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AZUMAYA ALGEBRAS AND OBSTRUCTIONS TO QUADRATIC
PAIRS OVER A SCHEME

PHILIPPE GILLE, ERHARD NEHER, AND CAMERON RUETHER

Abstract. We investigate quadratic pairs for Azumaya algebras with involu-
tions over a base scheme S as defined by Calmès and Fasel, generalizing the
case of quadratic pairs on central simple algebras over a field (Knus, Merkur-
jev, Rost, Tignol). We describe a cohomological obstruction for an Azumaya
algebra over S with orthogonal involution to admit a quadratic pair and pro-
vide a classification of all quadratic pairs it admits. When S is affine this
obstruction vanishes, however it is non-trivial in general. In particular, we
construct explicit examples with non-trivial obstructions.

Introduction

In this paper we study orthogonal involutions on Azumaya algebras over an
arbitrary base scheme, in particular we use characteristic independent methods
focusing on quadratic pairs, defined below. In this setting, all simply connected
(resp. adjoint) semisimple groups of type Dn, n ≥ 5, are, up to isomorphism, the
spin (resp. projective orthogonal group) of an Azumaya algebra with a quadratic
pair, [CF, 8.4.0.62, 8.4.0.63].

Our work includes the commonly excluded case of fields of characteristic 2, and
more: it also includes the cases when 2 is neither invertible nor 0. To illustrate some
complications which this causes, let us consider the special case A = EndR(M),
where M is a locally free R–module of constant even rank, equipped with a reg-
ular quadratic form q, and let σ be the associated adjoint involution, see 2.1 for
explanation. The Dickson homomorphism associates with (M, q) a quadratic étale
R–algebra. This assignment is highly non-injective. Hence, one cannot expect the
theory of regular quadratic forms to be any simpler than that of quadratic étale
R–algebras. But already the theory of quadratic étale algebras over arbitrary R is
quite involved. They are classified by the étale cohomology set H1

ét(R,Z/2Z). If
2 is invertible, one can use Kummer theory to describe this group, while if 2 = 0
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one needs Artin-Schreier theory to describe it. Both cases are subsumed by Water-
house’s intricate theory for general R, developed in [W]. Another instance covered
by our setting is that of quadratic forms over the integers.

We will use the following conventions as in [CF] which differ from those in
[KMRT]. An involution on a central simple algebra is orthogonal if after exten-
sion to a splitting field it is adjoint to regular symmetric bilinear form, it is called
weakly-symplectic if the bilinear form is skew-symmetric, and called symplectic if
the bilinear form is alternating. Note that in characteristic 2 any involution is
simultaneously orthogonal and weakly-symplectic.

Previously, working over fields of arbitrary characteristic, all semisimple groups
of type Dn with n �= 4 have been constructed by Tits in [Ti] using a more general
notion of quadratic form. His approach was generalized by the authors of The Book
of Involutions [KMRT] who introduced the more flexible concept of a quadratic pair.

Let A be a central simple F–algebra. A quadratic pair on A is a pair (σ, f) where
σ is an orthogonal involution and f is a linear function f : Sym(A, σ) → F, called
a semi-trace, on the symmetric elements of A (those a ∈ A satisfying σ(a) = a),
such that f(a + σ(a)) = TrdA(a) for all a ∈ A. Here TrdA denotes the reduced
trace of A, a notation we will also use later for Azumaya algebras over a scheme.
For example, any � ∈ A satisfying � + σ(�) = 1 gives rise to a quadratic pair (σ, f)
by putting f = TrdA(� )|Sym(A,σ). Conversely, any quadratic pair (σ, f) is of this
type by [KMRT, 5.7]. Note that if one works in a context where 2 is invertible,
then such an f exists and is unique, in particular f = 1

2 TrdA( ).
The notion of quadratic pairs was extended by Calmès and Fasel [CF] from the

setting of central simple algebras over a field, to the setting of Azumaya algebras
over a scheme S. Their notion of a quadratic pair, and its resulting properties,
is parallel to the concept over fields. In this generalized setting, objects such as
algebras, groups, bilinear forms, etc., are sheaves or maps of sheaves on the (big)
fppf site SchS . Modules and algebras will be with respect to the global sections
functor O : SchS → Ab sending T ∈ SchS to Γ(T,OT ).

In this work, we address the following natural questions which were not asked
in [CF].

(i) Given an Azumaya O–algebra with orthogonal involution (A, σ) over the
base scheme S, does there exist a quadratic pair (σ, f) on A?

(ii) If there is such a pair involving σ, how many are there? In particular, is
there a classification of such pairs?

The answer to these questions goes as follows. We denote by SymdA,σ the sheaf-
theoretic image of Id +σ : A → A and we denote by A�tA,σ the sheaf-theoretic
image of Id−σ : A → A. The map Id +σ then descends to a well-defined map
ξ : A/A�tA,σ → SymdA,σ. Lemma 3.14 shows that a necessary condition for σ to be
in a quadratic pair is that 1A ∈ SymdA,σ(S). We call σ a locally quadratic involution
when this is satisfied. We then give the following classification in Theorem 3.18.

Theorem A. Let (A, σ) be an Azumaya O–algebra with locally quadratic involu-
tion. Then, there is a bijection

{
f such that (σ, f) is

a quadratic pair on A

}
↔ ξ(S)−1(1A).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

QUADRATIC PAIRS 7201

This answers question (ii). Question (i) we answer with cohomological obstruc-
tions. We consider the diagram with exact rows

0 SkewA,σ A SymdA,σ 0

0 SkewA,σ/A�tA,σ A/A�tA,σ SymdA,σ 0

Id +σ

ξ

where SkewA,σ is the kernel of Id +σ : A → A. Taking a portion of the long exact
cohomology sequence we have connecting morphisms into Čech cohomology

SymdA,σ(S) Ȟ1(S,SkewA,σ)

SymdA,σ(S) Ȟ1(S,SkewA,σ/A�tA,σ)

δ

δ′

For a locally quadratic involution we define the weak obstruction δ′(1A) = ω(A, σ) ∈
H1(S,SkewA,σ/A�tA,σ), and the strong obstruction δ(1A) = Ω(A, σ) ∈
H1(S,SkewA,σ). We show in Theorem 5.2:

Theorem B. Let (A, σ) be an Azumaya O–algebra with a locally quadratic invo-
lution.

(i) There exists a linear map f : A → O such that (σ, f |SymA,σ
) is a quadratic

pair on A if and only if Ω(A, σ) = 0. In this case f = TrdA(� ) for an
element � ∈ A(S) with � + σ(�) = 1.

(ii) There exists a linear map f : SymA,σ → O such that (σ, f) is a quadratic
pair on A if and only if ω(A, σ) = 0.

This result is independent of any characteristic assumptions, however these ob-
structions are both trivial if 2 is invertible. Therefore, the interest of this theory is
when one works without that assumption. Furthermore, these obstructions capture
global phenomenon, since locally, for instance over an affine scheme, both obstruc-
tions are zero. We prove in Section 6 that these obstructions are non-trivial in
general.

In the sequel to this paper, [GNR], we will use the results of this paper to establish
an equivalence between the groupoids of adjoint semisimple groups of type A1×A1
and of type D2 over a scheme S, extending [KMRT, 15.7].

Contents. In Section 1 we review the technicalities of our sheaf point of view.
Section 2 reviews the notion of bilinear and quadratic forms on O–modules, in par-
ticular introducing the adjoint anti-automorphism associated with a regular bilinear
form. Such adjoint anti-automorphisms are actually involutions when the bilinear
form is suitably symmetric.

Section 3 defines quadratic pairs, gives examples, and describes procedures for
constructing quadratic pairs. In the case when σ is adjoint to a regular symmet-
ric bilinear form b, Proposition 3.4 connects the existence of a quadratic pair on
(EndO(M), σ) to the existence of a quadratic form whose polar form is b. The
second half of Section 3 contains the proof of Theorem A.

Section 4 is the generalization of [KMRT, 5.18, 5.20], which deals with quadratic
pairs on tensor products of algebras with involution.
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Section 5 introduces the strong and weak obstructions and culminates in the
proof of Theorem B.

Finally, Section 6 contains various examples of Azumaya algebras with locally
quadratic involutions such that their obstructions are non-trivial. In Section 6.1
we construct an Azumaya algebra with quadratic pair, and therefore trivial weak
obstruction, which we show in Lemma 6.2 has non-trivial strong obstruction. Ad-
ditionally, in Section 6.4 we construct a quaternion algebra with orthogonal invo-
lution which by Lemma 6.5 has non-trivial weak obstruction, and therefore also
non-trivial strong obstruction. The two previous examples are constructed over a
field of characteristic 2. In Section 6.7 we construct an example of a locally qua-
dratic quaternion algebra and show in Lemmas 6.8 and 6.9 that both obstructions
are non-trivial while the obstructions of the base change to Spec(F2) are both triv-
ial. This demonstrates that considering schemes where 2 is neither invertible nor
zero is an important part of the theory.

1. Preliminaries

Throughout this paper S is a scheme with structure sheaf OS . Following the
style of [CF], we consider “objects over S” as sheaves on the category of schemes
over S equipped with the fppf topology. Below, we explain this viewpoint for the
notions that are most important for this paper.

1.1. The site SchS. Let SchS be the big fppf site of S as in [SGA3, Exposé IV].
Recall that its objects are schemes with structure morphism T → S and a cover
of some T ∈ SchS is a family {Ti → T}i∈I of flat morphisms which are locally of
finite presentation and are jointly surjective. When considering a cover, we will use
the notation Tij = Ti ×T Tj for i, j ∈ I. When a scheme is affine we will usually
denote it by U , and so an affine cover will usually be written {Ui → T}i∈I with
Uij = Ui ×T Uj for i, j ∈ I. We warn that Uij may not be affine since T need not
be separated.

Remark 1.2. In [St, Tag 021S], the Stacks project authors introduce “a” big fppf
site of S, instead of “the”. They do so because of set theoretic nuances avoided in
[SGA3] through the use of universes. We also avoid such difficulties and work with
“the” big fppf site.

If F is any sheaf on SchS and T ∈ SchS , we denote by F|T the restriction of
the sheaf to the site SchS/T = SchT . We use the same notation for the restriction
of elements, namely if f : V → T is a morphism in SchS and t ∈ F(T ), then we
write t|V = F(f)(t). If we have multiple morphisms between V and T , we may
write t|f for F(f)(t). This overlap of notation is borrowed from [St]. Since these
operations apply only to sheaves or sections respectively, the meaning of restriction
will be clear from the context.

1.3. Cohomologies. We will make use of the first non-abelian cohomology set
for sheaves of groups on SchS . However, there are various relevant cohomology
theories whose H1 are isomorphic. We clarify this now.

First, recall from the discussion before [M, III.4.5] that for a sheaf of groups
G : SchS → Grp and T ∈ SchS , the first Čech cohomology is

Ȟ1(T,G) = colim
U={Ti→T}i∈I

Ȟ1(U ,G),
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where the colimit is over fppf covers of T . The Čech cohomology relative to a cover
is

Ȟ1(U ,G) = {(gij)i,j∈I ∈
∏
i,j∈I

G(Tij) | (gij |Tijk
)(gjk|Tijk

) = (gik|Tijk
)}/ ∼,

where the equivalence relation ∼ says that cocycles (gij)i,j∈I and (g′ij)i,j∈I

are cohomologous if there exists (hk) ∈
∏

k∈I G(Tk) such that we have g′ij =
(hi|Tij

)gij(hj |Tij
)−1. This is a pointed set with distinguished element [(1)i,j∈I ].

Lemma 1.4 describes the connecting morphism for this cohomology.

Lemma 1.4 ([M, III.4.5]). Let 1 → G′ → G π→ G′′ → 1 be an exact sequence of
sheaves of groups on SchS. Then, there is an exact sequence of pointed sets

1 → G′(S) → G(S) → G′′(S) δ̌−→ Ȟ1(S,G′) → Ȟ1(S,G) → Ȟ1(S,G′′),

where δ̌(g′′) =
[(

(gi|Tij
)−1(gj |Tij

)
)
i,j∈I

]
for a section g′′ ∈ G′′(S) and any cover

U = {Ti → S}i∈I and elements gi ∈ G(Ti) such that π(gi) = g′′|Ti
.

When this is applied to an exact sequence of abelian sheaves 0 → F ′ → F →
F ′′ → 0 we will write δ̌(f ′′) = [(fj |Tij

− fi|Tij
)i,j∈I ].

Second, we have the non-abelian cohomology of Giraud. Definition [Gir, III.2.4.2]
interpreted in our setting defines H1(S,G) to be the set of isomorphism classes of
G–torsors for the fppf site on SchS . It is also a pointed set with base point given
by the class of the trivial torsor. There is similarly a connecting morphism for this
cohomology.

Lemma 1.5 ([Gir, III.3.1.3, III.3.3.1]). Let 1 → G′ → G π→ G′′ → 1 be an exact
sequence of sheaves of groups on SchS. Then, there is an exact sequence of
pointed sets

1 → G′(S) → G(S) → G′′(S) δ−→ H1(S,G′) → H1(S,G) → H1(S,G′′),

where δ(g′′) = [π−1(g′′)] for any g′′ ∈ G′′(S). Here, by π−1(g′′) we mean the
subsheaf of G given by

π−1(g′′) : SchS �→ Sets,

T �→ π(T )−1(g′′|T ).

Since π−1(g′′) is a coset of the subgroup G′ in the group G, there is a natural
simply transitive action of G′ on π−1(g′′). By surjectivity of G → G′′, there will
be a cover over which π−1(g′′) is non-empty. Therefore, it is in fact a G′–torsor
and so its isomorphism class is in H1(S,G′) as claimed. The maps between the
cohomology sets are induced from the corresponding map between groups via the
contracted product construction of [Gir, III.1.3].

Despite not being a long exact cohomology sequence in the true sense since the
groups may be non-abelian, we will nonetheless refer to the exact sequences in
Lemmas 1.4 and 1.5 as long exact sequences.

By [Gir, III.3.6.4, III.3.6.5] (or by [M, III.4.6] where the inverse map is con-
structed) there is an isomorphism of pointed sets Ȟ1(S,G) ∼−→ H1(S,G), and it
is easy to see that this isomorphism is compatible with the connecting morphisms
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described above. In particular the diagram

G′′(S) Ȟ1(S,G)

G′′(S) H1(S,G)

δ̌

∼

δ

commutes. Because of this, we will simply use δ to denote both connecting mor-
phisms.

Finally, we note that when dealing with an abelian sheaf F : SchS → Ab, there is
also the derived functor cohomology as in [St, 01FT], which we denote H1

fppf(S,F).
By [M, III, 2.10], there is an isomorphism H1

fppf(T,F) ∼= Ȟ1(T,F).

1.6. O–modules. By [St, Tag 03DU], the contravariant functor

O : SchS → Rings,

T �→ OT (T ),

where Rings is the category of commutative rings, is an fppf-sheaf on SchS , making
(SchS ,O) a ringed site in the sense of [St, Tag 03AD]. We call O the structure sheaf.
If T → S is an open immersion, then O(T ) = OS(T ). From [St, Tag 03CW], an
O–module is then an fppf-sheaf M : SchS → Ab together with a map of sheaves

O ×M → M

such that for each T ∈ SchS , the map O(T )×M(T ) → M(T ) makes M(T ) a usual
O(T )–module. Given two O–modules M and N , their internal homomorphism
functor

HomO(M,N ) : SchS → Ab,

T �→ HomO|T (M|T ,N|T )

is another O–module by [St, 03EM].
We refer to [St, Tags 03DE, 03DL] for definitions of various properties of O–

modules. In particular, we will make use of modules which are locally free and/or
of finite type, therefore we present these definitions for the convenience of the reader.

An O–module M is called locally free if for all T ∈ SchS , there is a covering
{Ti → T}i∈I such that for each i ∈ I, the restriction M|Ti

is a free O|Ti
–module.

Explicitly, M|Ti
∼=
⊕

j∈Ji
O|Ti

for some index set Ji. If all Ji have the same
cardinality then M has constant rank |Ji|. A locally free O–module of constant rank
1 is called a line bundle. Isomorphism classes of line bundles form a group under
tensor product, denoted Pic(S). Since the category of line bundles is equivalent
to the category of Gm–torsors over S [CF, prop. 2.4.3.1], the group Pic(S) is
isomorphic to the group H1(S,Gm). It is also isomorphic to the group H1

Zar(S,Gm)
because Gm–torsors are locally trivial for the Zariski topology.

An O–module M is called of finite type if for all T ∈ SchS , there is a covering
{Ti → T}i∈I such that for each i ∈ I, the restriction M|Ti

is an O|Ti
–module which

is generated by finitely many global sections. That is, there exists a surjection of
O|Ti

–modules O⊕ni → M for some ni ∈ N.
An O–module M is called of finite presentation if for all T ∈ SchS , there

is a covering {Ti → T}i∈I such that for each i ∈ I, the restriction M|Ti
is an
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O|Ti
–module which has a finite global presentation. That is, there exists an exact

sequence of O|Ti
–modules⊕

j∈Ji

O|Ti
→
⊕
k∈Ki

O|Ti
→ E|Ti

→ 0

for some finite index sets Ji and Ki.
We will use the terminology finite locally free to mean locally free and of finite

type. Since S ∈ SchS is a final object, [St, Tag 03DN] applies and it suffices for
us to check local conditions, such as the three detailed above or quasi-coherence
detailed below, for an fppf-covering of S.

