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Introduction

Central extensions appear naturally in the theory of infinite dimensional Lie algebras. For exam-
ple, they are fundamental for the theory of affine Kac–Moody Lie algebras and extended affine Lie
algebras. Centrally extended Lie algebras often have a more interesting representation theory than
the original Lie algebra, which makes central extension an interesting topic for applications, e.g., in
physics. A convenient way to find “all” of them, is to determine the universal central extension of a
given Lie algebra, which exists for perfect Lie algebras (well-known) and superalgebras [N2].

Direct limit of Lie superalgebras is an important way to construct infinite dimensional Lie su-
peralgebras. Examples include various types of locally finite Lie (super)algebras [BB,DP,P,PS], locally
extended affine Lie algebras [MY,Nee,N3] and Lie superalgebras graded by locally finite root systems
[N1,GN]. These types of Lie algebras and Lie superalgebras have been intensively studied by many
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authors, many more than we have quoted, yet no general results seem to be known about their uni-
versal central extensions, besides the paper [S] in which the author studied a rather special case,
described in Remark 1.7.

In this paper, we consider the universal central extensions of general direct limits of Lie superalge-
bras over an arbitrary base superring. We show in Theorem 1.6 that the universal central extension of
a direct limit lim−→ Li of perfect Lie superalgebras Li is canonically isomorphic to the direct limit of the
universal central extensions of Li . This result is new even for the case of Lie algebras. Crucial for its
proof is the fact [N2] that one has an endo-functor uce on the category of all Lie superalgebras which
gives the universal central extension for perfect Lie superalgebras.

As an application, we describe in Section 2 the universal central extensions of some direct limit
Lie superalgebras, namely sl(I; A) for |I| � 5 and A an associative superalgebra (Proposition 2.2,
Corollary 2.4), osp(I; A) for A commutative associative (Example 2.6), locally finite Lie superalgebras
(Example 2.7) and Lie algebras graded by locally finite root systems (Example 2.10). These applications
are possible since one knows the universal central extension of the Lie superalgebras over which we
take the direct limit.

1. Universal central extensions of direct limits of Lie superalgebras: General results

1.1. Review of universal central extensions of Lie superalgebras

Throughout this section we consider Lie superalgebras L over a commutative superring S as de-
fined in [N2]. Thus S is an associative, unital Z/2Z-graded ring which is commutative in the sense
that s1s2 = (−1)|s1||s2|s2s1 holds for all homogeneous si ∈ S . Here and in the following |s| denotes the
degree of a homogeneous element. Formulas involving the degree function are supposed to be valid
for homogeneous elements – a condition that we will not mention explicitly in the following.

We first describe some facts on central extensions which are needed in the following. Proofs can
be found in [N2]. A central extension of L is an epimorphism f : K → L of Lie superalgebras with the
property that Ker f ⊂ z(K ), the centre of K . A central extension f : K → L is called universal if for
any other central extension f ′ : K ′ → L there exists a unique Lie superalgebra morphism g : K → K ′
such that f = f ′ ◦ g . A universal central extension of L exists and is then unique up to a unique
isomorphism if and only if L is perfect. To describe a model of a universal central extension of L one
can use the following construction of a Lie superalgebra which is valid for any, not necessarily perfect
Lie superalgebra L.

Let B = BL be the S-submodule of the S-supermodule L ⊗S L spanned by all elements of type

x ⊗ y + (−1)|x||y| y ⊗ x, x0̄ ⊗ x0̄ for x0̄ ∈ L0̄,

(−1)|x||z|x ⊗ [y, z] + (−1)|y||x| y ⊗ [z, x] + (−1)|z||y|z ⊗ [x, y],

and put

uce(L) = (L ⊗S L)/B and 〈x, y〉 = x ⊗ y + B ∈ uce(L).

The supermodule uce(L) becomes a Lie superalgebra over S with respect to the product

[〈l1, l2〉, 〈l3, l4〉
] = 〈[l1, l2], [l3, l4]

〉

for li ∈ L. The map

u = uL : uce(L) → L: 〈x, y〉 �→ [x, y] (1.1)
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is a Lie superalgebra morphism with kernel Keru ⊂ z(uce(L)). If L is perfect, then u : uce(L) → L is a
universal central extension of L. A morphism of Lie superalgebras f : L → M gives rise to a morphism
of Lie superalgebras

uce( f ) : uce(L) → uce(M): 〈l1, l2〉 �→ 〈
f (l1), f (l2)

〉
.

