
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Algebra 344 (2011) 78–113

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Lie tori of type B2 and graded-simple Jordan structures
covered by a triangle ✩

Erhard Neher a,∗, Maribel Tocón b

a Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
b Departamento de Estadística e Investigación Operativa, Universidad de Córdoba, Puerta Nueva s/n, Córdoba, 14071, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2010
Available online 9 August 2011
Communicated by Efim Zelmanov

MSC:
primary 17B70
secondary 17B60, 17C10, 17C50

Keywords:
Root-graded Lie algebras
Lie torus
Triangulated Jordan structures (algebra,
triple system, pair)
Jordan structures covered by a triangle
Coordinatization

We classify two classes of B2-graded Lie algebras which have a
second compatible grading by an abelian group Λ: (a) Λ-graded-
simple, Λ torsion-free and (b) division-Λ-graded. Our results
describe the centreless cores of a class of affine reflection Lie
algebras, hence apply in particular to the centreless cores of
extended affine Lie algebras, the so-called Lie tori, for which we
recover results of Allison, Gao and Faulkner. Our classification (b)
extends a recent result of Benkart and Yoshii.
Both classifications are consequences of a new description of
Jordan algebras covered by a triangle, which correspond to these
Lie algebras via the Tits–Kantor–Koecher construction. The Jordan
algebra classifications follow from our results on graded-triangulat-
ed Jordan triple systems. They generalize work of McCrimmon and
the first author as well as the Osborn–McCrimmon-Capacity-2-
Theorem in the ungraded case.
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Introduction

This paper deals with two related algebraic objects, Lie algebras graded by the root system B2 and
Jordan structures (algebras, triple systems and pairs), covered by a triangle of idempotents, respec-
tively tripotents. Its aim is to classify the graded-simple structures in these categories.
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On the Lie algebra side, the motivation for this paper comes from the theory of extended affine
Lie algebras, which generalize affine Kac–Moody Lie algebras and toroidal Lie algebras [AABGP], and
the even more general affine reflection Lie algebras ([N4], LA = Lie algebra):

affine LA ⊂ extended affine LA ⊂ affine reflection LA.

As explained in [N4, §6], an important ingredient in the structure theory of these Lie algebras is a
certain subquotient, the so-called centreless core, whose structure is, respectively, as follows:

un/twisted loop algebra ⊂ centreless Lie torus

⊂ centreless predivision-root-graded Lie algebra.

It is therefore of interest to understand the structure of Lie tori or predivision-root-graded Lie algebras.
As the reader will see below, these Lie algebras are defined in terms of a finite irreducible root system.
One of the goals of this paper is to elucidate the structure of root-graded Lie algebras of type B2,
which is one of the most complicated cases.

Let � be the root system B2 and put R = �∪{0} (we assume here 0 /∈ �). Also, let Λ be an abelian
group. We consider Lie algebras defined over a ring k with 1

2 and 1
3 ∈ k which have a decomposition

(RG1) L = ⊕
α∈R, λ∈Λ Lλ

α with [Lλ
α, Lμ

β ] ⊂ Lλ+μ
α+β (= 0 if α + β /∈ R), satisfying

(RG2) L0 = ∑
α∈�[Lα, L−α].

We call 0 �= e ∈ Lλ
α , α ∈ �, invertible if there exists f ∈ L−λ−α such that h = [e, f ] acts on xβ ∈ Lμ

β , β ∈ R ,
as [h, xβ ] = 〈β,α∨〉xβ for 〈β,α∨〉 the Cartan integer of α,β ∈ R . This perhaps unusual definition is
justified by examples, in which invertible elements as defined above are given in terms of invertible
elements of coordinate algebras. A Lie algebra satisfying (RG1) and (RG2) is called

– B2-graded with a compatible Λ-grading if every L0
α , α ∈ �, contains an invertible element,

– B2-graded-simple if L is R-graded with a compatible Λ-grading and if {0} and L are the only
Λ-graded ideals of L,

– predivision-B2-graded if L is R-graded with a compatible Λ-grading and every 0 �= Lλ
α , α ∈ �,

contains an invertible element,
– division-B2-graded if L is R-graded with a compatible Λ-grading and every nonzero element in

Lλ
α , α ∈ �, is invertible,

– a Lie torus of type B2 if k is a field, L is division-B2-graded and dimk Lλ
α � 1 for all α ∈ �.

If k is a field of characteristic 0, a split simple Lie algebra of type B2 is clearly B2-graded in
the sense above. So we have two isomorphic examples, the orthogonal Lie algebra o5(k) and the
symplectic Lie algebra sp2(k), using B2 = C2. Another example is not far off: We can re-grade the
standard root space decomposition of sl4(k), viewed as an A3-grading, by “folding” A3 into B2, thus
giving sl4(k) the structure of a simple B2-graded Lie algebra.

The reader will not be very surprised in learning that one can replace k in the three examples
sl4(k), sp2(k) and o5(k) by more general, not necessarily commutative coordinates and still gets a
simple B2-graded Lie algebra. In doing so, sp2(.) and o5(.) will no longer be isomorphic. Our first
classification result says that, up to central extensions and allowing graded-simple coordinates, these
are all examples in the graded-simple case with Λ torsion-free:

Theorem A. (See Theorem 7.12.) Let Λ be torsion-free and let L be a Lie algebra over a ring k containing 1
2

and 1
3 . Then L is centreless B2-graded-simple if and only if L is graded isomorphic to

(I) sl4(A)/Z(sl4(A)) where sl4(A) = {X ∈ gl4(A): tr(X) ∈ [A, A]}, and A is a graded-simple associative
k-algebra,
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(II) sp2(A,π)/Z(sp2(A,π)) for A as in (I) with involution π ,
(III) an elementary orthogonal Lie algebra eo(Q ) where Q is a graded-nondegenerate quadratic form with

base point and containing two hyperbolic planes over a graded-field.

We point out that even the case Λ = {0} was not explicitly known before, although it could have
been derived from [MN]. Moreover, in the application to affine reflection Lie algebras and their cen-
treless core our assumption on Λ is fulfilled.

Our second classification result (Theorem 7.13) is parallel to Theorem A: It allows an arbitrary
Λ, but assumes that the Lie algebra L is centreless and division-B2-graded. In this setting, case (I)
disappears, the algebra A in (II) is division-graded and Q in (III) is graded-anisotropic. In characteristic
0 this result has also been obtained by Benkart and Yoshii [BY, Theorem 4.3] using different methods
and giving a less precise description of the Lie algebras. We can easily derive from our results a
classification of centreless Lie tori of type B2.

Corollary. (See Corollary 7.14.) A Lie algebra L is a centreless Lie torus of type B2 if and only if L is graded
isomorphic to one of the following:

(I) a symplectic Lie algebra sp2(A,π) for A a noncommutative associative torus with involution π , or to
(II) an elementary orthogonal Lie algebra eo(Q ) for Q a graded-anisotropic quadratic form over an associa-

tive torus with the same properties as Q in (III) of Theorem A.

Again in characteristic 0 this has also been obtained by Benkart and Yoshii [BY, Theorem 5.9]. For
k = C and Λ = Zn , the Lie tori classification is due to Allison and Gao [AG]. A different approach to
this classification has recently been given by Faulkner [F] in the context of his classification of Lie tori
of type BC2.