We call an O–submodule N ⊂ M a direct summand of M if there exists another
O–module N ′ such that M = N ⊕N ′. We say that N is locally a direct summand
if there exists a cover {Ti → S}i∈I such that each N|Ti

is a direct summand of
M|Ti

.
We associate with an endomorphism σ of an O–module M satisfying σ2 = IdM

the following O–modules:

SymM,σ = Ker(Id−σ) (symmetric elements),
A�tM,σ = Im(Id−σ) (alternating elements),

SkewM,σ = Ker(Id+σ) (skew-symmetric elements),
SymdM,σ = Im(Id +σ) (symmetrized elements),

where Im( ) is the image fppf-sheaf. Since A�tM,σ ⊆ SkewA,σ, the map Id +σ
descends to a well-defined map ξ : M/A�tM,σ → SymdM,σ. We then have a large
diagram with exact rows and columns which we reference later in Sections 3 and 5.

(1.6.1)

0 0

0 A�tM,σ A�tM,σ 0

0 SkewM,σ M SymdM,σ 0

0 SkewM,σ/A�tM,σ M/A�tM,σ SymdM,σ 0

0 0 0

Id +σ

ξ

1.7. Quasi-coherent modules. From [St, Tag 03DK], an O–module E is called
quasi-coherent if for all T ∈ SchS there is a covering {Ti → T}i∈I such that for
each i ∈ I, E|Ti

has a global presentation. That is there is an exact sequence of
O|Ti

–modules ⊕
j∈Ji

O|Ti
→
⊕
k∈Ki

O|Ti
→ E|Ti

→ 0

for some index sets Ji and Ki. Thanks to [St, Tag 03OJ], in our context the
classical notion of a quasi-coherent sheaf on S and the notion of a quasi-coherent
O–module are essentially equivalent. Given an O–module M we denote by Msmall
its restriction to the small Zariski site of S, which gives a classical OS–module
on the open subsets of S. If E is a quasi-coherent O–module, then Esmall is a
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classical quasi-coherent OS–module. Conversely, given a classical quasi-coherent
OS–module E on the small Zariski site, we define

Efppf : SchS → Ab,

(f : T → S) �→ f∗(E)(T )

which is a quasi-coherent O–module on the big fppf site. By [St, Tag 03DX] (where
they use the notation Ea for Efppf), this provides an equivalence of categories
between the category of classical quasi-coherent OS–modules and the category of
quasi-coherent O–modules. However, we warn that this equivalence does not extend
to the categories of all modules. In particular, there exists O–modules M which
are not quasi-coherent but for which Msmall is quasi-coherent. Of course then
(Msmall)fppf �∼= M. Some examples are mentioned in Example 1.10.

We also consider the dual of a quasi-coherent O–module E , defined to be E∨ =
HomO(E ,O). The functor E∨ is represented by the affine S–scheme V(E) =
Spec

(
Sym•(Esmall)

)
by [SGA3, I, 4.6.3.1]. If Esmall is of finite type, then V(E)

is of finite type as an S–scheme, [EGA-I, I, 9.4.11].
If E is finite locally free, then so is End(E) = HomO(E , E) ∼= E∨ ⊗O E . As

in [EGA-I, I, 9.6.2], we view its associated scheme V
(
End(E)

)
as an S–scheme of

unital associative algebras. Moreover, the functor
GL(E) : SchS → Grp,

T �→ AutO|T (E|T )

is representable by an open S–subscheme of V
(
End(E)

)
, denoted GL(E) [EGA-I, I,

9.6.4].
A convenient property of quasi-coherent O–modules and kernels of morphisms

between such modules is that their cohomology vanishes on affine schemes.

Lemma 1.8. Let M be a quasi-coherent O–module and U ∈ SchS an affine
scheme. Let i > 0.

(i) We have Hi
fppf(U,M) = 0.

(ii) Let ϕ : M → M′ be a morphism between two O–modules and let K be its
kernel. If M′ is also quasi-coherent, then Hi

fppf(U,K) = 0.

Proof. (i) Since quasi-coherence is a local property, M|U is also quasi-coherent, and
therefore corresponds to a small quasi-coherent module (M|U )small on U . Then,
since

(
(M|U )small

)
fppf

∼−→ M|U we may apply [St, Tag 03P2] which says that

Hi
fppf(U,M|U ) = Hi(U, (M|U )small),

where the right hand side is the usual sheaf cohomology. However, since U is affine,
[St, Tag 01XB] says that the right hand side is zero, and therefore

Hi
fppf(U,M) = Hi

fppf(U,M|U ) = 0
as claimed.
(ii) Since we may first restrict to the affine scheme U , we may assume S is affine. By
definition, for a scheme T ∈ SchS , we have that K(T ) is the kernel of ϕ(T ) : M(T )
→ M′(T ). In particular, Ksmall is the kernel of the related morphism ϕsmall : Msmall
→ M′

small between small quasi-coherent OS–modules. Therefore, as is well-known,
for example by [GW, 7.19(1)], Ksmall is a quasi-coherent OS–module also. Going
back up to the big fppf site, we obtain a quasi-coherent O–module K′ = (Ksmall)fppf .
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Here, we briefly use the small flat site over S, denoted by Sfppf . It is the site
whose underlying category consists of schemes over S whose structure morphism is
flat and locally of finite presentation, morphisms are also flat and locally of finite
presentation, and where the covers are fppf covers as usual. Note, this subcategory
Sfppf ⊂ SchS satisfies the assumption of [M, III.3.1]. As in [M], we have a morphism
of sites f : SchS → Sfppf induced by the identity on S, alternatively, induced by
the inclusion functor Sfppf → SchS of the underlying categories. One can compute
that for a sheaf F on SchS the pushforward f∗(F) is simply the restriction of the
sheaf to objects in Sfppf .

We claim that there is an isomorphism f∗(K) ∼−→ f∗(K′), i.e., that these sheaves
are isomorphic on the small flat site. For a flat morphism g : S′ → S, as a spe-
cial case of [GW, (7.18.1)], we know that the pullback functor g∗ : QCoh(OS) →
QCoh(OS′) is exact. Therefore, the small quasi-coherent OS′–module g∗(Ksmall) is
the kernel of the morphism g∗(Msmall) → g∗(M′

small). However, the global sections
of this morphism are canonically isomorphic to the morphism M(S′) → M′(S′),
and therefore

K′(S′) = g∗(Ksmall)(S′) ∼−→ K(S′)
as claimed.

Now we apply [M, III.3.1]. Denoting cohomology on the small flat site by Hi
sfppf ,

we have

Hi
fppf(S,K) ∼←− Hi

sfppf(S, f∗(K)) ∼←− Hi
sfppf(S, f∗(K′)) ∼−→ Hi

fppf(S,K′),

where the middle isomorphism follows from the paragraph above. But now K′ is
a quasi-coherent O–module and we have assumed S is affine, so all these sets are
zero by (i). Hence, going back to the original affine U ∈ SchS , we conclude that
Hi

fppf(U,K) = 0 as desired. �

Remark 1.9. In the classical situation, the inclusion functor QCoh(OS) → Mod(OS)
from small quasi-coherent sheaves into OS–modules is exact and thus preserves ker-
nels. However, on the fppf site the inclusion functor QCohO → ModO from quasi-
coherent O–modules into all O–modules is no longer exact. Of course, QCohO is
an abelian category because it is equivalent to QCoh(OS) by [St, Tag 03DX]. Given
a morphism ϕ : M1 → M2 in QCohO, the kernel with respect to the abelian cate-
gory structure will be Kfppf where K = Ker(ϕsmall : (M1)small → (M2)small) is the
kernel of the morphism between the classical quasi-coherent modules in QCoh(OS).
However, the kernel of ϕ computed just as a morphism of O–modules may differ
from Kfppf . In particular, there are examples where the module kernel of a mor-
phism between two quasi-coherent O–modules is not quasi-coherent, see Example
1.10. This motivates our wording in Lemma 1.8(ii).

Given a quasi-coherent O–module M and σ ∈ EndO(M) of order 2, we will
apply Lemma 1.8 to the O–modules SymM,σ and SkewM,σ, which are kernels of
a morphism M → M. They are not quasi-coherent in general, as Example 1.10
shows.

Example 1.10. Let S = Spec(Z) and consider the split quaternion algebra M2(O).
We equip this with the orthogonal involution σ given by

σ

([
a b
c d

])
=
[
d b
c a

]
.
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Then, the submodule SkewM2(O),σ is the kernel of the morphism Id+σ : M2(O) →
M2(O) between quasi-coherent O–modules, however for T ∈ SchS

SkewM2(O),σ(T ) =
{[

a b
c −a

]
| a, b, c ∈ O(T ) and 2b = 2c = 0

}
.

If SkewM2(O),σ were quasi-coherent, then by first using the equivalence of categories
[St, Tag 0GZU] to restrict to the category of affine schemes over S and then applying
[St, Tag 0GZV (1) ⇔ (7)], we would have an isomorphism

SkewM2(O),σ(Spec(Z)) ⊗Z F2
∼−→ SkewM2(O),σ(Spec(F2))

coming from the morphism Spec(F2) → Spec(Z). However, the left hand side is a
1–dimensional F2–vector space, while the right hand side is a 3–dimensional F2–
vector space, so this cannot happen. Hence, SkewM2(O),σ is not a quasi-coherent
O–module on SchS . Using the notation of Remark 1.9 with ϕ = Id +σ, in this case
we would have

Kfppf(T ) =
{[

a 0
0 −a

]
| a ∈ O(T )

}
.

1.11. O–algebras. An O–module B : SchS → nc−Rings from SchS to the cate-
gory of all (not necessarily commutative) rings such that each B(T ) is an O(T )–
algebra will be called an O–algebra. We call it unital, associative, commutative,
etc., if each B(T ) is so. If B is a unital associative O–algebra which is finite locally
free, then the functor of invertible elements

GL1,B : SchS → Grp,

T �→ B(T )×

is representable by an affine S-group scheme [CF, 2.4.2.1]. A section u ∈ GL1,B(S)
induces an inner automorphism of B, denoted Inn(u) which is given on B(T ) by
b �→ u|T · b · u|−1

T . If B is a separable O–algebra which is locally free of finite type,
then GL1,B is a reductive S–group scheme [CF, 3.1.0.50]. We also use the notation
GL1,O = O× = Gm.

1.12. Azumaya algebras. A key object of our interest is an Azumaya O–algebra.
First, we recall that over a commutative ring R, an Azumaya R–algebra is a central
separable R–algebra. Equivalently, the sandwich map

Sand: A⊗R Aop → EndR(A),
a⊗ b �→ (x �→ axb)

is an isomorphism. For separable and Azumaya algebras over rings (equivalently,
over affine schemes) we refer to [Fo] or [Knu, III §5]. Following [Gro, 5.1], we
consider an Azumaya O–algebra, or simply an Azumaya algebra, to be a finite
locally free O–algebra A such that the sandwich morphism

Sand: A⊗O Aop → EndO(A)

is an isomorphism. This is equivalent to the definition of [CF, 2.5.3.4], which asks
that A be finite locally free and that for all affine schemes U ∈ SchS , we have that
A(U) is an Azumaya O(U)–algebra.

By [CF, 2.5.3.6], the rank, viewed as a locally constant integer valued function,
of an Azumaya algebra is always square. Following [CF, 2.5.3.7] we call the square
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root of an Azumaya algebra’s rank the degree of the algebra. It is a locally constant
integer valued function.

Azumaya algebras of the form EndO(M), where M is a locally free O–module
of finite positive rank, will be called neutral algebras.

Given any Azumaya algebra A, it is locally isomorphic to matrix algebras, cf.
[CF, 2.5.3.8]. Furthermore, it has a unique linear map TrdA : A → O, called
the reduced trace of A, which agrees with the usual trace locally wherever A is
isomorphic to a matrix algebra, see [CF, 2.5.3.15].

2. Azumaya algebras with involutions

2.1. Basic concepts of bilinear forms. We recall some concepts from [CF, 2.6].
A bilinear form is a pair (M, b) consisting of a finite locally free O–module M
and a bilinear morphism b : M×M → O of O–modules, equivalently, a morphism
M → M∨ of O–modules. Given b, the associated map φb : M → M∨ is defined
over T ∈ SchS on m ∈ M(T ) to be the map which is

φb(m) : M(V ) → O(V ),
m′ �→ b(m|V ,m′)

over V ∈ SchT . We summarize this by writing φb(m) = b(m, ). A bilinear form
(M, b) is called regular if φb is an isomorphism. If for all T ∈ SchS and all sections
x, y ∈ M(T ) we have b(x, y) = b(y, x) we call b symmetric, if b(x, y) = −b(y, x) we
call b skew-symmetric, and if b(x, x) = 0 we call b alternating.

We associate with a regular bilinear form (M, b) the so-called adjoint anti-
automorphism ηb : EndO(M) → EndO(M), defined on a ∈ EndO(M)(T ) by

ηb(a) := φb|−1
T ◦ a∨ ◦ φb|T : M|T

φb|T−−−→ M∨|T a∨
−−→ M∨|T

φb|−1
T−−−→ M|T ,

where a∨ is the dual endomorphism of a. Thus, on sections m1,m2 ∈ M(V ) for
V ∈ SchT and a ∈ EndO(M)(T ) we have

(2.1.1) b
(
ηb(a)(m1),m2

)
= b
(
m1, a(m2)

)
.

If M is locally free of finite positive rank, ηb is an involution if and only if there
exists ε ∈ μ2(S) such that b(m1,m2) = ε|T · b(m2,m1) for all T ∈ SchS and
m1,m2 ∈ M(T ). In this case, ε is unique and we call it the type of ηb.

Let (M, b) be a regular bilinear form. Since M⊗O M∨ ∼= EndO(M) we have an
O–module isomorphism

(2.1.2) ϕb : M⊗O M ∼−→ EndO(M),

defined by m1⊗m2 �→
(
m �→ m1|V ·b(m2|V ,m)

)
for sections m1,m2 over T ∈ SchS

and m over V ∈ SchT . If ηb is an involution of type ε, its pullback to M⊗O M is
the “ε-switch”:

(2.1.3) ηb
(
ϕb(m1 ⊗m2)

)
= ε|T · ϕb(m2 ⊗m1).

A quadratic form is a pair (M, q) where M is a finite locally free O–module,
q : M → O is quadratic with respect to scalar multiplication, and the associated
polar form bq : M× M → O, defined on sections by bq(m1,m2) = q(m1 + m2) −
q(m1) − q(m2), is bilinear. We say that (M, q) is regular if (M, bq) is so.
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Let b : M×M → O be a bilinear form. For a submodule N ⊂ M, its orthogonal
complement is another O–submodule of M, denoted N⊥ : SchS → Ab, given over
T ∈ SchS by

N⊥(T ) = {a ∈ M(T ) | b(a|V ,m) = 0, ∀V ∈ SchT , ∀m ∈ M(V )}.

Lemma 2.2. Let M be a finite locally free O–module and let b : M×M → O be
a regular bilinear form. Let N ⊆ M be an O–submodule which is locally a direct
summand of M. Then, the orthogonal complement N⊥ is also locally a direct
summand of M. In particular, it is finite locally free. In addition,

rank(M) = rank(N ) + rank(N⊥).

Proof. This is the global version of [Kne, I,§2 Prop. 1]. We include a proof for the
convenience of the reader.

First, choose a cover {Ti → S}i∈I over which M|Ti
= N|Ti

⊕Pi for some O|Ti
–

modules Pi. Being direct summands of a finite locally free O|Ti
–module, both N|Ti

and Pi are also finite locally free. Thus, by refining our cover if necessary, we may
assume that all modules involved are free. Let {n1, . . . , nk} be a free basis of N|Ti

and let {p1, . . . , p�} be a free basis of Pi. Let {n∗
1, . . . , n

∗
k, p

∗
1, . . . , p

∗
�} be a dual basis

of M|∗Ti
. Since b is a regular bilinear form, each p∗j = b(p′j , ) for some p′j ∈ M(Ti).

It is then clear from the properties of a dual basis that
(N|Ti

)⊥ = SpanO({p′1, . . . , p′�}).
In particular, (N|Ti

)⊥ = φ−1
b (SpanO({p∗1, . . . , p∗�})), and thus

M|Ti
= φ−1

b (SpanO({n∗
1, . . . , n

∗
k})) ⊕ (N|Ti

)⊥.

Since (N⊥)|Ti
= (N|Ti

)⊥, this shows that N⊥ is also locally a direct summand of
M, as claimed.

Regarding the claim about ranks, it is clear from the discussion above that locally
we have rank((M⊥)|Ti

) = rank(Pi) and therefore

rank(M|Ti
) = rank(N|Ti

) + rank((N⊥)|Ti
).

Since this holds locally, it holds globally as well. This finishes the proof. �

A particularly useful example of a regular bilinear form on a finite locally free
O–module is the trace form of an Azumaya algebra. If A is an Azumaya O–algebra,
then the trace form

A×A → O,

(a, b) �→ TrdA(ab)

is a regular bilinear form by [CF, 2.5.3.16] (the statement in [CF] is only for even
degree algebras, but the proof holds for algebras of any degree).