The assignments L �→ uce(L) and f �→ uce( f ) define a covariant endo-functor on the category LieS of
Lie S-superalgebras.

Similar to Lie algebras, a central extension of a Lie S-superalgebra L can be constructed by using a
2-cocycle τ : L × L → C . Here C is an S-supermodule, τ is S-bilinear of degree 0 whence τ (Lα, Lβ) ⊂
Cα+β for α,β ∈ Z/2Z, alternating in the sense that τ (x, y) + (−1)|x||y|τ (y, x) = 0 = τ (x0̄, x0̄) for x0̄ ∈
L0̄ , and satisfies

(−1)|x||z|τ
(
x, [y, z]) + (−1)|y||x|τ

(
y, [z, x]) + (−1)|z||y|τ

(
z, [x, y]) = 0.

Equivalently, a 2-cocycle is a map τ : L × L → C such that L ⊕ C is a Lie superalgebra with respect to
the grading (L ⊕ C)α = Lα ⊕ Cα and product [l1 ⊕ c1, l2 ⊕ c2] = [l1, l2]L ⊕ τ (x1, x2) where [ . , . ]L is the
product of L. In this case, the canonical projection L ⊕ C → L is a central extension.

1.2. Review of direct limits

We recall some notions regarding direct limits. Let (I,�) be a directed set, which will be fixed
throughout this section. A directed system is a family (Li: i ∈ I) in LieS together with Lie superal-
gebra morphisms f ji : Li → L j for every pair (i, j) with i � j such that f ii = IdLi and fki = fkj ◦ f ji
for i � j � k. A direct limit of the directed system (Li, f ji) is a Lie superalgebra L together with Lie
superalgebra morphisms ϕi : Li → L satisfying ϕi = ϕ j ◦ f ji , and for any other such pair (Y ,ψi), i.e.,
ψi = ψ j ◦ f ji for i � j, there exists a unique morphism ϕ : L → Y such that the following diagram
commutes.

Li

f ji

ϕi

ψi

L j
ϕ j

ψ j
L

ϕ

Y

The usual construction of a direct limit of modules shows that a direct limit of Lie superalgebras exists
in LieS and is unique, up to a unique isomorphism. We can therefore speak of “the” direct limit, and
follow the usual abuse of notation and denote a direct limit of (Li, f ji) by lim−→ Li . We will call ϕi the
canonical maps.

Let (Ki, g ji) and (Li, f ji) be two directed systems of Lie superalgebras, both indexed by the di-
rected set I . A morphism from (Ki, g ji) to (Li, f ji) is a family (hi: i ∈ I) of Lie superalgebra morphisms
hi : Ki → Li such that for all pairs (i, j) with i � j the diagram

Ki

g ji

hi

K j

h j

Li

f ji
L j
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commutes. A morphism from (Ki, g ji) to (Li, f ji) gives rise to a unique Lie superalgebra morphism

h = lim−→hi : lim−→ Ki → lim−→ Li

such that h ◦ ϕi = ψi ◦ hi for all i ∈ I , where ϕi : Ki → lim−→ Ki and ψi : Li → lim−→ Li are the canonical
maps. Since direct limits preserve exact sequences [Bo, II, §6.2, Prop. 3], it follows that h is injective
(resp. surjective) if all hi are injective (resp. surjective).

1.3. Let (Li, f ji) be a directed system of Lie superalgebras in LieS and let lim−→ Li be its direct
limit with canonical maps ϕi : Li → lim−→ Li . Since uce is a covariant functor, it is immediate that

(uce(Li),uce( f ji)) is also a directed system of Lie superalgebras. We abbreviate uce( f ji) by f̂ ji , and

let ϕ̃i : uce(Li) → lim−→uce(Li) be the canonical maps into the direct limit of (uce(Li), f̂ ji).

Li

f ji

ϕi

L j

ϕ j

lim−→ Li

�

uce(Li)
f̂ ji

ϕ̃i

uce(L j)

ϕ̃ j

lim−→uce(Li) (1.2)

Let ui : uce(Li) → Li be the Lie superalgebra morphism of (1.1). By construction of the maps f̂ ji , we
have a commutative diagram

uce(Li)
f̂ ji

ui

uce(L j)

u j

Li

f ji
L j (1.3)

for i � j. In other words, the family (ui, i ∈ I) is a morphism from the directed system (uce(Li), f̂ ji)

to the directed system (Li, f ji), and therefore gives rise to a morphism

lim−→ui : lim−→uce(Li) → lim−→ Li . (1.4)

Lemma 1.4. In the setting of 1.3, the map (1.4) has central kernel, and is a central extension if all Li are
perfect.

