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Introduction

The connection between Jordan structures (Jordan algebras, Jordan pairs) and Lie alge-
bras and groups has a long and successful history, starting with the work of Chevalley-
Schafer [CS] and continued by Jacobson [Ja1, Ja2, Ja3], Kantor [Ka1, Ka2], Koecher
[Ko1, Ko2, Ko3, Ko4], Loos [Lo2, Lo3, Lo5], Springer [Sp], Springer-Veldkamp [SV] and
Tits [Ti1, Ti2].

The book [LN2] by Loos and the author is a further contribution to the theme “Groups
and Jordan Structures”. It contains a detailed study of Steinberg groups associated with
certain types of Jordan pairs. These groups generalize the classical linear and unitary
Steinberg groups of a ring by, roughly speaking, replacing associative coordinates with
Jordan algebras or Jordan pairs. We are able to prove the basic results on Steinberg groups
(central closedness, universal central extension in the stable case) in our setting, thereby
recovering all previous results, except those on groups of type E8, F4 and G2, and in addition
deal with new types, not considered before. The main novelty however is our approach based
on 3-graded root systems and Jordan pairs.

The present paper is an introduction to the theory developed in [LN2]. In §1 we describe
the linear Steinberg group St(A) of a ring A from the point of view of Jordan pairs. This
is motivation for §2 where we define the Steinberg group of a root graded Jordan pair and
state the main results of [LN2] regarding these groups. The final section §3 discusses some
open research problems in the area of Steinberg groups and Jordan pairs.

The paper does not assume any prior knowledge of linear Steinberg groups or Jordan
pairs: all relevant definitions are given in the paper. We demonstrate their scope by many
examples and refer the reader to [LN1] and [LN2] for most proofs. But we include the
details of our discussion of the linear Steinberg group and the elementary linear group of
a ring from the point of view of Jordan theory (1.7 – 1.10 and 1.12 respectively). We also
give all details of our description of the Tits-Kantor-Koecher algebra and the projective
elementary group of a rectangular Jordan pair (2.12, 2.13).

Notation. Throughout k is a unital commutative associative ring and A is a not neces-
sarily commutative, but unital associative k-algebra. Its identity element and zero element
are denoted 1A and 0A respectively. We will often simply write 1 for 1A if A is clear from
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the context, and analogously for 0 ∈ A. We use A× to denote the invertible elements of A.
If k = Z we will refer to A as a ring.

For non-empty sets I and J we denote by MatIJ(A) the k-module of I×J-matrices over A,
i.e., maps x : I ×J → A with only finitely many values different from 0. As usual, we write
a matrix in the form x = (xij)(i,j)∈I×J . In case I = J we abbreviate MatI(A) = MatIJ(A).
This is an associative k-algebra with respect to ordinary matrix multiplication which is
unital if and only if I is finite. We put Matn(A) = MatI(A) if |I| = n < ∞. Here and in
general |I| denotes the cardinality of the set I. The identity element of Matn(A) is denoted
1n, and the group Matn(A)× by GLn(A).

The group commutator of elements g, h in a group G is ((g, h)) = ghg−1h−1.

Acknowledgement. The author thanks Ottmar Loos for many helpful comments on an
earlier version of this paper.

1. Elementary linear groups and their Steinberg groups

In this section we give an introduction to elementary linear groups over a ring A (1.1)
and their associated Steinberg groups (1.3). After a review of central extensions in 1.4 we
state the Kervaire-Milnor-Steinberg Theorem (1.6) which says, for example, that the stable
Steinberg group is the universal central extension of the stable elementary group. We also
exhibit a new set of generators and relations for the Steinberg groups considered in this
section (1.7 – 1.9), which we take as axioms for a new Steinberg group defined in 1.10. The
main result is Theorem 1.11: the classical and the new Steinberg groups are isomorphic.

1.1. Elementary linear groups. Let n ∈ N, n ≥ 2. As usual, Eij ∈ Matn(A) is the
n × n-matrix with entry 1A at the position (ij) and 0A elsewhere. For 1 ≤ i 6= j ≤ n and
a ∈ A we put

eij(a) = 1n + aEij , (a ∈ A)

The well-known multiplication rules aEij bEkl = δjk abEil for a, b ∈ A imply

(E1) eij(a) eij(b) = eij(a+ b).

Hence eij(a) eij(−a) = 1n = eij(−a) eij(a), which shows that eij(a) ∈ GLn(A). The ele-
mentary linear group (of rank n) is the subgroup

En(A) =
〈
eij(a) : 1 ≤ i 6= j ≤ n, a ∈ A

〉
of Matn(A)× generated by all eij(a).

One easily verifies two further relations of the eij(a):

((eij(a), ekl(b))) = 1n (j 6= k, i 6= l),(E2)

((eij(a), ejl(b))) = eil(ab) (i, j, l 6=).(E3)

Taking the inverse of (E3) and using ((g, h))−1 = ((h, g)) yields the equivalent relation

(E4) ((eij(a), eki(b))) = ekj(−ba) (i, j, k 6=).

We will also need an infinite variant of Matn(A) and the group En(A). Let

MatN(A)

be the set of all N × N-matrices x = (xij)i,j∈N with entries from A. Since MatN(A) is a
non-unital k-algebra,

, but with only finitely many xij 6= 0. The usual addition and multiplication of matrices
are well-defined operations on MatN(A) satisfying all axioms of a ring, except the existence
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of an identity element. To remedy this, let 1N = diag(1A, 1A, . . .) be the diagonal matrix of
size N× N with every diagonal entry being 1A. Then

MatN(A)ex := k1N + MatN(A)

is a ring with the usual addition and multiplication of matrices. Its identity element is
1N and its zero element is the zero matrix, see for example [HO, 1.2B] where this ring is
denoted Mat∞(A) (its elements are the N × N-matrices with entries from A which have
only finitely many non-zero entries off the diagonal and whose diagonal elements become
eventually constant).

We associate with x ∈ Matn(A) the matrix ιn(x) ∈ MatN(A)ex by putting x in the upper
left corner and filling the diagonal outside x with 1A:

ιn(x) =

(
x 0
0 diag(1A, . . .)

)
Then ιn maps invertible matrices in Matn(A) to invertible matrices of MatN(A)ex, in par-
ticular ιn

(
eij(a)

)
∈ MatN(A)×ex. Since ιn

(
eij(a)

)
= ιp

(
eij(a)

)
for p ≥ n, we can take the

maps ιn as identification and view all eij(a), i, j ∈ N with i 6= j, as elements of MatN(A)×ex.
The (stable) elementary linear group is the subgroup E(A) of MatN(A)×ex generated by all
the eij(a):

E(A) =
〈
eij(a) : i, j ∈ N, i 6= j

〉
.

It is immediate that the relations (E1) – (E4) also hold in E(A). The group E(A) is
canonically isomorphic to the limit of the inductive system (En(A), ιpn) where ιpn : En(A)→
Ep(A) for p ≥ n is defined by taking the left upper (p× p)-corner of ιn(x).

1.2. Why is En(A) important? One reason is that En(F ) = SLn(F ) in case of A = F is a
field – in other words, every matrix of determinant 1 can be reduced to the identity matrix
by elementary row and column reductions. The equality En(A) = SLn(A) even holds
for a noncommutative local ring, for example a division ring, if one uses the Dieudonné
determinant ([HO, 2.2.2] or [Ro, 2.2.2–2.2.6]). If A is commutative then obviously En(A) ⊂
SLn(A). Equality holds for example if A is a Euclidean ring [HO, 1.2.11].

While all of this is interesting, the real interest in En(A) and E(A) stems from their
connection to Steinberg groups of A and to the K-group K2(A), defined in (1.3.2).

1.3. The Steinberg groups Stn(A) and St(A). We assume n ∈ N, n ≥ 3 (the case n = 2
is uninteresting since then the definitions below yield free products of A. The group St2(A)
is defined differently, see e.g. [Mi]; it will not play a role in this paper).

The Steinberg group Stn(A) is the group presented by

• generators xij(a), 1 ≤ i 6= j ≤ n and a ∈ A, and
• relations (E1) – (E3) of §1.1:

xij(a) xij(b) = xij(a+ b) for all 1 ≤ i 6= j ≤ n and a, b ∈ A,
((xij(a), xkl(b))) = 1 if j 6= k and l 6= i,

((xij(a), xjl(b))) = xil(ab) if i, j, l 6=.
The (stable) Steinberg group St(A) is the group presented by

• generators xij(a), i, j ∈ N distinct, a ∈ A, and
• relations (E1) – (E3) for i, j ∈ N.

Since the defining relations (E1) – (E3) hold in En(A) and E(A) we get surjective group
homomorphisms

(1.3.1) ℘n : Stn(A)→ En(A) and ℘ : St(A)→ E(A)
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determined by xij(a) 7→ eij(a). The second K-group of A is then defined as

(1.3.2) K2(A) := Ker(℘).

This is an important but also mysterious group, even for fields. The reader can find more
about this group in the classic [Mi], and in [HO, Ch. 1], [Ma, Parts IV and V], [Ro, Ch. 4],
or [We, III] (the list is incomplete).

To put all of this in a bigger picture, we make a short detour on central extensions of
groups.

1.4. Central extensions. Let G be a group. An extension of G is a surjective group
homomorphism p : E → G. An extension is called central if Ker(p) is contained in the
centre of the group G. A central extension q : X → G is a universal central extension if for
all central extensions p : E → G there exists a unique homomorphism f : X → E such that
q = p ◦ f :

X
∃! f //

q   

E

p��
G

A group X is called centrally closed if IdX : X → X is a universal central extension. Thus,
X is centrally closed if and only if every central extension p : E → X splits uniquely in the
sense that there exists a unique group homomorphism f : X → E satisfying p ◦ f = IdX .
The concepts defined above are related by the following facts, proved for example in [HO,
1.4C], [Mi, §5], [Ro, 4.1] or [St2, §7].

(a) A group G has a universal central extension if and only if it is perfect , i.e., generated
by all commutator ((g, h)) of g, h ∈ G. In particular, a centrally closed group is perfect.

(b) For two universal central extensions of a group G, say q : X → G and q′ : X ′ → G, there
exists an isomorphism f : X → X ′ of groups, uniquely determined by the condition
q = q′ ◦ f .

(c) Let q : X → G be a universal central extension, whence G is perfect by (a). Then X is
centrally closed and thus also perfect, again by (a). Obviously, G is a central quotient
of X. The following fact (d) says that every universal central extension of G is obtained
as a central quotient of a centrally closed group.

