair over k is covered
by a Bi-Cayley grid B if and only if it is isomorphic to the Bi-Cayley superpair
B(A) = A⊗kM12(Ok), the A-extension of the rectangular matrix superpair B(k) =
M12(Ok) for Ok the split Cayley algebra over k ([16, 5.20]). Here C = A.

(i) A Jordan superpair V over k is covered by an Albert grid A if and only
if there exists a superextension A of k such that V is isomorphic to the Albert
superpair AB(A) = A⊗k AB(k), the A-extension of the split Jordan pair AB(k) =
H3(Ok, k·1, π) whereOk is the split Cayley algebra over k with canonical involution
π ( [16, 5.22]). Here again C = A.

1.8. 3-graded Lie superalgebras. There is an important connection be-
tween Jordan superpairs and so-called Jordan 3-graded Lie superalgebras. This
sometimes allows one to transfer results from the category of Jordan superpairs to
Lie superalgebras. We will review the basic constructions.

A 3-grading of a Lie superalgebra L over k is a decomposition L = L1⊕L0⊕L−1

where each Li is a k-superspace, hence Li = Li0̄ ⊕ Li1̄ for i = 0,±1 satisfies
[Li, Lj ] ⊂ Li+j with the understanding that Li+j = 0 if i + j 6= 0,±1. In other
words, L = L1⊕L0⊕L−1 is a Z-grading with at most three non-zero homogeneous
spaces. Because of this, 3-gradings are sometimes also called short Z-gradings, e.g.
in [21]. A Lie superalgebra is called 3-graded if it has a 3-grading. If L is a 3-
graded Lie superalgebra, its Grassmann envelope is a 3-graded Lie algebra in the
sense of [19, 1.5].

A 3-graded Lie superalgebra L = L1⊕L0⊕L−1 will be called Jordan 3-graded
if

(i) [L1, L−1] = L0, and
(ii) there exists a Jordan superpair structure on (L1, L−1) whose Jordan triple
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product is related to the Lie product by

{x y z} = [[xy]z] for all x, z ∈ Lσ1, y ∈ L−σ1, σ = ±. (1)

In this case, V = (L1, L−1) will be called the associated Jordan superpair. If
char k 6= 2 the associated Jordan superpair is unique: its product is given by
(1) and by Q0̄(x0̄)y = 1

2 [[x0̄, y]x0̄]. Conversely, these two formulas define a pair
structure on (L1, L−1) which will be a Jordan superpair in any situation where
Jordan superpairs are defined by linear identities. For example, by [16, (3.2.1)],
a 3-graded Lie superalgebra L over k with [L1, L−1] = L0 is Jordan 3-graded as
soon as char k 6= 2, 3.

So far we have associated a Jordan superpair to any Jordan 3-graded Lie su-
peralgebra. Even more important is the fact that every Jordan superpair V arises
in this way. Without going into details let us just recall that one can define a Lie
superalgebra product on K(V ) = V + ⊕ IDerV ⊕ V − where IDerV denotes the Lie
superalgebra of inner derivations of V . This so-called Tits-Kantor-Koecher super-
algebra K(V ) is a 3-graded Lie algebra with K(V )±1 = V ± and K(V )0̄ = IDerV .
It is obviously Jordan 3-graded. For more details, see [7].

1.9. Root graded Lie superalgebras. Jordan 3-graded Lie superalgebras
whose associated Jordan superpairs are covered by a grid are precisely the Lie
superalgebras graded by a 3-graded root system ([7]). For the convenience of the
reader we review here the basic definitions.

Let R be a reduced (possibly infinite) root system in the sense of [18] (so
0 6∈ R), and let Q(R) = Z[R] be the Z-span of R (the root lattice). Let L be
a Lie superalgebra over k. We say L is R-graded if there exists a decomposition
L =

⊕
α∈R∪{0} Lα into subspaces Lα = Lα0̄ ⊕ Lα1̄ and subalgebras h ⊂ g ⊂ L0̄

such that the following conditions are satisfied:
(i) the decomposition L =

⊕
α∈R1

Lα is a Q(R)-grading;
(ii) L0 =

∑
α∈R [Lα, L−α] ;

(iii) there exists a family (xα : α ∈ R) of non-zero elements xα ∈ Lα0̄ such
that, putting hα = −[xα, x−α], we have

h =
∑

α∈R k · hα , g = h⊕⊕
α∈R k · xα and

[hα, yβ ] = 〈β, α∨〉yβ for all α ∈ R and yβ ∈ Lβ , β ∈ R ∪ {0}.

This definition is a straightforward generalization of the notion of a root-graded
Lie algebra studied in [19]. In case L is a Lie algebra, k is a field of characteristic
0 and R is finite, it is equivalent to the one considered by Berman-Moody [2] and
Benkart-Zelmanov [1]. In this case R can be identified with a set of linear forms on
h, the superspaces Lα are then given by Lα = {x ∈ L : [h, x] = α(h)x for all h ∈
h}, {hα : α ∈ R} is isomorphic to the dual root system of R and h is a splitting
Cartan subalgebra of the finite-dimensional semisimple Lie algebra g.
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2. Gelfand-Kirillov dimension.