Proof. To prove that v := lim−→ui has central kernel, let x ∈ Kerv. Thus x = ϕ̃ j(x j) for some x j ∈ uce(L j)

and 0 = v(x) = ϕ j(u j(x j)) in L = lim−→ Li . Hence there exists k � j such that fkj(u j(x j)) = 0 ∈ Lk . Note
ϕk( fkj(u j(x j))) = 0 ∈ L. For any y ∈ L, we have to show that [x, y] = 0 in L. We have y = ϕ̃p(yp)

for some yp ∈ uce(L p). For the above k, p ∈ I there exists q ∈ I such that q � k � j and q � p.
Thus fqj(u j(x j)) = ( fqk ◦ fkj)(u j(x j)) = 0 ∈ Lq . The commutative diagram (1.3) for j � q now implies

f̂qj(x j) ∈ Keruq ⊂ z(uce(Lq)). So we have [ f̂qj(x j), f̂qp(yp)]uce(Lq) = 0 ∈ uce(Lq) and hence

[x, y] lim−→uce(Li) = [
ϕ̃ j(x j), ϕ̃p(yp)

]
lim−→uce(Li)

= ϕ̃q
([

f̂qj(x j), f̂qp(yp)
]
uce(L )

) = 0.

q



E. Neher, J. Sun / Journal of Algebra 368 (2012) 169–181 173
Thus Kerv ⊂ z(lim−→uce(Li)). If all Li are perfect, every ui is surjective, and hence so is v, proving that
v is a central extension. �

1.5. We continue with the setting of 1.3, but assume that every Li is perfect. Then L = lim−→ Li is
perfect too and therefore has a universal central extension u : uce(L) → L. Our goal is to prove that
the central extension (1.4) is a universal central extension of L. By the construction of L, the canon-
ical maps ϕi : Li → L are Lie superalgebra morphisms. We therefore get a unique Lie superalgebra
morphism ϕ̂i : uce(Li) → uce(L) such that the following diagram commutes

uce(Li)
ϕ̂i

ui

uce(L)

u

Li
ϕi

L (1.5)

where ui and u are universal central extensions of Li and L respectively. Applying the covariant func-
tor uce to the left commutative diagram in (1.2) shows that ϕ̂i = uce(ϕi) = uce(ϕ j ◦ f ji) = uce(ϕ j) ◦
uce( f ji) = ϕ̂ j ◦ f̂ ji . Thus the outer triangle in the diagram below commutes. Hence, by the universal
property of lim−→uce(Li), there exists a unique Lie superalgebra morphism ϕ : lim−→uce(Li) → uce(L) such
that all triangles commute.

uce(Li)
f̂ ji

ϕ̃i

ϕ̂i

uce(L j)

ϕ̃ j

ϕ̂ j

lim−→uce(Li)

ϕ

uce(L) (1.6)

For the next theorem we define H2(L) for a perfect Lie superalgebra L as the kernel of
u : uce(L) → L. In case L is a perfect Lie algebra over a ring S it is known that H2(L) is the second
homology group of L with trivial coefficients.

Theorem 1.6. Assume that all Lie superalgebras Li are perfect. Then the map

ϕ : lim−→uce(Li) → uce(lim−→ Li)

of (1.6) is an isomorphism of Lie superalgebras, and hence lim−→ui : lim−→uce(Li) → lim−→ Li is a universal central
extension. In particular, lim−→ui induces an isomorphism

lim−→H2(Li) ∼= H2(lim−→ Li). (1.7)

Proof. We have already noted that L is perfect and therefore has a universal central extension
u : uce(L) → L. By Lemma 1.4 we know that v = lim−→ui : lim−→uce(Li) → lim−→ Li is a central extension.
Thus the universal property of uce(L) implies that there exists a unique Lie superalgebra morphism
ψ : uce(L) → limuce(Li) such that the following diagram commutes.
−→
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uce(L)
ψ

u

lim−→uce(Li)

v

L

We claim that ψ ◦ ϕ = Idlim−→uce(Li) and ϕ ◦ ψ = Iduce(L) . For the proof of these two equations, the

following diagram may be helpful.