2.3. Involutions of Azumaya algebras. We use the conventions of [CF], which
are slightly different from those of [KMRT] in the case of base fields. The advantage
of Calmès-Fasel’s definitions are that they behave well under arbitrary base change.

Let A be an Azumaya O–algebra. An involution of the first kind is an anti-
isomorphism σ : A → A of Azumaya algebras which satisfies σ2 = IdA. We say
that two involutions σ and σ′ are conjugate if there exists φ ∈ AutO(A) such that
σ′ = φ ◦ σ ◦ φ−1. In that case we have SymA,σ′ = φ(SymA,σ) and similarly for
the other O–modules A�tA,σ, SkewA,σ and SymdA,σ. The reduced trace of A is
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invariant under any involution by [CF, 2.7.0.28], i.e., TrdA(σ(a)) = TrdA(a) for
any involution σ on A and all sections a ∈ A.

An Azumaya algebra with involution of the first kind (A, σ) is étale-locally iso-
morphic to

(
EndO(M), ηb

)
for some regular bilinear form (M, b) [CF, 2.7.0.25].

Thus, since the localization of σ is still an involution, the bilinear form b is ε–
symmetric for some ε ∈ μ2(S). It is known that ε only depends on σ. Following
[CF, 2.7.0.26] (and not [KMRT]), we call σ orthogonal if ε = 1 (so b is symmetric),
we call it weakly symplectic if ε = −1 (so b is skew-symmetric), and we call it
symplectic if ε = −1 and b is alternating. These notions are well-defined, stable
under base change, and are local for the fppf topology on SchS .

Let (A, σ) be an Azumaya O–algebra with orthogonal involution. We mention
some basic facts about the submodules of A related to σ.

Lemma 2.4. Let (A, σ) be an Azumaya O–algebra with orthogonal involution σ.
(i) If S is affine, then SymA,σ and A�tA,σ are direct summands of A. In

particular, SymA,σ(S) and A�tA,σ(S) are direct summands of A(S) and
hence are finite projective O(S)–modules.

(ii) SymA,σ and A�tA,σ are locally direct summands of A and hence are finite
locally free O–modules.

(iii) If A is locally free of constant rank n2 ∈ N+, then SymA,σ and A�tA,σ have
rank n(n + 1)/2 and n(n− 1)/2 respectively.

Proof. (i) Over an affine scheme we are considering the case of an Azumaya algebra
with orthogonal involution (A, σ) over a ring R. Being finite projective can be
checked after a faithfully flat extension, and by [EGA-I, 0, 6.7.5] this is also true for
the property of being a direct summand. Therefore, by [CF, 2.7.0.25] we can assume
that (A, σ) ∼= (EndR(M), ηb) where M is free of finite rank and b : M × M → R
is a regular symmetric bilinear form. Thus, as R–modules with involution we have
(A, σ) ∼= (M⊗2, τ ) where τ is the switch. Let {m1, . . . ,mn} be a basis of M . Then
mij = mi ⊗mj is a basis of M⊗2. It follows that

{mii | 1 ≤ i ≤ n} ∪ {mij + mji | 1 ≤ i < j ≤ n}

is a basis of Sym(M⊗2, τ ), while

{mij −mji | 1 ≤ i < j ≤ n}

is a basis for Alt(M⊗2, τ ). Now, observe that Sym(M⊗2, τ ) is complemented by
SpanR({mij | 1 ≤ i < j ≤ n}), while Alt(M⊗2, τ ) is complemented by

SpanR({mii | 1 ≤ i ≤ n} ∪ {mij | 1 ≤ i < j ≤ n}),

and so both are direct summands of A.
(ii) This follows from (i) by considering an affine cover of S.
(iii) If A is of constant rank n2, then locally we are in the case of the proof of (i)
above where the basis {m1, . . . ,mn} of M has n elements. Therefore, the basis
given for Sym(A, σ) has n(n+ 1)/2 elements, and the basis given for Alt(A, σ) has
n(n− 1)/2 elements. Thus the ranks of SymA,σ and A�tA,σ are as claimed. �

Some of the results of Lemma 2.4 are proved in [CF, 2.7.0.29(1), (2)] under the
assumption that the bilinear form b appearing in the proof is the polar of a regular
quadratic form, an assumption that is not needed for the result above.
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In particular, since Lemma 2.4 tells us they are finite locally free, SymA,σ and
A�tA,σ are represented by vector group schemes. The reader will have noticed that
the proof of Lemma 2.4 works for an involution of any type ε ∈ μ2(S). For example,
when σ is weakly symplectic and ε = −1, the regular bilinear form b : M ×M → R
will be skew symmetric and induce an isomorphism (A, σ) ∼= (M⊗2,−τ ) of R–
modules with involution. In this case, the same roles are played by SkewA,σ and
SymdA,σ instead.

Corollary 2.5. Let (A, σ) be an Azumaya O–algebra with weakly symplectic in-
volution σ.

(i) If S is affine, then SkewA,σ and SymdA,σ are direct summands of A. In
particular, SkewA,σ(S) and SymdA,σ(S) are direct summands of A(S) and
hence are finite projective O(S)–modules.

(ii) SkewA,σ and SymdA,σ are locally direct summands of A and hence are finite
locally free O–modules.

(iii) If A is locally free of constant rank n2 ∈ N+, then SkewA,σ and SymdA,σ

have rank n(n + 1)/2 and n(n− 1)/2 respectively.

These submodule pairs, SymA,σ and A�tA,σ when σ is orthogonal, and SkewA,σ

and SymdA,σ when σ is weakly symplectic, enjoy convenient orthogonality properties
with respect to the trace form.

Lemma 2.6. Let A be an Azumaya O–algebra. Then the following hold.
(i) Let σ be an involution of the first kind on A. Then,

TrdA(SymA,σ · A�tA,σ) = 0, and
TrdA(SkewA,σ · SymdA,σ) = 0,

by which we mean, for T ∈ SchS and sections x ∈ SymA,σ(T ), y ∈
A�tA,σ(T ) we have TrdA(xy) = 0, and similarly for the second statement.

(ii) If σ is an orthogonal involution on A, then

Sym⊥
A,σ = A�tA,σ and A�t⊥A,σ = SymA,σ.

(iii) If σ is a weakly symplectic involution on A, then

Symd⊥A,σ = SkewA,σ and Skew⊥
A,σ = SymdA,σ.

Proof. (i) Let T ∈ SchS and consider x ∈ SymA,σ(T ) and y ∈ A�tA,σ(T ). After
passing to a cover of T if needed, we may assume y = a− σ(a) for some a ∈ A(T ).
Thus, we have

TrdA(x(a− σ(a)) = TrdA(xa) − TrdA(xσ(a)) = TrdA(xa) − TrdA(aσ(x))
= TrdA(xa) − TrdA(ax) = 0.

The second statement is seen similarly.
(ii) The first statement is [CF, 2.7.0.29(3)], and because of (i), a symmetric argu-
ment produces the second statement.
(iii) In the case when σ is weakly symplectic, SkewA,σ and SymdA,σ are locally direct
summands of A by Corollary 2.5(ii), which also means that Skew⊥

A,σ and Symd⊥A,σ

are finite locally free by Lemma 2.2. Therefore, we may argue as done in [CF] for
the case above. From (i) we have that

SymdA,σ ⊆ Skew⊥
A,σ.
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Over residue fields this will be an equality for dimension reasons because the di-
mensions of SkewA,σ and SymdA,σ will be the same as the ranks given in Corollary
2.5(iii). Thus by Nakayama’s lemma, we will have equality over local rings, and
thus

SymdA,σ = Skew⊥
A,σ

globally. A symmetric argument shows the second claim. �

The trace can also be used to define pairings on SymdA,σ and A�tA,σ by extending
a construction provided by the exercise [KMRT, II, exercise 15].

Lemma 2.7. Let (A, σ) be an Azumaya O–algebra with orthogonal involution.
(i) There is a unique symmetric bilinear form b+ : SymdA,σ × SymdA,σ → O

such that for each affine scheme U ∈ SchS and x, y ∈ A(U), we have
b+
(
(x + σ(x)), (y + σ(y))

)
= TrdA

(
(x + σ(x))y

)
.

(ii) There is a unique symmetric bilinear form b− : A�tA,σ ×A�tA,σ → O such
that for each affine scheme U ∈ SchS and x, y ∈ A(U), we have

b−
(
(x− σ(x)), (y − σ(y))

)
= TrdA

(
(x− σ(x))y

)
.

In addition, this bilinear form is regular.

Proof. (i) We observe first that for each affine scheme U over S and x, y ∈ A(U),
we have TrdA((x + σ(x))y) = TrdA(x(y + σ(y))) since TrdA is invariant under σ.
This implies that b+ is well-defined and also that it is symmetric.
(ii) The fact that b− is well-defined and symmetric is similar to (i). To see that it is
regular, we have to show that the induced map A�tA,σ → A�t∨A,σ is an isomorphism.
Since A�tA,σ is locally free of finite rank, the Nakayama lemma reduces us to the
field case. For all x ∈ Alt(A, σ) and y ∈ A, we have b−

(
x, (y − σ(y))

)
= TrdA(xy).

Since TrdA is regular, the kernel of b− is zero. Thus b− is regular. �

Remark 2.8. The proof of (ii) does not apply in case (i) because SymdA,σ is not
locally free of finite rank. However, b+ is regular over fields.

3. Quadratic pairs

Definition 3.1 (Quadratic pairs). Let (A, σ) be an Azumaya O–algebra with or-
thogonal involution. Following [KMRT, §5B] and [CF, 2.7.0.30], we call (σ, f) a
quadratic pair if f : SymA,σ → O is a linear form satisfying
(3.1.1) f(a + σ(a)) = TrdA(a)
for all T ∈ SchS and every a ∈ A(T ). The linear form f is called a semi-trace and
we call (A, σ, f) a quadratic triple.

Two quadratic triples (A, σ, f) and (A′, σ′, f ′) are called isomorphic if there
exists an isomorphism φ : A → A′ of O–algebras such that σ′ = φ ◦ σ ◦ φ−1 and
f ′ = f ◦ φ−1 (this is well-defined since SymA′,σ′ = φ(SymA,σ)). The notion of a
quadratic triple is stable under arbitrary base change.

Remark 3.2. If (A, σ, f) is a quadratic triple and U ∈ SchS is an affine scheme,
then f(U) �≡ 0. This follows from [Fo, 11.1.6], which states that since A(U) is an
Azumaya O(U)–algebra, there exists a section a ∈ A(U) with TrdA(a) = 1 ∈ O(U).
Then,

f(a + σ(a)) = TrdA(a) �= 0.
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Example 3.3. Let (A, σ) be an Azumaya O–algebra with orthogonal involution.
(a) If (σ, f) is a quadratic pair, then for all T ∈ SchS and s ∈ SymA,σ(T ) we have
that

2f(s) = f(s + σ(s)) = TrdA(s).
Therefore, when 2 ∈ O× there exists a unique f such that (σ, f) is a quadratic pair,
namely f(s) = 1

2 TrdA(s).
(b) Suppose S = Spec(R) where R is an integral domain whose field of fractions
K has characteristic different from 2. If (A, σ) is an Azumaya O–algebra with
orthogonal involution, then there exists at most one linear form f making (σ, f) a
quadratic pair on A. Indeed, this follows from uniqueness in (a) after base change
from S to Spec(K).
(c) Given an element � ∈ A(S) with � + σ(�) = 1, we define f : SymA,σ → O over
T ∈ SchS as

f(T ) : SymA,σ(T ) → O(T ),
s �→ TrdA(�|T · s).

This map is clearly linear, and for an element a + σ(a) ∈ A(T ) we obtain
f(a + σ(a)) = TrdA(�|T · (a + σ(a))) = TrdA((�|T + σ(�|T )) · a) = TrdA(a),

and so (A, σ, f) is a quadratic triple. By Lemma 2.6(ii), the function f is determined
by � up to the addition of an element from A�tA,σ(S), i.e., �1 − �2 ∈ A�tA,σ(S) if
and only if TrdA(�1 ) agrees with TrdA(�2 ) on SymA,σ.
More examples will be discussed in Examples 3.5 and 3.17.

The existence of quadratic pairs is related to quadratic forms. We describe
this in Proposition 3.4 for the neutral Azumaya algebra EndO(M), generalizing
[KMRT, 5.11] for S = Spec(R) where R is a field. Part (i) of 3.4 is stated in
[CF, 2.7.0.31].

Proposition 3.4. Let M be a locally faithfully projective O–module with a regular
symmetric bilinear form b : M × M → O. Thus, EndO(M) is an Azumaya O–
algebra with orthogonal adjoint involution ηb by Section 2. One knows that

ϕb : M⊗O M ∼−→ EndO(M),
defined on sections by m1 ⊗ m2 �→

(
m �→ m1 b(m2,m)

)
, is an isomorphism of

O–modules.
(i) Assume b = bq for a regular quadratic form q. Then, there exists a unique
linear form fq : SymEndO(M),ηb

→ O such that

(3.4.1) (fq ◦ ϕb)(m⊗m) = q(m)

holds for all T ∈ SchS and sections m ∈ M(T ). The pair (ηb, fq) is a quadratic
pair.
(ii) Assume (ηb, f) is a quadratic pair for some f . Then, there exists a unique
quadratic form qf : M → O, defined over T ∈ SchS on sections m ∈ M(T ) by
(3.4.2) qf (m) = (f ◦ ϕb)(m⊗m),

whose polar form is b.
(iii) The involution ηb is part of a quadratic pair on EndO(M) if and only if b is
the polar form of a regular quadratic form.
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Proof. Since in each statement a global function is given, it suffices to check the
claims locally. It is therefore no harm to assume S = Spec(R) and to prove the
lemma in the setting of a faithfully projective R–module M with a regular sym-
metric bilinear form b : M ×M → R.
(i) We assume that b = bq for a regular quadratic form q : M → R and need to
prove that there exists a unique linear form fq : Sym(EndR(M), ηb) → R satisfying
(3.4.1).

The formula ηb
(
ϕb(m1 ⊗ m2)

)
= ϕb(m2 ⊗ m1) is immediate from the defi-

nitions. Hence ϕb induces an isomorphism between the symmetric elements of
(EndR(M), ηb) and those of (M⊗2, τ ) where τ is the “switch”. We claim

(3.4.3) {x ∈ M ⊗R M | τ (x) = x} = SpanR{m⊗m | m ∈ M}.
Indeed, it is obvious that the right-hand side is contained in the left-hand side.
Thus, to prove equality we may localize in a maximal ideal, equivalently, we may
assume that R is a local ring and so M is free. This allows us to consider a free basis
{m1, . . . ,mn} and express x ∈ M⊗2 as x =

∑n
i,j=1 cijmi ⊗mj for some coefficients

cij ∈ R. If τ (x) = x then we must have that cij = cji, and so we may write

x =
n∑

i=1
ciimi ⊗mi +

n∑
i,j=1
i<j

cij(mi ⊗mj + mj ⊗mi).

We see this belongs to the right side of the equality above by noting that

mi ⊗mj + mj ⊗mi = (mi + mj) ⊗ (mi + mj) − (mi ⊗mi) − (mj ⊗mj).

We are now left with proving the existence of a linear form

f̃ : SpanR{m⊗m | m ∈ M} → R, m⊗m �→ q(m).

If f̃ exists as a set map, it is linear and unique by (3.4.3). Thus, the point is to
prove that f̃ is well-defined, i.e.,

(3.4.4)
∑

i mi ⊗mi = 0 =⇒
∑

i q(mi) = 0.

To show (3.4.4) we can again argue by localization and therefore assume that M
is free. But if M is free, we can use the argument in the proof of [KMRT, 5.11]
establishing the existence of f over fields.
(ii) We assume that (ηb, f) is a quadratic pair for the Azumaya R–algebra EndR(M)
and must show that then qf : M → R, defined by (3.4.2) is a quadratic form whose
polar form is b. To do so, we can use the proof of [KMRT, 5.11], which carries over
without any change.
(iii) This summarizes (i) and (ii). �

Example 3.5. We give some further examples. In particular we outline the split
examples in all degrees.
(a) In the setting of Proposition 3.4, a quadratic pair (ηb, f) forces b = bq for a
regular quadratic form q. Hence, if M has odd rank, then necessarily 2 ∈ O×.
(b) Let (M0, q0) = (O2n, q0) where q0 is the split hyperbolic form on O2n defined
on sections by

q0(x1, . . . , x2n) =
n∑

i=1
x2i−1x2i.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7216 P. GILLE, E. NEHER, AND C. RUETHER

It is regular. We let η0 be the associated orthogonal involution of A0 = EndO(M0) =
M2n(O), and denote by f0 the unique linear form on SymA0,η0

satisfying (3.4.1). It is
computed explicitly in the example after [CF, 2.7.0.31]. We will refer to (A0, η0, f0)
as the split example (in degree 2n). We point out that there may be many different
linear forms f making (A0, η0, f) a quadratic triple.
(c) Assume 2 ∈ O× and let (M0, q0) = (O2n+1, q0) where q0 is the split form on
O2n+1 defined on sections by

q0(x1, . . . , x2n+1) =

(
n∑

i=1
x2i−1x2i

)
+ x2

2n+1.