2.1. Gelfand-Kirillov dimension of Jordan superstructures. Let V be
a Jordan superpair over a field k. For any subspace U = U0̄ ⊕ U1̄ of V we define
U (n) = (U+(n), U−(n)) and U [n] = (U+[n], U−[n]) for odd n ∈ N inductively by

Uσ(1) = Uσ,

Uσ(n) =
∑

l+k+m=n

{Uσ(l) , U−σ(k) , Uσ(m)}+
∑

2l+k=n

Q0̄(U
σ(l)

0̄
)U−σ(k), (1)

Uσ[n] =
∑

1≤i≤n

Uσ(i).

The Gelfand-Kirillov dimension of a Jordan superpair V , called the GK-dimension
for short, is defined as

GKdimV = sup
U

(
lim sup

odd n

ln(dimU+[n] + dim U−[n])
ln n

)
, (2)

where the supremum is taken over all finite dimensional subspaces U of V . Here
and in the following we write dim for dimk. Obviously, the GK-dimension of any
subpair of V is less than or equal to the GK-dimension of V .

As in the proof of [10, 1.1], it can be shown that for a finitely generated
superpair V the GK-dimension of V is independent of the particular choice of the
generating subspace U . Thus in this case

GKdim V = lim sup
odd n

ln(dim U+[n] + dim U−[n])
ln n

, (3)

where U is any finite dimensional generating subspace of V . In the general sit-
uation it is of course not necessary to take the supremum over all subspaces.
Rather, it is sufficient to consider a class of “special” subspaces, adapted to the
Jordan superpair under investigation, with the property that every finite dimen-
sional subspace is contained in a special one. Moreover, we have the following
obvious reduction principle. Suppose V =

⋃
i V (i) is the union of subpairs such

that

(a) every finite dimensional subspace of V lies in some V (i),
(b) GKdim V (i) = c is constant.

Then
GKdimV = c. (4)
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2.2. Remarks. (a) It will follow from our results in 3.9 and 3.13 that the
GK-dimension of a Jordan superpair over a field of characteristic 6= 2 is either 0
or ≥ 1.

(b) If V is the direct sum of ideals Ui, i ∈ I, the GK-dimension of V equals
the supremum of the GK-dimensions of the ideals Ui:

GKdim
(⊕

i∈I

Ui

)
= sup

i∈I

(
GKdim Ui

)
.

Indeed, since GKdimUi ≤ GKdimV for any i ∈ I, we have supi∈I(GKdimUi) ≤
GKdimV . Conversely, if B is a fixed finite dimensional subspace of V , then B lies
in an ideal ⊕j∈JUj of U , where now J is a finite subset of I. Arguing as in [10,
3.2], we have that GKdim(⊕j∈JUj) = maxj∈J(GKdim Uj), hence

lim sup
odd n

ln(dimB+[n] + dim B−[n])
ln n

≤ max
j∈J

(GKdim Uj) ≤ sup
i∈I

(GKdim Ui),

so GKdim V ≤ supi∈I(GKdim Ui).

2.3. GK-dimension of Jordan supertriples and superalgebras. Now
let T be a Jordan supertriple. Any subspace U of T gives rise to a subspace
U = (U,U) of the associated Jordan superpair V = (T, T ), and we define U (n) and
U [n] for odd n by

U(n) = (U (n), U (n)) and U[n] = (U [n], U [n]). (1)

The Gelfand-Kirillov dimension of T is then defined in analogy to 2.1.2 as

GKdim T = sup
U

(
lim sup

odd n

ln(dimU [n])
ln n

)

where the supremum is taken over all finite dimensional subspaces of T . For a
(quadratic) unital Jordan superalgebra J we put

GKdim J = GKdim JT

where JT is the underlying Jordan supertriple, see [16, 3.11].

2.4. Lemma. (a) Let V = (T, T ) be the Jordan superpair associated to a
Jordan supertriple T . Then GKdimV = GKdim T .

(b) Let V = (V +, V −) be a Jordan superpair, and let T (V ) = V + ⊕ V − be the
associated polarized Jordan supertriple with quadratic map P given by

P0̄(x
+
0̄
⊕ x−

0̄
)(y+ ⊕ y−) = Q0̄(x

+
0̄
)y− ⊕Q0̄(x

−
0̄

)y+ and

{x+ ⊕ x− , y+ ⊕ y− , z+ ⊕ z−} = {x+ , y− , z+} ⊕ {x− , y+ , z−}.
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Then GKdimV = GKdim T (V ).

Proof. (a) Let U be a finite dimensional subspace of T . Then U = (U,U) is a
finite dimensional subspace of V with U[n] = (U [n], U [n]), so GKdim V ≥ GKdimT
follows from

GKdimV ≥ lim sup
odd n

ln(dim U [n] + dim U [n])
ln n

= lim sup
odd n

ln(2 dim U [n])
ln n

= lim sup
odd n

ln(dim U [n])
ln n

.

On the other hand, if (U+, U−) is a finite dimensional subspace of V then U+⊕U−

is a finite dimensional subspace of T with (U+ ⊕ U−)[n] = U+[n] ⊕ U−[n]. Then
GKdimT ≥ GKdimV in view of

GKdim T ≥ lim sup
odd n

ln(dim(U+ ⊕ U−)[n])
ln n

= lim sup
odd n

ln(dim U+[n] + dim U−[n])
ln n

.