(d) A surjective group homomorphism q : X → G is a universal central extension if and
only if (i) X is centrally closed and (ii) Ker(q) is central.

(e) Let f : X → G and g : G → Ḡ be central extensions. Then f is a universal central
extension if and only if g ◦ f is a universal central extension.

To describe a universal central extension of a group G we have, by (d) and (e), two ap-
proaches:

(I) Find successive central extensions G1 → G0 = G, . . . , Gn → Gn−1, . . . until one of
them, say Gn → Gn−1, becomes universal, and then take the composition Gn → G
of these central extensions, or

(II) find an extension q : X → G with X centrally closed and then find conditions for
Ker(q) to be central.

Although (I) sees to be the more natural approach, we will actually follow (II). But first
back to Steinberg groups.

In [St1] Steinberg gave a very elegant description of the universal central extension
of a perfect Chevalley group over a field. “Most” Chevalley groups are perfect by [St2,
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Lemma 32]. In particular, for n ≥ 2 and F a field, the group SLn(F ) = En(F ) (equality by
1.2) is a Chevalley group, and it is perfect if n ≥ 4 or if n = 3 and |F | ≥ 3 or if n = 2 and
|F | ≥ 4. A special case of Steinberg’s result in [St1] is the following theorem.

1.5. Theorem ([St1], [St2, Thm. 10], [St3, Thm. 1.1]). Let n ∈ N, n ≥ 2 and let F
be a field satisfying |F | > 4 if n = 3 and |F | 6∈ {2, 3, 4, 9} if n = 2. Then the map
℘n : Stn(F )→ En(F ) of (1.3.1) is a universal central extension.

We have defined the maps ℘n : Stn(A) → En(A) and ℘ : St(A) → E(A) for any ring A.
It is therefore natural to ask if Theorem 1.5 even holds for rings. An answer is given in the
following Kervaire-Milnor-Steinberg Theorem.

1.6. Kervaire-Milnor-Steinberg Theorem ([Ke, Mi, St2]). For an arbitrary ring A,

(a) the group Stn(A), n ≥ 5, is centrally closed.

(b) The map ℘ : St(A)→ E(A) is a universal central extension.

An indication of the proof of (a) can be found in see [HO, 1.4.12] or [St2, Cor. 1]. The
attribution of part (b) of this theorem is somewhat complicated. Kervaire cites a preliminary
version of [Mi], Milnor attributes it to Steinberg and Kervaire ([Mi, p. 43]), and Steinberg
says that (b), proved in [St2, Thm. 14], is “based in part on a letter from J. Milnor”.

In view of (a), the map ℘n : Stn(A) → En(A), n ≥ 5, is a universal central extension if
and only if it is a central extension. It is known that this is not always the case, see [HO,
4.2.20]. However, by 1.4(c), both Stn(A) and St(A) are centrally closed. It is this result
that we will be concentrating on, following the strategy 1.4(II).

1.7. Another look at Stn(A) and St(A): using root systems. To treat Stn(A), n ∈ N,
n ≥ 3, and St(A) at the same time we use the subset N ⊂ N, which is the finite integer
interval N = [1, n] or N = N. We can then put

StN (A) =

{
Stn(A) if N = [1, n],

St(A) if N = N.

By definition in 1.3, StN (A) is generated by xij(a), (i, j) ∈ N × N , i 6= j, and a ∈ A.

We replace this indexing set by the root system ȦN (notation of 2.2), which we realize in
the Euclidean space X =

⊕
i∈N Rεi with basis (εi)i∈N and inner product ( | ) defined by

(εi|εj) = δij :

R = ȦN = {εi − εj : i, j ∈ N}, R× = R \ {0}.
Thus R× = An−1 for N = [1, n] in the traditional notation, while for N = N we get an
infinite locally finite root system – a concept that we will review later in 2.1. For the
moment, it suffices to use the concretely given R above.

For α, β ∈ R one easily checks that (α|β) ∈ {0,±1,±2} with (α|β) = ±2 ⇐⇒ α = ±β.
To conveniently describe the remaining cases we use the symbols

(1.7.1) α ⊥ β ⇐⇒ (α|β) = 0 and α β ⇐⇒ (α|β) = 1.

A straightforward analysis of the indices shows for α = εi − εj and β = εk − εl ∈ R that

α ⊥ β or α β ⇐⇒ j 6= k and l 6= i,

α (−β) ⇐⇒ j = k, i, j, l 6= or i = l, i, j, k 6= .(1.7.2)

Hence, putting

xα(a) = xij(a) for α = εi − εj ∈ R×,
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the relations (E1) – (E4) can be rewritten in terms of roots as follows. Let α, β ∈ R× and
denote the relations corresponding to (Ei) by (ERi). Then the previous relations read

((xα(a), xα(b))) = 1,(ER1)

((xα(a), xβ(b))) = 1, if α ⊥ β or α β,(ER2)

((xα(a), xβ(b))) = xα+β(ab) if α = εi − εj , β = εj − εl, i, j, l 6=,(ER3)

((xα(a), xβ(b))) = xα+β(−ba) if α = εi − εj , β = εk − εi, i, j, k 6=.(ER4)

In particular, the two cases for α (−β) in (1.7.2) correspond precisely to the relations
(ER3) and (ER4).

1.8. Another look at StN (A): fewer generators. We continue with N and R as in 1.7.
In addition we choose a nontrivial partition

N = I ∪̇ J, ∅ 6= I 6= N,

which we fix in the following. It induces a non-trivial partition

(1.8.1) R = R1 ∪̇R0 ∪̇R−1,

whose parts are

R1 = {εi − εj : i ∈ I, j ∈ J},
R−1 = {εj − εi : i ∈ I, j ∈ J} = −R1,

R0 = {εk − εl : (k, l) ∈ I × I or (k, l) ∈ J × J} = ȦI × ȦJ .

The partition R = R1 ∪̇ R0 ∪̇ R−1 will later be seen to be an example of a 3-grading of R,
but we do not need this now. Observe that every µ ∈ R0 can be written (not uniquely) as
µ = α− β with α and β ∈ R1 satisfying α β. Indeed,

(i) if µ = εk − εl with k, l ∈ I then µ = (εk − εj)− (εl − εj) for any j ∈ J , hence

(1.8.2) xµ(a) = xkl(a) = ((xkj(a), xjl(1))) = ((xα(a), x−β(1)))

by (ER3) for α = εk − εj and β = εl − εj ∈ R1, and

(ii) if µ = εk − εl with k, l ∈ J then µ = (εi − εl)− (εi − εk) for any i ∈ J , hence

(1.8.3) xµ(a) = xkl(a) = ((xil(−a), xki(1))) = ((xα(−a), x−β(1)))

by (ER4) for α = εi − εl and β = εi − εk ∈ R1.

The equations (1.8.2) and (1.8.3) show that StN (A) is already generated by

(1.8.4) {xα(a) : α ∈ R1 ∪R−1, a ∈ A}.

1.9. Another look at StN (A): fewer relations. Our next goal is to rewrite some of
the relations (ER1) – (ER4) in terms of the smaller generating set (1.8.4). Each of these
relations depend on two roots ξ, τ ∈ R. Because of ((g, h))−1 = ((h, g)) we only need to
consider the relations involving (ξ, τ) lying in one of the following subsets of R×R:

R1 ×R1, R−1 ×R−1, R1 ×R−1, R0 ×R1, R0 ×R−1, R0 ×R0.

(a) Case (ξ, τ) = (α, β) ∈ R1 ×R1: Given α, β ∈ R1, exactly one of the relations α = β,
α β, α ⊥ β holds. Hence only (ER1) and (ER2) apply in this case and yield

(1.9.1) ((xα(a), xβ(b))) = 1 for α, β ∈ R1 and a, b ∈ A.
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It will now be more convenient to change notation (again) and put for α = εi − εj ∈ R1

and uα = aE+
α

E+
α = Eij , x′+(uα) = xα(a) = xij(a)(1.9.2)

V +
α = AE+

α , V + =
⊕

α∈R1
V +
α =

⊕
(ij)∈I×J AEij .(1.9.3)

Because of (1.9.1) the map

(1.9.4) x′+ : V + −→ StN (A), u =
∑

α∈R1
uα 7→

∏
α∈R1

x′+(uα)

is well-defined (independent of the chosen order for
∏
α∈R1

) and satisfies

(1.9.5) x′+(u+ u′) = x′+(u) x′+(u′) for u, u′ ∈ V +.

It is clear that conversely (1.9.5) implies (1.9.1).

(b) Case (ξ, τ) = (−α,−β) ∈ R−1 × R−1: This case is analogous to Case (a). Given
α = εi − εj ∈ R1 and vα = aE−α we define

E−α = Eji, x−(vα) = x−α(−a) = xji(−a),

V −α = AE−α , V − =
⊕

α∈R1
V −α =

⊕
(ji)∈J×I AEji.(1.9.6)

(The minus sign in the definition of x−(vα) is not significant, but has been included so that
the relations below are precisely those used later on. It avoids a minus sign in the formula
(1.12.3).) As in Case (a) the relations (ER1) – (ER4) for (−α,−β) ∈ R−1 × R−1 yield
((x′−(vα), x′−(v′β))) = 1 and thus give rise to a well-defined map

(1.9.7) x′− : V − −→ StN (A), v =
∑

α∈R1
aαE

−
α 7→

∏
α∈R1

x′−(−aαE−α )

satisfying

(1.9.8) x′−(v + v′) = x′−(v) x′−(v′) for v, v′ ∈ V −.

At this point we obtain a new generating set of StN (A),

(1.9.9) StN (A) =
〈
x′+(V +) ∪ x′−(V −)

〉
,

(c) Case (ξ, τ) = (α,−β) ∈ R1 × R−1: From this case we will only explicitly keep the
relation (ER2), which in our new notation says

(1.9.10) ((x′+(u), x′−(v))) = 1 for (u, v) ∈ V +
α × V −β with α ⊥ β.

In the following Case (d) we use the relations (ER3) and (ER4) for (α,−β) ∈ R1 ×R−1 in
double commutators.

(d) Case (ξ, τ) = (µ, γ) ∈ R0 × R1: To deal with this case, we view the elements of V +

as I×J-matrices with only finitely many non-zero entries, as in (1.9.2). Similarly, elements
in V − are J × I-matrices with finitely many non-zero entries. Matrix multiplication of
matrices in V + × V − × V + is then well-defined and yields the Jordan triple product {· · · },
i.e., the map

{· · · } : V + × V − × V + −→ V +, (x, y, x) 7→ {x y z} := xyz + zyx.