We obtain the Lie algebra results as a consequence of our results on so-called triangulated Jordan
structures, by linking Lie algebras to Jordan structures via the Tits–Kantor–Koecher construction. This
brings us to the second goal for this paper, the classification of graded-simple-triangulated Jordan
structures. In this introduction, we restrict ourselves to Jordan algebras for which the results are
easier to state. A quadratic unital Jordan algebra J is called graded-triangulated if J = ⊕

λ∈Λ Jλ is
graded by some abelian group Λ and contains two supplementary orthogonal idempotents e1, e2 ∈ J 0

strongly connected by some u ∈ J1(e1) ∩ J1(e2) ∩ J 0. Of course, graded-simple-triangulated means
graded-simple and graded-triangulated.

Analogously to the Lie algebra case, two isomorphic examples of triangulated Jordan algebras are
immediate for k algebraically closed, the Jordan algebra H2(k) of 2 × 2 symmetric matrices and the
Jordan algebra ACalg(k) of a 3-dimensional nondegenerate quadratic form. In addition, also the Jor-
dan algebra Mat2(k) is naturally triangulated. And as in the Lie algebra case, the reader will not be
surprised to learn that one can replace k by more general coordinates and still gets a graded-simple
triangulated Jordan algebra.

Theorem B. (See Theorem 6.3(b).) A triangulated quadratic Jordan algebra J which is graded-simple with
respect to a grading by a torsion-free abelian group Λ is graded isomorphic to one of the following Jordan
algebras:

(I) full matrix algebra Mat2(A) for a noncommutative graded-simple associative unital A;
(II) hermitian matrices H2(A, A0,π) for a noncommutative graded-simple associative unital A with ample

subspace A0 and graded involution π ;
(III) Clifford Jordan algebra ACalg(q, F , F0) for a graded-nondegenerate q over a graded-field F with Clifford-

ample subspace F0 .

Conversely, all Jordan algebras in (I)–(III) are graded-simple-triangulated.

To put Theorem B into perspective, let us point out that already the case Λ = {0} is nontrivial: The
“Osborn–McCrimmon-Capacity-2-Theorem” [J, 6.3], [M2, 22.2], which classifies simple Jordan algebras
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of capacity 2 (= simple triangulated Jordan algebras with division diagonal Peirce spaces) is the most
complicated piece of the classification of simple Jordan algebras with capacity, and a cornerstone of
the classification of simple Jordan algebras.

As for Theorem A, we prove a second classification result (Corollary 6.5) in which the assumption
on Λ is replaced by the condition that elements in the Peirce space J12 are sums of invertible el-
ements. And of course, there are also corollaries for triangulated Jordan algebra tori, formulated in
Corollary 6.6 for Λ = Zn .

We have mentioned that the Lie algebra results follow from our results on Jordan structures, viz.,
the cases (I)–(III) in Theorem A correspond to the cases (I)–(III) in Theorem B. So how do we prove the
Jordan algebra result? In fact, we first prove the results for graded-simple-triangulated Jordan triple
systems by adapting the approach of [MN] to the graded-simple setting. This paper deals with the
case Λ = {0} and so generalizes the Osborn–McCrimmon-Capacity-2-Theorem to Jordan triple systems.
Once the triple system case has been established, we can derive the results for Jordan algebras and
Jordan pairs (Theorem 6.12, Corollaries 6.14 and 6.15) by standard techniques.

The paper is divided into seven sections. In the first two sections we establish the terminology,
identities and general results about graded Jordan triple systems and graded-triangulated Jordan triple
systems, respectively. Proofs in the first two sections are mainly left to the reader since they are easy
generalizations of the corresponding ungraded cases. In Sections 3 and 4 we present our two basic
models for graded-triangulated Jordan triple systems, the hermitian matrix systems and the Clifford
systems and prove Coordinatization Theorems for both of them (Theorems 3.3 and 4.3). Section 5
is devoted to classifying graded-simple-triangulated Jordan triple systems. As a corollary we obtain
a classification of division-triangulated Jordan triple systems (Corollary 5.12) and triangulated Jordan
triple tori (Corollary 5.13). These classification theorems are extended to Jordan algebras and Jordan
pairs in Section 6. Finally, in the last section, we apply our results to Lie algebras.

Unless specified otherwise, all algebraic structures are defined over an arbitrary ring of scalars,
denoted k, and are assumed to be graded by an abelian group Λ, written additively. We will use Loos’
Lecture Notes [L] as our basic reference for Jordan triple systems and Jordan pairs.

1. Graded Jordan triple systems

This section introduces some basic notions of graded Jordan triple systems. For example we
establish in Theorem 1.4 that Peirce-2- and Peirce-0-spaces of a degree 0 tripotent inherit graded-
simplicity.

A k-module M is graded by Λ if M = ⊕
λ∈Λ Mλ where (Mλ: λ ∈ Λ) is a family of k-submodules

of M . In this case, we call M Λ-graded if the support set suppΛ{λ ∈ Λ: Mλ �= 0} generates Λ as
an abelian group. Of course, if M is graded by Λ, it is Ξ -graded for Ξ the subgroup generated by
suppΛ M . But it is usually more convenient to just consider graded modules (and triple systems) as
opposed to Λ-graded ones. We say that M is graded if M is graded by some (unimportant) abelian
group, which for simplicity we assume to be Λ. A homogeneous element of a graded M is an element
of

⋃
λ∈Λ Mλ . If M = ⊕

λ∈Λ Mλ and N = ⊕
λ∈Λ Nλ are graded modules, a k-linear map ϕ : M → N is

said to be homogeneous of degree γ ∈ Λ if ϕ(Mλ) ⊆ Nλ+γ for all λ ∈ Λ.
A Jordan triple system J with quadratic operator P and triple product { . , . , . } is graded by Λ if

the underlying module is so, say J = ⊕
λ∈Λ Jλ , and the family ( Jλ: λ ∈ Λ) satisfies P ( Jλ) Jμ ⊆ J 2λ+μ

and { Jλ, Jμ, Jν} ⊆ Jλ+μ+ν for all λ,μ,ν ∈ Λ. We will say that J is Λ-graded if J is graded by Λ

and the underlying module is Λ-graded. As for modules, we will simply speak of a graded Jordan triple
system if the grading group Λ is not important.

If J and J ′ are graded Jordan triple systems, a homomorphism ϕ : J → J ′ is said to be graded if
it is homogeneous of degree 0. Correspondingly, a graded isomorphism is a bijective graded homomor-
phism, and we say that J and J ′ are graded isomorphic, written as J ∼=Λ J ′ , if there exists a graded
isomorphism between J and J ′ .

Let J be a graded Jordan triple system. A subsystem M of J is called graded if M = ⊕
λ∈Λ(M ∩ Jλ).