It is regular since 2 is invertible. We let η0 be the associated orthogonal involution
of A0 = EndO(M0) = M2n+1(O). It has a unique linear form on SymA0,η0

, namely
f0 = 1

2 TrdA0 by Example 3.3(a), such that (A0, σ0, f0) is a quadratic triple. We
also refer to this as the split example (in degree 2n + 1).
(d) Other examples are given in [KMRT, 5.12 and 5.13].

Corollary 3.6 ([CF, 2.7.0.32]). Every quadratic triple (A, σ, f) is split étale-
locally.

Proof. By first considering the cover by connected components, we may assume
that A is of constant degree n. If n is odd, then by Example 3.5(a) and Example
3.3(a), we must have 2 ∈ O× and f = 1

2 TrdA,σ. Then there exists an étale cover
over which σ and η0 are isomorphic, which is sufficient since those isomorphisms
will identify f and f0 due to uniqueness.

Now assume n is even. We have already started with [CF, 2.7.0.25]: every qua-
dratic triple is étale-locally of the form (EndO(M), ηb, f) considered in Proposition
3.4. By Proposition 3.4(ii), the regular bilinear form of that lemma is the polar
form of a regular quadratic form q : M → O, given by (3.4.2). By [CF, 2.6.1.13],
after a second étale extension, we can then assume that (M, q) = (M0, q0) as in
Example 3.5(b), and that the linear form is the one of Proposition 3.4(i), i.e., that
the quadratic triple is split. �

Remark 3.7. Corollary 3.6 shows that, if one wishes, it is sufficient to work with
the étale topology on the category SchS . In this paper, our arguments do not
use particular properties of the fppf topology which are not shared with the étale
topology, and so our results still hold in that setting.

Corollary 3.8. Let (A, σ, f) be a quadratic triple. Assume A is of constant rank
n2 ∈ N. Then, we have

f(1A) = n

2
∈ O(S).

Proof. Since A is of constant rank, there will exist a cover {Ti → S}i∈I such that
A|Ti

∼= Mn(O|Ti
) for all i ∈ I. Evaluating locally, where 1A|Ti

is the identity
matrix, we have that 2f |Ti

(1A|Ti
) = TrdMn(O|Ti

)(1A|Ti
) = n, and hence

2f(1A) = n ∈ O(S)

globally as well. If n is odd then 2 ∈ O× and so f(1A) = n
2 makes sense. If n = 2m

is even, we need to argue that f(1A) = m. We may assume by Corollary 3.6 that in
the above argument, the cover was chosen such that it splits the quadratic triple,
and so our local evaluation may be done on the split example. In the calculations
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of f0 following [CF, 2.7.0.31] the authors show that f0(Eii + Ei+1,i+1) = 1, and
therefore it follows immediately that f0(1) = m. �

Example 3.9. In contrast to Example 3.3(a), if 2 /∈ O×, then not every orthogonal
σ is part of a quadratic pair. For example, this is so for S = Spec(R) with 2R =
0 �= R, and the Azumaya O–algebra A = Mn(O) equipped with τ = the transpose
involution. Indeed, we would need that

f(E11 + τ (E11)) = TrdMn(O)(E11) = 1,

however E11 + τ (E11) = 2E11 = 0 and so this cannot happen. Another example
where no f exists is given in Example 4.7.

3.10. Classification of quadratic triples. In light of Example 3.9, we seek to
characterize which orthogonal involutions can participate in a quadratic pair. Fur-
thermore, for a given Azumaya O–algebra with orthogonal involution (A, σ), we
wish to classify all possible such f which make (A, σ, f) a quadratic triple. We first
provide this classification over affine schemes, beginning with the following.

Given a quadratic triple (A, σ, f), it is of the form of Example 3.3(c) exactly
when f can be extended to a linear form on all of A.

Lemma 3.11. Let (A, σ, f) be a quadratic triple. Then, the following are equiv-
alent.

(i) There exists a linear form f ′ : A → O such that f ′|SymA,σ
= f ,

(ii) There exists � ∈ A(S) with � + σ(�) = 1 such that for all T ∈ SchS and
s ∈ SymA,σ(T ), we have

f(s) = TrdA(�|T · s).

Proof. (ii)⇒(i): This implication is clear, see Example 3.3(c).
(i)⇒(ii): We follow the second half of the proof of [CF, 4.2.0.12]. The map f ′ is
of the form f ′ = TrdA(� ) for some � ∈ A(S) due to regularity of the trace form
by Lemma 2.6. Then, for any a ∈ A(S) we have TrdA(�σ(a)) = TrdA(aσ(�)) =
TrdA(σ(�)a) and so

TrdA(a) = f ′(a + σ(a)) = TrdA(�(a + σ(a))) = TrdA((� + σ(�))a).

Hence, � + σ(�) = 1, once again by regularity of the trace form. �

When S is affine, the construction of Example 3.3(c) produces all quadratic
triples and we have the following classification.

Proposition 3.12 (Affine classification). Let S be an affine scheme and let (A, σ)
be an Azumaya O–algebra with orthogonal involution. Consider ξ : A/A�tA,σ →
SymdA,σ from (1.6.1).

(i) Suppose (A, σ, f) is a quadratic triple. Then there exists �f ∈ A(S) such
that �f + σ(�f ) = 1A, and for all T ∈ SchS and s ∈ SymA,σ(T ), we have

f(s) = TrdA(�f |T · s).

In particular, �f + σ(�f ) = 1A means that 1A ∈ SymdA,σ(S).
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(ii) Assume that 1A ∈ SymdA,σ(S). Then, ξ(S)−1(1A) is a non-empty subset
of (A/A�tA,σ)(S) and the map of sets{

f such that (A, σ, f)
is a quadratic triple

}
→ ξ(S)−1(1A),

f �→ �f

is a bijection. In particular, for a given f the element �f is uniquely
determined up to addition by an element of A�tA,σ(S).

(iii) The condition 1A ∈ SymdA,σ(S) is necessary and sufficient for there to be
a quadratic triple extending (A, σ).

Proof. (i) Since S is affine, by Lemma 2.4 we know SymA,σ is a direct summand of
A. Therefore, for any quadratic triple (A, σ, f), the function f may be extended to
A. The result then follows from Lemma 3.11.
(ii) First we show ξ(S)−1(1A) is non-empty. We have a short exact sequence

0 → SkewA,σ → A Id +σ−−−→ SymdA,σ → 0
with associated long exact sequence

0 → SkewA,σ(S) → A(S) → SymdA,σ(S) → H1
fppf(S,SkewA,σ) → . . . .

Since S is affine and SkewA,σ is the kernel of a morphism of quasi-coherent O–
modules, applying Lemma 1.8 gives that H1

fppf(S,SkewA,σ) = 0 and so A(S) →
SymdA,σ(S) is surjective. Hence ξ(S)−1(1A) �= Ø.

Next we show that the map is bijective as claimed. Lemma 1.8 similarly shows
that H1

fppf(S,A�tA,σ) = 0 and so there is a surjection A(S) → (A/A�tA,σ)(S) ∼=
A(S)/A�tA,σ(S).

Let (A, σ, f1) and (A, σ, f2) be two quadratic triples. By (i) we have elements
�f1 , �f2 ∈ A(S) defining the linear forms. If �f1 = �f2 then �f1 − �f2 ∈ A�tA,σ(S),
and so by Lemma 2.6(ii) the maps TrdA(�f1 ) and TrdA(�f2 ) agree on SymA,σ,
i.e., f1 = f2 and so the map in question is injective.

Since A(S) → (A/A�tA,σ)(S) is surjective and by the commutativity of (1.6.1),
every element of ξ(S)−1(1A) is of the form � for some � ∈ A(S) with � + σ(�) = 1.
We may then use Example 3.3(c) to see that f = TrdA(� )|SymA,σ

extends (A, σ) to
a quadratic triple. The process in (i) then produces a possibly different �f ∈ A(S)
such that f = TrdA(�f )|SymA,σ

also. Since this is the same function on SymA,σ,
we use Lemma 2.6(ii) again to see that �− �f ∈ A�tA,σ(S) and so � = �f . Therefore
the map in question is surjective and we are done.
(iii) This follows from (i) and (ii). �

Remark 3.13. When S = Spec(R) is an affine scheme we are dealing with an
Azumaya R–algebra A = A(S) and an orthogonal involution σ(S) on A, which by
abuse of notation we also denote σ. Then, Sym(A, σ) = SymA,σ(S) and a quadratic
triple is given by an R–linear map f : Sym(A, σ) → R satisfying f(a + σ(a)) =
TrdA(a) for all a ∈ A. By Lemma 1.8(ii) implying that H1(S,SymA,σ) = 0 and
H1(S,SkewA,σ) = 0, we know that A(S) → A�tA,σ(S) and A(S) → SymdA,σ(S) are
surjective, thus

Alt(A, σ) = A�tA,σ(S) = {a− σ(a) | a ∈ A},
Symd(A, σ) = SymdA,σ(S) = {a + σ(a) | a ∈ A}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

QUADRATIC PAIRS 7219

Furthermore, since σ is orthogonal, A�tA,σ is finite locally free by Lemma 2.4(ii)
and hence is quasi-coherent, meaning H1(S,A�tA,σ) = 0 as well. This means that
A(S) → (A/A�tA,σ)(S) is surjective and so (A/A�tA,σ)(S) = A/Alt(A, σ). The
map ξ of (1.6.1) behaves over S as

ξ : A/Alt(A, σ) → Symd(A, σ),
a �→ a + σ(a)

which is a well-defined linear map. Then Proposition 3.12 says that any quadratic
triple (A, σ, f) is of the form f = TrdA(� ) for some � ∈ A with � + σ(�) = 1.
Furthermore, having 1 ∈ Symd(A, σ) is sufficient to extend (A, σ) to a quadratic
triple since the preimage ξ−1(1) is non-empty. In this case, all such linear forms
extending (A, σ) are classified by ξ−1(1) ⊆ A/Alt(A, σ). Over fields this recovers
the classification (for fixed σ) given in [KMRT, §5].

By considering an affine open cover, Proposition 3.12(i) recovers [CF, 4.2.0.12],
which states that Zariski locally a quadratic triple is of the form in Example 3.3(c).

Given an Azumaya O–algebra with orthogonal involution (A, σ), Proposition
3.12(iii) states that when S is affine, the condition 1A ∈ SymdA,σ(S) is necessary
and sufficient for there to be a quadratic triple extending (A, σ). We show now
that this condition is necessary in general, however Lemma 6.5 shows that it is no
longer sufficient.

Lemma 3.14. Let (A, σ, f) be a quadratic triple. Then, 1A ∈ SymdA,σ(S).

Proof. We know by Proposition 3.12(i) that for an affine cover {Ui → S}i∈I of S
we have that

f |Ui
= TrdA(�i )

for some �i ∈ A(Ui) with �i + σ(�i) = 1A(Ui). In particular, 1A(Ui) ∈ SymdA,σ(Ui).
Since the elements 1A(Ui) clearly agree on overlaps of the cover {Ui → S}i∈I and
SymdA,σ is a sheaf, we obtain that 1A ∈ SymdA,σ(S). �

Lemma 3.15. Let (A, σ) be an Azumaya O–algebra with orthogonal involution.
Then the following are equivalent.

(i) 1A ∈ SymdA,σ(S)
(ii) For all affine U ∈ SchS, there exists fU : SymA|U ,σ|U → O|U such that

(A|U , σ|U , fU ) is a quadratic triple.
(iii) For all affine open subschemes U ⊆ S, there exists fU : SymA|U ,σ|U → O|U

such that (A|U , σ|U , fU ) is a quadratic triple.
(iv) There exists an fppf cover {Ti → S}i∈I such that for each i ∈ I, there ex-

ists fi : SymA|Ti
,σ|Ti

→ O|Ti
such that (A|Ti

, σ|Ti
, fi) is a quadratic triple.

(v) There exists an fppf cover {Ti → S}i∈I and regular quadratic forms
(Mi, qi) over O|Ti

such that for each i ∈ I,
(A|Ti

, σ|Ti
) ∼= (EndO|Ti

(Mi), ηq),

where ηq is the adjoint involution of the polar bilinear form of q.

Proof. We argue that (i)⇒(ii)⇒(iii)⇒(iv)⇒(i), and then that (iv)⇔(v).
(i)⇒(ii): Assume 1A ∈ SymdA,σ(S). Then, for an affine U ∈ SchS , by restriction
we have that 1A(U) ∈ SymdA,σ(U). Hence Proposition 3.12(ii) guarantees that
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there is at least one semi-trace fU : SymA|U ,σ|U → O|U such that (A|U , σ|U , fU ) is
a quadratic triple.
(ii)⇒(iii) is obvious, and (iii)⇒(iv) by taking an affine open cover of S.
(iv)⇒(i): Let such a cover be given. By Lemma 3.14 we have 1A(Ti) ∈ SymdA,σ(Ti)
for all i ∈ I. These agree on overlaps and so 1A ∈ SymdA,σ(S) by the sheaf property.
(iv)⇒(v): Since (A, σ) is locally isomorphic to a neutral algebra, we may assume by
refining the given cover that (A|Ti

, σ|Ti
, fi) = (EndO(Mi), σ|Ti

, fi) for some O|Ti
–

modules Mi. There are then quadratic forms qi : Mi → O|Ti
whose polar bilinear

form has adjoint involution σ|Ti
by Proposition 3.4(ii).

(v)⇒(iv): This is Proposition 3.4(i). �

Definition 3.16 (Locally quadratic involution). We call an orthogonal involution
on an Azumaya O–algebra locally quadratic if it satisfies the equivalent conditions
of Lemma 3.15.

We now give two more examples of constructions which produce quadratic triples.

Example 3.17. Let (A, σ) be an Azumaya O–algebra with orthogonal involution.
(a) Given an fppf cover {Ti → S}i∈I and elements �i ∈ A(Ti) satisfying �i+σ(�i) =
1 and �i|Tij

−�j |Tij
∈ A�tA,σ(Tij) for all i, j ∈ I, we can construct a unique quadratic

triple (A, σ, f) such that f |Ti
= TrdA(�i ) holds for all i ∈ I. To do so, locally

define maps fi : SymA,σ|Ti
→ O|Ti

by restricting the linear forms TrdA(�i ) to
SymA,σ|Ti

. By assumption and Lemma 2.6(i), these local maps agree on overlaps
of the cover {Ti → S}i∈I and therefore glue together to define a global linear form
f : SymA,σ → O. The fact that (A, σ, f) is a quadratic triple can be checked locally
on the Ti, where it follows from Example 3.3(c).
(b) Let σ be a locally quadratic involution. Let ξ : A/A�tA,σ → SymdA,σ be the
map of (1.6.1). Given an element λ ∈ ξ(S)−1(1A) ⊆ (A/A�tA,σ)(S), we define a
quadratic triple (A, σ, fλ) as follows. There will exist a cover {Ti → S}i∈I and
elements �i ∈ A(Ti) such that �i = λ|Ti

. By the commutativity of (1.6.1) and
the fact that ξ(λ|Ti

) = 1, each �i will satisfy �i + σ(�i) = 1. Since (λ|Ti
)|Tij

=
(λ|Tj

)|Tij
, we will have that �i|Tij

−�j |Tij
∈ A�tA,σ(Tij) and hence (a) above applies

to construct fλ. Since we can always compare over a common refinement, it is clear
that fλ is independent of which cover was chosen.

We are now able to show that all quadratic triples arise from the construction of
Example 3.17(b). This gives a classification of all quadratic triples which extend a
given locally quadratic involution. In contrast to Proposition 3.12(ii), in Theorem
3.18 the set ξ(S)−1(1A) may be empty, see Lemma 6.5.

Theorem 3.18 (Classification). Let (A, σ) be an Azumaya O–algebra with locally
quadratic involution. Let ξ : A/A�tA,σ → SymdA,σ be the map of (1.6.1).

(i) Suppose (A, σ, f) is a quadratic triple. Then, there exists λf ∈ ξ(S)−1(1A)
such that f is the linear form fλf

of Example 3.17(b).
(ii) The map of sets{

f such that (A, σ, f)
is a quadratic triple

}
→ ξ(S)−1(1A),

f �→ λf

is a bijection.
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Proof. Both claims follow from Proposition 3.12 and the fact that the functor

ξ−1(1A) : SchS → Sets,

T �→ ξ(T )−1(1A|T )

is a subsheaf of A/A�tA,σ. In detail:
(i) Let (A, σ, f) be a quadratic triple. Let {Ui → S}i∈I be an affine cover of
S. Then (A|Ui

, σ|Ui
, f |Ui

) is a quadratic triple over an affine scheme, and so by
Proposition 3.12 there exists an �i ∈ A(Ui) such that �i ∈ ξ−1(1A)(Ui) is the
unique element corresponding to f |Ui

. Since (f |Ui
)|Uij

= (f |Uj
)|Uij

we have that
�i|Uij

− �j |Uij
∈ A�tA,σ(Uij) and so �i|Uij

= �j |Uij
. Therefore, these sections glue

together into an element λf ∈ ξ−1(1A)(S). It is then clear that f = fλf
since

f |Ui
= TrdA(λf |Ui

· ) = fλf
|Ui

for all i ∈ I by construction.
(ii) Bijectivity is clear from the proof of (i) since the correspondence f |Ui

→ λf |Ui

will be bijective over each Ui in the chosen affine cover. �

Remark 3.19. We may equivalently view Theorem 3.18 as saying that there is an
isomorphism of sheaves between

F : SchS → Sets,

T �→
{

f such that (A|T , σ|T , f)
is a quadratic triple over T

}

and the sheaf ξ−1(1A). Taking part of (1.6.1), we have an exact sequence

0 → SkewA,σ/A�tA,σ → A/A�tA,σ
ξ−→ SymdA,σ → 0

with corresponding long exact sequence

. . . → (A/A�tA,σ)(S) ξ(S)−−−→ SymdA,σ(S) δ′−→ H1(S,SkewA,σ/A�tA,σ) → . . . .