We claim that (ER2) – (ER4) imply

((((x′+(uα), x′−(vβ))), x′+(zγ))) = x′+(−{uα vβ zγ})
for α, β, γ ∈ R1 with α β and all uα ∈ V +

α , vβ ∈ V −β , zγ ∈ V +
γ

(1.9.11)
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We prove this by evaluating all possibilities for µ = α− β with α, β ∈ R1 satisfying α β
and γ = εr − εs ∈ R1. By 1.8(i) and 1.8(ii) there are two cases for such a representation of
µ, discussed below as (I) and (II).

(I) α = εi − εj , β = εi − εl for i ∈ I and j, l ∈ J distinct. Thus µ = α− β = εl − εj . We
let uα = aEij , vβ = bEli, zγ = cErs. Then, by (ER4) – (E4),

((((x′+(uα), x′−(vβ))), x′+(zγ))) = ((((xij(a), xli(−b))), xrs(c))) = ((xlj(ba), xrs(c))) =: A,

{uα vβ zγ} = {aEij bEli cErs} = δsl cbaErj =: B.

If l = s then, again by (E4), A = xrj(−cba), while B = cbaErj . Otherwise l 6= s, whence
A = 1 by (E2) and clearly B = 0. This finishes the proof of (1.9.11) in case (I).

(II) α = εi − εj , β = εk − εj for distinct i, k ∈ I and j ∈ J . This can be shown in the
same way as (I).

To obtain a slightly simpler version of (1.9.11) we apply the commutator formula

((g, h1 h2)) = ((g, h1)) · ((g, h2)) · ((((h2, g)), h1))

with g = ((x′+(uα), x′−(vβ))), h1 = x′+(zγ) and h2 = x′+(zδ) for arbitrary δ ∈ R1. We obtain
((g, h1 h2)) = ((g, h1)) · ((g, h2)), which allows us to rewrite (1.9.11) in the form

((((x′+(uα), x′−(vβ))), x′+(z))) = x′+(−{uα vβ z})
for α, β ∈ R1 with α β and arbitrary uα ∈ V +

α , vβ ∈ V −β , z ∈ V +.
(1.9.12)

(e) Case (ξ, τ) = (µ,−γ) ∈ R0 ×R−1. We proceed as in Case (d) and define the Jordan
triple product

{· · · } : V − × V + × V − −→ V −, (x, y, x) 7→ {x y z} := xyz + zyx,

using matrix multiplication in the definition of {· · · }. As in Case (d) one then proves the
relation

((((x′−(vα), x′+(uβ))), x′−(w))) = x′−(−{vα uβ w})
for α, β ∈ R1 with α β and arbitrary vα ∈ V −α , uβ ∈ V +

β , w ∈ V −.
(1.9.13)

(f) Case (ξ, τ) ∈ R0 × R0: As we will see below, the relations involving these (ξ, τ) are
not needed for presenting StN (A).

1.10. The Steinberg group St(MIJ(A),R). We keep the setting of (1.7) – (1.9). In 1.9
we defined a pair of matrix spaces,

(V +, V −) =
(
MatIJ(A), MatJI(A)

)
=: MIJ(A),

and Jordan triple products

{· · · } : V σ × V −σ × V σ → V σ, (x, y, z) 7→ {x y z} = xyz + zyx

for σ ∈ {+,−}. In (1.9.3) and (1.9.6) we also introduced a family

R = (Vα)α∈R1 , Vα = (V +
α , V

−
α )

of pairs of subgroups with the property that V σ =
⊕

α∈R1
V σ
α . Furthermore, in (1.9.9)

we found a new generating set for StN (A), and we rewrote some of the relations defining
StN (A) in terms of this new generating set. It is then natural to define a new Steinberg
group using these new generators and relations.

The Steinberg group St(MIJ(A),R) is the group presented by

• generators x+(u), u ∈ V +, and x−(v), v ∈ V −, and
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• the relations (1.9.5), (1.9.8), (1.9.10), (1.9.12) and (1.9.13). Taking σ ∈ {+,−}
these are

xσ(u+ u′) = xσ(u) xσ(u′) for u, u′ ∈ V σ,(EJ1)

((x+(u), x−(v))) = 1 for (u, v) ∈ V +
α × V −β , α ⊥ β,(EJ2)

((((xσ(u), x−σ(v))), x−(z))) = xσ(−{u v z})(EJ3)

for uα ∈ V σ
α , v ∈ V −σβ , z ∈ V σ with α β.

(The letter “J” in (EJi) stands for “Jordan”, to be explained in the next section.)

From the review above, it is clear that we have a surjective homomorphism of groups

(1.10.1) Φ: St(MIJ(A),R)→ StN (A), xσ(u) 7→ x′σ(u)

where x′σ is defined in (1.9.4) and (1.9.7). Moreover, composing Φ with the surjective
group homomorphisms ℘N : StN (A) → EN (A) of (1.3.1) yields another surjective group
homomorphism

(1.10.2) pN : St(MIJ(A),R)→ EN (A), x+(aEij) 7→ eij(a), x−(aEji) 7→ eji(−a)

and hence a commutative diagram

(1.10.3)

St(MIJ(A),R)
Φ //

pN ''

StN (A)

℘Nyy
EN (A)

1.11. Theorem ([LN2]). The map Φ of (1.10.1) is an isomorphism of groups.

In particular, St(MIJ(A),R) is centrally closed if |N | ≥ 5 and pN is a universal central
extension of E(A) if N = N.

Proof. To prove bijectivity of Φ is bijective, a canonical approach is to show that the family
of x+(aEij) and x−(−bEij) ∈ St(MIJ(A),R) can be extended to a family of elements
satisfying the defining relations (E1) – (E3) of StN (A). As a consequence, this yields a group
homomorphism Ψ: StN (A)→ St(MIJ(A),R) such that Ψ◦Φ and Φ◦Ψ are the identity on
the respective generators and therefore also on the corresponding groups. Another proof of
the bijectivity of Φ is given in [LN2, 24.18], based on the interpretation of both groups as
initial objects in an appropriate category of groups mapping onto EN (A).

The second part of the theorem follows from the Kervaire-Milnor-Steinberg Theorem 1.6.
�

1.12. Another look at EN (A). It follows from the existence of the surjective group ho-
momorphism pN of (1.10.2) that EN (A) is generated by pN (x+(V +) ∪ x−(V −)) and that
the matrices in this image satisfy the relations (EJ1) – (EJ3). It is instructive to verify this
directly.

For (u, v) ∈MIJ(A) we define elements e+(u) and e−(v) of the ring MatN (A)ex of 1.1 by

(1.12.1) e+(u) =

(
1I u
0 1J

)
, e−(v) =

(
1I 0
−v 1J

)
.

Then clearly

(1.12.2) e+(u+ u′) = e+(u) e+(u′) and e−(v + v′) = e−(v) e−(v′).
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In particular, the matrices e+(u) and e−(v) are invertible with inverses e+(u)−1 = e+(−u)
and e−(v)−1 = e−(−v). Since e+(aEij) = eij(a) and e−(vEji) = eji(−v) for (ij) ∈ I×J , the
equations (1.12.2) also show that e+(u) ∈ EN (A) and e−(v) ∈ EN (A). By straightforward
matrix multiplication one obtains

(1.12.3) ((e+(u), e−(v))) =

(
1I − uv + uvuv uvu

vuv 1J + vu

)
.

In particular, taking (u, v) with vu = 0 or uv = 0, this proves(
1I − uv 0

0 1J

)
∈ EN (A) and

(
1I 0
0 1J + vu

)
∈ EN (A).

Specifying (u, v) even more, one then easily sees that all elementary matrices ekl(a) with
(k, l) ∈ I × I or (k, l) ∈ J ×J lie in the subgroup of EN (A) generated by e+(V +)∪ e−(V −).
Therefore, this subgroup equals EN (A).

The relation (EJ1) is (1.12.2), and the relation (EJ2) follows from (1.12.3) since for
(u, v) ∈ V +

α × V −α with α ⊥ β we have uv = 0 and vu = 0. In order to prove (EJ3) in case
σ = +, let (u, v) ∈ V +

α × V −β with α ⊥ β and let z ∈ V + arbitrary. Then uvu = 0 = uvzvu,

vuv = 0 and (1J + vu)−1 = 1J − vu. Hence, by (1.12.3),

((((e+(u), e−(v))), e+(z))) =
(((

1I − uv 0
0 (1J − vu)−1

)
,

(
1I z
0 1J

)))
=

(
1I −z + (1− uv)z(1− vu)
0 1J

)
= e+(−{u v z}).

The relation (EJ3) for σ = − can be verified in the same way.
To put this example in the general setting of the following section §2 we point out that

the calculations above are not only valid for matrices of finite or countable size |N |, but
hold for N of arbitrary cardinality.

2. Generalizations

In this section we generalize the Steinberg groups considered in §1. The generalization
has a combinatorial aspect, 3-graded root systems, and an algebraic aspect, root graded
Jordan pairs. They are presented in 2.1 – 2.3 and 2.4 – 2.6 respectively. We define the
Steinberg group of a root graded Jordan pair (2.7) and state the Jordan pair version of
the Kervaire-Milnor-Steinberg Theorem (2.8 and 2.11). Since the elementary linear group
only makes sense for special Jordan pairs, we replac it by its central quotient which can
be defined for any Jordan pair: the projective elementary group PE(V ) of a Jordan pair
V defined in terms of the Tits-Kantor-Koecher algebra L(V ) (2.10). We discuss L(V ) and
PE(V ) for the Jordan pair of rectangular matrices over a ring in 2.12 and 2.13.

2.1. Locally finite root systems [LN1]. We use 〈·, ·〉 to denote the canonical pairing
between a real vector space X of arbitrary dimension and its dual space X∗, thus 〈x, ϕ〉 =
ϕ(x) for x ∈ X and ϕ ∈ X∗. If ϕ ∈ X∗ satisfies 〈α,ϕ〉 = 2, we define the reflection
sα,ϕ ∈ GL(X) by

sα,ϕ(x) = x− 〈x, ϕ〉α.
A locally finite root system is a pair (R,X) consisting of a real vector space X and a

subset R ⊂ X satisfying the axioms (i) – (iv) below.

(i) R spans X as a real vector space and 0 ∈ R,
(ii) for every α ∈ R× = R\{0} there exists α∨ ∈ X∗ such that 〈α, α∨〉 = 2 and sα,α∨(R) =

R.
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(iii) 〈α, β∨〉 ∈ Z for all α, β ∈ R×.
(iv) R is locally finite in the sense that R∩Y is finite for every finite-dimensional subspace

of X.