If M is an arbitrary subsystem of J , the greatest graded subsystem of J contained in M is Mgr =⊕
λ∈Λ(M ∩ Jλ). If M is an ideal of J , then so is Mgr. We also note that the quotient of J by a

graded ideal is again graded with respect to the canonical quotient grading. We call J graded-simple
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if P ( J ) J �= 0 and every graded ideal is either 0 or equal to J . We say that J is graded-prime if
P (I)K = 0 for graded ideals I, K of J implies I = 0 or K = 0, and graded-semiprime if P (I)I = 0 for
a graded ideal I implies I = 0. We denote by T ( J ) = {x ∈ J : P (x) J = 0} the set of trivial elements of
J , and put T Λ( J ) := ⋃

λ∈Λ T λ( J ), where T λ( J ) = T ( J ) ∩ Jλ . We say that J is graded-nondegenerate
if T Λ( J ) = 0. We note that if J is graded-nondegenerate, it is also graded-semiprime. Finally, we say that
J is graded-strongly prime if it is graded-prime and graded-nondegenerate, and division-graded if it is
nonzero and every nonzero homogeneous element is invertible in J .

Recall that the McCrimmon radical M( J ) of a Jordan triple system J is the smallest ideal of J
such that the quotient J/M( J ) is nondegenerate [L, §4]. It can be constructed as follows: M( J ) :=⋃

α Mα( J ), where M0( J ) = 0, M1( J ) is the ideal of J generated by the set of trivial elements
T ( J ) of J and, by using transfinite induction, the ideals Mα( J ) are defined by Mα( J )/Mα−1( J ) =
M1( J/Mα−1( J )) if α is a non-limit ordinal and Mα( J ) = ⋃

β<α Mβ( J ) for a limit ordinal α.

Definition 1.1. Let J be a graded Jordan triple system and let M( J ) be its McCrimmon radical. We
define the graded-McCrimmon radical of J , denoted grM( J ), as the greatest graded ideal contained in
M( J ), i.e.,

grM( J ) := M( J )gr =
⊕
λ∈Λ

(
Jλ ∩M( J )

)
.

Thus grM( J ) = ⊕
λ∈Λ grMλ( J ) for grMλ( J ) = Jλ ∩M( J ). The following characterization is imme-

diate from the definition, see [L, §4] for the ungraded case.

Proposition 1.2. Let J be a graded Jordan triple system. Then the homogenous spaces grMλ( J ) of grM( J )
are grMλ( J ) = ⋃

α(Mα( J )∩ Jλ) for Mα( J ) as defined above. The graded-McCrimmon radical is the small-
est graded ideal of J such that the quotient J/grM( J ) is graded-nondegenerate.

We will need the following result.

Proposition 1.3. (See [A,KZ] for Λ = 0.) If J is a graded-simple Jordan triple system, then J is graded-
nondegenerate.

Proof. We can suppose grM( J ) = J . Hence grM( J ) = M( J ) = J . By [A,KZ] J is then locally nilpo-
tent, i.e., every finitely generated subalgebra of J is nilpotent. But this immediately leads to a contra-
diction. �

Let e be a tripotent in a Jordan triple system J , i.e., P (e)e = e. We thus have the Peirce decom-
position of J with respect to e, written as J = J2(e) ⊕ J1(e) ⊕ J0(e). If, in addition, J is graded and
e ∈ J 0, it is immediate that the Peirce spaces J i(e), i = 0,1,2, are graded: J i(e) = ⊕

λ∈Λ Jλ
i (e) where

Jλ
i (e) = J i(e) ∩ Jλ .

Theorem 1.4. Let J be a graded-simple Jordan triple system with a tripotent 0 �= e ∈ J 0 . Then the Peirce
subsystem J2(e) is graded-simple and if J0(e) �= 0, then J0(e) is also graded-simple.

Proof. This can be proven in the same way as the ungraded result [M1, 3.8]. �
2. Graded-triangulated Jordan triple systems

In this section we begin our study of graded-triangulated Jordan triple systems. We define the ba-
sic notations used throughout, present a list of multiplication rules, and discuss graded-nondegeneracy
and graded-simplicity (Proposition 2.23). Throughout J is a Jordan triple system, assumed to be
graded from Definition 2.11 on.
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A triple of nonzero tripotents (u; e1, e2) is called a triangle if ei ∈ J0(e j), i �= j, ei ∈ J2(u), i = 1,2,
u ∈ J1(e1)∩ J1(e2), and the following multiplication rules hold: P (u)ei = e j , i �= j, and P (e1, e2)u = u.
In this case, e := e1 + e2 is a tripotent such that e and u have the same Peirce spaces. The verification
that (u; e1, e2) is a triangle is simplified by the Triangle Criterion [N2, I.2.5], which says that as soon as
u and e1 are tripotents satisfying u ∈ J1(e1) and e1 ∈ J2(u) then (u; e1, P (u)e1) is a triangle.

A Jordan triple system with a triangle (u; e1, e2) is said to be triangulated if J = J2(e1)⊕ ( J1(e1)∩
J1(e2)) ⊕ J2(e2) which is equivalent to J = J2(e). In this case, we will use the notation J i = J2(ei)

and M = J1(e1) ∩ J1(e2). Hence

J = J1 ⊕ M ⊕ J2.

For such a J the index i will always vary in {1,2}, in which case j ∈ {1,2} is given by j = 3 − i. An
arbitrary product P (x)y in J has the form P (x1 + m + x2)(y1 + n + y2) = z1 + r + z2, where

zi = P (xi)yi + P (m)y j + {xi,n,m}, and

r = P (m)n + {x1, y1,m} + {x2, y2,m} + {x1,n, x2}.

Using Peirce multiplication rules and standard Jordan identities, most of these products can be written
in terms of the quadratic operators

Q i : M → J i :m �→ Q i(m) := P (m)e j,

with linearizations Q i(m,n) = P (m,n)e j , the automorphism − : J → J

x �→ x := P (e)x, e = e1 + e2,

and the bilinear maps J i × M → M defined by

2.1. J i × M → M : (xi,m) �→ xi · m = L(xi)m := {xi, ei,m}.

Indeed we have [MN, 1.3.2–1.3.6]:

2.2. P (m)n = Q i(m,n) · m − Q j(m) · n.

2.3. {m,n, xi} = Q i(m, xi · n) = {m, xi · n, ei}.

2.4. {m, xi,n} = Q j(m, xi · n) = Q j(n, xi · m).

2.5. {xi, yi,m} = xi · (yi · m).

2.6. {xi,m, y j} = xi · (y j · m) = y j · (xi · m),

while P (xi)yi ∈ J i and P (m)yi ∈ J j cannot be reduced. Also [MN, 1.3.7]:

2.7. ei · m = m and P (xi)yi · m = xi · (yi · (xi · m)).

Note that − has period 2 with ei = ei , stabilizes the Peirce subspaces J i and M and reduces to
P (ei) on J i and P (e1, e2) on M . We will also consider the square of elements xi ∈ J i defined as

2.8. x2
i := P (xi)ei .
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Because of 2.7 we have L(xi)
2 = L(x2

i ). We say that J is faithfully triangulated or that u is faithful if
any x1 ∈ J1 with x1 · u = 0 vanishes. We will also need the traces

Ti(m) := Q i(u,m) = {ue jm},
and the map

∗ := P (e)P (u) = P (u)P (e),

which is an automorphism of J of period 2 such that u∗ = u, e∗
i = e j , and so J∗

i = J j . The following
lemma is shown in the proof of [MN, 1.15] and will be used later.