By Lemma 1.5, δ′(1A) ∈ H1(S,SkewA,σ/A�tA,σ) is the isomorphism class of ξ−1(1A).
In Definition 5.1 we call this element the weak obstruction.

4. Quadratic pairs on tensor products

Given two Azumaya O–algebras A1 and A2, their tensor product A1 ⊗O A2
is again an Azumaya O–algebra. If in addition these algebras are equipped with
involutions σ1 and σ2 respectively, then (A1 ⊗O A2, σ1 ⊗ σ2) is an algebra with
involution. Throughout this section we will use the notation

(A, σ) := (A1 ⊗O A2, σ1 ⊗ σ2).

Let ε1, ε2 ∈ μ2(S) be the types of σ1 and σ2. Since the type of an involution can be
determined locally, we may apply [Knu, 8.1.3(1)] which applies over affine schemes,
to see that the type of σ1 ⊗ σ2 will be the product ε1ε2. For our purposes we
want σ1 ⊗ σ2 to be orthogonal, so we will focus on two cases: when σi are both
orthogonal (εi = 1), and when they are both symplectic (in which case εi = −1).
In preparation, we generalize [KMRT, 5.17] to our setting. We use the notation F


to denote the fppf sheafification of a presheaf F as in [St, Tag 03NS].

Lemma 4.1. Let (A1, σ1) and (A2, σ2) be two Azumaya O–algebras with involu-
tion. If σi are both orthogonal, then

(i) SymA,σ =
(
SymdA,σ + (SymA1,σ1

⊗O SymA2,σ2
)
)
,
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If instead σi are both weakly symplectic, then
(ii) SymA,σ =

(
SymdA,σ + (SkewA1,σ1 ⊗O SkewA2,σ2)

)
.
Proof. (i) If there exists an fppf cover over which the restrictions of each sheaf
are equal, then the sheaves are equal globally. Since A1 and A2 are Azumaya O–
algebras, there exists a sufficiently fine cover {Ti → S}i∈I such that (A1, σ1)|Ti

∼=
(M1 ⊗O M1, τ ) and (A2, σ2)|Ti

∼= (M2 ⊗O M2, τ ) for free O|Ti
–modules of finite

rank M1 and M2 with the switch involution τ by (2.1.2). Now, focusing on one of
the Ti, let U ∈ SchTi

be an affine scheme. Letting Ai = Ai(U) with A0 = A, we
know that

SymAi,σi
(U) = {a ∈ Ai | σi(a) = a} = Sym(Ai, σi)

and, arguing as in Remark 3.13, we have that
SymdAi,σi

(U) = {a + σi(a) | a ∈ Ai} = Symd(Ai, σi).
Certainly

Symd(A, σ) +
(
Sym(A1, σ1) ⊗O(U) Sym(A2, σ2)

)
⊆
(
SymdA,σ + (SymA1,σ1

⊗O SymA2,σ2
)
)
(U)

⊆ Sym(A, σ),
so we are left to show that the reverse inclusion holds. Because we have localized
sufficiently so that (A1, σ1)|Ti

∼= (M1⊗OM1, τ ) and (A2, σ2)|Ti
∼= (M2⊗OM2, τ ),

it is sufficient to consider the case of M1 and M2 being free modules of finite rank
over a ring R, and prove that

Sym
(
(M1 ⊗R M1) ⊗R (M2 ⊗R M2), τ ⊗ τ

)
= Symd

(
(M1 ⊗R M1) ⊗R (M2 ⊗R M2), τ ⊗ τ

)
+ Sym

(
M1 ⊗R M1, τ ) ⊗R Sym

(
M2 ⊗R M2, τ ).

Clearly the second module is included in the first. Now, let {m1, . . . ,ma} and
{n1, . . . , nb} be free bases of M1 and M2 respectively. Then the module
Sym

(
(M1 ⊗R M1) ⊗R (M2 ⊗R M2), τ ⊗ τ

)
has a basis consisting of the elements

(mi ⊗mi) ⊗ (nk ⊗ nk),
(mi ⊗mj) ⊗ (nk ⊗ nl) + (mj ⊗mi) ⊗ (nl ⊗ nk)

for i, j ∈ {1, . . . , a}, k, l ∈ {1, . . . , b} with either i �= j or k �= l. The first type of
basis element is contained in Sym

(
M1 ⊗R M1, τ ) ⊗R Sym

(
M2 ⊗R M2, τ ), and the

second type is contained in Symd
(
(M1⊗RM1)⊗R (M2⊗RM2), τ ⊗τ

)
, so therefore

the converse inclusion holds as well.
Hence, we have shown that

SymA,σ|Ti
(U) =

(
SymdA,σ + (SymA1,σ1

⊗O SymA2,σ2
)
)
|Ti

(U)
for all affine schemes U ∈ SchTi

. By applying [St, Tag 021V], this means that these
sheaves are equal over Ti and thus we are done.
(ii) Since σi are now weakly symplectic, i.e., of type −1, we will have that (Aj , σj)|Ui∼= (Mj⊗OMj ,−τ ) for j = 1, 2. Accounting for the facts that (−τ )⊗(−τ ) = τ⊗τ ,

Skew(Mj ⊗R Mj ,−τ ) = Sym(Mj ⊗R Mj , τ ), and
Alt(Mj ⊗R Mj ,−τ ) = Symd(Mj ⊗R Mj , τ ),

all other details are the same as in (i). �
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Remark 4.2. With the same methods as above one can also generalize [KMRT,
5.16]: If σi are both orthogonal, then

(i)
SymdA,σ ∩

(
SymA1,σ1

⊗O SymA2,σ2

)
=
((
SymdA1,σ1

⊗O SymA2,σ2

)
+
(
SymA1,σ1

⊗O SymdA2,σ2

))

,

and if σi are both weakly symplectic, then

(ii)
SymdA,σ ∩

(
SkewA1,σ1 ⊗O SkewA2,σ2

)
=
((
A�tA1,σ1 ⊗O SkewA2,σ2

)
+
(
SkewA1,σ1 ⊗O A�tA2,σ2

))

.

We warn that the naive generalization of [KMRT, 5.15], which states that for central
simple algebras (A1, σ1) and (A2, σ2) with involutions of the first kind over a field
F of characteristic 2 we have

Symd(A1, σ1) ⊗F Symd(A2, σ2)
=
(
Symd(A1, σ1) ⊗F Sym(A2, σ2)

)
∩
(
Sym(A1, σ1) ⊗F Symd(A2, σ2)

)
,

does not hold in our generality. It fails when 2 is neither invertible nor zero. For
example, take S = Spec(Z) and consider the Azumaya algebra A = M2(O) with
the split orthogonal involution η0 in degree 2 from Example 3.5(b). In particular,

η0

([
a b
c d

])
=
[
d b
c a

]
.

Considering just the Z–module with involution (A, η0) = (M2(Z), η0), we have

Sym(A, η0) =
{[

a b
c a

]}
and Symd(A, η0) =

{[
a 2b
2c a

]}
.

Therefore,

Symd(A, η0) ⊗Z Symd(A, η0) =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
a 2b 2c 4d
2e a 4f 2c
2g 4h a 2b
4i 2g 2e a

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

while
(
Symd(A, η0) ⊗Z Sym(A, η0)

)
∩ (Sym(A, η0) ⊗Z Symd(A, η0)

)

=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
a 2b 2c 2d
2e a 2f 2c
2g 2h a 2b
2i 2g 2e a

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

and so these modules are not equal.

Lemma 4.1 will be used similarly to how [KMRT, 5.16, 5.17] are used to prove
uniqueness claims about quadratic pairs on tensor products. If the algebra with
involution (A, σ) extends to a quadratic triple with some linear form f , then the
behaviour of f is prescribed on SymdA,σ. Therefore, by Lemma 4.1 such f will be
uniquely determined by its behaviour on SymA1,σ1

⊗O SymA2,σ2
. We use this in the

next two propositions, generalizing [KMRT, 5.18, 5.20].
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Proposition 4.3. Let (A1, σ1, f1) be a quadratic triple and let (A2, σ2) be an Azu-
maya O–algebra with orthogonal involution. Then there exists a unique quadratic
triple (A, σ, f1∗) such that, for sections si ∈ SymAi,σi

we have

(4.3.1) f1∗(s1 ⊗ s2) = f1(s1) TrdA2(s2).

Proof. Consider an affine cover {Ui → S}i∈I of S. We know by Proposition 3.12(i)
that each f |Ui

is described by an �i ∈ A1(Ui) with �i + σ1(�i) = 1. Then

(�i ⊗ 1) + (σ1 ⊗ σ2)(�i ⊗ 1) = (�i + σ1(�i)) ⊗ 1 = 1 ⊗ 1 = 1

and since �i|Uij
− �j |Uij

∈ A�tA1,σ1(Uij), we also have that

(�i ⊗ 1)|Uij
− (�j ⊗ 1)|Uij

=
(
�i|Uij

− �j |Uij

)
⊗ 1 ∈ A�tA1⊗OA2,σ1⊗σ2(Uij).

Therefore, we may use the construction of Example 3.17(a) with the elements �i ⊗
1 ∈ A(Ui) to define a global f1∗. It remains to show that this f1∗ behaves as claimed
in (4.3.1) on sections si ∈ SymAi,σi

(T ) for some T ∈ SchS . Consider such sections
s1 and s2. With respect to the cover {Ti := Ui ×S T → T}i∈I , our new linear form
f1∗ will be locally described by the elements (�i ⊗ 1)|Ti

. So, locally we have

f1∗,i((s1 ⊗ s2)|Ti
) = TrdA1⊗OA2

(
(�i ⊗ 1)|Ti

(s1 ⊗ s2)|Ti

)
= TrdA1⊗OA2

(
(�i|Ti

· s1|Ti
) ⊗ s2|Ti

)
= TrdA1

(
�i|Ti

· s1|Ti

)
TrdA2

(
s2|Ti

)
= f1|Ti

(s1|Ti
) TrdA2

(
s2|Ti

)
and hence gluing yields f1∗(s1 ⊗ s2) = f1(s1) TrdA2(s2) as desired. �

Example 4.4. Here we generalize [KMRT, Example 5.19]. On one hand, let
(M1, q1) be a regular quadratic form and let (EndO(M1), σ1, fq1) be the quadratic
pair defined in Proposition 3.4(i). On the other hand, let (M2, b2) be a regular
symmetric bilinear form on a locally free O–module of finite positive rank M2. We
consider the tensor product quadratic form q on M = M1 ⊗O M2 as defined by
Sah [Sa, Thm. 1] in the ring case. This q is regular, and so we consider the attached
quadratic pair (EndO(M, σ, fq). The proof of [KMRT, Example 5.19] shows that
there is an isomorphism

(EndO(M1), σ1, fq1) ⊗ (EndO(M2), σb2)
∼−→ (EndO(M), σ, fq),

where the tensor product stands for the construction of Proposition 4.3.

Turning our attention to the weakly symplectic case, it turns out that two weakly
symplectic involutions may not have a quadratic triple structure on their tensor
product, see Example 4.7. To obtain a result analogous to [KMRT, 5.20] we will
assume we have two symplectic involutions, i.e., where the types are εi = −1 and
the local bilinear forms are alternating. This is due in part to Lemma 4.5.

Lemma 4.5. Let (A, σ) be an Azumaya O–algebra with a weakly symplectic in-
volution. Then, the following are equivalent.

(i) σ is symplectic.
(ii) TrdA(s) = 0 for all sections s ∈ SkewA,σ.
(iii) 1A ∈ SymdA,σ(S).
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Proof. Since (A, σ) is weakly symplectic, there exists an fppf cover {Ti → S}i∈I

over which
(Mi ⊗O|Ti

Mi,−τ ) ϕb−→ (EndO|Ti
(Mi), ηb) ∼= (A, σ)|Ti

,

where τ is the switch involution and ϕb is the isomorphism (2.1.2) for a regular
skew-symmetric bilinear form b.
(i)⇔(ii): For any T ∈ SchS and a section s ∈ SkewA,σ(T ), we may compute locally
with respect to the cover {Ti ×S T → T}i∈I where the section will be a linear
combination of elements of the form

ϕb(m⊗m)
ϕb(m⊗ n) − ηb(ϕb(m⊗ n))

for m,n ∈ Mi(Ti ×S T ). Since we have
TrdEndO|Ti

(Mi)(ϕb(m⊗ n)) = b(m,n),

the trace of the second type of element is clearly 0, while the trace vanishes for all
elements of the first type if and only if b is alternating. Hence, TrdA(s) = 0 for
all sections s ∈ SkewA,σ if and only if the underlying bilinear forms are alternating,
i.e., σ is symplectic.
(ii)⇔(iii): By Lemma 2.6(iii) we know Skew⊥

A,σ = SymdA,σ and Symd⊥A,σ = SkewA,σ,
from which the equivalence is immediate. �

Similar to the orthogonal case, having 1A ∈ SymdA,σ will grant us local �i with
�i + σ(�i) = 1 from which we can build a quadratic triple. The following result
generalizes [KMRT, 5.20].

Proposition 4.6. Let (A1, σ1) and (A2, σ2) be two Azumaya O–algebras with
symplectic involutions. Then there exists a unique quadratic triple (A1⊗OA2, σ1⊗
σ2, f⊗) such that, for sections si ∈ SkewAi,σi

we have
f⊗(s1 ⊗ s2) = 0.

Proof. We first establish uniqueness. Let f, f ′ : SymA,σ → O be two solutions. Then
f − f ′ vanishes on SymdA,σ and on SkewA1,σ1 ⊗ SkewA2,σ2 . According to Lemma
4.1(ii), SymdA,σ and SkewA1,σ1 ⊗ SkewA1,σ1 generate SymdA,σ so that f ′ = f .

We now establish existence. Since (A1, σ1) is symplectic we have 1A1 ∈ SymdA1,σ1

by Lemma 4.5, and so there is an fppf cover {Ti → S}i∈I such that for each i ∈ I
there exists �i ∈ A1(Ti) with �i + σ1(�i) = 1. Then we will have

(�i ⊗ 1) + (σ1 ⊗ σ2)(�i ⊗ 1) = 1,
so to use the construction of Example 3.17(a) we need to check that (�i ⊗ 1)|Tij

−
(�j ⊗ 1)|Tij

∈ A�tA,σ(Tij). By Lemma 2.6(ii) and Lemma 4.1(ii), it is sufficient to
show that these elements are orthogonal to sections of the form a + σ(a) for any
a ∈ A|Tij

, and s1 ⊗ s2 for sections si ∈ Skew(Ai, σi)|Tij
. For the first type, we have

TrdA((�i ⊗ 1)|Tij
(a + σ(a))) = TrdA1⊗OA2(a) = TrdA((�j ⊗ 1)|Tij

(a + σ(a)))
and so

TrdA((�i ⊗ 1|Tij
− �j ⊗ 1|Tij

)(a + σ(a))) = 0.
For the second type, we have

TrdA
(
(�i ⊗ 1)|Tij

(s1 ⊗ s2)
)

= TrdA1(�i|Tij
s1) TrdA2(s2) = 0
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since TrdA2(s2) = 0 by Lemma 4.5(ii). Similarly TrdA
(
(�j⊗1)|Tij

(s1⊗s2)
)

= 0 and
so (�i⊗1)|Tij

−(�j⊗1)|Tij
is orthogonal to s1⊗s2 as well. Thus there exists a global

f⊗ : SymA,σ → O constructed as in Example 3.17(a). The above local calculations
also imply that f⊗(s1 ⊗ s2) = 0 for sections s1 ∈ SkewA1,σ1 and s2 ∈ SkewA2,σ2 , and
so we have constructed the unique quadratic triple we desired. �

Note that both (A1, σ1) and (A2, σ2) were required to be symplectic in Propo-
sition 4.6. We needed (A1, σ1) to be symplectic to have 1A1 ∈ SymdA1,σ1

, and
(A2, σ2) to be symplectic to have TrdA2(s2) = 0. If (A2, σ2) were only weakly
symplectic, then we could construct the local maps f⊗,i just the same, but it is not
clear if the elements (�i ⊗ 1)|Tij

− (�j ⊗ 1)|Tij
belong to A�tA,σ(Tij), and so there

may be examples with no quadratic triple on the tensor product.
If both involutions are only weakly symplectic there is almost no hope, even over

affine schemes as in Example 4.7.

Example 4.7. Let S = Spec(Z/2Z). Since we are over an affine scheme we may
simply work with Azumaya algebras over R = Z/2Z. Consider the Azumaya algebra
M2(R) with involution σ(B) = u−1BTu for

u =
[
1 1
1 0

]
.