(b) Since any finite dimensional subspace of T (V ) imbeds in a finite dimensional
subspace of the form U+⊕U− for U = (U+, U−) ⊂ V , the assertion is immediate
from the definitions.

2.5. Gelfand-Kirillov dimension of nonassociative superalgebras. Let
A be a nonassociative superalgebra over k. For any subspace B of A and any
n ∈ N we put B(1) = B, B(n) =

∑
i+j=n B(i)B(j), B[n] =

∑
1≤i≤n B(i). Then the

Gelfand-Kirillov dimension of A is defined as

GKdimA = sup
B

(
lim sup

n

ln(dim B[n])
ln n

)
, (1)

where the supremum is taken over all finite dimensional subspaces B of A. It is
well-known that in case of a finitely generated superalgebra A, the GK-dimension
of A is independent of the particular choice of the generating subspace B, thus
the analogous formula to 2.1.3 holds.

For Jordan superalgebras over fields of characteristic 6= 2 we now have two
definitions for the Gelfand-Kirillov dimension. That they in fact coincide can be
proven in the same way as the corresponding result in the non-supercase [13, Thm.
3.1]:

2.6. Lemma. Let J be a Jordan superalgebra over k with 1
2 ∈ k, and denote

by Jlin the underlying linear Jordan superalgebra structure. Then

GKdim J = GKdim Jlin

where GKdim J is defined in 2.1 while GKdim Jlin is given in 2.5.

We will determine the GK-dimension of Jordan superpairs covered by a grid.
For doing so, the following general result will be useful.
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2.7. Lemma. Let A be a superextension of k and let X be a finite dimen-
sional Jordan pair. The GK-dimension of the Jordan superpair A ⊗k X = (A ⊗
X+, A ⊗ X−), the A-extension of X, then satisfies the inequality GKdim(A ⊗
X) ≤ GKdimA and this is an equality if X is linearly perfect in the sense that
X = {X , X , X}:

GKdim(A⊗k X) = GKdim A.

Proof. We will first establish the inequality GKdim(A⊗X) ≤ GKdimA. Any
finite-dimensional subspace of A⊗X is contained in one of the form B⊗X where
B is a finite dimensional subspace of A containing 1. Hence for the calculation of
GKdim(A⊗X) it is sufficient to consider these special subspaces B ⊗X. We will
prove by induction

(B ⊗X)σ(n) ⊂ B(n) ⊗Xσ. (1)

Indeed, for odd j, l,m ∈ N with j + l + m = n we have, using the definition of the
product in A⊗X and associativity of A,

{(B ⊗X)σ(j) , (B ⊗X)−σ(l) , (B ⊗X)σ(m)}
⊂ {B(j) ⊗Xσ , B(l) ⊗X−σ , B(m) ⊗Xσ}
= B(j)B(l)B(m) ⊗ {Xσ , X−σ , Xσ} ⊂ B(n) ⊗Xσ.

Moreover, arguing in a similar way, for 2l + k = n we have Q0̄((B0̄ ⊗X)σ(l))(B ⊗
X)−σ(k)) ⊂ B(n) ⊗ Xσ. Hence we have proven the inclusion (1), and this easily
implies (B ⊗X)σ[n] ⊂ B[n] ⊗Xσ. For the special subspace U = B ⊗X we then
obtain, using dim X = dim X+ + dim X−,

lim sup
odd n

ln(dim U+[n] + dim U−[n])
ln n

≤ lim sup
odd n

ln(dim B[n] dim X)
ln n

= lim sup
odd n

ln(dimB[n])
ln n

≤ lim sup
n

ln(dim B[n])
ln n

≤ GKdimA,

which implies GKdim A⊗X ≤ GKdimA.
Now suppose that X is linearly perfect. For the other inequality, GKdim A ≤

GKdimA⊗X, we take B again to be a finite-dimensional subspace of A containing
1. Because of this and associativity, we have B[n] = B(n) = B(i)B(n−i) for 1 ≤
i ≤ n. Using perfectness of X it then follows that B[2] ⊗ Xσ = {B ⊗ Xσ ,
1⊗X−σ , B⊗Xσ} ⊂ (B⊗X)σ[3], and by induction B[n]⊗Xσ ⊂ (B⊗X)σ[2n−1].
But then

lim sup
n

ln dim B[n]

ln n
= lim sup

n

ln dim(B[n] ⊗Xσ)
ln n

≤ lim sup
n

ln dim(B ⊗X)σ[2n−1]

ln n
≤ GKdimA⊗X

hence GKdim A ≤ GKdimA⊗X.
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2.8. GK-dimension of Jordan superpairs covered by grids. Let V be
a Jordan superpair covered by a grid with associated root system (R, R1). We
know from 1.5.2 that V is a direct sum of ideals V =

⊕
i∈I V (i), each covered by

a connected grid, and hence by Remark 2.2(b)

GKdimV = GKdim(⊕i∈IV
(i)) = sup

i∈I
(GKdim V (i)). (1)

In view of the formula above we will from now on consider Jordan superpairs
covered by a connected grid.

2.9. Theorem. Let V be a Jordan superpair covered by a connected grid G.
If G contains a pair of collinear idempotents let A be the associated McCrimmon-
Meyberg algebra. Otherwise let A = J where V ∼= J = (J, J). Then

GKdim V = GKdim A. (1)

Proof. If V is covered by a connected grid G which does not contain collinear
idempotents then either G is a single idempotent or it is associated to a triangle
of idempotents. In both cases V ∼= (J, J) for a unital Jordan superalgebra J and
so GKdim V = GKdim J by 2.4 and the definition of GKdim J .