Lemma 2.9. Let J = J1 ⊕ M ⊕ J2 be a triangulated Jordan triple system. If z = z1 + m + z2 ∈ T ( J ), the set
of trivial elements of J , then zi ∈ T ( J i) and m ∈ RadQ i for i = 1,2 where RadQ i = {m ∈ M: Q i(m) = 0 =
Q i(m, M)}. Conversely, if m ∈ RadQ 1 ∪ RadQ 2 , then P (m)M = 0 = P (P (m) J i) J .

Definition 2.10. If M = ⊕
λ∈Λ Mλ and N = ⊕

λ∈Λ Nλ are graded modules and Q : M → N is a
quadratic map, we call Q graded if Q (Mλ) ⊆ N2λ and Q (Mλ, Mν) ⊆ Nλ+ν , where Q (.,.) is the bi-
linear form associated to Q . Recall that the radical of Q is RadQ = {m ∈ M: Q (m) = 0 = Q (m, M)}.
In our situation the graded-radical of Q , defined as

gr Rad Q :=
⊕
λ∈Λ

{
m ∈ Mλ: Q (m) = 0 = Q (m, M)

}
,

will be more important. Naturally, we say that Q is graded-nondegenerate if gr Rad Q = 0. It is easily
seen that the submodule {m ∈ M: Q (m, M) = 0} is graded. For any m = ∑

λ∈Λ mλ ∈ M satisfying
Q (m, M) = 0, we have Q (m) = ∑

λ∈Λ Q (mλ), where Q (mλ) ∈ N2λ . Hence gr Rad Q = RadQ if 1
2 ∈ k

or Λ does not have 2-torsion. In general, gr Rad Q is the greatest graded submodule of RadQ .

Definition 2.11. A Jordan triple system J is said to be graded-triangulated if J is graded by some
abelian group Λ and triangulated by (u; e1, e2) ⊆ J 0. We call a graded-triangulated J Λ-triangulated
if suppΛ J = {λ ∈ Λ: Jλ

i �= 0 or Mλ �= 0} generates Λ as abelian group. We call J graded-simple-
triangulated if J is graded-simple and graded-triangulated.

Let J be a graded-triangulated Jordan triple system. The grading group of a graded-triangulated
Jordan triple system will usually be denoted by Λ. Observe that the Λ-grading is compatible with the
Peirce decomposition: The subsystems J i and M are graded: J i = ⊕

λ∈Λ Jλ
i and M = ⊕

λ∈Λ Mλ , the
quadratic operators Q i and the automorphisms ∗ and − are graded.

As before we let (u; e1, e2) be the triangle inducing the triangulation. The product formulas 2.2–
2.6 show that a graded linear subspace K = K1 ⊕ N ⊕ K2 with Ki ⊆ J i , N ⊆ M , is a graded subsystem
if

2.12. Ki = Ki , N = N , P (Ki)Ki ⊆ Ki , P (N)Ki ⊆ K j and Ki · N ⊆ N .

As in [MN], we denote by C the subalgebra of Endk(M) generated by

C0 = L( J1) =
⊕
λ∈Λ

L
(

Jλ
1

)
,

and we say that u is C-faithful if cu = 0 implies c = 0. It is easily seen that EndΛ
k (M) :=⊕

λ∈Λ Endλ
k (M), where Endλ

k (M) = {ϕ ∈ Endk(M): ϕ(Mγ ) ⊆ Mγ +λ for all γ ∈ Λ}, is a subalgebra
of Endk M which is graded by Λ. Note that L( Jλ

i ) ∈ Endλ
k (M). Hence C0 is a graded submodule, and
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this implies that C is a graded subalgebra of EndΛ
k (M), i.e., C = ⊕

λ∈Λ Cλ where Cλ = C ∩ Endλ
k (M).

We have that L(x1) := L(x1) = P (e)L(x1)P (e) ∈ C0. Therefore c �→ c = P (e)c P (e)|M defines an auto-
morphism on C of period 2, which is graded. Moreover, L : J1 → C0, x1 �→ L(x1) is a nonzero graded
specialization with respect to P (c0)d0 = c0d0c0 ∈ C0, for c0,d0 ∈ C0. By [MN, 1.6.6], C has a reversal
involution π , i.e.,

2.13. (L(x1) · · · L(xn))π = L(xn) · · · L(x1).

It easily follows from 2.4 that

2.14. Q 2(cm,n) = Q 2(m, cπn).

It is clear from 2.13 that π is homogeneous of degree 0 and commutes with the automorphism −
of C . Moreover, C0 = C0 ⊆ H(C,π) is an ample subspace of (C,π), i.e., 1 ∈ C0 and cC0cπ ⊆ C0 for all
c ∈ C . Indeed, for c ∈ C , x1 ∈ J1, we have by [MN, 1.6.9]

2.15. cL(x1)cπ = L(P (cu)P (u)x1).

Besides the formulas already mentioned we will use the following identities proven in [MN, 1.6.8,
1.6.11, 1.6.2, 1.6.3, 1.6.10, 1.6.12, 1.6.14]. For c ∈ C , m ∈ M and xi ∈ J i we have

2.16. c + cπ = L(T1(cu)).

2.17. Q 2(cu,m) = T2(cπm).

2.18. Ti(m)∗ = T j(m∗) = T j(m) and Q i(m)∗ = Q j(m∗).

2.19. m∗ = Ti(m) · u − m.

2.20. (cu)∗ = c∗u = cπ u and hence cc∗u = c∗cu, where c∗ = P (u)c P (u).
Note that C∗ is the subalgebra of Endk(M) generated by L( J2).

2.21. (x∗
i − xi) · m = (Ti(m) · xi − Ti(xi · m)) · u = −Γi(xi;m)u,

where Γi(xi;m) := L(Ti(xi · m)) − L(Ti(m))L(xi). Observe that Γi(xi;m) is linear in the two variables.

2.22.

Γ1(x1;m)Γ1(x1;m)πm

= L
(

Q 2(m)
)[

L(x1),Γ1(x1;m)
]
u + L(x1)

[
L
(

Q 1(m)
)
, L(x1)

]
m + [

L(x1), L
(

P (m)P (u)x1
)]

m ∈ Cu.

The following proposition is a straightforward generalization of the corresponding result for Λ = 0
[MN, 1.15]. Its proof, which uses Proposition 1.3, Theorem 1.4 and Lemma 2.9, will be left to the
reader.

Proposition 2.23. Let J be a graded-triangulated Jordan triple system. Then

(i) J is graded-nondegenerate iff J1 and Q 1 are graded-nondegenerate, iff J2 and Q 2 are graded-
nondegenerate. In this case, J is faithfully triangulated.

(ii) J is graded-simple iff J1 is graded-simple and Q 1 is graded-nondegenerate, iff J2 is graded-simple and
Q 2 is graded-nondegenerate.
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Definition 2.24. A graded-triangulated Jordan triple system J is called division-triangulated if the
Jordan triple systems J i , i = 1,2, are division-graded and if every homogeneous 0 �= m ∈ M is in-
vertible in M , equivalently in J . We call J division-Λ-triangulated if J is division-triangulated and
Λ-triangulated. Thus, suppΛ J = {λ ∈ Λ: Jλ

i �= 0 or Mλ �= 0} generates Λ as abelian group.
Any division-triangulated Jordan triple system is in particular graded-simple. Since e1 + e2 is in-

vertible, an off-diagonal element m ∈ M is invertible iff P (m)(e1 + e2) = Q 1(m) ⊕ Q 2(m) is invertible
in J which is equivalent to both Q i(m) being invertible in J i .