Locally finite root systems form a category RS, in which a morphism f : (R,X)→ (S, Y )
is an R-linear map with f(R) ⊂ S. In this category, an isomorphism f : (R,X)→ (S, Y ) is
a vector space isomorphism f : X → Y with f(R) = S. Such an isomorphism necessarily
satisfies 〈f(α), f(β)∨〉 = 〈α, β∨〉 for all α, β ∈ R×.

Remarks, facts and more definitions. (a) The linear form α∨ in (ii) is uniquely
determined by the two conditions in (ii). Therefore, we simply write sα instead of sα,α∨ in
the future.

(b) Our standard reference for locally finite root systems is [LN1]. As in [LN1] we will
also here abbreviate the term “locally finite root system” by root system. Then a finite root
system is a root system (R,X) with R a finite set, equivalently dimX < ∞. Finite root
systems are the root systems studied for example in [Bo, Ch. VI]. That [Bo] assumes 0 /∈ R
does not pose any problem in applying the results developed there.

The real vector space X of a root system (R,X) is usually not important. We will
therefore often just refer to R rather than to (R,X) as a root system.

(c) As in [LN1] and again in [LN2, §2] we assume here that 0 ∈ R, which is more natural
from a categorical point of view. In [LN2, §2] the real vector space X is replaced by a free
abelian group X and condition (iv) becomes that R∩Y be finite for every finitely generated
subgroup Y of X. With the obvious concept of a morphism, this defines a category of root
systems over the integers, which is equivalent to the category RS [LN2, Prop. 2.9].

(d) A locally finite root system need not be reduced in the sense that Rα ∩ R = {±α}
for every α ∈ R×. The rank of a root system (R,X) is defined as the dimension of the real
vector space X.

(e) The direct sum of a family (R(j), X(j))j∈J of root systems is the pair(⋃
j∈J R

(j),
⊕

j∈J X
(j)
)
,

which is again a root system [LN1, 3.10], traditionally written as R =
⊕

j∈J R
(j). A non-

empty root system is called irreducible if it is not isomorphic to a direct sum of two non-
empty root systems. Every root system uniquely decomposes as a direct sum of irreducible
root systems, called its irreducible components [LN1, 3.13].

(f) Every root system (R,X) admits an inner product ( | ) : X×X → R, which is invariant
in the sense that (sα(x) | sα(y)) = (x | y) holds for all α ∈ R× and x, y ∈ X, equivalently

(2.1.1) 〈β, α∨〉 = 2
(β | α)

(α | α)
for all α, β ∈ R×

[LN1, 4.2]. If R is irreducible, ( | ) is unique up to a non-zero scalar. It follows that the
definition of a root system given in [Ne2] is equivalent to the definition above, and that a
finite reduced root system is the same as a “root system” in [Hu], again up to 0 /∈ R.

2.2. Classification of root systems. We first present, as examples, the classical root
systems ȦI , . . . ,BCI . Let I be a set of cardinality |I| ≥ 2 and let X =

⊕
i∈I Rεi be the
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R-vector space with basis (εi)i∈I . Define

ȦI = {εi − εj : i, j ∈ I},(2.2.1)

DI = ȦI ∪ {±(εi + εj) : i 6= j},(2.2.2)

BI = DI ∪ {±εi : i ∈ I},(2.2.3)

CI = DI ∪ {±2εi : i ∈ I},(2.2.4)

BCI = BI ∪ CI .(2.2.5)

Then ȦI is a root system in Ẋ = Ker(t) where t ∈ X∗ is defined by t(εi) = 1, i ∈ I. Its

rank is therefore |I| − 1. The notation Ȧ instead of the traditional A is meant to indicate

this fact. Observe that ȦN is the root system R of 1.7. All other sets DI , . . . ,BCI , are root
systems in X, whence of rank |I|. The root systems ȦI , BI , CI and DI are reduced, while
BCI is not.

The isomorphism class of a classical root system only depends on the cardinality of the
set I. In particular, when I is finite of cardinality n we will use the index n instead of I.
Thus, Dn = D{1,...,n} etc. Note Ȧn+1 = Ȧ{0,1,...,n} = An in the traditional notation.

The standard inner product ( | ), defined by (εi|εj) = δij , is an invariant inner product in

the sense of 2.1(f). With the exception of D2 = A1 ⊕A1, the root systems ȦI , . . . ,BCI are
irreducible. Apart from the low-rank isomorphisms B2

∼= C2, D3
∼= A3, they are pairwise

non-isomorphic.

The classification of root systems [LN1, Thm. 8.4] says that an irreducible root system is
either isomorphic to a classical root system or to an exceptional finite root system.

2.3. 3-graded root systems. A 3-grading of a root system (R,X) is a partition R =
R1 ∪̇R0 ∪̇R−1 satisfying the following conditions (i) – (iii) below:

(i) R−1 = −R1;
(ii) (Ri + Rj) ∩ R ⊂ Ri+j for i, j ∈ {1, 0,−1}, with the understanding that Rk = ∅ for

k /∈ {1, 0,−1}
(iii) R1 +R−1 = R0, i.e., every root in R0 is a difference of two roots in R1.

In particular (ii) says that the sum of two roots in R1 is never a root and (R1+R−1)∩R ⊂ R0,
a condition which is strengthened in (iii).

Since a 3-grading of a root system (R,X) is determined by the subset R1 of R, we
will denote a 3-graded root system by (R,R1, X) or simply by (R,R1). A 3-graded root
system is a root system equipped with a 3-grading. An isomorphism f : (R,R1, X) →
(S, S1, Y ) between 3-graded root systems is a vector space isomorphism f : X → Y satisfying
f(R1) = S1, hence also f(Ri) = Si for i ∈ {1, 0,−1}, and is therefore an isomorphism
f : (R,X) → (S, Y ) of the underlying root systems. References for 3-graded root systems
are [LN1, §17, §18], [LN2, Ch. IV] and [Ne2].

Some facts and examples. (a) The decomposition (1.8.1) of the root system R = ȦN
is a 3-grading. The restrictions on N imposed in 1.7 are not necessary for the definition
of a 3-graded root system, as we have seen in 2.2 for the root system ȦN . Any non-trivial
partition N = I ∪̇ J induces a 3-grading of ȦN as in 1.8, denoted ȦI

N . Thus, the 1-part of

the 3-graded root system ȦI
N is

(2.3.1) (ȦI
N )1 = {εi − εj : i ∈ I, j ∈ N \ I}.

Every 3-grading of ȦN is obtained in this way for a non-empty proper subset I ⊂ N .
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(b) A 3-grading Bqf
I of the root system BI is obtained by choosing a distinguished element

of I, say 0 ∈ I, and putting R1 = {ε0} ∪ {ε0 ± εi : 0 6= i ∈ I}.
(c) The root system R = CI has a 3-grading, denoted Cher

I , whose 1-part is R1 = {εi+εj :

i, j ∈ I}. Note R0 = {εi − εj : i, j ∈ I} ∼= ȦI .

(d) The root system DI , |I| ≥ 4, is a subsystem of BI and CI . The 3-gradings of these two

root systems, defined in (b) and (c), induce 3-gradings Dqf
I and Dalt

I of DI . The first of these
is determined by R1 = {ε0±εi : 0 6= i ∈ I} and the second by R1 = {εi+εj : i, j ∈ I, i 6= j}.
It is known that Dqf

I
∼= Dalt

I if |I| = 4, but Dqf
I 6∼= Dalt

I if |I| ≥ 5.

(e) The 3-gradings of a root system R are determined by the 3-gradings of its irreducible

components (R(j))j∈J as follows.

If (R,R1) is a 3-grading, then (R(j), R1∩R(j)) is a 3-grading for every j ∈ J . Conversely,

given 3-gradings (R(j), R
(j)
1 ) for every j, the set R1 =

⋃
j R

(j)
1 defines a 3-grading of R.

These easy observations reduce the classification of 3-graded root systems to the case of
irreducible root systems. Their classification is given in [LN1, 17.8, 17.9]. It turns out that
an irreducible root system has a 3-grading if and only if it is not isomorphic to E8, F4 and
G2. Some irreducible root systems have several non-isomorphic 3-gradings, such as ȦN or
DI . But every 3-grading of CI is isomorphic to the 3-grading Cher

I of (c).

(f) The relations ⊥ and introduced in (1.7.1) in case R = ȦN can be defined for any
root system R without using an invariant inner product. For α, β ∈ R× we put

α ⊥ β ⇐⇒ 〈α, β∨〉 = 0, equivalently 〈β, α∨〉 = 0,

α β ⇐⇒ 〈α, β∨〉 = 1 = 〈β, α∨〉
α→ β ⇐⇒ 〈α, β∨〉 = 2, 〈β, α∨〉 = 1.

The formula (2.1.1) shows that the definitions of ⊥ and above generalize (1.7.1). The
relation → occurs for example in the root system CI : we have 2εi → εi + εj for 6= j. (In
[LN1] the notation > and a is used in place of and →, respectively.)

(g) Given α, β ∈ R1, exactly one of these relations holds:

(2.3.2) α = β or α→ β or α← β or α β or α ⊥ β.
Moreover, again for α, β ∈ R1,

(2.3.3) 2α− β ∈ R ⇐⇒ 2α− β ∈ R1 ⇐⇒ α← β or α = β.

2.4. Jordan pairs. This subsection contains a very short introduction to Jordan pairs over
a commutative ring k, although for the purpose of this paper k = Z is completely sufficient.
We will only present what is needed to understand this paper. A more detailed but still
concise introduction to Jordan pairs is given in [LN2, §6]; the standard reference for Jordan
pairs is [Lo1].

We have already seen an example of a Jordan pair in 1.9: the rectangular matrix pair
MIJ(A) = (MatIJ(A),MatJI(A)) equipped with the Jordan triple product {x y z} = xyz+
zyx for (x, y, z) ∈ V σ×V −σ×V σ and σ = ±. The Jordan triple product is the linearization
with respect to x of the expression Q(x)y = xyx, which did not play any role in §1, but
which is the basic structure underlying Jordan pairs.