We can now assume that G contains a pair of collinear idempotents. We will
first show that it is enough to consider Jordan superpairs covered by a finite grid
G. Indeed, if G or, equivalently, its associated irreducible 3-graded root system
(R,R1) is infinite, it is obvious from the classification of 3-graded root systems
that R is a union of finite subsystems R(i) of the same type containing a given
collinear pair. (In fact, this is part of the classification proof as given in [12].)
Correspondingly, we have V =

⋃
i V (i) where V (i) =

⊕
α∈R(i) Vα is covered by the

grid {gα : α ∈ R(i)}. Because of 2.1.4 it then suffices to prove (1) for a finite G.
Our next aim is to show

GKdim V ≤ GKdimA. (2)

For the calculation of GKdim V it is sufficient to consider a class of special sub-
spaces with the property that any finite dimensional subspace of V is contained
in one of them. These special subspaces U will be defined below. They all have
the following two properties. Firstly, U is split with respect to the root grading
V =

⊕
α∈R1

Vα, i.e., U =
⊕

α∈R1
Uα, Uα = U ∩ Vα. Clearly all U (n) and hence

also all U [n] are then split too. Secondly, if we define B = U+ ∩ A (keeping in
mind that A is defined on some V +

β ), then there exists a constant cU depending
on U such that for all odd n and all α ∈ R1

dim Uσ(n)
α ≤ cU dim B(n). (3)
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We claim that this is sufficient to establish (2). Indeed, for a special U we have

lim sup
odd n

ln(dimU+[n] + dim U−[n])
ln n

≤ lim sup
odd n

ln(2cU |G| dim B[n])
ln n

= lim sup
odd n

ln(dimB[n])
ln n

≤ lim sup
n

ln(dimB[n])
ln n

≤ GKdimA,

which implies (2). The class of special subspaces satisfying (3) will be defined by
making use of the coordinatization theorems. Since by Lemma 2.7 the inequality
(2) holds for superextensions of finite-dimensional Jordan pairs and since we as-
sumed the covering grid to contain a pair of collinear idempotents, we only have
to consider the cases (b), (d) and (f) of 1.7.

Case (b): R is of type A, so V ∼= MJK(A) for |J | + |K| ≥ 3. The special
subspaces are MJK(B) where B is a subspace of A. It follows from the multipli-
cation rules in MJK(A), [16, 5.4] for A alternative, |J |+ |K| = 3, or [16, 5.6] for
A associative and |J | + |K| ≥ 3, that U (n) ⊂ MJK(B(n)) which proves (3) with
cU = 1. More precisely, if A is associative then, using B(n) = BB(n−1), we even
have

MJK(B)(n) =MJK(B(n)) (A associative) (4)

Case (d): V is a hermitian matrix superpair HI(A,A0, π), |I| ≥ 3. Thus R
is of type CI . Here the special subspaces are U = HI(B,B ∩ A0, π) where B is
a π-invariant subspace of A. It follows from the multiplication rules in [16, 5.11]
that U (n) ⊂ HI(B(n), B(n) ∩A0, π) whence (3) holds (with cU = 1).

Case (f): V = OQI(A, qX) is an odd quadratic form superpair with |I| ≥ 2,
thus R is of type B1+|I|. In this case, using the notation of [16, 5.13 and 5.15],
the special subspaces are U = (Y, Y ) ⊕ EQI(B) where Y ⊂ X and B ⊂ A are
finite dimensional (Z2-graded) subspaces satisfying h0 ∈ Y and k · 1 + bX(Y, Y ) +
qX(Y0̄) ⊂ B for bX the polar of qX . The condition 1 ∈ B implies that B[n] =
B(n) for all n and U (n) ⊂ (B(n)Y,B(n)Y ) ⊕ EQI(B(n)) for odd n, whence also
U [n] ⊂ (B(n)Y, B(n)Y )⊕ EQI(B(n)). (In fact, it can be proven by induction that
U (n) = (B(n−1)Y, B(n−1)Y ) ⊕ EQI(B(n)) but we will not need this.) It follows
that (3) holds with cU = dim Y .

We have now established (3) in all cases and hence (2) holds. For the proof of
the other inequality, GKdim A ≤ GKdimV , we observe that G contains a pair of
collinear idempotents, say gα, gβ , and it is further no harm to assume that A is
the McCrimmon-Meyberg superalgebra of gα, gβ . We claim that U = Vα ⊕ Vβ is
a subpair. Indeed, this follows from the following facts: Vα and Vβ are subpairs,
{Vα Vα, Vβ} ⊂ Vβ (since α−α+β = β), {VαVβVα} = 0 (since for collinear α, 2α−β
is not a root), and the analogous formulas for α and β exchanged. The subpair
U is covered by the grid {gα, gβ}. The rectangular Coordinatization Theorem
[16, 5.5] then implies that Vα ⊕ Vβ

∼= M12(A), hence V contains a subpair U ∼=
M12(A). Because GKdim U ≤ GKdimV it is then sufficient to prove GKdim A ≤
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GKdimM12(A). To this end, let B be a finite dimensional subspace of A. It is
no harm to assume that B contains the identity element of A. It then follows
by induction, using the product formula of the McCrimmon-Meyberg algebra (see
1.6), thatM12(B(n)) ⊂M12(B)(2n−1). Therefore, dim B(n) = 1

2 dimM12(B(n))σ ≤
1
2 dimM12(B)σ(2n−1), and

lim sup
n

ln dim B(n)

ln n
≤ lim sup

n

ln dimM12(B)σ(2n−1)

ln n

= lim sup
odd n

ln dimM12(B)σ(n)

ln n
≤ GKdimM12(A),

hence GKdim A ≤ GKdimV .