Let k be a field. A triangulated Jordan triple torus is a division-triangulated Jordan triple system
J = J1 ⊕ M ⊕ J2 for which dimk Jλ

i � 1 and dimk Mλ � 1 for all λ ∈ Λ. We call such a Jordan triple
system a Λ-triangulated Jordan triple torus if J is division-Λ-triangulated.

We will use the same approach to define “tori” and Λ-tori in other categories: associative algebras
(3.10), Jordan algebras (6.4), Jordan pairs (6.13) and Lie algebras (7.3), and we will see in Section 7
the connection between them: Λ-triangulated Jordan structures coordinatize B2-Lie tori, which is our
principal motivation for studying them.

For the next lemma we recall that a subset S ⊂ Λ is called a pointed reflection subspace if 0 ∈ S and
2S − S ⊂ S , see for example [NY, 2.1], where it is also shown that any pointed reflection subspace is
a union of cosets modulo 2Z[S], including the trivial coset 2Z[S]. Here Z[S] denotes the Z-span of S .
In particular, a pointed reflection subspace is in general not a subgroup.

Lemma 2.25. Let J be a division-Λ-triangulated Jordan triple system . Put

L = suppΛ J1 = suppΛ J2 and S = suppΛ M.

Then L and S are pointed reflection subspaces of Λ satisfying

L+ 2S ⊂ L and L+ S ⊂ S. (2.1)

Proof. We have suppΛ J1 = suppΛ J2 by applying the invertible operator P (u) to J i . That L and S are
pointed reflection spaces is a general fact which is true for any division-graded Jordan triple system
J = ⊕

λ∈Λ Jλ with J 0 �= 0: We have, with obvious notation, (yμ)−1 ∈ J−μ , whence P (xλ)(yμ)−1 ∈
J 2λ−μ . The formulas in (2.1) follow from P (mλ)xμ

1 ∈ J 2λ+μ
2 and invertibility of L(xλ

1) on M . �
Remark 2.26. The relations (2.1) are well-known from the theory of extended affine root systems of
type B2 [AABGP, II], or more generally, the theory of extension data for affine reflection systems [LN2].
This is of course no accident in view of the connections between triangulated Jordan structures and
B2-graded Lie algebras, explained in Section 7.

3. Hermitian matrix systems

In this section we introduce the first of the two basic models for our paper, the hermitian ma-
trix system (Definition 3.1), and we characterize them within the class of all triangulated Jordan
triple systems in Theorem 3.3. We then describe the graded ideals of a hermitian matrix system
(Proposition 3.5), which allows us to describe the graded-(semi)prime and graded-simple hermitian
matrix systems (Corollary 3.6 and Proposition 3.9). Finally, in Lemma 3.12 we describe the division-
triangulated and tori among the hermitian matrix systems.

Definition 3.1. Hermitian matrix systems H2(A, A0,π,−). Recall [MN, §2] that an (associative) coor-
dinate system (A, A0,π,−) consists of a unital associative k-algebra A with involution π and an
automorphism − of period 2 commuting with π , together with a − stable π -ample subspace A0, i.e.,
A0 = A0 ⊆ H(A,π), 1 ∈ A0 and aa0aπ ⊆ A0 for all a ∈ A and a0 ∈ A0. We will call such a coordinate
system graded by Λ if A = ⊕

λ∈Λ Aλ is graded, π and − are homogeneous of degree 0 and A0 is a
graded submodule: A0 = ⊕

λ∈Λ Aλ
0 for Aλ

0 = A0 ∩ Aλ .
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To a graded coordinate system (A, A0,π,−) we associate the hermitian matrix system H =
H2(A, A0,π,−) which by definition is the Jordan triple system of 2 × 2-matrices over A which are
hermitian (X = Xπt) and have diagonal entries in A0, with triple product P (X)Y = XY πt X = XY X ,
t = transpose. The Jordan triple system H2(A, A0,π,−) is spanned by elements

aλ
0[ii] = aλ

0 Eii and aγ [12] = aγ E12 + (
aγ

)π
E21 = (

aγ
)π [21],

aγ ∈ Aγ ,aλ
0 ∈ Aλ

0. Such a system is graded by Λ: H = ⊕
λ∈Λ Hλ where Hλ = span{aλ

0[ii],aλ[12]: aλ
0 ∈

Aλ
0, aλ ∈ Aλ}, and graded-triangulated by (u = 1[12]; e1 = 1[11], e2 = 1[22]) ∈ H0. Note that the

automorphisms − and ∗ of H defined in Section 2 are

a0[11] + a[12] + b0[22] = a0[11] + a[12] + b0[22],(
a0[11] + a[12] + b0[22])∗ = b0[11] + aπ [12] + a0[22].

We say that H is diagonal if the diagonal coordinates A0 generate all coordinates A. In this case, the
involution π is the reversal involution with respect to A0, i.e., π(a1 · · ·an) = an · · ·a1 for ai ∈ A0.

Example 3.2. As an example, suppose A = B � Bop is a direct algebra sum of an associative graded
algebra B and its opposite algebra Bop and that π is the exchange involution (b1,b2) �→ (b2,b1) of A.
(Here and in the following � denotes the direct sum of ideals.) Then necessarily A0 = {(b,b): b ∈ B}
and H2(A, A0,π,−) is canonically isomorphic to Mat2(B), the 2 × 2-matrices over B , with Jordan
triple product Px y = xȳx or Px y = xȳt x depending on the automorphism − of A. Namely, we have
the first case if (b1,b2) = (b̄1, b̄2) where b �→ b̄ is an automorphism of B of period 2, and we have
the second case if (b1,b2) = (bι

2,bι
1) where b �→ bι is an involution of B .

Within triangulated Jordan triple systems, the hermitian matrix systems can be characterized as
follows.

Theorem 3.3 (Triangulated hermitian coordinatization theorem). (See [MN, 2.4] for Λ = 0.) For any graded
Jordan triple system J = J1 ⊕ M ⊕ J2 which is faithfully triangulated by (u; e1, e2), the graded subsystem

Jh = J1 ⊕ Cu ⊕ J2,

where C denotes the subalgebra of Endk(M) generated by C0 = L( J1), is graded-triangulated by (u; e1, e2)

and graded isomorphic to the diagonal hermitian matrix system H = H2(A, A0,π,−) under the map

x1 ⊕ cu ⊕ x2 �→
(

L(x1) c
cπ L(x∗

2)

)

for A = C |Cu , A0 = C0|Cu , cπ as in 2.13, and c = P (e) ◦ c ◦ P (e)|Cu . The above isomorphism maps the triangle
(u; e1, e2) of J onto the standard triangle (1[12];1[11],1[22]) of H. We have J = Jh as graded triple systems
if and only if M = Cu.

Proof. If J is a graded-triangulated Jordan triple system, then (A, A0,π,−), for A = C |Cu , A0 = C0|Cu ,
dπ as in 2.13 and d = P (e) ◦ d ◦ P (e), is a graded coordinate system. Since A0 generates A,
H2(A, A0,π,−) is a diagonal hermitian matrix system. Also, by definition, Jh is graded.