uce(Li)
ϕ̃i

ui

ϕ̂i

lim−→uce(Li)
ϕ

v

uce(L)
ψ

u

Li
ϕi

L

By the universal property of lim−→uce(Li), in order to show ψ ◦ ϕ = Idlim−→uce(Li) , we only need to check

(ψ ◦ϕ) ◦ ϕ̃i = ϕ̃i . Since ϕ ◦ ϕ̃i = ϕ̂i , we are left to check ψ ◦ ϕ̂i = ϕ̃i and this is true by the observation
v ◦ ψ ◦ ϕ̂i = u ◦ ϕ̂i = ϕi ◦ ui = v ◦ ϕ̃i and the uniqueness in [N2, Prop. 1.13]. For the proof of ϕ ◦ ψ =
Iduce(L) it is in view of the universal property of uce(L) enough to verify u◦(ϕ◦ψ) = u. Since u = v◦ψ ,
we are left to check u ◦ ϕ = v and this follows from u ◦ ϕ ◦ ϕ̃i = u ◦ ϕ̂i = ϕi ◦ ui = v ◦ ϕ̃i .

For the proof of (1.7) it suffices to note that (Kerui, f̂ ji |Kerui ) is a directed system and that

0 → Kerui → uce(Li) → Li → 0

is exact for every i ∈ I . The claim then follows from the fact that direct limits preserve exact se-
quences. �
Remark 1.7. Theorem 1.6 is proven in [S, App.] for the case I = N with the natural order and a

directed system of Lie algebras over algebraically closed fields of characteristic zero L0
f0−−→ L1

f1−−→ · · ·
satisfying the condition that all f i are monomorphisms with f i(z(Li)) ⊂ z(Li+1).

Remark 1.8. We note that for Lie algebras the formula (1.7) is not new. Indeed, by [Wei, Cor. 7.3.6] the
homology groups of a Lie algebra can be interpreted as torsion groups for the universal enveloping
algebra and it is known that torsion commutes with direct limits, see e.g., [Wei, Cor. 2.6.17]. The proof
presented here is more direct and works in the super setting as well.

For the next corollary we recall that a perfect Lie superalgebra is called centrally closed if
u : uce(L) → L is an isomorphism.

Corollary 1.9. If (Li, f ji) is a directed system of perfect and centrally closed Lie superalgebras, then lim−→ Li is
perfect and centrally closed.

2. Examples: Universal central extensions of some infinite rank Lie superalgebras

In this section we will consider some examples of universal central extensions of direct limit Lie
superalgebras, mainly those which are direct limits of some of the classical Lie superalgebras. In order
to use the known results on their universal central extensions, we will in this section assume that all
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Lie superalgebras are defined over a commutative, associative, unital ring k, rather than an arbitrary
base superring as in Section 1.

Example 2.1 (Special linear Lie superalgebra sl(I; A) for A an associative superalgebra). Let I = I 0̄ ∪ I 1̄
be a superset, i.e., a partitioned set. Let A be a unital associative, but not necessarily commuta-
tive k-superalgebra. We denote by Mat(I; A) the associative k-superalgebra whose underlying module
consists of |I| × |I|-finitary matrices with entries from A (only finitely many non-zero entries) and
Z2-grading given by |Eij(a)| = |i| + | j| + |a|. Here Eij(a) ∈ Mat(I; A) has entry a at the position (i j)
and 0 elsewhere. The product of Mat(I; A) is the usual matrix multiplication. Clearly Mat(I; A) only
depends on the cardinality of I (and of course on A). For a finite I we put

Mat(m,n; A) := Mat(I; A) if |I 0̄| = m and |I 1̄| = n.

A matrix x ∈ Mat(m,n; A) written as

x =
[

x1 x2
x3 x4

]
m
n

m n
(2.1)

is then even (resp. odd) if x1 and x4 are matrices with even (resp. odd) entries and x2 and x3 are
matrices with odd (resp. even) entries.