A Jordan pair is a pair V = (V +, V −) of k-modules together with maps

Qσ : V σ × V −σ → V σ, (x, y) 7→ Qσ(x)y, (σ = ±),

which are quadratic in x and linear in y and which satisfy the identities (JP1) – (JP3) below
in all base ring extensions. To define these identities, we will simplify the notation and omit
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σ, thus writing Q(x)y or simply Qxy. This does not lead to any confusion, as long as one
takes care that the expressions make sense. Linearizing Qxy in x gives

Qx,zy = Q(x, z)y = Qx+zy −Qxy −Qzy,

which we use to define the Jordan triple product

{· · · } : V σ × V −σ × V σ → V σ, (x, y, z) 7→ {x y z} = Qx,zy.

To improve readability we will sometimes write {x, y, z} instead of {x y z}. If K is a
commutative associative unital k-algebra we let V σ

K = V σ⊗kK and observe that there exist
unique extensions of the Qσ to quadratic-linear maps Q : VK × VK → VK . The identities
required to hold for x, z ∈ V σ

K , y, v ∈ V −σK , σ ∈ {+,−} and any K as above are

{x, y, Qxv} = Qx {y, x, v},(JP1)

{Qxy, y, z} = {x, Qyx, z},(JP2)

QQxyv = QxQy Qzv.(JP3)

A homomorphism f : V → W of Jordan pairs is a pair f = (f+, f−) of k-linear maps
fσ : V σ → W σ satisfying fσ(Q(x)y) = Q

(
fσ(x)

)
f−σ(y) for all (x, y) ∈ V σ × V −σ and

σ = ±.

Remarks and more definitions. (a) Instead of requiring that (JP1) – (JP3) hold for
all extensions K, one can demand that (JP1) – (JP3) as well as all their linearizations hold
in V . For example, linearizing the identity (JP1) with respect to x gives the identity

{z, y, Qxv}+ {x, y, Qx,zv} = Qx,z {y, x, v}+Qx {y, z, v}

(b) If V = (V +, V −) is a Jordan pair and S = (S+, S−) is a pair of submodules of V
satisfying Q(Sσ)S−σ ⊂ Sσ for σ = ±, then S is a Jordan pair with the induced operations,
called a subpair of V .

(c) An idempotent in a Jordan pair V is a pair e = (e+, e−) ∈ V satisfying Q(e+)e− = e+

and Q(e−)e+ = e−. An idempotent e gives rise to the Peirce decomposition of V ,

V σ = V σ
2 (e)⊕ V σ

1 (e)⊕ V σ
0 (e), σ = ±,

where the Peirce spaces Vi(e) = (V +
i (e), V −i (e)), i = 0, 1, 2, are given by

V σ
2 (e) = {x ∈ V σ : Q(eσ)Q(e−σ)x = x},
V σ

1 (e) = {x ∈ V σ : {eσ e−σ x} = x},
V σ

0 (e) = {x ∈ V σ : Q(eσ)x = 0 = {eσ e−σ x}}.

The Peirce spaces V ±i = V ±i (e) satisfy the multiplication rules

Q(V σ
i )V −σj ⊂ V σ

2i−j , {V σ
i V

−σ
j V σ

l } ⊂ V σ
i−j+l,(2.4.1)

{V σ
2 V −σ0 V σ} = 0 = {V σ

0 V −σ2 V σ},(2.4.2)

where i, j, l ∈ {0, 1, 2}, with the understanding that V σ
m = 0 if m /∈ {0, 1, 2}. In particular,

the Vi = Vi(e) are subpairs of V . If 2 ∈ k× we have V σ
i (e) = {x ∈ V : {eσ e−σ x} = ix} for

i = 0, 1, 2.
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2.5. Examples of Jordan pairs. We now give concrete examples of Jordan pairs, to
illustrate the abstract definition of 2.4.

(i) Any associative, not necessarily unital or commutative k-algebra A gives rise to a
Jordan pair V = (A,A) with respect to the operations Qxy = xyx.

Indeed, since a base ring extension of A is again associative, it suffices to verify the
identities in V , where they follows from the following calculations.

{x, y,Qxv} = xy(xvx) + (xvx)yx = x(yxv + vxy)x = Qx{y, v, x},
{Qxy, y, z} = (xyx)yz + zy(xyx) = x(yxy)z + z(yxy)x = {x,Qyx, z},

QQxyv = (xyx)v(xyx) = x(y(xvx)y)x = QxQyQxv.

An idempotent c of the associative algebra A, defined by c2 = c, induces an associative Peirce
decomposition A = A11 ⊕ A10 ⊕ A01 ⊕ A00 with Aij = {a ∈ A : ca = ia, ac = ja}. The
pair e = (c, c) is an idempotent of the Jordan pair V whose Peirce spaces are V σ

2 (e) = A11,
V σ

1 (e) = A10⊕A01 and V σ
0 (e) = A00. Not only V1(e) but also (A10, A01) and (A01, A10) are

subpairs of V .
Not every idempotent of V has the form (c, c), c an idempotent of A. For example, if

u ∈ A× and c is an idempotent of A, then (uc, cu−1) is an idempotent of V which, however,
has the same Peirce spaces as (c, c).

(ii) By (b) and (i), any pair (S+, S−) ⊂ (A,A) of k-submodules closed under the operation
(x, y) 7→ xyx is also a Jordan pair. Jordan pairs of this form are called special. Their Jordan
triple product is

(2.5.1) {x y z} = xyz + zyx (x, z ∈ Sσ, y ∈ S−σ).

We next describe some important cases of special Jordan pairs.

(iii) Let I and J be non-empty sets. Let N = I ∪̇ J ′ where J ′ is a set disjoint from I and
in bijection with J under j 7→ j′, and embed MatIJ(A) into the right upper corner of the
associative algebra MatN (A). Similarly, we identify MatJI(A) with the left lower corner of
MatN (A). Then

MIJ(A) =
(
MatIJ(A),MatJI(A)

)
is a subpair of the Jordan pair

(
MatN (A),MatN (A)

)
and is therefore a Jordan pair, as

claimed at the beginning of this subsection. If N is finite, MIJ(A) is of type (A10, A01) for
A = MatN (A) and the idempotent c = 1I , see (i).

(iv) Let a 7→ aJ be an involution of the associative k-algebra A. Then H(A, J) = {a ∈
A : aJ = a} is closed under the Jordan pair product, whence H(A, J) = (H(A, J), H(A, J))
is a Jordan pair.

More generally, extend J to an involution of the associative k-algebra MatI(A), |I| ≥ 2,
defined by (xij)

J = (xJji) and again denoted by J . Then the hermitian matrix pair

HI(A, J) =
(

H(MatI(A), J), H(MatI(A), J)
)

is a special Jordan pair. In particular, taking A = k, J = Idk and I = {1, . . . , n} we get the
symmetric matrix pair Hn(k) = (Hn(k),Hn(k)).

(v) Let AltI(k) be the alternating I × I-matrices over k, where x = (xij) is called
alternating if xii = 0 = xij + xji for i, j ∈ I. Then the alternating matrix pair AI(k) =
(AltI(k),AltI(k)) is a subpair of MI(k), whence a special Jordan pair.

(vi) Let M be a k-module and let q : M → k be a quadratic form with polar form b,
defined by b(x, y) = q(x+ y)− q(x)− q(y). Then J(M, q) = (M,M) is a Jordan pair with
quadratic operators Qxy = b(x, y)x− q(x)y.
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(vii) Let J be a unital quadratic Jordan algebra with quadratic operators Ux, x ∈ J
([Ja4, Ja5]). Then (J, J) is a Jordan pair with quadratic maps Qx = Ux. For example, if k
is a field, the rectangular matrix pair Mpp(k) is of this form, but Mpq(k) for p 6= q is not.
Thus, there are “more” Jordan pairs than Jordan algebras.

Let C be an octonion k-algebra, see for example [SV] in case k is a field or [LPR] in
general, and let J = H3(C) be the exceptional Jordan algebra of 3×3 matrices over C which
are hermitian with respect to the standard involution of C. Then (J, J) is a Jordan pair,
which is not special in the sense of (ii). Such Jordan pairs are called exceptional .

2.6. Root graded Jordan pairs. Let us first recast the Peirce decomposition 2.4(c) of
an idempotent e in a Jordan pair V from the point of view of a grading.

We use the 3-graded root system Cher
I of 2.3(c) with I = {0, 1}. Its 1-part is R1 =

{εi + εj : i, j ∈ {0, 1}} = {2ε1, ε1 + ε0, 2ε0}. Putting

V σ
α = V σ

i+j(e) (α = εi + εj ∈ R1)

we have the decomposition V σ =
⊕

α∈R1
V σ
α which satisfies

Q(V σ
α )V −σβ ⊂ V σ

2α−β, {V σ
α V

−σ
β V σ

γ } ⊂ V σ
α−β+γ ,(RG1)

{V σ
α V

−σ
β V σ} = 0 if α ⊥ β.(RG2)

Here 2α − β and α − β + γ in (RG1) are calculated in X = R · ε0 ⊕ R · ε1
∼= R2, and

V σ
2α−β = 0 if 2α − β /∈ R1 or V σ

α−β+γ = 0 if α − β + γ 6∈ R1. We see that, apart from the
actual definition of the Peirce spaces, the rules governing the Peirce decomposition can be
completely described in terms of R1. The following generalisation is then natural.

Given a 3-graded root system (R,R1) and a Jordan pair V , an (R,R1)-grading of V
is a decomposition V σ =

⊕
α∈R1

V σ
α , σ = ±, satisfying (RG1) and (RG2). We will use

R = (Vα)α∈R1 to denote such a grading. A root graded Jordan pair is a Jordan pair
equipped with an (R,R1)-grading for some 3-graded root system. In view of (2.3.3) we can
make the first inclusion in (RG1) more precise:

Q(V σ
α )V −σβ = 0 unless α→ β, in which case

2α− β ∈ R1 and Q(V σ
α )V −σβ ⊂ V σ

2α−β.
(2.6.1)

We call R an idempotent root grading if there exists a subset ∆ ⊂ R1 and a family
(eα)α∈∆ of non-zero idempotents eα ∈ Vα such that the Vβ are given by

(2.6.2) Vβ =
⋂
α∈∆

V〈β,α∨〉(eα)

Observe that (2.6.2) makes sense since 〈α, β∨〉 ∈ {0, 1, 2} by (2.3.2). Neither the idempotents
nor the subset ∆ ⊂ R1 are uniquely determined by an idempotent root grading, see for
example (iii) below.

To avoid some technicalities, we will often assume that R is a fully idempotent root
grading , i.e., R is idempotent with respect to a family of idempotents with ∆ = R1. In the
terminology of [Ne1] this means that V is covered by the cog (eα)α∈R1 .