2.10. Proposition. The Gelfand-Kirillov dimension of a Jordan 3-graded Lie
superalgebra L = L1 ⊕ [L1, L−1]⊕L−1 over a field of characteristic different from
2 coincides with the Gelfand-Kirillov dimension of its associated Jordan superpair
V = (L1, L−1).

The special case of a finitely generated Jordan pair V , which by [7, 2.4(b)] is
equivalent to L being finitely generated, has been proven in [13, Thm. 3.2]. Our
proof is more elaborate since we do not assume finite generation.

Proof. Let U be a finite dimensional subspace of V and put W = U+⊕U− ⊂ L.
Since 1

2 ∈ k, we have Uσ[n] =
∑

l+k+m≤n{Uσ(l) , U−σ(k) , Uσ(m)} for odd l, k, m

and n, so U+[n] ⊕ U−[n] ⊂ W [n] for all odd n. Therefore

lim sup
odd n

ln(dimU+[n] + dim U−[n])
lnn

≤ lim sup
odd n

ln(dimW [n])
ln n

≤ lim sup
n

ln(dimW [n])
ln n

≤ GKdimL,

whence GKdim V ≤ GKdimL. Conversely, if B is a finite dimensional subspace
of L, then there exists a finite dimensional subspace W = U+ ⊕ U− such that
B ⊂ W + [W,W ] = U+ ⊕ [U+, U−] ⊕ U− = W [2]. Then, for all n ∈ N, B[n] ⊂
(W [2])[n] ⊂ W [2n].

By the Jacobi identity we have W (n) = [W,W (n−1)] for all n ≥ 2, whence
W [n] = W + [W,W [n−1]]. Using this, one shows by induction that

W [2n] ⊂ U+[2n−1] ⊕ ([U+, U−[2n−1]] + [U+[2n−1], U−])⊕ U−[2n−1],

W [2n+1] ⊂ U+[2n+1] ⊕ ([U+, U−[2n−1]] + [U+[2n−1], U−])⊕ U−[2n+1].

In particular, dimW [2n] ≤ (1 + dimU+ + dim U−)(dimU+[2n−1] + dim U−[2n−1]),
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and hence

lim sup
n

ln dim B[n]

ln n
≤ lim sup

n

ln dim W [2n]

ln n

≤ lim sup
n

ln((1 + dim U+ + dim U−)(dimU+[2n−1] + dim U−[2n−1]))
ln n

= lim sup
n

ln(dimU+[2n−1] + dim U−[2n−1])
ln n

= lim sup
n

ln(dimU+[2n−1] + dim U−[2n−1])
ln(2n− 1)

= lim sup
odd n

ln(dimU+[n] + dim U−[n])
ln n

.

So we have the other inequality GKdim L ≤ GKdimV .

Coming back to the general case, we have shown in [7, 2,9] that a Lie superalge-
bra graded by a 3-graded root system R is a central extension of the Tits-Kantor-
Koecher superalgebra of a Jordan superpair V covered by a grid with associated
root system R. In particular, assuming that R is irreducible we can associate to
L the coordinate superalgebra A of V as in 2.9. Using 2.10 we thus arrive at the
following.

2.11. Corollary. Suppose k has characteristic 6= 2, 3, and let L be a Lie su-
peralgebra over k which is graded by an irreducible 3-graded root system R. Then
GKdimL = GKdim A where A is the associated coordinate superalgebra.

3. Local finiteness.

3.1. Definition. A nonassociative superalgebra is called locally finite if every
finitely generated subalgebra is finite dimensional. The concept of a subalgebra
of a “linear” superalgebra, given by a bilinear product, is of course obvious. For
a unital quadratic Jordan superalgebra J , a subalgebra of J is defined as a sub-
space invariant under U = (U0̄, U(., .)) and the squaring operation x2

0̄ = U0̄(x0̄)1.
Similarly, a Jordan superpair or Jordan supertriple is called locally finite if every
finitely generated subpair, respectively subsystem, is finite dimensional.

The following lemmata 3.2 – 3.4 give some preliminary results on locally finite
superalgebras and Jordan superpairs. Some of them may be known, but we could
not find a suitable reference. Most of the proofs are straightforward and will
therefore be left to the reader.

3.2. Lemma. (a) A subalgebra of a locally finite superalgebra is locally finite.
(b) Assume the superalgebra A =

⊕
i∈I A(i) is a direct sum of ideals A(i).

Then A is locally finite if and only if every ideal A(i) is so. The analogous result
holds for Jordan superpairs.
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(c) Let S be a unital k-superalgebra (e.g. a superextension of k) and let B be
a finite dimensional algebra. Then the superalgebra A = S ⊗B with product 1.1.3
is locally finite if and only if S is so.