We let gl(I; A) be the Lie superalgebra associated to the associative superalgebra Mat(I; A). Its
product is [x, y] = xy − (−1)|x||y| yx. We assume |I| � 3 and then have that the Lie superalgebra

sl(I; A) := [
gl(I; A),gl(I; A)

]
is perfect. (2.2)

Indeed, the canonical matrix units Eij(a) for i, j ∈ I and a ∈ A satisfy the relations

a �→ Eij(a) is k-linear; (2.3)[
Eij(a), E pq(b)

] = δ jp Eiq(ab) − (−1)|Eij(a)||E pq(b)|δiq E pj(ba). (2.4)

In particular, relation (2.4) implies that for distinct i, j, l ∈ I we have Eij(a) = [Eil(a), Elj(1)] ∈
sl(I; A)(1) = [sl(I; A), sl(I; A)]. Moreover, there are two types of diagonal elements in sl(I; A) –
those which are products of off-diagonal elements and therefore lie in sl(I; A)(1) by what we just
proved, and those which are commutators of diagonal elements, more precisely, elements of type
[Eii(a), Eii(b)] = Eii([a,b]) for [a,b] = ab − (−1)|a||b|ba. To show that sl(I; A) is perfect, it is therefore
enough to prove that Eii([a,b]) ∈ sl(I; A)(1) . But the latter is a consequence of the following identity,
in which again i, j, l are distinct elements in I:

Eii
([a,b]) = [

Eij(a), E ji(b)
] + (−1)|Eij(a)||E ji(b)|[E jl(b), Elj(a)

]
+ (−1)|Eij(a)||E ji(b)|+|E jl(b)||Elj(a)|[Eli(a), Eil(b)

]
.

We also observe that the calculation above implies that

sl(I; A) is generated by Eij(a), i �= j ∈ I, a ∈ A.

Moreover, we also have

if I 1̄ = ∅ or A1̄ = {0} then sl(I; A) = {
x ∈ Mat(I; A): str(x) ∈ [A, A]}. (2.5)
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Here the (super)trace str of a matrix x = (xij) ∈ Mat(I; A) is given by str(x) = ∑
i∈I 0̄

xii −∑
i∈I 1̄

xii , and
[A, A] is the span of all commutators [a1,a2], ai ∈ A.

For I as above we define the (linear) Steinberg Lie superalgebra st(I; A) as the Lie k-superalgebra
presented by generators ei j(a) with i, j ∈ I, i �= j, a ∈ A and relations (2.3)–(2.4) with Eij(a) replaced
by ei j(a). We then have a canonical Lie superalgebra epimorphism

vI : st(I; A) → sl(I; A), eij(a) �→ Eij(a).

If |I 0̄| = m and |I 1̄| = n, we put st(m,n; A) = st(I; A), sl(m,n; A) = sl(I; A) and vmn : st(m,n; A) →
sl(m,n; A) for v I .

We also need the first cyclic homology group HC1(A). To define it, we use

〈〈A, A〉〉 = (A ⊗k A)/H

where H is the span of all elements of type

a ⊗ b + (−1)|a||b|b ⊗ a, a0̄ ⊗ a0̄ for a0̄ ∈ A0̄,

(−1)|a||c|a ⊗ bc + (−1)|b||a|b ⊗ ca + (−1)|c||b|c ⊗ ab

for a,b, c ∈ A. We abbreviate 〈〈a,b〉〉 = a ⊗ b + H. Observe that there is a well-defined commutator
map

c : 〈〈A, A〉〉 → A, 〈〈a,b〉〉 �→ [a,b].

We put

HC1(A) = Ker c=
{∑

i

〈〈ai,bi〉〉:
∑

i

[ai,bi] = 0

}
.

We will use the following assumption:

vF for 5 � |F | < ∞ is a universal central extension with KervF ∼= HC1(A). (2.6)

The assumption (2.6) is true in any one of the following situations:

(a) n = 0, A an algebra [KL] or a superalgebra [CG],
(b) A an algebra [MP1,IK1].

Refs. [CG] and [IK1] assume that k is a commutative ring containing 1
2 and that the underlying module

of A is free with a basis containing the identity element of A. We note that (2.6) is not true for
m + n � 4, see the papers [CG,G,GS,SCG] which deal with the case 3 � m + n � 4.

Proposition 2.2. Assume (2.6) holds and I is a (possibly infinite) set with |I| � 5. Then vI : st(I; A) → sl(I; A)

is a universal central extension with kernel isomorphic to HC1(A).