Now it follows from [MN, 2.4] that Jh is a subsystem of J isomorphic to H2(A, A0,π,−) under
the map

x1 ⊕ cu ⊕ x2 �→
(

L(x1) c
cπ L(x∗

2)

)
,
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which is clearly a graded isomorphism (recall that ( Jλ
i )∗ = Jλ

j ). That the isomorphism preserves the
triangles is clear. Also by [MN, 2.4], we have that Jh = J if and only if M = Cu. �

Let A be a graded algebra and let S be a set of endomorphisms of A preserving the grading. We
call I a graded ideal of (A,S) if I is a graded ideal left invariant by all s ∈ S. If P is a property of an
algebra defined in terms of ideals we will say that (A,S) is graded-P if P holds for all graded ideals
of (A,S). We will apply this for P = graded-(semi)prime and P = graded-simple. For S = {π,−}
as above we will determine the graded-simple (A,S)-structures in Proposition 3.7. Here we only
note:

Remark 3.4. If S is a finite semi-group consisting of automorphisms or involutions of a graded asso-
ciative algebra A, then (A,S) is graded-semiprime if and only if A is graded-semiprime. Indeed, if I
is a graded ideal of A with I2 = 0 then Î = ∑

s∈S s(I) is an S-invariant graded ideal of A with În = 0
for n > |S|. Hence Î = 0 and so also I = 0.

Proposition 3.5. Let H = H2(A, A0,π,−) be a hermitian matrix system. Then the graded ideals of H are
exactly the submodules

H2(B, B0) = B0[11] ⊕ B[12] ⊕ B0[22]

for (π,−)-invariant graded submodules B0 ⊆ A0 and B ⊆ A such that for a ∈ A, a0 ∈ A0 , b ∈ B, and b0 ∈ B0 ,

(1) ba + bπaπ , ba0bπ , and ab0aπ lie in B0 ,
(2) ab0 , a0b, aba, and bab lie in B.

In particular,

(i) if B is a graded ideal of (A,π,−), then H2(B, B ∩ A0) is a graded ideal of H2(A, A0,π,−), and, conversely,
(ii) if (A,π,−) is graded-semiprime and H2(B, B0) is a nonzero graded ideal of H2(A, A0,π,−), then there

exists a nonzero graded ideal I of (A,π,−) such that H2(I, I0) ⊆ H2(B, B0), for I0 = I ∩ B0 .

Proof. This easily follows from the case Λ = 0 which is proven in [MN, 2.7]. �
As a consequence, we have the following corollary whose proof is again omitted since it is based

on a standard argument.

Corollary 3.6. (See [MN, 2.7(5), 2.11] for Λ = 0.) Let H = H2(A, A0,π,−) be a hermitian matrix system. Then

(i) H is graded-simple iff (A,π,−) is graded-simple.
(ii) The following are equivalent:

(a) H is graded-nondegenerate,
(b) H is graded-semiprime,
(c) (A,π,−) is graded-semiprime,
(d) A is graded-semiprime.

(iii) H is graded-prime iff (A,π,−) is graded-prime.

Because of Corollary 3.6(i) it is of interest to determine the graded-simple coordinate systems
(A,π,−). This can be done without assuming that A is associative.

Proposition 3.7. Let A be an arbitrary, not necessarily associative, graded algebra with commuting involution
π and automorphism − of order 2, which are homogeneous of degree 0. Then the graded-simple structures
(A,π,−) are precisely the following:
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(I) graded-simple A with graded involution π and graded automorphism −;
(II) A ∼=Λ B � Bop with exchange involution π for a graded-simple B with graded automorphism −: (b1,b2)

π

= (b2,b1), (b1,b2) = (b1,b2);
(III) A ∼=Λ B � Bop with exchange involution π for a graded-simple B with graded involution ι: (b1,b2)

π =
(b2,b1), (b1,b2) = (b2

ι,b1
ι);

(IV) A ∼=Λ B � B with exchange automorphism − for a graded-simple B with graded involution π : (b1,b2)
π

= (b1
π ,b2

π ), (b1,b2) = (b2,b1);
(V) A ∼=Λ B � Bop � B � Bop for a graded-simple B with π the exchange involution of C = B � Bop

and − the exchange automorphisms of C � C : (a1,a2,a3,a4)
π = (a2,a1,a4,a3) and (a1,a2,a3,a4) =

(a3,a4,a1,a2).

Proof. The proof is again a straightforward generalization of the corresponding result in the ungraded
situation, which is [MN, 2.8]. �

For later use we note the following special case of Proposition 3.7 for a commutative algebra D
and π the identity “involution”. We note that D is not assumed to be unital.

Corollary 3.8. Let D be a commutative graded algebra with a graded automorphism − of order 2. Then (D,−)

is graded-simple if and only if either D is graded-simple or D ∼=Λ B � B, for a commutative graded-simple B
with the exchange automorphism.

Recall [L, §1.14] that a Jordan triple system T is called polarized if there exist submodules T ±
such that T = T + ⊕ T − and for σ = ± we have P (T σ )T σ = 0 = {T σ , T σ , T −σ } and P (T σ )T −σ ⊆ T σ .
In this case, V = (T +, T −) is a Jordan pair. Conversely, to any Jordan pair V = (V +, V −) we can
associate a polarized Jordan triple system T (V ) = V + ⊕ V − with quadratic map P defined by P (x)y =
Q (x+)y− ⊕ Q (x−)y+ for x = x+ ⊕ x− and y = y+ ⊕ y− . In fact, the category of Jordan pairs is
equivalent to the category of polarized Jordan triple systems. It is also known that for any Jordan
triple system T the pair (T , T ) is a Jordan pair [L, §1.13]. Hence, it has an associated polarized Jordan
triple system which we will denote T ⊕ T . Examples are the cases (IV) and (V) of Proposition 3.9
below.

Proposition 3.9 (Hermitian graded-simplicity criterion). A graded Jordan triple system is a graded-simple-
triangulated hermitian matrix system H2(A, A0,π,−) if and only if it is graded isomorphic to one of the
following:

(I) H2(A, A0,π,−) for a graded-simple A;
(II) Mat2(B) for a graded-simple associative unital B with graded automorphism − , where (bij) = (bij) for

(bij) ∈ Mat2(B) and P (x)y = xyx;
(III) Mat2(B) for a graded-simple associative unital B with graded involution ι, where (bij) = (bι

i j) for (bij) ∈
Mat2(B) and P (x)y = xyt x;

(IV) polarized H2(B, B0,π) ⊕ H2(B, B0,π) for a graded-simple B with graded involution π ;
(V) polarized Mat2(B) ⊕ Mat2(B) for a graded-simple associative unital B and P (x)y = xyx.

Among the cases (II)–(V), the matrix system is diagonal iff B is noncommutative.

Proof. By definition and Corollary 3.6(i), a graded Jordan triple system is a graded-simple J =
H2(A, A0,π,−) if and only if (A, A0,π,−) is a graded coordinate system where (A,π,−) is graded-
simple. Since the graded-simple structures (A,π,−) have been described in Proposition 3.7, it now
suffices to show that the cases (I)–(V) of Proposition 3.7 correspond to the cases (I)–(V) above. This is
straightforward and will be left to the reader, see [MN, 2.10] for the case in which the grading group
Λ = 0. �
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In order to describe division-triangulated hermitian matrix systems we need to introduce some
concepts from the theory of division-graded algebras.