Proof. For the proof of (c), let U be a finitely generated subalgebra of A. Since
any element of A = S⊗B is a finite sum of pure tensors s⊗ b ∈ S⊗B, there exist
finitely many homogeneous s1, . . . , sn ∈ S and b1, . . . , bn ∈ B such that U is a
subalgebra of the subalgebra T ⊗C of A where T ⊂ S is the subalgebra generated
by the si, 1 ≤ i ≤ n, while the subalgebra C ⊂ B is generated by the bi. Hence,
if S is locally finite then so is A. Conversely, let A be locally finite and let T ⊂ S
be a subalgebra generated by finitely many s1, . . . , sn ∈ S. The subalgebra of A
generated by {si ⊗B : 1 ≤ i ≤ n} is finite dimensional and equals T ⊗B, whence
T is finite dimensional too.

3.3. Lemma. (a) Let V = (T, T ) be the Jordan superpair associated to a
Jordan supertriple T . Then V is locally finite if and only if T is so.

(b) Let V = (V +, V −) be a Jordan superpair and denote by T (V ) the polarized
supertriple with product defined in 2.4.b. Then V is locally finite if and only if
T (V ) is so.

(c) Let J be a unital Jordan superalgebra and denote by JT the underlying
Jordan supertriple. Then J is locally finite if and only if JT is so.

3.4. Lemma. Let A be an alternative unital superalgebra. If A is locally finite
then so is the Jordan superalgebra A(+).

3.5. Local finiteness of Jordan superpairs covered by a grid. Recall
from 1.5.2 that a Jordan superpair V covered by a grid is a direct sum of ideals,
each covered by a connected grid. Because of Lemma 3.2(b), it is therefore enough
to study local finiteness in the case of connected grids. For our characterization of
local finiteness for these Jordan superpairs in 3.7 below, the following is a useful
preliminary result.

3.6. Lemma. Let J and K be finite index sets with 2 ≤ |K| and let A be a
unital alternative superalgebra which we assume to be associative if |J |+ |K| ≥ 4.
Then the rectangular matrix superpair MJK(A) is locally finite if and only if A is
so.

Proof. Let X be a subspace of A and let B be the subalgebra of A generated
by X. We then claim that the subpair U of MJK(A) generated by the subspace
MJK(X) is U = MJK(B). Indeed, since the multiplication rules of MJK(A) are
expressed in terms of the multiplication in A, it follows that MJK(B) is a subpair
containing the generators of U , hence U is contained in MJK(B). To prove the
converse, note that the product of A can be expressed as a product in MJK(A).
Namely, denoting by Ejk, j ∈ J, k ∈ K the canonical matrix units we have for
a, a′ ∈ A the formula aa′Ejk = {aEjk′ , Ek′j , a′Ejk} where k, k′ are two distinct
elements of K. As a consequence, any bEjk for b ∈ B of the form b = x1 · · ·xn
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with xi ∈ X is then a product with factors in MJK(X), hence lies in U , which
implies MJK(B) ⊂ U .

Now suppose that MJK(A) is locally finite, and let X, B and U be as above.
If X is finite-dimensional, the subspace MJK(X) is finite-dimensional, hence U is
finite-dimensional, hence B is finite-dimensional, proving that A is locally finite.
Conversely, let A be locally finite and let W ⊂ MJK(A) be a finite dimensional
subspace. Then W ⊂ MJK(X) for X ⊂ A of finite dimension. The subalgebra
B of A generated by X is then finite dimensional, hence so is MJK(B). But by
the above, MJK(B) contains the subpair generated by W , proving that MJK(A)
is locally finite.

3.7. Theorem. Let V be a Jordan superpair covered by a connected grid G

and, as in 2.9, let A be the associated coordinate superalgebra. Then V is locally
finite if and only if A is so.

Proof. In case G does not contain a pair of collinear idempotents and hence
V ∼= J, the claim follows from 3.3. Thus in the following we can assume that G

does contain a pair of collinear idempotents, hence A is alternative.

That local finiteness of V implies local finiteness of A is easy: we have seen
in the proof of Thm. 2.9 that V contains a subpair U ∼= M12(A) which is locally
finite if V is so. But then A is locally finite by Lemma 3.6.

Let now A be locally finite, and let U be a finitely generated subpair of V .
Decomposing each generator with respect to the Peirce decomposition 1.5.1, it is
no harm to assume that U is generated by finitely many elements in joint Peirce
spaces Vα, thus involving only a finite number of roots in R. It is obvious from the
classification of 3-graded root systems in [18] that any finite number of roots in R
lie in a finite subsystem of the same type (see [12] for a classification-free proof),
and replacing G by the subfamily indexed by this subsystem shows that we can
without loss of generality assume that G is finite.

We will now consider the different types arising in the coordinatization the-
orems 1.7 above. Because of our assumption that G contains a pair of collinear
idempotents, these are the types (b) and (d) – (i) where, however, case (b) has
already been dealt with in Lemma 3.6.

Case (d): V ∼= HI(A,A0, π) for 3 ≤ |I| < ∞. Then there exists a finitely
generated subalgebra B of A such that U ⊂ HI(B, B∩A0, π). We know that B has
finite dimension since A is locally finite, whence dimU ≤ dimHI(B,B ∩A0, π) ≤
2|I|2 dim B < ∞.