This is weakly symplectic since uT = −u, but not symplectic (for example by
Lemma 4.5). Note that

s =
[
1 1
0 0

]
∈ Skew(M2(R), σ)

is a skew-symmetric element. If there were a quadratic triple (M2(R)⊗RM2(R), σ⊗
σ, f), then necessarily

2f(s⊗ s) = TrdM2(R)⊗RM2(R)(s⊗ s) = TrdM2(R)(s)2 = 12 = 1,

however there is no x ∈ Z/2Z such that 2x = 1. Therefore no such f exists. Since
we are over an affine scheme this means that σ⊗σ fails to even be locally quadratic.

5. Obstructions to quadratic pairs

In this section we introduce cohomological obstructions which prevent an Azu-
maya O–algebra with locally quadratic involution (A, σ) from being extended to
a quadratic triple, either outright or where the triple has certain properties. We
begin by considering portions of various long exact cohomology sequences arising
from (1.6.1). In particular we have the following diagram

(5.0.1)

A(S) SymdA,σ(S) Ȟ1(S,SkewA,σ)

(A/A�tA,σ)(S) SymdA,σ(S) Ȟ1(S,SkewA,σ/A�tA,σ)

Ȟ1(S,A�tA,σ)

Id +σ δ

ξ(S)

c

δ′

with exact left column and exact rows.
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Definition 5.1 (Strong and weak obstructions). Let (A, σ) be an Azumaya O–
algebra with locally quadratic involution. Then 1A ∈ SymdA,σ(S) and we call
Ω(A, σ) = δ(1A) the strong obstruction and call ω(A, σ) = δ′(1A) the weak ob-
struction.

The strong and weak obstructions prevent the existence of a quadratic triple
involving σ in the following way.

Theorem 5.2. Let (A, σ) be an Azumaya O–algebra with a locally quadratic
involution. Then,

(i) There exists a linear map f : A → O such that (A, σ, f |SymA,σ
) is a qua-

dratic triple if and only if Ω(A, σ) = 0. In this case f = TrdA(� ) for an
element � ∈ A(S) with � + σ(�) = 1.

(ii) There exists a linear map f : SymA,σ → O such that (A, σ, f) is a quadratic
triple if and only if ω(A, σ) = 0.

Proof. (i) Assume we have f : A → O such that (A, σ, f |SymA,σ
) is a quadratic triple.

Then trivially f |SymA,σ
can be extended to A, and so by Lemma 3.11 there exists an

� ∈ A(S) such that �+σ(�) = 1A. Thus 1A is in the image of A(S) → SymdA,σ(S) in
the long exact cohomology sequence, and so Ω(A, σ) = 0. Conversely, if Ω(A, σ) = 0
then 1A is in the same image and so we obtain such an �. Using Example 3.3(c) we
can construct f : A → O with the desired property.
(ii) Since the rows in (5.0.1) are exact, ω(A, σ) = 0 if and only if ξ(S)−1(1A) is
non-empty. By Theorem 3.18, this means ω(A, σ) = 0 if and only if (A, σ) can be
extended to a quadratic triple. �

By Remark 3.19, ω(A, σ) is the isomorphism class of the SkewA,σ/A�tA,σ–torsor
ξ−1(1A). Another view of Theorem 5.2(ii) is that ω(A, σ) = 0 if and only if this
SkewA,σ/A�tA,σ–torsor is trivial. A torsor is trivial if and only if it has a global
section and global sections of ξ−1(1A) correspond to forms f which make (A, σ, f)
a quadratic triple.

For examples of locally quadratic involutions with non-trivial strong or weak
obstructions, see Section 6.

Remark 5.3. Since 2A = 1A +σ(1A) is always in the image of A(S) → SymdA,σ(S),
it follows that δ(2A) = 2Ω(A, σ) = 0 so that 2ω(A, σ) = 0 also. In particular, if 2
is invertible over S we recover the fact that (A, σ) always extends to a quadratic
triple.

Lemma 5.4 describes a special case in which we know the strong obstruction is
non-trivial. An example where this occurs is given in Section 6.1, in particular see
Lemma 6.2.

Lemma 5.4. Assume S is non-empty. Let (A, σ) be an Azumaya O–algebra with
locally quadratic orthogonal involution such that O(S) ∼−→ A(S) and 2O(S) = 0.
Then, the strong obstruction Ω(A, σ) is non-trivial.

Proof. The exact sequence
0 → SkewA,σ → A → SymdA,σ → 0

gives rise to the long exact cohomology sequence

(5.4.1) 0 → SkewA,σ(S) → A(S) → SymdA,σ(S) δ−→ Ȟ1(S,SkewA,σ).
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Since S is non-empty and (A, σ) is locally quadratic, we have 0 �= 1 ∈ SymdA,σ(S).
We recall that Ω(A, σ) = δ(1) by Definition 5.1. Since A(S) = O(S) and σ(S) is
O(S)–linear, all elements of A(S) are symmetric, and since 2O(S) = 0, all elements
of A(S) are also skew-symmetric. Hence, SkewA,σ(S) = O(S) also. Therefore, the
sequence (5.4.1) is of the form

0 → O(S) Id−→ O(S) → SymdA,σ(S) δ−→ Ȟ1(S,SkewA,σ)

and we obtain that Ω(A, σ) = δ(1) �= 0 because O(S) → SymdA,σ(S) is the zero
map in view of surjectivity of Id: O(S) → O(S), and so δ is injective. �

We will make use of the following description in order to perform computations
with Ω(A, σ).

Lemma 5.5. Let (A, σ) be an Azumaya O–algebra with locally quadratic involu-
tion. The strong obstruction takes the form

Ω(A, σ) =
[
(�j |Tij

− �i|Tij
)i,j∈I

]
∈ Ȟ1(S,SkewA,σ)

for any cover {Ti → S}i∈I and elements �i ∈ A(Ti) such that �i + σ(�i) = 1.

Proof. This follows immediately from Lemma 1.4. �

Remark 5.6. We note the following two points.
(a) By Lemma 3.15, if we wish we may represent Ω(A, σ) as in Lemma 5.5 with an
affine open cover {Ui → S}i∈I .
(b) Since the weak obstruction ω(A, σ) is simply an image of the strong obstruction,
it will be represented similarly by the class[

(�j |Tij
− �i|Tij

)i,j∈I

]
∈ Ȟ1(S,SkewA,σ/A�tA,σ)

for a cover {Ti → S}i∈I and elements �i ∈ A(Ti) with �i + σ(�i) = 1, where the
overline denotes the image in (SkewA,σ/A�tA,σ)(Tij). This cover can of course also
be taken to be an affine open cover if desired.

5.7. Alternate obstructions to extend a form. Let (A, σ, f) be a quadratic
triple. Lemma 3.11 states that f extends from SymA,σ to A if and only if f arises
from some � ∈ A(S) satisfying � + σ(�) = 1. Since σ is orthogonal, A�tA,σ is
finite locally free by Lemma 2.4(ii) and hence is quasi-coherent. The cohomology
theory of quasi-coherent sheaves provides an obstruction to such an extension, in
particular an obstruction c(f) ∈ Ȟ1(S,A�tA,σ) as follows. By Theorem 3.18, the
form f corresponds to an element λf ∈ (A/A�tA,σ)(S), and we may consider its
image under the map c in (5.0.1). We set c(f) = c(λf ) ∈ Ȟ1(S,A�tA,σ). Clearly
this obstruction prevents λf = � for some � ∈ A(S), which would be the case exactly
when f can be extended to all of A.

Consider an affine covering {Ui → S}i∈I of S. By Proposition 3.12(i), each
restriction f |Ui

will be of the form TrdA|Ui
(�i ) for an �i ∈ A(Ui) with �i =

λf |Ui
. Lemma 1.4 then tells us that the 1-cocycle (�j |Uij

− �i|Uij
)i,j∈I represents

the cohomological obstruction c(f).
However, we also obtain another obstruction in the following way. We have an

exact sequence of sheaves

0 → SymA,σ → A → A�tA,σ → 0
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which, since the sheaves are finite locally free, we may dualize to obtain another
exact sequence,

0 → A�t∨A,σ → A∨ → Sym∨
A,σ → 0.

A portion of the long exact cohomology sequence associated with this exact se-
quence is

. . . → A∨ → Sym∨
A,σ → Ȟ1(S,A�t∨A,σ) → . . . .

Since f ∈ Sym∨
A,σ(S), we then get a class c′(f) ∈ Ȟ1(S,A�t∨A,σ) which is the ob-

struction to extend f to A. Not surprisingly, we can compare the two obstructions.

Lemma 5.8. Let (A, σ, f) be a quadratic triple, and let b̂− : A�tA,σ
∼−→ A�t∨A,σ be

the isomorphism associated to the regular bilinear form b− provided by Lemma
2.7(ii). Then,

(i) c′(f) = b̂−(c(f)).
(ii) The image of c(f) under the map Ȟ1(S,A�tA,σ) → Ȟ1(S,SkewA,σ) induced

by the inclusion A�tA,σ → SkewA,σ is Ω(A, σ).

Proof. (i) Take an affine open covering {Ui → S}i∈I of S. Then f |Ui
(s) =

TrdA(�is) for some �i ∈ A(Ui) satisfying �i + σ(�i) = 1 by Proposition 3.12(i).
By definition c(f) is the class of the 1–cocycle cij = �j |Uij

− �i|Uij
with values in

A�tA,σ. We define f̃i(a) = TrdA(�ia) on A|Ui
for i ∈ I.

On the other hand, c′(f) is the class of the 1–cocycle c′ij = (f̃j)|Uij
− (f̃i)|Uij

with values in A�t∨A,σ.
We need to check that c′ij = b̂−(cij) for all i, j ∈ I, or equivalently that c′ij =

b−(cij , ) over Uij . Up to localization to an affine open subset V ⊆ Uij , we can
deal with elements of the form x = x′ − σ(x′) for some x′ ∈ A(V ). It follows that

c′ij(x) = (f̃j)|Uij
(x′ − σ(x′)) − (f̃i)|Uij

(x′ − σ(x′))
= TrdA

(
�j |Uij

(x′ − σ(x′)
)
− TrdA

(
�i|Uij

(x′ − σ(x′)
)

= TrdA
(
(�j |Uij

− �i|Uij
)(x′ − σ(x′)

)
= b−

(
cij , x

)
as desired.
(ii) We have that 1A(Ui) = �i +σ(�i) for each i. By Lemma 5.5, the strong obstruc-
tion Ω(A, σ) is represented by the 1–cocycle �j |Uij

− �i|Uij
with values in SkewA,σ.

We conclude that the image of c(f) by the map Ȟ1(S,A�tA,σ) → Ȟ1(S,SkewA,σ) is
Ω(A, σ). �

5.9. Obstructions for tensor products. Consider Azumaya algebras (A1, σ1)
and (A2, σ2) either both with orthogonal or both with symplectic involutions. Their
tensor product (A, σ) = (A1⊗OA2, σ1⊗σ2) is an Azumaya algebra with orthogonal
involution. There is a natural map

A1 ×A2 → A,

(a1, a2) �→ a1 ⊗ a2

which restricts to a morphism

SkewA1,σ1 × SymA2,σ2
→ SkewA,σ
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which in turn induces a morphism

(SkewA1,σ1/A�tA1,σ1) × SymA2,σ2
→ SkewA,σ/A�tA,σ.

We will make use of these tensor morphisms throughout this section to investigate
the strong and weak obstructions for (A, σ). When σi are both orthogonal we will
assume σ1 is locally quadratic and we will relate Ω(A, σ) to Ω(A1, σ1). When σi

are both symplectic we also have 1A1 ∈ SymdA1,σ1
by Lemma 4.5 and a connecting

morphism δ1 : SymdA1,σ1
(S) → Ȟ1(S,SkewA1,σ1). In this case we will relate Ω(A, σ)

to δ1(1A1), which is only technically a strong obstruction when 2 = 0 ∈ O and so
σ1 would be simultaneously locally quadratic as well as symplectic.

Lemma 5.10. Let (A1, σ1) and (A2, σ2) be two Azumaya O–algebra with orthogo-
nal involution. Let (A, σ) be their tensor product. Assume that (A1, σ1) is locally
quadratic. Then, we have the following.

(i) (A, σ) is locally quadratic.
(ii) We have

Ω(A, σ) = Ω(A1, σ1) ∪ 1A2 ∈ Ȟ1(S,SkewA,σ),

where 1A2 ∈ SymA2,σ2
(S) = H0(S,SymA2,σ2

) and the cup-product arises
from the morphism

SkewA1,σ1 × SymA2,σ2
→ SkewA,σ.

(iii) We have ω(A, σ) = ω(A1, σ1) ∪ 1A2 ∈ Ȟ1(S,SkewA,σ/A�tA,σ) where the
cup-product arises from the morphism

(SkewA1,σ1/A�tA1,σ1) × SymA2,σ2
→ SkewA,σ/A�tA,σ.

Proof. (i) The statement is local and follows then from the construction of tensor
products in Proposition 4.3.
(ii) The map ⊗1A2 : A1 → A, a1 �→ a1⊗1A2 , restricts to both SkewA1,σ1 → SkewA,σ

and SymdA1,σ1
→ SymdA,σ. Therefore, we have a diagram

0 �� SkewA1,σ1

⊗1A2

��

�� A1

⊗1A2

��

1+σ1 �� SymdA1,σ1

⊗1A2

��

�� 0.

0 �� SkewA,σ
�� A 1+σ �� SymdA,σ

�� 0.

whose rows are exact sequences of O–modules. We claim this diagram commutes.
Commutativity of the left square is clear, so we check commutativity of the right
square with a computation. Let a ∈ A1(T ) be a section for some T ∈ SchS , then

(1 + σ) ◦ (⊗1A2)(a) = (1 + σ)(a⊗ 1A2) = a⊗ 1A2 + (σ1 ⊗ σ2)(a⊗ 1A2)
= a⊗ 1A2 + σ1(a) ⊗ 1A2 = (a + σ1(a)) ⊗ 1A2 = (⊗1A2) ◦ (1 + σ1)(a).

Thus, we get another commutative diagram involving boundary maps,

SymdA1,σ1
(S) Ȟ1(S,SkewA1,σ1)

SymdA,σ(S) Ȟ1(S,SkewA,σ).

δ1

⊗1A2
∪1A2

δ
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Since 1A = 1A1 ⊗ 1A2 , the commutativity of the diagram implies that δ(1A) =
δ1(1A1) ∪ 1A2 whence the desired formula

Ω(A, σ) = Ω(A1, σ1) ∪ 1A2 ∈ Ȟ1(S,SkewA,σ).

(iii) This follows from (ii) and the commutativity of the square

SkewA1,σ1 × SymA2,σ2

π1×Id
��

�� SkewA,σ

π

��
(SkewA1,σ1/A�tA1,σ1) × SymA2,σ2

�� SkewA,σ/A�tA,σ,

where the horizontal maps are the tensor morphisms. �

Remark 5.11. Lemma 5.10(iii) shows that if (A1, σ1) is extendable to a quadratic
pair, then so is (A, σ). We actually already knew this from Proposition 4.3. We
shall see later in Proposition 6.6 that the converse is false.

A consequence of Proposition 4.6 is the following.

Corollary 5.12. Let (A1, σ1) and (A2, σ2) be two Azumaya O–algebras with sym-
plectic involutions. Let (A1 ⊗O A2, σ1 ⊗ σ2) be the corresponding Azumaya O–
algebra with orthogonal involution. Then ω(A, σ) = 0.

Remark 5.13. In the setting of Corollary 5.12, Remark 6.3 provides an explicit
example such that Ω(A, σ) �= 0.

The case of the strong obstruction resulting from two symplectic involutions is
similar to Lemma 5.10(ii).

Lemma 5.14. Let (A1, σ1) and (A2, σ2) be two Azumaya O–algebras with sym-
plectic involutions. Let (A, σ) = (A1 ⊗O A2, σ1 ⊗ σ2) be the tensor Azumaya
O–algebra with orthogonal involution. According to Lemma 4.5, we have 1A1 ∈
SymdA1,σ1

(S). Consider the boundary map δ1 : SymdA1,σ1
(S) → Ȟ1(S,SkewA1,σ1)

arising from the exact sequence of O–modules 0 → SkewA1,σ1 → A1 → SymdA1,σ1

→ 0. Then we have

Ω(A, σ) = δ1(1A1) ∪ 1A2 ,

where 1A2 ∈ SymA2,σ2
(S) = H0(S,SymA2,σ2

) and the cup-product arises from the
tensor morphism SkewA1,σ1 × SymA2,σ2

→ SkewA,σ.

Proof. Since 1A1 ∈ SymdA1,σ1
(S), there is an fppf cover {Ti → S}i∈I such that for

each i ∈ I there exists �i ∈ A1(Ti) with �i + σ1(�i) = 1. Then we will have

(�i ⊗ 1) + (σ1 ⊗ σ2)(�i ⊗ 1) = 1A.