Examples. (i) Let R = A1 = {α,−α} equipped with the 3-grading defined by R1 = {α}.
An (R,R1)-graded Jordan pair is simply a Jordan pair V = (V +, V −) for which V σ = V σ

α .
This root grading is idempotent if and only if V ∼= (J, J) where J is a unital Jordan
algebra. To see sufficiency in case J is a Jordan algebra with identity element 1J , one uses
eα = (1J , 1J) and observes (J, J) = V2(eα).
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(ii) Let (R,R1) = Cher
2 . We have seen above that the Peirce decomposition of an idem-

potent e ∈ V can be viewed as a Cher
2 -grading, which is idempotent with respect to e = eα,

α = 2ε1. Thus here ∆ = {α}.
(iii) Let (R,R1) = ȦI

N be the 3-graded root system of 2.3(a). Put J = N \ I. An

ȦN
I -grading of a Jordan pair V is a decomposition

V =
⊕

(ij)∈I×J V(ij)

such that for all (ij) and (lm) ∈ I × J and σ = ± we have, defining V(ij) = Vεi−εj for
εi − εj ∈ R1,

Q(V σ
(ij))V

−σ
(ij) ⊂ V

σ
(ij), {V σ

(ij) V
−σ

(ij) V
σ

(im)} ⊂ V
σ

(im),

{V σ
(ij) V

−σ
(ij) V

σ
(lj)} ⊂ V

σ
(lj), {V σ

(ij) V
−σ

(lj) V
σ

(lm)} ⊂ V
σ

(im),

and all other types of products vanish.

An example of an ȦN
I -graded Jordan pair V is the rectangular matrix pair MIJ(A) of

an associative unital k-algebra A 6= 0, see 2.5(iii), with respect to the subpairs V(ij) =

(AEij , AEji). This ȦI
N -grading of MIJ(A) is fully idempotent with respect to the family

(eα)α∈R1 , eα = (aijEij , a
−1
ij Eji), where α = εi− εj and aij ∈ A×. It is also idempotent with

respect to the following smaller family: fix i0 ∈ I and j0 ∈ J and consider (eα)α∈∆ where
∆ = {εi − εj0 : i ∈ I} ∪ {εi0 − εj : j ∈ J}.

Let a, b ⊂ A be k-submodules with aba ⊂ a and bab ⊂ b. Then S = (MatIJ(a),MatJI(b))

is a Jordan subpair of MIJ(A). It inherits the ȦI
N -grading from MIJ(A) by putting S(ij) =

(aEij , bEji). This ȦI
N -grading of S is in general not idempotent, e.g., if a is a nil ideal.

(iv) The hermitian matrix pair V = HI(A, J) of 2.5(iv) has an idempotent Cher
I -grading.

Indeed, define

hij(a) =

{
aEij + aJEji if a ∈ A and i 6= j,

aEii if i = j and a ∈ H(A, J).

Then V =
⊕

α∈R1
Vα with

Vα = Vεi+εj =

{(
hij(A), hij(A)

)
, if i 6= j(

hii(H(A, J)), hii(H(A, J))
)
, if i = j.

is a Cher
I -grading of V . It is fully idempotent, for example with respect to the family

(eα)α∈R1 for which eα = (hij(1), hij(1)), α = εi + εj .

(v) The remaining examples in 2.5 all have idempotent root gradings. The alternating
matrix pair AI(k) of 2.5(v) has an idempotent Dalt

I -grading ([LN2, 23.24]). The Jordan pair

J(M, q) associated with a quadratic form q in 2.5(v) has an idempotent Bqf
I if q contains

a hyperbolic plane, or even a Dqf
I -grading if q is hyperbolic ([LN2, 23.25]). If C is a split

octonion algebra in the sense of [SV] or [LPR] the exceptional Jordan pair (H3(C),H3(C))
has an idempotent root grading with R of type E7 ([Ne1, III, §3]).

2.7. The Steinberg group St(V,R). Let (R,R1) be a 3-graded root system and let V be
a Jordan pair with a root grading R = (Vα)α∈R1 , not necessarily idempotent. The Steinberg
group St(V,R) is the group with the following presentation:
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• The generators are x+(u), u ∈ V +, and x−(v), v ∈ V −.

To formulate the relations, we first introduce, for α 6= β ∈ R1 and (u, v) ∈ V +
α ×V −β ,

the element b(u, v) in the free group with the above generators by the equation

(2.7.1) x+(u) x−(v) = x−(v +Qvu) b(u, v) x+(u+Quv)

• Then the relations are

xσ(u+ u′) = xσ(u) xσ(u′) for u, u′ ∈ V σ,(St1)

((x+(u), x−(v))) = 1 for (u, v) ∈ V +
α × V −β , α ⊥ β,(St2) {

((b(u, v), x+(z))) = x+(−{u v z}+QuQvz),

((b(u, v)−1, x−(y))) = x−(−{v u y}+QvQuy)
(St3)

for all (u, v) ∈ V +
α × V −β with α 6= β and all (z, y) ∈ V .

Remarks. (a) Let us have a closer look at the element b(u, v) in (2.7.1). By (2.3.2) the
possibilities for α, β are α ⊥ β, α β, α → β and α ← β and by (2.6.1), Qvu = 0 unless
β → α, and Quv = 0 unless α→ β. Therefore, by (St2),

(2.7.2) b(u, v) =


1, if α ⊥ β,
((x−(−v), x+(u))), if α β,

x−(−Qvu) ((x−(−v), x+(u))), if α→ β,

((x−(−v), x+(u))) x+(−Quv), if α← β.

In general, the factors x−(−Qvu) and x+(−Quv) in the last two cases are 6= 1.

The reader may be puzzled by the definition of b(u, v): why not take “b(u, v) = ((x−(−v) ,
x+(u)))”? We will give a justification for this in 2.11.

(b) We claim that (St3) follows from (St2) in case α ⊥ β. Indeed, the left hand sides of
the two equations (St3) are 1 because b(u, v) = 1, but also the right hand sides are 1, since,
say for σ = +, we have {u v z} = 0 by (RG2) and QuQvz = 0 by (2.7.3) below, :

(2.7.3) Q(V σ
α )Q(V −σβ )V σ

γ 6= 0 =⇒ α = β or α← β = γ or α β ← γ ⊥ α,

which can be shown by repeated application of (2.3.3).

(c) Let (V,R) = (MIJ(A),R). Comparing the definition of St(MIJ(A),R) with the one
in 1.10, it is clear that the first two relations coincide: (EJ1) = (St1) and (EJ2) = (St2).
We claim that the relations (EJ3) coincide with the two relations in (St3). Indeed, since

we do not have a relation α ← β in ȦI
N , it follows from (b) and the assumption α 6= β

in (St3) that we only need to consider the case α β. Then the map V −β → St(V,R),

v 7→ ((x+(u), x−(v))) is homomorphism of groups, whence, by (2.7.2),

b(u, v) = ((x−(−v), x+(u))) = ((x+(u), x−(−v)))−1 = ((x+(u), x−(v))).

Thus (EJ3) = (St3) for σ = + because QuQxz = 0 by (2.7.3). The equality of the two
relations for σ = − can be established in the same way.

We can now state the generalization of part (a) of the Kervaire-Milnor-Steinberg Theo-
rem 1.6 in the setting of this section.
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2.8. Theorem A. Let (R,R1) be a 3-graded root system whose irreducible components all
have rank ≥ 5, and let V be a Jordan pair with a fully idempotent root grading R. Then
the Steinberg group St(V,R) is centrally closed.

This theorem is one of the main results of [LN2]; its proof takes up all of Chapter VI
of [LN2]. It is shown there in greater generality. First, it also true when R has connected
components of rank 4, but not of type D4. Moreover, it is not necessary to assume that
the root grading R is fully idempotent. For the irreducible components of type BI or CI ,
|I| ≥ 5, one only needs idempotents eα ∈ Vα in case α is a long root in type B and α a short
root in type C. This generality allows us to consider groups defined in terms of hermitian
matrices associated with form rings in the sense of [Ba].

2.9. Highlights of our approach. The novel aspect of our approach is the consistent use
of the theory of 3-graded root systems and Jordan pairs, which introduces new methods in
the theory of elementary and Steinberg groups. For example, instead of first dealing with
the case of finite root systems and then taking a limit to get the stable (= infinite rank)
case, we deal with both cases at the same time. Moreover, our approach avoids having to
deal with concrete matrix realizations of the groups in question, as is traditionally done, see
e.g. [Ba] or [HO]. It allows for a concise description of the defining relations, independent of
the types of root systems involved. Finally, as the discussion of the linear Steinberg group
in 1.9 – 1.11 shows, we need fewer relations than in previous work, for example no relations
involving two roots in R0.

With the exception of groups defined in terms of root systems of type E8, F4 and G2,
which are not amenable to a Jordan approach, cf. 2.3(e), our Theorem 2.8 covers all types
of Steinberg groups considered before. In addition, it also presents some new types, e.g., for
elementary orthogonal groups. A detailed comparison of our Theorem 2.8 with previously
known results is given in [LN2, 27.11].

At this point it is natural to ask if there also exists a generalization of part (b) of
Theorem 1.6, stating that the map ℘ : St(A)→ E(A) is a universal central extension. While
the group St(V,R) gives a satisfactory replacement for the linear Steinberg group St(A),
recasting the elementary linear group E(A) in the framework of Jordan pairs is limited
to special Jordan pairs in the sense of 2.5(ii). While this can be done, see [Lo4], we will
instead replace the elementary group E(A) by the projective elementary group PE(V ), see
2.10, that can be defined for any Jordan pair V . From the point of view of universal central
extensions, this is harmless since, as we will see in 2.13, the group PE(V ) is isomorphic to
the central quotient PE(A) = E(A)/Z(E(A)) and universal central extensions of a group
and its central quotients are essentially the same by 1.4(e).