Proof. This can be proven by adapting the proof of (2.6) to our setting. Instead we prefer to give a
proof based on Theorem 1.6. This is possible since, denoting by F the set of finite subsets of I or-
dered by inclusion, the Lie superalgebra sl(I; A) is indeed a direct limit: sl(I; A) = ⋃

F∈F sl(F ; A) ∼=
lim sl(F ; A). Hence uce(sl(I; A)) ∼= lim uce(sl(F ; A)) ∼= lim st(F ; A). Thus we need to show
−→F∈F −→F∈F −→F∈F
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that lim−→F∈F st(F ; A) ∼= st(I; A). This follows from the diagram below, where ψF is given by sending
a generator ei j(a) ∈ st(F ; A) to ei j(a) ∈ st(I; A). The existence of ϕ then follows from the definition
of a direct limit, applied to (ψF ; F ∈ F). The families (ei j(a) ∈ st(F ; A): F ∈ F) give rise to elements
ei j(a) ∈ lim−→F∈F st(F ; A) satisfying the relations (2.3)–(2.4), whence the existence of the map ψ send-
ing ei j(a) ∈ st(I; A) to ei j(a).

st(F ; A)
f F ′ F

ϕF

ψF

st(F ′; A)

ϕF ′

ψF ′
lim−→ st(F ; A)

ϕ

st(I; A)

ψ

It is immediate that ϕ and ψ are inverses of each other, and that KervI ∼= HC1(A). �
Example 2.3 (sl(I; A) for A an associative commutative superalgebra). Let A be a unital associative and
commutative k-superalgebra, thus [A, A] = 0. Therefore the descriptions of sl(I; A) and HC1(A) sim-
plify to

sl(I; A) = {
x ∈ gl(I; A): str(x) = 0

} ∼= sl(I;k) ⊗k A,

HC1(A) = 〈〈A, A〉〉.

Moreover, the universal central extension st(I; A) can be described via a 2-cocycle as follows. The Lie
superalgebra sl(m,n; A) has a central 2-cocycle τmn with values in HC1(A):

τmn(x, y) =
∑

1�i�m,1� j�m+n

〈〈xij, y ji〉〉 −
∑

m+1�i�m+n,1� j�m+n

〈〈xij, y ji〉〉

for x = (xij), y = (yij) ∈ sl(m,n; A). We let sl(m,n, A)⊕HC1(A) be the corresponding Lie superalgebra,
and view it as a central extension of sl(m,n; A) by projecting onto the first factor. From now on we
suppose m + n � 5 and that the map

hmn : uce(sl(m,n; A)
) → sl(m,n; A) ⊕ HC1(A), hmn〈x, y〉 = [x, y] ⊕ τmn(x, y)

is an isomorphism of central extensions:

uce
(
sl(m,n; A)

) ∼= sl(m,n; A) ⊕ HC1(A) as central extensions. (2.7)

The assumption (2.7) is true in any one of the following situations:

(a) n = 0, A an algebra [KL] or a superalgebra [CG],
(b) A an algebra [MP1,IK1].

Let now (sl(mi,ni, A), f ji) be a directed system of Lie superalgebras with mi + ni � 5. The

transition maps f ji : sl(mi,ni, A) → sl(m j,n j, A) lift uniquely to Lie superalgebra morphisms f̂ ji :
uce(sl(mi,ni, A)) → uce(sl(m j,n j, A)). Hence, we get a directed system (sl(mi,ni, A) ⊕ HC1(A))i∈I
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with transition maps hm j n j ◦ f̂ ji ◦ h−1
mi ni

= f ji ⊕ g ji where the map g ji : HC1(A) → HC1(A) is given
by g ji(τmini (x, y)) = τm jn j ( f ji(x), f ji(y)) for x, y ∈ sl(mi,ni, A). We now define a central 2-cocycle τI

for the direct limit Lie superalgebra

sl(I; A) = lim−→ sl(mi,ni, A)

with values in HC1(A). Let x, y ∈ sl(I; A). Thus x = ϕp(xp) and y = ϕq(yq) for some p,q ∈ I , xp ∈
sl(mp,np, A) and yq ∈ sl(mq,nq, A). Here ϕp , ϕq are the canonical maps for sl(I; A). There exists k ∈ I
such that k � p, k � q and fkp(xp), fkq(yq) ∈ sl(mk,nk, A). Then the cocycle τI for sl(I; A) is given by

τI (x, y) = τmknk

(
fkp(xp), fkq(yq)

)
. (2.8)

We now get from Proposition 2.2 that st(I; A) ∼= uce(sl(I; A)) ∼= sl(I; A)⊕HC1(A), where the 2-cocycle
τI is given explicitly by (2.8). Summarizing the above, we have proven the following.