According to Lemma 5.5, Ω(A, σ) is represented by the 1–cocycle

(�i ⊗ 1)|Tij
− (�j ⊗ 1)|Tij

∈ SkewA,σ(Tij)

which also represents the class Ω(A1, σ1) ∪ 1A2 . �
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6. Examples of non-trivial obstructions

The common point between the examples discussed in this section arises from
a classical construction of torsors built from finite subgroups of algebraic groups.
Let k be a field, let G be an affine k–algebraic group, and let H ⊂ G be a finite
k–subgroup (for example étale or constant). Given an H-torsor f : Y → X between
k–schemes, we can consider its extension to G defined by the contracted product
Y ∧H G, which is a G–torsor. This kind of torsor occurs in the theory of essential
dimension (Reichstein-Youssin [RY, §7]), in infinite dimensional Lie theory (Gille-
Pianzola loop torsors [GP, §3]), and also in Brion’s theory of homogeneous torsors
over abelian varieties ([Br1, Br2, Br3], which extends that of Mukai in [Mu] for
vector bundles). In this last case we deal with an isogeny f : Y → X of abelian
varieties such that ker(f) = H, a special case of which is an isogeny of elliptic
curves. More precisely, in the first example we use the multiplication by 2 map on
an elliptic curve E over a field k of characteristic 2 and we embed its kernel E[2]
in PGL2, see the map (6.1.1) later in the text.

6.1. Non-trivial strong obstruction. All concepts not defined below can be
found in a standard textbook on elliptic curves, such as [KM]. Let k be a field of
characteristic 2 and let our base scheme be an ordinary elliptic curve E over k.
Since E is ordinary, the 2-torsion points are E[2] ∼= μ2 ×k Z/2Z, where here Z/2Z
denotes the constant group scheme associated to the abstract group of two elements.
We identify the Hopf k–algebra H representing the group scheme μ2 ×k Z/2Z. It
is

H = k[μ2] ⊗k k[Z/2Z]
= (k[x]/〈x2 − 1〉) ⊗k (k × k)
∼=
(
k[x]/〈x2 − 1〉

)
×
(
k[x]/〈x2 − 1〉

)
.

For a scheme Y ∈ SchE , we have the standard fact that (μ2 × Z/2Z)(Y ) =
HomRings(H,O(Y )), for example by [St, Tag 01I1].

We set E′ = E and consider the fppf cover {E′ → E} arising from multiplication
by 2. This is an fppf cover by [KM, 2.3]. As a first step, we will identify a Čech
1-cocycle with values in μ2×kZ/2Z over this cover. To do so, we identify the global
sections of E′ ×E E′ and of E′ ×E E′ ×E E′, keeping in mind that O(E′) = k.

Let Y ∈ Schk be any scheme. The set E′(Y ) = Homk(Y,E′) is a group, inherit-
ing its group structure from E′. From the universal property of the fiber product,
we have that

(E′ ×E E′)(Y ) = {(a, b) ∈ E′(Y ) × E′(Y ) | 2a = 2b}.

Hence, for any pair (a, b) ∈ (E′ ×E E′)(Y ) they differ by the element b − a ∈
E′[2](Y ) = (μ2 ×k Z/2Z)(Y ) in the kernel of the multiplication by 2 map E′ → E.
So, we may write

(E′ ×E E′)(Y ) = {(a, a + s) | a ∈ E′(Y ), s ∈ (μ2 ×k Z/2Z)(Y )}
∼= E′(Y ) × (μ2 ×k Z/2Z)(Y ).

Since this holds for all Y , we see that we have an isomorphism

E′ ×E E′ ∼= E′ ×k (μ2 ×k Z/2Z).
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To remove some notational clutter, we abuse both notation and the Yoneda lemma
by omitting Y and simply writing

E′ ×E E′ = {(a, a + s) | a ∈ E′, s ∈ μ2 ×k Z/2Z}
and the isomorphism as

E′ ×E E′ ∼−→ E′ ×k (μ2 ×k Z/2Z),
(a, a + s) �→ (a, s).

We will continue using this abuse for computations throughout this section as well
as in Section 6.4. Due to the isomorphism above, we have

O(E′ ×E E′) = O(E′ ×k (μ2 ×k Z/2Z)) = k ⊗k H = H,

where the second equality follows from [L, 5.2.3, Cor. 2.27], which is about the flat
base change of a scheme over a ring. Likewise, we may write

E′ ×E E′ ×E E′ = {(a, a + s, a + (s + t)) | a ∈ E′, s, t ∈ μ2 ×k Z/2Z}
and so we have an isomorphism

E′ ×E E′ ×E E′ ∼−→ E′ ×k (μ2 ×k Z/2Z) ×k (μ2 ×k Z/2Z),
(a, a + s, a + (s + t)) �→ (a, s, t).

In turn, this means that

O(E′ ×E E′ ×E E′) = O(E′ ×k (μ2 ×k Z/2Z) ×k (μ2 ×k Z/2Z)) = H ⊗k H.

Note that “the μ2 × Z/2Z part” is all that occurs in the global sections. We now
need to identify how the three projections, pij : E′ ×E E′ ×E E′ → E′ ×E E′ where
the ith and jth factors are preserved, appear on global sections. We have

p12 : E′ ×E E′ ×E E′ → E′ ×E E′,

(a, a + s, a + (s + t)) �→ (a, a + s),

which alternatively appears as

p12 : E′ ×k (μ2 ×k Z/2Z) ×k (μ2 ×k Z/2Z) → E′ ×k (μ2 ×k Z/2Z),
(a, s, t) �→ (a, s),

after using the above isomorphisms. On the μ2 ×Z/2Z part this is simply the first
projection (s, t) �→ s, and hence on global sections we obtain the map

p̃12 = Id⊗1: H → H ⊗k H.

When we consider p23, it appears as (a, a+s, a+(s+t)) �→ (a+s, a+(s+t)), which
alternatively becomes (a, s, t) �→ (a+ s, t). Thus, the μ2 ×Z/2Z part is simply the
second projection (s, t) �→ t and we get that

p̃23 = 1 ⊗ Id : H → H ⊗k H.

Finally, applying the same procedure to p13, we start with (a, a+ s, a+ (s+ t)) �→
(a, a + (s + t)), which we rewrite as (a, s, t) �→ (a, s + t), and then extract the
μ2 × Z/2Z part, which is the addition map (s, t) �→ s + t. Therefore, we see that
we obtain the comultiplication

p̃13 = Δ: H → H ⊗k H

of the Hopf algebra H.
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Now, a Čech 1-cocycle for μ2×Z/2Z with respect to the cover {E′ → E} consists
of an element y ∈ (μ2 × Z/2Z)(E′ ×E E′) such that

y|p12 · y|p23 = y|p13 ,

where y|pij
= (μ2 × Z/2Z)(pij)(y) is the restriction along pij . Since the group

μ2 × Z/2Z is represented by Spec(H), we have that

(μ2 × Z/2Z)(E′ ×E E′) = HomRings(H,O(E′ ×E E′))
= HomRings(H,H).

We claim that Id ∈ HomRings(H,H) is a 1-cocycle. Indeed, for each projection we
have that

Id |pij
= p̃ij ◦ Id = p̃ij

as an element in HomRings(H,H⊗kH) = (μ2×Z/2Z)(E′×EE′×EE′). Therefore,
using the fact that the group structure of μ2 × Z/2Z comes from the Hopf algebra
structure of H, the product p̃12 · p̃23 is the composition

H
Δ−→ H ⊗k H

p̃12⊗p̃23−−−−−→ (H ⊗k H) ⊗k (H ⊗k H) mult−−−→ H ⊗k H,

which is easily checked to be

p̃12 · p̃23 = Δ = p̃13

and so Id ∈ HomRings(H,H) = (μ2 × Z/2Z)(E′ ×E E′) is a 1-cocycle.
Now, we will transport this cocycle to PGL2. We have an embedding of group

schemes i : μ2 ×k Z/2Z ↪→ PGL2 defined over Y ∈ SchE by

(6.1.1) ϕ �→ Inn
([

ϕ(0, 1) ϕ(1, 0)
ϕ(x, 0) ϕ(0, x)

])

for ϕ ∈ HomRings(H,O(Y )). Intuitively, this is the map

ε �→ Inn
([

1 0
0 ε

])
and 1 �→ Inn

([
0 1
1 0

])

for ε ∈ μ2 and 1 ∈ Z/2Z. The image i(Id) ∈ PGL2(E′ ×E E′) is a 1-cocycle since
Id ∈ (μ2 ×k Z/2Z)(E′ ×E E′) is a 1–cocycle. We denote i(Id) = φ and of course
have that

φ = Inn
([

(0, 1) (1, 0)
(x, 0) (0, x)

])
.

The cocycle condition means that this φ is a gluing datum as in [St, Tag 04TP].
Therefore, we may twist M2(O) by gluing two copies of M2(O)|E′ using φ as in
[St, Tag 04TR], to obtain a quaternion O–algebra Q. For T ∈ SchE , we have

Q(T ) = {B ∈ M2(O(T ×E E′)) | φ(B|T×EE′×E×E′) = B|T×EE′×E×E′}.

Since k has characteristic 2, the canonical quaternion involution on M2(O) is the
split orthogonal involution in degree 2 of Example 3.5(b),

η0 :
[
a b
c d

]
�→
[
d b
c a

]
.

The canonical involution on Q, denoted by θ, is the descent of η0 and hence (Q, θ)
is a quaternion algebra with orthogonal involution.
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Let n be a positive integer and now work over the abelian k–variety S = En.
We define the Azumaya algebra

A = p∗1(Q) ⊗O · · · ⊗O p∗n(Q),

where pi : En → E is the ith projection and p∗i the pullback of quaternion algebras.
It comes with the tensor product involution σ = p∗1(θ) ⊗ · · · ⊗ p∗n(θ), which is
orthogonal. Alternatively, A may be viewed as the following twist of M2n(O). Set
S′ = S and view it as a scheme over S with respect to the multiplication by 2 map
where each factor is multiplied by 2. This makes S′ → S a (μ2 ×k Z/2Z)n–torsor
and {S′ → S} an fppf cover. Since we are looking for a cocycle in PGL2n(S′×S S′)
we note that O(S) = k, and since S′ ×S S′ ∼= (E′ ×E E′)n we have

O(S′ ×S S′) =
(
(k[x]/〈x2 − 1〉)2

)⊗n
,

where the tensor product is over k. Using the decomposition

M2n(S′ ×S S′) ∼= M2((k[x]/〈x2 − 1〉)2) ⊗k . . .⊗k M2((k[x]/〈x2 − 1〉)2),

we have φ⊗ . . .⊗φ ∈ PGL2n(S′×S S
′), and this is our desired cocycle. In this view,

the tensor product involution on A is the descent of the involution η′ = η0⊗ . . .⊗η0
on M2n(O(S′)) ∼= (M2(O(S′)))⊗n, where O(S′) = k.

Lemma 6.2. Consider the Azumaya algebra with involution (A, σ) defined above.

(i) (A, σ) can be extended to a quadratic triple. In particular, (A, σ) is locally
quadratic with trivial weak obstruction.

(ii) A(S) ∼= k.
(iii) The strong obstruction Ω(A, σ) is non-trivial.

Proof. Throughout the proof we will use the following computation. For a matrix
of the form [

(b1, b1) (b2, b2)
(b3, b3) (b4, b4)

]
∈ M2((k[x]/〈x2 − 1〉)2)

with bi ∈ k, we have

φ

([
(b1, b1) (b2, b2)
(b3, b3) (b4, b4)

])
=
[

(b4, b1) (b3x, b2x)
(b2x, b3x) (b1, b4)

]
.

(i) We begin by considering the linear form

f ′ : SymM2n (O),σ2n
→ O,

B �→ TrdM2n (O)

(([
1 0
0 0

]
⊗ I2n−1

)
·B
)
,

where I2n−1 denotes the 2n−1 × 2n−1 identity matrix. This is an instance of the
construction of Example 3.3(c), and so (M2n(O), σ2n , f ′) is a quadratic triple. The
form f ′|S′ will descend to a suitable linear form on SymA,σ if f ′|S′×SS′◦(φ⊗. . .⊗φ) =
f ′|S′×SS′ . We verify this with the following computation, which uses the fact that



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7236 P. GILLE, E. NEHER, AND C. RUETHER

φ2 = Id.

TrdM2n (O)

(([
(1, 1) 0

0 0

]
⊗ I2n−1

)
· (φ⊗ . . .⊗ φ)( )

)

=TrdM2n (O)

(
(φ⊗ . . .⊗ φ)

([
(1, 1) 0

0 0

]
⊗ I2n−1

)
·
)

=TrdM2n (O)

(([
(0, 1) 0

0 (1, 0)

]
⊗ I2n−1

)
·
)
.

Then, because([
(1, 1) 0

0 0

]
⊗ I2n−1

)
−
([

(0, 1) 0
0 (1, 0)

]
⊗ I2n−1

)
=
[
(1, 0) 0

0 (1, 0)

]
⊗ I2n−1

which is an element of A�tM2n (O),η′(S′ ×S S′), we know by Example 3.3(c) that

f ′|S′×SS′ ◦ (φ⊗ . . .⊗ φ) = f ′|S′×SS′ .

Therefore f ′|S′ descends, and there exists a linear form f : SymA,σ → O such that
(A, σ, f) is a quadratic triple.
(ii) By construction we have that

A(S) = {B ∈ M2n(O(S′)) | (φ⊗ . . .⊗ φ)(B|S′×SS′) = B|S′×SS′},
where O(S′) = k and so we work with B ∈ M2n(k) below. Given B ∈ A(S), we
may write B uniquely as

B =
[
1 0
0 0

]
⊗B1 +

[
0 1
0 0

]
⊗B2 +

[
0 0
1 0

]
⊗B3 +

[
0 0
0 1

]
⊗B4

with Bi ∈ M2n−1(k), and then setting B|S′×SS′ = B we have

B =
[
(1, 1) 0

0 0

]
⊗B1 +

[
0 (1, 1)
0 0

]
⊗B2

+
[

0 0
(1, 1) 0

]
⊗B3 +

[
0 0
0 (1, 1)

]
⊗B4.

Now we apply φ⊗ . . .⊗ φ, setting φ = φ⊗n−1.

(φ⊗ . . .⊗ φ)(B) =
[
(0, 1) 0

0 (1, 0)

]
⊗ φ(B1) +

[
0 (0, x)

(x, 0) 0

]
⊗ φ(B2)

+
[

0 (x, 0)
(0, x) 0

]
⊗ φ(B3) +

[
(1, 0) 0

0 (0, 1)

]
⊗ φ(B4).

Since this is equal to B, linear independence then requires that

B1 = φ(B4) = B4 = φ(B1), and

B2 = B3 = φ(B2) = φ(B3) = 0

and so we can conclude that B = I2 ⊗ B′ for some B′ ∈ M2n−1(k) such that
(φ⊗ . . .⊗φ)(B′) = B′, now with only n− 1 tensor factors. Hence, by induction we
need only address the case of 2 × 2 matrices. There we have that

φ(B) =
[

(b4, b1) (b3x, b2x)
(b2x, b3x) (b1, b4)

]
=
[
(b1, b1) (b2, b2)
(b3, b3) (b4, b4)

]
= B.
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Since bi ∈ k, this can only happen when B = aI2 for some a ∈ k. Therefore, overall

A(S) = {I2n−1 ⊗ aI2 | a ∈ k} ∼= k.

(iii) Part (ii) above shows that A(S) = O(S) ∼= k, and since k is characteristic 2 we
also have that 2O(S) = 0. Therefore applying Lemma 5.4 yields that Ω(A, σ) �= 0
as claimed. �

Remark 6.3. Note that for n = 2, (A, σ) is a tensor product of two Azumaya
algebras with symplectic involutions, and so Corollary 5.12 provides another proof
that the weak obstruction is zero in Lemma 6.2(iii). However, the important point
is that the strong obstruction does not vanish.

6.4. Non-trivial weak obstruction. We continue working over an algebraically
closed base field k of characteristic 2. According to a result by Serre [Se, prop. 15],
for each finite group Γ there exists a Galois Γ–cover Y → S as in [St, Tag 03SF]
such that S and Y are connected smooth projective k–varieties. We use Serre’s
results with the group Γ = PGL2(F4) to obtain a Γ–cover π : Y → S. We take S to
be our base scheme. We denote by Γk the constant group scheme associated to Γ.
It is affine and represented by k|Γ| with componentwise multiplication. We write
this algebra as

k|Γ| = {(cg)g∈Γ | cg ∈ k}.

The map Y → S is then a Γk–torsor and {Y → S} is an fppf cover. Since Γk embeds
in PGL2, which we view as a group scheme over k, we can define the PGL2–torsor
P = Y ∧Γk PGL2 over S. The twist of M2(O) by P is a quaternion O–algebra Q,
which of course is not the same Q as in Section 6.1. Here as well we may describe Q
explicitly using cocycles. As before, we first describe the global sections of Y ×S Y
and Y ×S Y ×S Y . We know that O(Y ) ∼= k, and since Y → S is a Galois extension
with Galois group Γ, we have isomorphisms

Y ×S Y
∼−→ Y ×k Γk,

(y, yg) �→ (y, g)

and

Y ×S Y ×S Y
∼−→ Y ×k Γk ×k Γk,

(y, yg, yh) �→ (y, g, h)

which we use to identify

O(Y ×S Y ) ∼= k|Γ|, and

O(Y ×S Y ×S Y ) ∼= k|Γ| ⊗k k
|Γ| ∼= k|Γ×Γ|,

where we write (dg,h)g,h∈Γ for an element in k|Γ×Γ|. As in Example 6.1, the Hopf
algebra structure on k|Γ| representing Γk plays a role in describing the three re-
striction maps p̃ij : O(Y ×S Y ) → O(Y ×S Y ×S Y ) as maps k|Γ| → k|Γ×Γ|. The
canonical projection p12 : Y ×S Y ×S Y → Y ×S Y can be written as

(y, yg, yh) �→ (y, g)
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which corresponds to the first projection Γk×k Γk → Γk sending (g, h) �→ g. There-
fore, on global sections, this is represented by the algebra map

p̃12 = Id⊗1: k|Γ| → k|Γ| ⊗k k|Γ| ∼= k|Γ×Γ|,

(cg)g∈Γ �→ (cg)g∈Γ ⊗ (1)h∈Γ ∼= (cg)g,h∈Γ

since 1 = (1)h∈H in the second factor k|Γ|. Here (cg)g,h∈Γ is the element (dg,h)g,h∈Γ
∈ k|Γ×Γ| with dg,h = cg. Similarly, the projection p13 appears as (y, yg, yh) �→
(y, yh) which corresponds to the second projection Γk ×k Γk → Γk, and thus

p̃13 = Id⊗1: k|Γ| → k|Γ| ⊗k k|Γ| ∼= k|Γ×Γ|,

(cg)g∈Γ �→ (1)g∈Γ ⊗ (ch)h∈Γ ∼= (ch)g,h∈Γ.