Case (f): V ∼= OQI(A, qX) for |I| ≥ 2. Here U is contained in a subpair of the
form (BY,BY ) ⊕ EQI(B), where Y is a finite dimensional subspace of X and B
is a finitely generated subalgebra of A. By local finiteness of A, dim B < ∞, so
dim U ≤ dim((BY, BY )⊕ EQI(B)) ≤ 2 dim B dim Y + dimEQI(B) < ∞.

Cases (e), (g) – (i): Here V is the A-extension of a split Jordan pair W =
⊕α∈R1 (kg+

α , kg−α ) of type G and one can argue as in the proof of Lemma 3.2(c).
Thus, in all cases we have proven that V is locally finite as soon as A is so.
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3.8. Local finiteness and Gelfand-Kirillov dimension. It is immediate
from the definition that a locally finite superalgebra or a locally finite Jordan super-
pair has GK-dimension 0. The goal of the remaining part of this section is to prove
the converse for certain varieties of superalgebras and Jordan superstructures, see
3.9, 3.13 and 3.15. This will also provide an alternative (and quicker) proof of
Theorem 3.7 and Corollary 3.16 below in case our base field has characteristic
6= 2.

It is important to note here that a nonassociative algebra of GK-dimension 0
need not be locally-finite as the following example, due to D. Finston [3], shows.
Let A be the commutative algebra defined on the linear span of yi, i ∈ N by the
rule:

yiyj = δijyi+1.

Thus A only has squares: y2
i = yi+1 while yiyj = 0 for i 6= j. This algebra is not

locally finite since it has infinite dimension yet it is “finitely generated” by y1, but
it can be shown ([3, p. 537]) that its GK-dimension is 0.

The following lemma provides a sufficient condition under which GK-dimension
0 does imply local finiteness.

3.9. Lemma. Let A be a linear superalgebra such that there exists a k ∈ N,
k ≥ 1, such that for all n ≥ k and for any subspace B of A we have

B(n) = BB(n−1) + B(2)B(n−2) + · · ·+ B(k)B(n−k). (1)

Then either A is locally finite and hence has GK-dimension 0, or GKdimA ≥ 1.
In particular, our assumption holds with k = 1 for an associative or Lie super-

algebra A, which is therefore locally finite if and only if GKdim A = 0.

That a Lie algebra is locally finite if and only if it has GK-dimension 0 is also
proven in [20, Thm.1].

Proof. We first prove for a subspace B of A that

B[m] = B[m+k] for some m =⇒ B[m] = B[m+l] for all l ∈ N. (2)

Indeed, since the B[n] form an ascending chain, our assumption implies B[m] =
B[m+1] = · · · = B[m+k], and hence B(p) ⊂ B[m] for all p ≤ m + k. For l = k + 1
we obtain

B[m+k+1] = B[m] + B(m+k+1) = B[m] +
k∑

i=1

B(i)B(m+k+1−i),

using (1). In the last sum each term satisfies B(i)B(m+k+1−i) ⊂ B(i)B[m] ⊂
B[i+m] = B[m] since 1 ≤ i ≤ k, whence B[m] = B[m+k+1]. An induction then
proves (2). Observe that in this case B[m] is in fact a subalgebra of A.
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There are now the following alternatives: either all finite dimensional sub-
spaces satisfy (2) and hence A is locally finite, or there exists a subspace B such
that B[n] ⊂ B[n+k] is a proper inclusion for all n ∈ N. For such a B we have
dim B[n+k] ≥ 1 + dim B[n] which implies dim B[n] ≥ n/k. But then

lim sup
n

ln(dimB[n])
ln n

≥ lim sup
n

ln(n/k)
ln n

= 1,

and therefore GKdim A ≥ 1.
We have A(n) = AA(n−1) if A is associative, and this also holds in the Lie case

by the Jacobi identity.

We will show below in Prop. 3.13 that for a Jordan superpair over a field of
characteristic 6= 2 local finiteness is equivalent to GK-dimension zero. It is an open
problem to extend this result to the case of characteristic 2. However, we can at
least show this in the non-super setting. Our proof uses the following folklore
lemma, proven in [15, Cor. 3 of Th. 1] for quadratic Jordan algebras.

3.10. Lemma. Let J be a Jordan triple system generated by a subspace B.
Then the multiplication algebra of J is generated by the identity and by operators
of the form Pa, Lb,c, Pd,e for a, b, c, d, e ∈ B.

From this lemma one easily obtains the following.

3.11. Corollary. Let J be a Jordan triple system and let B be any subspace
of T . Then for any odd n ∈ N greater than 2 we have

B[n] = PBB[n−2] + {B,B, B[n−2]}+ {B, B[n−2], B}.

3.12. Proposition. Let J denote a Jordan system (algebra, pair or triple
system) over k. Then J is locally finite if and only if the GK-dimension of J is
zero.

Proof. If J is a Jordan triple system, the proof follows from 3.11 arguing as
in 3.9. If J is a Jordan pair, it suffices to consider the associated polarized triple
system T (V ) = V + ⊕ V − and to use 2.4.b and 3.3.b.