2.10. The Tits-Kantor-Koecher algebra and the projective elementary group of
a Jordan pair. Let V be a Jordan pair, defined over a commutative ring k of scalars. It
is fundamental (and well-known) that V gives rise to a Z-graded Lie k-algebra

(2.10.1) L(V ) = L(V )1 ⊕ L(V )0 ⊕ L(V )−1,

introduced at about the same time by Tits, Kantor and Koecher in [Ti1, Ti2, Ka1, Ka2,
Ka3, Ko1, Ko3] and called the Tits-Kantor-Koecher algebra of V . Various versions of L(V )
exist, but all agree that

(
L(V )1,L(V )−1

)
= (V +, V −) as k-modules. For our purposes, the

most appropriate choice for L(V )0 is

L(V )0 = kζ + Spank{δ(x, y) : (x, y) ∈ V },(2.10.2)

where ζ = (IdV + , IdV −) and δ(x, y) = (D(x, y),−D(y, x)) ∈ End(V +) × End(V −), defined
by D(x, y)z = {x y z}. We let gl(V σ) be the Lie algebra defined by End(V σ) with the
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commutator as the Lie product. By definition, the Lie product of L(V ) is determined
by the conditions that it be alternating, that L(V )0 be a subalgebra of the Lie algebra
gl(V +)× gl(V −) and that

[V σ, V σ] = 0, [D, z] = Dσ(z), [x, y] = −δ(x, y)

for D = (D+, D−) ∈ L(V )0, z ∈ V σ and (x, y) ∈ V . It follows from the identity (JP15) in
[Lo1],

[D(x, y), D(u, v)] = D({x y u}, v)−D(u, {y x v}).
that L(V )0 is indeed a subalgebra. As a k-Lie algebra, L(V ) is generated by ζ, V + and
V −, and it has trivial centre.

For a Jordan pair V with a fully idempotent root grading R a description of the derived
algebra [L(V ),L(V )] is given in [Ne3]. The Tits-Kantor-Koecher algebra of a special Jordan
pair is described in [Lo4, §2]. We will work out L(V ) for a rectangular matrix pair in 2.12.

An automorphism f of V gives rise to an automorphism L(f) of L, defined by

x⊕D ⊕ y 7→ f+(x)⊕ (f ◦D ◦ f−1)⊕ f−(y).

The map f 7→ L(f) is an embedding of the automorphism group Aut(V ) of V into the
automorphism group of L(V ).

Any (x, y) ∈ V gives rise to automorphisms exp+(x) and exp−(y) of L(V ), defined in
terms of the decomposition (2.10.1) by the formal 3× 3-matrices

(2.10.3) exp+(x) =

1 adx Qx
0 1 adx
0 0 1

 , exp−(y) =

 1 0 0
ad y 1 0
Qy ad y 1

 .

The map expσ, σ = ±, is an injective homomorphism from the abelian group (V σ,+) to
the automorphism group of L(V ), whose image is denoted Uσ. The projective elementary
group of V is the subgroup PE(V ) of Aut

(
L(V )

)
generated by U+ ∪ U−, introduced in

[Lo4] and studied further in [LN2, §7, §8].

We have now explained all the concepts used in the generalization of part (b) of the
Kervaire-Milnor-Steinberg Theorem 1.6.

2.11. Theorem B. Let (R,R1) be a 3-graded root system and let V be a Jordan pair with
a root grading R = (Vα)α∈R1.

(a) There exists a group homomorphism π : St(V,R)→ PE(V ), uniquely determined by

π
(
xσ(u)

)
= expσ(u), (u ∈ V σ).

(b) If all irreducible components of R have infinite rank and R is fully idempotent with
respect to a family (eα)α∈R1, the homomorphism π is a universal central extension.

Theorem B is established in [LN2]. Part (a) follows from [LN2, Cor. 21.12]. By
Fact 1.4(d) and Theorem 2.8, the proof of (b) boils down to showing that Kerπ is cen-
tral, which we do in [LN2, Cor. 27.6]. As for Theorem 2.8, it is not necessary to assume
that R is fully idempotent.

In the setting of (a) let (u, v) ∈ V +
α × V −β with α 6= β and let b(u, v) be the element

of St(V,R) defined in (2.7.1). Then π(b(u, v)) = L(f) for some f ∈ Aut(V ) (for the
experts: f is the inner automorphism (B(u, v), B(v, u)−1) of [Lo1, 3.9]). That π(b(u, v)) ∈
L
(

Aut(V )
)
⊂ Aut(L(V )) is the motivation for the perhaps surprising definition of b(u, v).

We finish this section by describing L(V ) and PE(V ) for V = MIJ(A).
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2.12. The Tits-Kantor-Koecher algebra of a rectangular matrix pair. Let V =
MIJ(A) =

(
MatIJ(A),MatJI(A)

)
be the rectangular matrix pair of 2.5(iii). In this sub-

section we present a model for the Tits-Kantor-Koecher algebra L = L(V ) in terms of
elementary matrices which will be used in 2.13 to link the elementary group of V and the
abstractly defined group PE(V ).

Let 1I = diag(1A, . . .) be the diagonal matrix of size I × I, define 1J analogously and let
A be the unital associative k-algebra

A = A(V ) =

(
k 1I + MatI(A) MatIJ(A)

MatJI(A) k 1J + MatJ(A)

)
=

(
MatI(A)ex MatIJ(A)
MatJI(A) MatJ(A)ex

)
whose operations are given by matrix addition and matrix multiplication. In particular,

e1 =

(
1I 0
0 0

)
and e2 =

(
0 0
0 1J

)
are orthogonal idempotents of A. We consider A rather than its subalgebra MatN (A)ex,
N = I ∪̇ J , since this will allow us to model the element ζ of (2.10.2).

The Peirce decomposition of A with respect to the idempotent e1 is

A11 =

(
MatI(A)ex 0

0 0

)
, A10 =

(
0 MatIJ(A)
0 0

)
,

A01 =

(
0 0

MatJI(A) 0

)
, A00

(
0 0
0 MatJ(A)ex

)
.

Let A(−) be the Lie algebra associated with A. Thus, A(−) is defined on the k-module
underlying A and its Lie algebra product is [x, y] = xy − yx for x, y ∈ A. The Lie algebra

A(−) is Z-graded, A(−) =
⊕

n∈ZA
(−)
n with

A
(−)
1 = A10, A

(−)
0 = A11 ⊕ A00, A

(−)
−1 = A01

and A
(−)
n = 0 for n /∈ {1, 0,−1}. We define e = e(V ) as the subalgebra of A− generated by

e1, e2 and

e1 =

(
0 MatIJ(A)
0 0

)
= A

(−)
1 and e−1 =

(
0 0

MatJI(A) 0

)
= A

(−)
−1 .

Put e0 = k e1 + k e2 + [e1, e−1] and ei = 0 for i /∈ {−1, 0, 1}. Then e =
⊕

i∈Z ei is a Z-graded
Lie algebra.

We now relate e to the Tits-Kantor-Koecher algebra L = L(V ) of V . First, for a =(
a 0
0 d

)
∈ e0 define ∆(a) = (∆(a)+, ∆(a)−) ∈ Endk(V

+)× Endk(V
−) by

∆(a)+(u) = au− ud, ∆(a)−(v) = dv − va,
so that

(2.12.1)
[
a,

(
0 b
c 0

)]
=

(
0 au− ud

dv − va 0

)
=

(
0 ∆+(a)(u)

∆−(a)(v) 0

)
.

We claim: the map

Ψ: e→ L,

(
a b
c d

)
7→ b⊕∆(a, d)⊕ (−c)

is a surjective Lie algebra homomorphism whose kernel is z(e), the centre of e, and thus
induces an isomorphism

(2.12.2) e/z(e) ∼= L
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of Lie algebras ([Lo4, 2.6], [LN2, 7.2]). Indeed, Ψ is surjective since ∆(e1) = ζ = −∆(e2)
and for (x, y) ∈ V

(2.12.3) ∆
([(

0 x
0 0

)
,
(

0 0
y 0

)])
= ∆

( xy 0
0 −yx

)
= δ(x, y)

by (2.5.1). To see that Ker Ψ = z(e), observe for m =
(
a b
c d

)
∈ A that

(2.12.4) [m, e1] = 0 ⇐⇒ b = 0 = c ⇐⇒ [m, e2] = 0,

whence by (2.12.1),

m ∈ Ker Ψ ⇐⇒ b = 0 = c, ∆(a, d) = 0,
(
a 0
0 d

)
∈ e0,

⇐⇒ [m, e1] = 0 = [m, e2], [m, e1] = 0 = [m, e−1], m ∈ e,

⇐⇒ m ∈ z(e)

because e1, e2, e1 and e−1 generate e as Lie algebra. Finally, since both e and L are Z-graded
and Ψ preserves this grading, Ψ is a Lie algebra homomorphism as soon as Ψ preserves
products of type [xi, yj] for (i, j) = (0,±1), (1,−1) and (0, 0). For (0,±1) and (1,−1) this
follows from (2.12.1) and (2.12.3) respectively; the case (0, 0) is left to the reader.

In the remainder of this subsection we will give a more precise description of e and its
centre, see (2.12.5) and (2.12.7). Let [A,A] = Span{ab− ba : a, b ∈ A}, the derived algebra
of the Lie algebra A−, and let

slN (A) := {x = (xkl) ∈ MatN (A) :
∑

n∈N xnn ∈ [A,A]}.
From [aEkl, bErs] = abδlrEks − baδksErl one then gets

e1 ⊕ [e1, e−1]⊕ e−1 = slN (A), whence

k e1 + k e2 + slN (A) = e.
(2.12.5)

The description of the centre z(e) depends on the cardinality of N because

A
(−)
0 ∩A1N =

{
A1N if |N | <∞,
k 1N if |N | =∞.

Denoting by Z(A) = {z ∈ A : [z,A] = 0} the centre of A (= centre of A(−)), a straightfor-
ward calculation shows

(2.12.6)
{
x ∈ A

(−)
0 : [x, e1] = 0 = [x, e−1]

}
= A

(−)
0 ∩ Z(A)1N =

{
Z(A)1N , |N | <∞,
k1N , |N | =∞.

Since e is generated by e1, e2, e1 and e−1, (2.12.4) and (2.12.6) imply

(2.12.7) z(e) = e0 ∩ (Z(A) 1N ) =

{
e0 ∩ (Z(A)1N ), |N | <∞,
k1N , |N | =∞.

.

For example, if A = k is a field of characteristic 0 and |N | = n is finite, we get e = gln(k),
z(e) = k1n and L ∼= sln(k).

2.13. The projective elementary group of a rectangular matrix pair. We use the
notation of 2.12 and let V = MIJ(A). The goal of this subsection is to show that the group
PE(V ) is isomorphic to a central quotient of the elementary group E(A). We put

E(V ) = EN (A)

and call it the elementary group of V . Since by 1.12 the group EN (A) is generated by
e+(V +) ∪ e−(V −) this agrees with the definition of the elementary group of an arbitrary
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special Jordan pair in [Lo4, §2] or [LN2, 6.2]. We will identify the Tits-Kantor-Koecher
algebra L(V ) = L with e/z(e) via the isomorphism (2.12.2) induced by Ψ: e→ L.