The remaining projection, p23 sends (y, yg, yh) �→ (yg, yh), which after applying
the isomorphisms above becomes

(y, g, h) �→ (yg, g−1h)

and thus it corresponds to the map Γk ×k Γk → Γk which sends (g, h) �→ g−1h.
This is represented by the algebra map

p̃23 = (i⊗ Id) ◦ Δ: k|Γ| → k|Γ×Γ|,

(cg)g∈Γ �→ (cg−1h)g,h∈Γ,

where i : (cg)g∈Γ �→ (cg−1)g∈Γ is the antipode and

Δ: (cg)g∈Γ �→ (cgh)g,h∈Γ

is the comultiplication of the Hopf algebra k|Γ| representing Γk.
Now, we search for a 1–cocycle in PGL2(Y ×S Y ). We have that

PGL2(Y ×S Y ) = PGL2(k|Γ|) ∼= PGL2(k)|Γ|

and likewise PGL2(Y ×S Y ×S Y ) ∼= PGL2(k)|Γ×Γ|. We reuse the notation
p̃ij : PGL2(Y ×S Y ) → PGL2(Y ×S Y ×S Y ) for the restriction maps since they
appear similar to the ones above, namely

p̃12 : (ϕg)g∈Γ �→ (ϕg)g,h∈Γ,

p̃13 : (ϕg)g∈Γ �→ (ϕh)g,h∈Γ,

p̃23 : (ϕg)g∈Γ �→ (ϕg−1h)g,h∈Γ,

where now each ϕg ∈ PGL2(k). Identifying Γk with its embedding in PGL2, we
have the element

(g)g∈Γ ∈ PGL2(Y ×S Y )
which we claim is a 1–cocycle. Indeed,

p̃12((g)g∈Γ) · p̃23((g)g∈Γ) = (g)g,h∈Γ · (g−1h)g,h∈Γ

= (gg−1h)g,h∈Γ

= (h)g,h∈Γ

= p̃13((g)g∈Γ).

Thus, again by [St, Tag 04TR] the quaternion O–algebra Q is described over T ∈
SchS by

Q(T ) = {B ∈ M2(O(T ×S Y )) | g(B) = B, ∀ g ∈ Γ}.
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Or, more concisely, Q(T ) = M2(O(T ×S Y ))Γ are the fixed points. The canoni-
cal involution η0 on M2(O) of Example 3.5(b) is orthogonal and descends to an
orthogonal involution θ on Q, which is the canonical involution on Q.

Lemma 6.5. (Q, θ) is locally quadratic, but cannot be extended to a quadratic
triple. Thus, ω(Q, θ) �= 0 ∈ Ȟ1(S,SkewA,σ/A�tA,σ), i.e., the weak obstruction is
non-trivial.

Proof. Since (Q, θ) is a twisted form of M2(O) which splits over {Y → S}, we have
that

(Q, θ)|Y ∼= (M2(O), η0)|Y .
Since we have the split quadratic triple (M2(O), η0, f0)|Y of Example 3.5(b) and
{Y → S} is an fppf cover, we obtain that (Q, θ) is locally quadratic by Lemma
3.15(iv).

Now, assume that we can extend (Q, θ) to a quadratic triple (Q, θ, f) over S.
The linear map f then fits into the following diagram where the rows are exact
sequences coming from the sheaf equalizer diagrams for SymQ,θ and O respectively
and which commutes since f is a morphism of sheaves.

SymQ,θ(S) SymM2(O),η0
(Y )2 SymM2(O),η0

(Y ×S Y )

k k × k k|Γ|

f(S)

π1

f(Y )×f(Y ) f(Y×SY )

π2

where π1(B1, B2) = (g(B1)−B2)g∈Γ and π2(c1, c2) = (c1 − c2)g∈Γ. Commutativity
of the diagram then enforces that

f(Y ×S Y ) ((g(B1) −B2)g∈Γ) = (f(Y )(B1) − f(Y )(B2))g∈Γ

which is equivalent to
(f(Y )(g(B1)))g∈Γ = (f(Y )(B1))g∈Γ

and hence f(Y ) must be Γ–equivariant. We now argue that this means f(Y ) must
be zero. Certainly, f(Y ) is of the form

f

([
a b
c a

])
= au + bv + cw

for some u, v, w ∈ k = O(Y ). By Γ–equivariance we obtain

w = f

([
0 0
1 0

])
= f

([
0 1
1 0

] [
0 0
1 0

] [
0 1
1 0

])
= f

([
0 1
0 0

])
= v,

as well as

w = f

([
0 0
1 0

])
= f

([
1 1
0 1

] [
0 0
1 0

] [
1 1
0 1

])
= f

([
1 1
1 1

])
= u + v + w

which implies that u + v = 0, i.e., u = v. Therefore we must have u = v = w.
Finally, consider 0, 1 �= λ ∈ F4. We also have

w = f

([
0 0
1 0

])
= f

([
λ−1 0
0 1

] [
0 0
1 0

] [
λ 0
0 1

])
= f

([
0 0
λ 0

])
= λw

and so u = v = w = 0, meaning f(Y ) ≡ 0. However, by Corollary 3.8, since Q is a
degree 2 algebra we have that f(1Q) = 2

2 �= 0 (since S is not the empty scheme).
This is a contradiction, therefore no such f extending (Q, θ) can exist. �
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Unlike in Section 6.1, where we first constructed a quaternion algebra with non-
trivial strong obstruction and then used tensor products to construct (A, σ) of
degree 2n which also has non-trivial strong obstruction, we cannot apply the same
tensor product construction to the example of 6.4 to produce examples of larger
degree which have non-trivial weak obstruction. Proposition 6.6 makes this precise.

Proposition 6.6. Let n ≥ 1 and define on the k–variety Sn the following Azu-
maya algebra with orthogonal involution of degree 2n

(An, σn) = p∗1(Q, θ) ⊗O|Sn · · · ⊗O|Sn p∗n(Q, θ),

where pi : Sn → S is the ith projection and p∗i is the pullback of O–algebras. Then
(An, σn) is locally quadratic for any n ≥ 1, and (An, σn) can be extended to a
quadratic triple if and only if n ≥ 2. Equivalently, ω(An, σn) �= 0 if and only if
n = 1.

Proof. Lemma 6.5 is the case n = 1 and shows in particular that (Q, θ) is locally
quadratic. Since k is characteristic 2, this means by Lemma 4.5 that θ is also
symplectic. Therefore p∗i (Q, θ) have symplectic involutions and so when n = 2,
Proposition 4.6 shows that p∗1(Q, θ) ⊗O p∗2(Q, θ) can be extended to a quadratic
triple. Then Proposition 4.3 handles the cases of n ≥ 3. �

6.7. Non-trivial obstructions which become trivial in characteristic 2.
Here we provide an example of an Azumaya O–algebra with locally quadratic invo-
lution such that both the strong and weak obstructions are non-trivial, but where
base changing to S′ = S ×Spec(Z) Spec(F2), i.e. reducing modulo 2, causes both
obstructions to be trivial.

To start, we build the base scheme by gluing the two affine schemes U1 =
Spec(Z[x]/〈4x〉) and U2 = Spec(Z[ 1

x ]/〈 4
x 〉). Notice that the localization (Z[x]/〈4x〉)x∼= Z/4Z[x, 1

x ], and since U1 ∼= U2, this is also the localization of Z[ 1
x ]/〈 4

x 〉 at 1
x .

Hence we set U12 = U21 = Spec(Z/4Z[x, 1
x ]) and then glue U1 and U2 together along

U12 to produce the base scheme S. We note that S is not flat as a Spec(Z)–scheme,
since, for example, the map U12 → Spec(Z) corresponds to the map Z → Z/4Z[x, 1

x ]
which is not a flat map of rings. The global sections of S can be computed as the
equalizer in the diagram

O(S) Z[x]/〈4x〉 × Z[ 1
x ]/〈 4

x 〉 Z/4Z[x, 1
x ]

and this yields that O(S) ∼= {(a, b) ∈ Z
2 | a ≡ b (mod 4)}. Interestingly, 2 =

(2, 2) ∈ O(S) is not a zero divisor even though 2 is a zero divisor on both U1 and
U2.

Next, we define a locally free O–module of constant rank 2 by twisting the free
module O2. Considering the natural (Zariski) cover {Ui → S}i=1,2, we are in the
setting of gluing sheaves on a topological space as in [St, Tag 00AK], and so it is
sufficient to choose any automorphism

α12 : (Z/4Z[x, 1
x ])2 ∼−→ (Z/4Z[x, 1

x ])2

in order to specify gluing data, i.e., a cocycle, since then α21 = α−1
12 and αii = Id

are required. We choose the automorphism α12 =
[
1 2
0 1

]
and denote the twisted

module by E . The endomorphism algebra Q = EndO(E) is a neutral Azumaya
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O–algebra which is the twist of M2(O) over the same cover and along the inner
automorphism

Inn(α12) : M2(Z/4Z[x, 1
x ]) ∼−→ M2(Z/4Z[x, 1

x ]).

If we equip M2(O) with the hyperbolic orthogonal involution

σ(
[
a b
c d

]
) =
[
d b
c a

]
,

then σ will descend to an involution θ on Q since Inn(α12) ◦ σ = σ ◦ Inn(α12).
Notice that σ is locally quadratic since it can be extended to a quadratic triple using

� =
[
1 0
0 0

]
∈ M2(O(S)) as in Example 3.3(c). Therefore, (Q, θ) is an Azumaya

O–algebra with locally quadratic involution since θ is isomorphic to σ on U1 and
U2.

Lemma 6.8. Consider the quaternion O–algebra (Q, θ) with locally quadratic
involution constructed above. The weak obstruction ω(Q, θ) is non-trivial and
hence the strong obstruction Ω(Q, θ) is non-trivial as well.

Proof. Assume there exists a quadratic triple (Q, θ, f). The restrictions of this
quadratic triple to U1 and U2 is then a quadratic triple on an affine scheme, and so
by Proposition 3.12(i) they are described by elements �1 ∈ Q(U1) and �2 ∈ Q(U2)
respectively. Since Q(U1) = M2(Z[x]/〈4x〉) and �1 + σ(�1) = 1, we can compute
that �1 must be of the form

�1 =
[
a + g 2h
2k 1 − a− g

]
,

where a ∈ Z and g, h, k ∈ Z/4Z[x] with no constant terms. Since �1 is only deter-
mined up to an alternating element, we may assume a + g = 1. Similarly, �2 may
be taken to be of the form

�2 =
[

1 2h′

2k′ 0

]
,

where h′, k′ ∈ Z/4Z[ 1
x ] with no constant terms. However, the maps f |U1 and

f |U2 must agree on the overlap U12. Since we glued together Q using Inn(α12) =

Inn(
[
1 2
0 1

]
), this is equivalent to requiring that

Inn(α12)(�1) − �2 ∈ A�tQ,θ(U12) = Alt(M2(Z/4Z[x, 1
x ]), σ)).

We compute the following, keeping in mind that 2 = −2 in Z/4Z[x, 1
x ].

Inn(α12)(�1) − �2 =
[
1 2
0 1

] [
1 2h
2k 0

] [
1 2
0 1

]
−
[

1 2h′

2k′ 0

]

=
[

1 2 + 2h
2k 0

]
−
[

1 2h′

2k′ 0

]

=
[

0 −2h′ + 2 + 2h
−2k′ + 2k 0

]
.

However, we have that

Alt(M2(Z/4Z[x, 1
x ]), σ)) =

{[
y 0
0 −y

]
| y ∈ Z/4Z[x, 1

x ]
}
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and therefore α12(�1)− �2 cannot be an alternating element since −2h′ +2+2h �= 0
because h′ and h have no constant terms. This is a contradiction, and therefore no
such f making (Q, θ, f) a quadratic triple exists. Thus ω(Q, θ) �= 0, and therefore
also Ω(Q, θ) �= 0, as claimed. �

Now we will consider the base change diagram

S′ = S ×Spec(Z) Spec(F2) S

Spec(F2) Spec(Z)

Lemma 6.9. The pullback S′ = S ×Spec(Z) Spec(F2) is isomorphic to projective
space P

1
F2

. Furthermore, the restriction E|S′ is isomorphic to O|2S′ , meaning that
(Q, θ)|S′ ∼= (M2(O|S′), σ) and therefore has trivial strong and weak obstructions.

Proof. The scheme S′ is glued together from the affine schemes

U1 ×Spec(Z) Spec(F2) = Spec(Z[x]/〈4x〉 ⊗Z F2) ∼= Spec(F2[x]), and
U2 ×Spec(Z) Spec(F2) = Spec(Z[ 1

x ]/〈 4
x 〉 ⊗Z F2) ∼= Spec(F2[ 1

x ])

along the open subset U12 ×Spec(Z) Spec(F2) = Spec(F2[x, 1
x ]) in the standard con-

struction of projective space, and therefore S′ ∼= P
1
F2

.
The restriction of our quaternion algebra, Q|S′ is the twist of M2(O|S′) along

the automorphism

Inn(α12) ⊗ 1: M2(F2[x, 1
x ]) ∼−→ M2(F2[x, 1

x ]).

However, since Inn(α12) = Inn(
[
1 2
0 1

]
), then Inn(α12) ⊗ 1 will be its reduction

modulo 2 which is simply the identity. Therefore Q|S′ = M2(O|S′) and also θ|S′ =
σ is the standard hyperbolic orthogonal involution. As noted above, σ can be

extended to a quadratic triple using � =
[
1 0
0 0

]
∈ M2(O|S′) which satisfies � +

σ(�) = 1 and therefore Ω(M2(O|S′), σ) = 0, hence also ω(M2(O|S′), σ) = 0, so both
obstructions are trivial as claimed. �

This example demonstrates two interesting facts. First, that obstructions may
be non-trivial even for neutral Azumaya algebras. Second, examples of non-trivial
obstructions are not confined to the setting of characteristic 2 and allowing 2 to
be neither invertible nor zero provides examples of non-trivial obstructions of a
different nature than those which occur in characteristic 2.

Remark 6.10. Working over the same scheme S constructed in Section 6.7, a neu-
tral Azumaya O–algebra of any even degree with non-trivial obstructions can be
constructed in a similar way. Twisting the O–module O2n along the same open
cover using the automorphism

α12 =

⎡
⎢⎣

1 2
. . .

1

⎤
⎥⎦
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will produce a locally free O–module of rank 2n. Twisting (M2n(O), σ) by Inn(α12),
where σ is the hyperbolic orthogonal involution which reflects across the second di-
agonal, will produce (EndO(E), θ) which is locally quadratic but has ω(EndO(E), θ) �=
0 and hence Ω(EndO(E), θ) �= 0.

Constructing higher degree examples of non-trivial obstructions using tensor
products does not work, as Lemma 6.11 shows.

Lemma 6.11. Let (Q, θ) be the quaternion O–algebra with locally quadratic in-
volution constructed in Section 6.7. Let (A, θ′) = (Q, θ) ⊗O . . . ⊗O (Q, θ) be the
tensor product of n ≥ 2 copies of (Q, θ). Then Ω(A, θ′) = 0 and thus ω(A, θ′) = 0
also.

Proof. First, (A, θ′) is indeed locally quadratic by Lemma 5.10(i). We show that
Ω(A, θ′) = 0 when n = 2, and then the claim for n ≥ 3 follows from Lemma 5.10(ii).

Over the cover {Ui → S}i=1,2, the algebra (A, θ′) = (Q, θ)⊗O (Q, θ) is the twist

of M4(O) by the automorphism ϕ = Inn(
[
1 2
0 1

]
⊗
[
1 2
0 1

]
). We choose elements

�1 =
[
1 0
0 1

]
⊗
[
1 0
0 0

]
∈ M4(Z[x]/〈4x〉),

�2 =

⎡
⎢⎢⎣

1 0 2 0
0 1 0 −2
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ∈ M4(Z[ 1

x ]/〈 4
x 〉).

These both satisfy �i+(σ⊗σ)(�i) = 1. Since the involution θ′ = θ⊗θ is isomorphic
to σ ⊗ σ over U12, and furthermore

ϕ(�1|U12) = �2|U12 ,

these �i glue into a global section � ∈ (A, θ′) with �+ θ′(�) = 1. Hence Ω(A, θ′) = 0
as claimed. �
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Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970. Séminaire de
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