Finally, if J is a Jordan algebra, let Ĵ = J ⊕ k · 1 be its unital hull. It
is immediate to see that local finiteness is equivalent for J and for Ĵ and that
GKdim J = GKdim Ĵ . We may therefore assume that J is unital. By Lemma 3.3.c
and the definition of GKdim J , we then have J is locally finite ⇔ JT is locally
finite ⇔ GKdim JT = GKdim J = 0.

3.13. Proposition. For a Jordan 3-graded Lie superalgebra L = L1⊕[L1, L−1]
⊕ L−1 over a field of characteristic different from 2 the following are equivalent:
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(i) L is locally finite,
(ii) GKdimL = 0,
(iii) the associated Jordan superpair V = (L1, L−1) is locally finite,
(iv) GKdimV = 0.

Proof. We know (i) ⇔ (ii) from 3.9, (ii) ⇔ (iv) from 2.10 and (iii) ⇒ (iv) from
3.1. It therefore suffices to prove (i)⇒ (iii) which is immediate: if L is locally finite
and U ⊂ V is a finitely generated subpair of V then U+⊕U− ⊂ U+⊕[U+, U−]⊕U−

which is a finitely generated, hence finite dimensional, subalgebra of L, whence U
is finite dimensional.

3.14. Corollary. A Jordan superpair over a field of characteristic 6= 2 is
locally finite if and only if it has GK-dimension 0. The same holds for Jordan
superalgebras.

Proof. Since every Jordan superpair is the associated Jordan superpair of some
Jordan 3-graded Lie superalgebra, e.g., the Tits-Kantor-Koecher superalgebra, the
equivalence for Jordan superpairs is immediate from 3.13. For a Jordan superal-
gebra J we have the equivalences: J is locally finite if and only if V = (J, J) is
locally finite (by 3.3.a) if and only if GKdimV = 0 if and only if GKdimJ = 0
(by 2.4.a).

3.15. Corollary. Let A be a unital alternative superalgebra over a field of
characteristic 6= 2. Then A is locally finite if and only if GKdim A = 0.

Proof. Indeed, we have the following equivalences: A is locally finite if and
only if M12(A) is locally finite (by 3.6) if and only if GKdimM12(A) = 0 (by 3.13)
if and only if GKdimA = 0 (by 2.9).

We note that this result allows us to give a quicker proof of Theorem 3.7 in
case the base field has characteristic 6= 2 and the coordinate superalgebra A is
alternative: V is locally finite if and only if GKdim V = 0 (by Prop. 3.13) if and
only if GKdim A = 0 (by Thm. 2.9) if and only if A is locally finite.

The following corollary can now be obtained by the same argument used in the
proof of Cor. 2.11. Another proof can be given by combining 2.11 with 3.13, 3.14
and 3.15.

3.16. Corollary. Let L be a Lie superalgebra over a field k of characteristic
6= 2, 3 which is graded by an irreducible 3-graded root system, and let A be the
associated coordinate superalgebra. Then L is locally finite if and only if A is so.

Remark. Even for Lie algebras this is a new result. With the appropriate
concept of a coordinate algebra it is likely to be true in all cases. Indeed, if the
irreducible root system R is not 3-graded we have R = E8, F4 or G2. A Lie
algebra L over a field of characteristic 0 graded by the root system E8 has the
form L ∼= A⊗g where A is a unital associative commutative k-algebra and g is the
split simple Lie algebra of type E8 over k ([2]). Hence Lemma 3.2(d) implies that
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L is locally finite if and only if A is so. This leaves open the two cases R = F4 and
R = G2 for which the corresponding R-graded Lie algebras were described in [1].
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[6] E. Garćıa and E. Neher, Semiprime, prime and simple Jordan superpairs cov-
ered by grids, preprint 2001, posted on the Jordan Theory Preprint Archive,
http://mathematik.uibk.ac.at/jordan/.

[7] , Tits-Kantor-Koecher superalgebras of Jordan superpairs covered by grids, preprint
2001.

[8] V.G. Kac, C. Martinez, and E. Zelmanov, Graded simple Jordan superalgebras of growth
one, Memoirs, vol. 711, Amer. Math. Soc., 2001.

[9] D. King, Quadratic Jordan superalgebras, Comm. Algebra 29 (2001), no. 1, 375–401.

[10] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension,
Research Notes in Math., vol. 116, Pitman Advanced Publishing Program, 1985.

[11] O. Loos, Jordan pairs, Lecture Notes in Math., vol. 460, Springer-Verlag, 1975.

[12] O. Loos and E. Neher, Locally finite root systems, in preparation.

[13] C. Martinez, Gelfand-Kirillov dimension in Jordan algebras, Trans. Amer. Math. Soc. 348
(1996), 119–126.

[14] C. Martinez and E. Zelmanov, Jordan algebras of Gelfand-Kirillov dimension one, J. Alge-
bra 180 (1996), 211–238.

[15] K. McCrimmon, Representations of quadratic Jordan algebras, Trans. Amer. Math. Soc.
153 (1971), 279–305.

[16] E. Neher, Quadratic Jordan superpairs covered by grids, preprint 2000, posted on the Jordan
Theory Preprint Archive, http://mathematik.uibk.ac.at/jordan/.

[17] , Jordan triple systems by the grid approach, Lecture Notes in Math., vol. 1280,
Springer-Verlag, 1987.
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