Definition 3.10. A unital associative graded algebra A = ⊕
λ∈Λ Aλ is called predivision-graded if every

nonzero homogeneous space contains an invertible element. The support suppΛ A = {λ ∈ Λ: Aλ �= 0}
of a predivision-graded A is a subgroup of Λ. We will call A predivision-Λ-graded if suppΛ A = Λ.

After choosing a family of invertible elements (uλ: λ ∈ Λ) with uλ ∈ Aλ , one can identify a
predivision-Λ-graded algebra A with a crossed-product algebra A = (B,Λ,σ , τ ) in the sense of [P]
with B = A0 and the twist τ and the action σ defined by uλuμ = τ (λ,μ)uλ+μ and uλb = (σ (λ)(b))uλ

for b ∈ B .
An example of a predivision-Λ-graded algebra is the so-called twisted group algebra Bt[Λ], i.e., the

crossed product algebra (B,Λ,σ , τ ) with σ(λ) = IdB for all λ ∈ Λ. An immediate special case of a
twisted group algebra is k[Λ], the group algebra of Λ over k where τ (λ,μ) = 1k for all λ,μ ∈ k.

A unital associative graded algebra A is called division-graded if every nonzero homogeneous
element is invertible, and such an algebra is called division-Λ-graded if suppΛ A = Λ. A division-
Λ-graded algebra A is the same as a crossed product algebra (B,Λ,σ , τ ) with B a division algebra.
A division-graded algebra is in particular graded-simple.

A unital associative commutative graded algebra A is graded-simple if and only if it is division-
graded. Such algebras will be called graded-fields, more precisely Λ-graded-fields if suppΛ A = Λ.
A Λ-graded-field is the same as a twisted group algebra Bt[Λ] with B a field. If Λ is free, a Λ-graded
field is isomorphic to the group algebra of Λ.

If A is a division-graded algebra defined over a field k and such that dimk Aλ � 1, then A is said
to be an (associative) torus. In this case we call A a Λ-torus if suppΛ A = Λ. From the point of view of
crossed product algebras, a Λ-torus is the same as a twisted group algebra kt[Λ] over the field k. We
note that in this case τ is a 2-cocycle of Λ with coefficients in k.

Example 3.11. Zn-tori. Let A be a Zn-torus and choose nonzero ti ∈ Aεi , where εi is the ith-canonical
basis vector of Zn . Then the algebra structure of A is uniquely determined by the rules

tit
−1
i = 1A = t−1

i ti, 1 � i � n and tit j = qijt jti, 1 � i, j � n (3.1)

where qij ∈ k satisfy

qii = 1 = qij q ji for 1 � i, j � n. (3.2)

For example Aλ = ktλ for λ = (λ1, . . . , λn) ∈ Zn and tλ = tλ1
1 tλ2

2 · · · tλn
n . Conversely, let q = (qij) be a

n ×n-matrix over the field k whose entries satisfy (3.2), then the associative unital algebra kq defined
by generators ti , t−1

i and relations (3.1) is a Zn-torus. It is customary to call kq a quantum Zn-torus or
simply a quantum torus if the grading group is not important, since kq can be viewed as a quantization
of the coordinate ring of the n-torus (k×)n , i.e. the Laurent polynomial ring in n variables. Observe
that kq is a Laurent polynomial ring iff all qij = 1.

A quantum torus has a graded involution iff all qij = ±1 [AG, §2]. In this case, an example of a
well-defined involution is the reversal involution πrev with respect to the generating set {t±1

1 , . . . , t±1
n }:

πrev
(
tλ1

1 tλ2
2 · · · tλn

n
) = tλn

n t
λn−1
n−1 · · · tλ1

1 . (3.3)

The following lemma is immediate from the definitions above and the multiplication rules of her-
mitian matrix systems.

Lemma 3.12. Let H = H2(A, A0,π,−) be a hermitian matrix system.

(a) The following are equivalent:
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(i) Every homogeneous 0 �= m ∈ M = A[12] is invertible in H,
(ii) A is division-graded,

(iii) H is division-triangulated.
(b) Let k be a field. Then H is a Λ-triangulated Jordan triple torus iff A is a Λ-torus.

Proof. The implication (i) ⇒ (ii) follows from the multiplication rules of H . If A is division-graded, a
nonzero homogeneous element a0 ∈ A0 is invertible in A, say with inverse b0. We have b0 ∈ H(A,π)

since a0 ∈ H(A,π). But then b0 = b0a0bπ
0 ∈ A0, whence A0 is division-graded, proving (iii). The impli-

cation (iii) ⇒ (i) is immediate, and (b) follows from (a). �
Example 3.13. As a special case of Lemma 3.12 we get: H2(A, A0,π,−) is a Zn-triangulated Jordan
triple torus iff A is a quantum Zn-torus.

4. Clifford systems

In this section we introduce the second model of a graded-triangulated Jordan triple system, the
ample Clifford systems (Definition 4.2), and we characterize them within the class of triangulated
Jordan triple systems in Theorem 4.3. We describe the graded-(semi)prime, graded-strongly prime
and graded-simple Clifford systems in Proposition 4.4 and the division-triangulated and tori among
the Clifford systems in Corollary 4.5.

Definition 4.1. Quadratic form triples. Let D = ⊕
λ∈Λ Dλ be a graded unital commutative associative

k-algebra endowed with an involution − of degree 0, i.e., Dλ = Dλ for all λ ∈ Λ. If

(i) V is a graded D-module, i.e., V = ⊕
λ∈Λ V λ is a decomposition into k-submodules such that

dλxγ ∈ V λ+γ for dλ ∈ Dλ , xγ ∈ V γ and all λ,γ ∈ Λ,
(ii) q : V → D is a graded D-quadratic form (cf. Definition 2.10), and

(iii) S : V → V is a hermitian isometry of order 2 and degree 0, i.e., S(dx) = dS(x) for d ∈ D , q(S(x)) =
q(x), S2 = Id and S(V λ) = V λ ,

then V becomes a Jordan triple system, denoted J (q, S) and called a quadratic form triple, by defining
P (x)y = q(x, S(y))x − q(x)S(y) for x, y ∈ V (see for example [N2, §1, Example 1.6]). Clearly J (q, S) is
graded by Λ. We note for later use:

x ∈ J (q, S) is invertible ⇐⇒ q(x) ∈ D is invertible, (4.1)

and then x−1 = q(x)−1 S(x).

Definition 4.2. Ample Clifford systems AC(q, S, D0). We consider (M,q, S, u), where (M,q, S) satisfy
(i)–(iii) of Definition 4.1 above and in addition

(iv) there exists u ∈ M0 with q(u) = 1 and S(u) = u.