Corollary 2.4. Let A be a unital associative commutative superalgebra over a commutative ring k. Let (I,�) be
an arbitrary directed set and let (sl(mi,ni, A), f ji) be a directed system of Lie superalgebras with mi + ni � 5.
We suppose (2.7) and denote by sl(I; A) := lim−→ sl(mi,ni, A) the corresponding direct limit, which is a perfect
Lie superalgebra of possibly infinite rank. Then

uce
(
sl(I; A)

) ∼= sl(I; A) ⊕ HC1(A) (2.9)

as central extensions, where the Lie superalgebra structure on the right is given by the 2-cocycle τI of (2.8).

Example 2.5 (sl J (A) for A an associative algebra). Let A be an associative unital k-algebra over a com-
mutative ring k containing 1

2 , and let J be an arbitrary, possible infinite set with | J | � 5. We denote
by sl J (A) the Lie algebra of finitary matrices over A (only finitely many non-zero entries) and with
trace in [A, A]. Since sl J (A) is the direct limit of the Lie algebras slF (A) where F runs through the
finite subsets of J , Corollary 2.4 implies that uce(sl J (A)) ∼= sl J (A) ⊕ HC1(A). This is proven in [KL] for
J finite or countable and in [Wel] for arbitrary J , using the theory of root graded Lie algebras.

Example 2.6 (Ortho-symplectic Lie superalgebra osp(I; A) for A an associative commutative superalgebra).
The ortho-symplectic Lie superalgebra osp(m,n; A) can be defined in the usual way, see for example
[IK1,IK2,MP2]. Since osp(m,n; A) is a subalgebra of sl(m,n; A), the restriction of the 2-cocycle τmn of
Example 2.3 defines a 2-cocycle of osp(m,n; A) with values in HC1(A) and thus gives rise to a central
extension. We suppose that the map uce(osp(m,n; A)) → osp(m,n; A) ⊕ HC1(A), given by 〈x, y〉 �→
[x, y] ⊕ τmn(x, y) is an isomorphism:

uce
(
osp(m,n; A)

) ∼= osp(m,n; A) ⊕ HC1(A) as central extensions. (2.10)

Our assumption (2.10) is fulfilled in any one of the following situations:

(a) k a field of characteristic 0 [IK2],
(b) A a commutative algebra [IK1,MP2].

Ref. [MP2] assumes that m � 5, n � 10.
Let now (osp(mi,ni; A), f ji) be a directed system of Lie superalgebras. One shows as in Exam-

ple 2.3 that there exists a well-defined 2-cocycle τ ′
I for the direct limit Lie superalgebra

osp(I; A) := limosp(mi,ni; A)
−→
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with values in HC1(A). From Theorem 1.6 we then get as in Corollary 2.4

uce
(
osp(I; A)

) ∼= lim−→uce
(
osp(mi,ni; A)

) ∼= lim−→
(
osp(mi,ni; A) ⊕ HC1(A)

)
∼= osp(I; A) ⊕ HC1(A). (2.11)

Example 2.7 (Locally finite Lie superalgebras). Classically semisimple locally finite Lie superalgebras over
algebraically closed fields of characteristic 0 were introduced and studied in [P], including a clas-
sification of the simple infinite dimensional ones which admit a local system of root injections of
classical finite dimensional Lie superalgebras. They are all direct limits L = lim−→i

Li of classical sim-
ple Lie superalgebras Li , i ∈ N with f i : Li → Li+1 being the natural inclusions. Referring the reader
to [P] for details, we simple present the classification list. We abbreviate sl(m,n) = sl(m,n;k) and
osp(m,n) = osp(m,n;k) in the notation of 2.3 and 2.6 respectively. The Lie superalgebra SP(m) is
the subalgebra of sl(m,m) which leaves invariant an odd nondegenerate super-antisymmetric bilinear
form, and sq(m) is the subalgebra of sl(m,m) consisting of matrices of the form (2.1) with x1 = x4,
x2 = x3 and tr(x2) = 0. With these notations, an infinite dimensional simple Lie superalgebra, which
admits a local system of root injections of classical finite dimensional Lie superalgebras Li , is isomor-
phic to a Lie superalgebra L in the following table (i � 2, n � 0, k � 0, r � 0, m � 2):

L Li L Li

sl(∞,n) sl(i,n) sl(∞,∞) sl(i, i)
B(∞,2k) osp(2i + 1,2k) B(∞,∞) osp(2i + 1,2i)

B(2r + 1,∞) osp(2r + 1,2i) C(∞) osp(2,2i)
D(∞,2k) osp(2i,2k) D(∞,∞) osp(2i,2i)
D(2m,∞) osp(2m,2i) SP(∞) SP(i)
sq(∞) sq(i)

(2.12)

Corollary 2.8. The Lie superalgebras L listed in table (2.12) are all centrally closed.