Any g ∈ A× gives rise to an automorphism Ad g of A− defined by (Ad g)(x) = gxg−1. If
Ad g stabilizes the subalgebra e of A−, it also stabilizes z(e), and therefore descends to an
automorphism Ad(g) of e/z(e) = L satisfying Ψ ◦ (Ad g|e) = (Ad g) ◦Ψ. The map

Ad: {g ∈ A× : (Ad g)(e) = e} → Aut(L), g 7→ Ad g

is a group homomorphism. For g = e+(x) =
(

1 x
0 1

)
∈ A× as in (1.12.1), the automorphism

Ad e+(x) acts as follows:(
Ad e+(x)

) (0 b
0 0

)
=

(
0 b
0 0

)
,

(
Ad e+(x)

) (a 0
0 d

)
=

(
a −ax+ xd
0 d

)
=

(
a 0
0 d

)
+
[(

0 x
0 0

)
,

(
a 0
0 d

)]
,

(
Ad e+(x)

) ( 0 0
−c 0

)
=

(
−xc xcx
−c cx

)
=

(
0 0
−c 0

)
+
[(

0 x
0 0

)
,

(
0 0
−c 0

)]
+

(
0 Qxc
0 0

)
.

These equations show that the automorphism Ad e+(x) stabilizes e and, by comparison
with (2.10.3), that Ad e+(x) = exp+(x). One proves in the same way that Ad e−(y), y ∈
V −, stabilizes e and that Ad e−(y) = exp−(y). Since PE(V ) is generated by exp+(V +) ∪
exp−(V −), the homomorphism Ad restricts to a surjective group homomorphism

AdE : E(V )→ PE(V ), g 7→ Ad g.

We claim that its kernel is the centre Z(E(V )) of E(V ):

Z(E(V )) = Ker Ad |E(V ) = Ker AdE, whence(2.13.1)

E(V )/Z(E(V )) ∼= PE(V ).(2.13.2)

Proof of (2.13.1): Clearly, Z(E(V )) = Ker Ad |E(V ) ⊂ Ker AdE, so it remains to show that

g ∈ Ker AdE is central in E(V ). Let g =
(
a b
c d

)
and g−1 =

(
a′ b′

c′ d′

)
. Then

g

(
1I 0
0 0

)
g−1 =

(
aa′ ab′

ca′ cb′

)
,(2.13.3)

g

(
0 0
0 1J

)
g−1 =

(
bc′ bd′

dc′ dd′

)
,(2.13.4)

g−1

(
0 x
0 0

)
g =

(
a′xc a′xd
c′xc c′xd

)
,(2.13.5)

g−1

(
0 0
y 0

)
g =

(
b′ya b′yb
d′ya d′yp

)
.(2.13.6)

Since (Ad g) (m) ≡ m ≡ (Ad g−1)(m) mod z(e) for all m ∈ e and since z(e) is diagonal by
(2.12.7), it follows from (2.13.3), (2.13.4) and (2.13.6) that

ab′ = 0 = ca′ = bd′, d′ya = y for y ∈ V −.
Applied to c ∈ V −, this proves cb′ = (d′ca) · b′ = d′c · ab′ = 0 and then bc′ = b · (d′c′a) =
bd′ · c′a = 0. From 1N = gg−1 we obtain(

1I 0
0 1J

)
=

(
aa′ + bc′ ∗
∗ ∗

)
=

(
aa′ ∗
∗ ∗

)
.
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Together with the already established equations this shows, using (2.13.3), that (Ad g)(e1) =
e1. Because g ∈ A, we get b = 0 = c from (2.12.4). Thus also b′ = 0 = c′, so that (2.13.5)
and (2.13.6) prove that Ad g fixes e±1. Since e±(V ±) = 1N + e±1, we see that Ad g fixes
the generators e±(V ±) of E(V ), i.e. g is central. �

A similar result holds for any special Jordan pair V : there always exists a surjective
group homomorphism from the elementary group E(V ) (which we have not defined) onto
the projective elementary group PE(V ), whose kernel is central, but not necessarily the
centre of E(V ), see [Lo4, Thm. 2.8].

3. Some open problems

We describe some open problems for Steinberg and projective elementary groups of Jor-
dan pairs. Our list is very much limited by the author’s taste and knowledge. This section
requires some expertise in Jordan pairs.

3.1. The normal subgroup structure of PE(V ). The problem is quite easily stated:
Given a Jordan pair V , describe all normal subgroups of PE(V ). As stated, this may be
too general. We therefore discuss some special cases.

(a) In view of the results of [Lo5] it is natural to ask: when is PE(V ) a perfect group,
when is it simple? Indeed, [Lo5, Thm. 2.6] says that, for a nondegenerate Jordan pair
V with dcc on principal ideals, PE(V ) is a perfect group if and only if V has no simple
factors isomorphic to (F2,F2), (F3,F3) or

(
H2(F2),H2(F2)

)
. Here Fq is the field with q

elements. Also, by [Lo5, Thm. 2.8], PE(V ) is a simple (abstract) group if and only if V
is simple and not isomorphic to (F2,F2), (F3,F3) or

(
H2(F2),H2(F2)

)
([Lo5, Thm. 2.8]).

That the exceptional cases have to be excluded in these two theorems is evident from the
isomorphisms PE(F2,F2) ∼= S3 (the symmetric group on three letters), PE(F3,F3) ∼= A4

(the alternating group on four letters), and PE
(

H2(F2),H3(F2)
) ∼= S6. Thus, the problem

is to find out if these two theorems of [Lo5] hold for more general Jordan pairs. It follows
from (b) that is natural to assume simplicity of V for the second theorem.

(b) Every ideal I of the Jordan pair V gives rise to a normal subgroup of PE(V ). Indeed,
one can show ([LN2, 7.5]) that the canonical map can: V → V/I induces a surjective group
homomorphism PE(can) : PE(V )→ PE(V/I). We let PE(V, I) be its kernel:

1 // PE(V, I) // PE(V )
PE(can)// PE(V/I) // 1

Problem: describe PE(V, I) by generators and relations. For elementary linear groups over
rings this is a standard result, see for example [HVZ, Lemma 3]. The paper [CK] shows
that even in case SL2(A) one needs methods from Jordan algebras.

3.2. Central closedness of St(V,R) in low ranks. We have excluded low rank cases in
Theorem 2.8 for the simple reason that it is not true without further assumptions in low
ranks. We discuss 2 ≤ rankR ≤ 4 in (a) and rankR = 1 in (b).

(a) One knows ([LN2, 27.11]) that St(V,R) is a classical linear or unitary Steinberg group.
Let us first consider the case that V is defined over a field F and that dimF Vα = 1 for all
α ∈ R1. Then [St3, Thm. 1.1] applies and yields that St(V,R) is not centrally closed if and
only if (R,R1) and F satisfy one of the following conditions.

(3.2.1)
(R,R1) A1

2 A1
3 or A2

3 Cher
2 Bqf

3 Cher
3 Dalt

4

|F | 2, 4 2 2 3 2 2
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In this table we use the abbreviation A1
2 = AI

N for |N | = 2, |I| = 1 and analogously for

A1
3, . . . , Dalt

4 . The cases R = A4,B4,C4 do not appear in the table because in these cases
St(V,R) is centrally closed, as mentioned in 2.8.

Still assuming that V is defined over a field F , it is natural to replace the assumption
dimF Vα = 1 by the requirement that the fully idempotent root grading R of V is a division
grading in the sense that all root spaces Vα are Jordan division pairs, which means that for
every non-zero x ∈ V σ

α the endomorphismQ(x)|V −σα is invertible. Preliminary investigations
lead us to conjecture:

(C) If St(V,R) is not centrally closed then dimF Vα = 1 for all α ∈ R1 and F satisfies
the restrictions of table (3.2.1).

(b) R = A1: As in (a) we assume that R is a division grading, i.e., V is a division pair
and is therefore isomorphic to the Jordan pair (J, J) of a division Jordan algebra J . By
[LN2, 9.13] this is equivalent to PE(V ) being a rank one group in the sense of [Lo6]. Since
the grading is trivial, St(V,R) is the free product of the abelian groups V + and V −, which
is not perfect in general, a necessary condition for a group to be centrally closed (1.4(a)).
Following the example of Chevalley groups [St2], it seems more promising to consider the
group St(J) defined by the following presentation:

• generators xσ(a), a ∈ J , σ = ± and, putting

wb = x−(b−1) x+(b) x−(b−1)

for 0 6= b ∈ J ,
• relations

xσ(a+ b) = xσ(a) xσ(b) for a, b ∈ J and

wb x−(a) w−1
b = x+

(
U(b)a) for all a ∈ J and all 0 6= b ∈ J .

We remark that St(J) is the Steinberg group St(V,S) of [LN2, 13.1], where S is the set of
all non-zero idempotents of V . By [LN2, 13.6], St(J) is the classical Steinberg group St(A)
in case V = (A,A) and A an associative division algebra.

To motivate our conjecture in this case, let us first consider the special case J = Fq.
Since by 3.1(a) the group PE(V ) is not perfect in case J = Fq, q = 2, 3, these cases have to
be excluded. Moreover, by [St3, Th. 1.1], St(J) is not centrally closed in case V = (Fq,Fq)
and q ∈ {4, 9}, but these values of q are the only exceptions for V = (F, F ), F a field. This
leads us to ask:

(Q) Is St(J) centrally closed whenever J 6= Fq with q ∈ {2, 3, 4, 9} ?

There exists an example of an associative unital F5-algebra A for which St(A) is not centrally
closed [Str, Ex. 4], but A is not a division algebra.

3.3. Centrality of Ker(π). Let π : St(V,R) → PE(V ) be the homomorphism of Theo-
rem 2.11(a). For simplicity, let us assume that R is irreducible. If R has infinite rank, part
(b) of 2.11 says that π is a universal central extension. The problem here is: find sufficient
conditions for Ker(π) to be central if R has finite rank.

Some special cases are known. For example, if V is split in the sense of [Ne4], centrality
of Ker(π) is established in [vdK], [La], [LS] and [Si] for rank ≥ 3. The quoted papers all
use the same method, pioneered by [vdK], namely a “basis-free presentation of St(V,R)”.
Can the method of [vdK] be generalized to treat St(V,R), V split root graded, in a case-free
manner?

For a slightly different type of Steinberg group and a unit regular V , centrality of Ker(π)
is shown in [Lo5, Th. 1.12].
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