Proof. The Lie superalgebras Li in table (2.12) are all perfect. In view of Theorem 1.6 it therefore
remains to show that they are centrally closed for large i. For Li of type sl(m,n) or osp(m,n) this
follows from (2.7) and (2.10) since HC1(k) = {0}. For the remaining two types this follows from [IK2,
Th. 5.10]. �
Example 2.9 (Locally finite Lie algebras). Corollary 2.8 applies in particular to the simple locally finite
Lie algebras sl(∞) = sl(∞, 0), o(∞) = B(∞, 0) = D(∞, 0), sp(∞) = D(0,∞) (the only infinite dimen-
sional simple root reductive Lie algebras), studied for example in [BB,DP,PS].

Example 2.10 (Root-graded Lie algebras). (a) Let k be a ring in which 2 and 3 are invertible, and let L
be a Lie algebra graded by a locally finite reduced root system R as defined in [N1], see also [N3, 5.1].
Thus, L is graded by Q(R) = SpanZ(R) with suppQ(R) L = R , i.e.,

L =
⊕
α∈R

Lα, [Lα, Lβ ] ⊂ Lα+β,

satisfies L0 = ∑
0�=α∈R [Lα, L−α] and has the property that for α �= 0 there exists an sl2-triple

(eα,hα, fα) ∈ Lα × L0 × L−α such that [hα, xβ ] = 〈β,α∨〉xβ holds for every β ∈ R and xβ ∈ Lβ . By
[LN, 3.15], R is a direct limit of finite root systems, say R = lim−→ Ri where i runs through a directed set
(I,�). The subalgebra
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Li =
( ⊕

0 �=α∈Ri

Lα

)
⊕

∑
0 �=α∈Ri

[Lα, L−α] (2.13)

is graded by the root system Ri , and it is immediate that L = lim−→ Li .
Any root-graded Lie algebra is perfect, whence uce(L) ∼= lim−→uce(Li) by Theorem 1.6. In fact, some-

thing more precise is true. One knows that the universal central extension of a root-graded Lie algebra
is again graded by the same locally finite root system, [N3, Prop. 5.4]. Thus the root-graded Lie algebra
uce(L) is a direct limit of root-graded Lie algebras,

uce(L) ∼= lim−→uce(L)i,

where uce(L)i is defined in the same way as Li .
(b) Suppose in the following that k is a field of characteristic zero. If K is a centreless Lie algebra

graded by a finite irreducible reduced root system, the group H2(K ) is known to be the full skew-
dihedral homology group HF(a), where a is the coordinate algebra of K , [ABG, Th. 4.13].

Let now L be a centreless Lie algebra graded by a locally finite irreducible reduced root system R of
rank � 9. Then R = lim−→ Ri where the Ri are finite, irreducible, reduced, have rank � 9 and are of the
same type as R , [LN, 8.3]. It is moreover no harm to assume that R0 ⊆ Ri for some fixed 0 ∈ I . It then
follows that the root-graded Lie algebras Li of (2.13) all have the same coordinate algebra a (this has
also been noted by M. Yousofzadeh in [Y]). Notice that if f ji(z(Li)) ⊂ z(L j), then lim−→ Li ∼= lim−→ Li/z(Li).
Hence

uce(L) ∼= uce
(
lim−→ Li/z(Li)

) ∼= lim−→uce
(
Li/z(Li)

)
∼= lim−→ Li/z(Li) ⊕ HF(a) ∼= L ⊕ HF(a). (2.14)

Special cases of root-graded Lie algebras are the so-called Lie tori, which occur as cores and centreless
cores of locally extended affine Lie algebras [MY,Nee]. More generally, the cores of affine reflection Lie
algebras are root-graded Lie algebras of possibly infinite rank [N3, 6.4, 6.5].
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