We then define (M̃, q̃, S̃) as follows:

(i)′ M̃ := De1 ⊕ M ⊕ De2, where De1 ⊕ De2 is a free graded D-module with basis (e1, e2) of degree 0,
(ii)′ q̃ : M̃ → D is the quadratic form given by q̃(d1e1 ⊕ m ⊕ d2e2) = d1d2 − q(m), whence De1 ⊕ De2

is a hyperbolic plane orthogonal to M , and
(iii)′ S̃ : M̃ → M̃ is the map d1e1 ⊕ m ⊕ d2e2 �→ d2e1 ⊕ −S(m) ⊕ d1e2.
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It is then easily checked that (M̃, q̃, S̃) also satisfies the conditions (i)–(iii) above, and therefore
yields a quadratic form triple, called full Clifford system and denoted FC(q, S). Its multiplication is
given by

P (c1e1 ⊕ m ⊕ c2e2)(b1e1 ⊕ n ⊕ b2e2) = d1e1 ⊕ p ⊕ d2e2, (4.2)

where

di = c2
i bi + ciq

(
m, S(n)

) + b jq(m),

p = [
c1b1 + c2b2 + q

(
m, S(n)

)]
m + [

c1c2 − q(m)
]

S(n)

and

{
c1e1 ⊕ m ⊕ c2e2,b1e1 ⊕ n ⊕ b2e2, c′

1e1 ⊕ m′ ⊕ c′
2e2

} = d1e1 ⊕ p ⊕ d2e2, (4.3)

where

di = q
(
cim

′ + c′
im, S(n)

) + b jq
(
m,m′) + 2cic

′
ibi,

p = [
c1b1 + c2b2 + q

(
m, S(n)

)]
m′ + [

c′
1b1 + c′

2b2 + q
(
m′, S(n)

)]
m

+ [
c1c′

2 + c′
1c2 − q

(
m,m′)]S(n).

Note that FC(q, S) is graded-triangulated by (u; e1, e2).
As already observed in [MN, 3.5], in general we need not take the full Peirce spaces Dei in order

to get a graded-triangulated Jordan triple system. Indeed, let us define a Clifford-ample subspace of
(D,−,q) as a graded k-submodule D0 of D , such that D0 = D0, 1 ∈ D0 and D0q(M) ⊆ D0. Then

M0 := D0e1 ⊕ M ⊕ D0e2

is a graded subsystem of the full Clifford system FC(q, S) containing the triangle (u; e1, e2). Hence it
is a graded-triangulated Jordan triple system, called an ample Clifford system and denoted AC(q, S, D0)

or AC(q, M, S, D,−, D0) if more precision is necessary. Note that J0 = AC(q, S, D0) is an outer ideal
of the full Clifford system J = FC(q, S).

We point out that (D, Id,−) is a graded associative coordinate system in the sense of Definition 3.1,
and that a Clifford-ample subspace D0 is in particular (Id,−)-ample. Hence ample Clifford systems are
full in characteristic �= 2, which here means D0 = D .

Our derived operations of Section 2 on J0 are

d0e1 ⊕ m ⊕ c0e2 = d0e1 ⊕ S(m) ⊕ c0e2,

(d0e1 ⊕ m ⊕ c0e2)
∗ = c0e1 ⊕ (

q(u,m)u − m
) ⊕ d0e2.

Theorem 4.3 (Clifford coordinatization theorem). (See [MN, 3.6, 3.10] for Λ = 0.) Let J = J1 ⊕ M ⊕ J2 be a
graded Jordan triple system which is faithfully triangulated by (u; e1, e2). For i = 1,2, define

(i) Ci as the subalgebra of Endk(M) generated by L( J i),
(ii) Γi(xi;m) := L(Ti(xi · m)) − L(Ti(m))L(xi) ∈ Ci for xi ∈ J i,m ∈ M,

(iii) �i(xi;m) = L(P (m)P (u)xi) − L(Q i(m))L(xi) ∈ Ci ,
(iv) N0 = {n0 ∈ M: Γi( J i;n0) = 0, i = 1,2},
(v) Ki = {ki ∈ J i: Γi(ki; Ci N0) = 0},
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(vi) Ngr = ⊕
λ∈Λ(N ∩ Mλ), for N = {n ∈ M: �i( J i;n) = �i( J i;n, N0) = Γi(Ti(n); Ci N0) = 0, i = 1,2} ⊆

N0 , i.e., Ngr is the greatest graded submodule of N.

Then

Jq = K1 ⊕ Ngr ⊕ K2

is a graded subsystem of J which is faithfully triangulated by (u; e1, e2) and graded isomorphic to the ample
Clifford system AC(q, Ngr, S, D,−, D0) under the map

x1 ⊕ n ⊕ x2 �→ L(x1) ⊕ n ⊕ L
(
x∗

2

)
,

where D0 = L(K1), D is the subalgebra of Endk(Ngr) generated by D0 , c = P (e) ◦ c ◦ P (e)|Ngr , q(n) =
L(Q 1(n)), and S(n) = P (e)n. The above isomorphism maps the triangle of J onto the standard triangle of
AC(q, Ngr, S, D,−, D0).

Moreover, J = Jq as graded triple systems if and only if �1( J1; M) ≡ 0. In particular, if u is C1-faithful
and (x1 − x∗

1) · m = 0, for all x1 ∈ J1 , m ∈ M, then �1( J1; M) ≡ 0 and so J = Jq .

Proof. Let J be a graded Jordan triple system faithfully triangulated by (u; e1, e2). By [MN, 3.10],
K1 ⊕ N ⊕ K2 is a subsystem of J faithfully triangulated by (u; e1, e2). Since N0 and Ki , i = 1,2, are
graded (all the defining identities are linear), Jq is the greatest graded submodule of K1 ⊕ N ⊕ K2.
Clearly (u; e1, e2) ∈ J 0

q . To see that Jq is also a graded subsystem of J faithfully triangulated by

(u; e1, e2), it is in view of 2.12 enough to prove Ngr = Ngr and Ki · Ngr ⊆ Ngr. But this follows directly
from N = N , Ki · N ⊆ N , Jλ

i · Mγ ⊆ Mλ+γ and the fact that − is homogeneous of degree 0. On the other
hand, since �1(K1; Ngr) ≡ 0 by definition, we have by [MN, 3.6] that Jq is isomorphic to the ample
Clifford system AC(q, Ngr, S, D,−, D0) under the map and data specified in the theorem. Clearly the
isomorphism is homogeneous of degree 0 and preserves the triangles.

Recall from [MN, 3.10] that J = K1 ⊕ N ⊕ K2 if and only if �1( J1; M) ≡ 0. In this case N = M is
graded whence Jq = J . Conversely, if Jq = J then �1( J1; Mλ) ≡ 0, which implies that �1( J1; M) ≡ 0:
�1( J1;mλ + mγ ) = �1( J1;mλ,mγ ) ⊆ �1( J1;mλ, N0) ≡ 0 since N ⊆ N0. Finally, if u is C1-faithful and
(x1 − x∗

1) · m = 0, then �1( J1; M) ≡ 0 by [MN, 3.8] and so J = Jq . �
Proposition 4.4. Let J = AC(q, M, S, D,−, D0) = D0e1 ⊕ M ⊕ D0e2 be an ample Clifford system for which
D acts faithfully on M.

(i) If J is graded-(semi)prime, then (D,−) is graded-(semi)prime.
(ii) The following are equivalent:

(a) J is graded-nondegenerate,
(b) q is graded-nondegenerate and J is graded-semiprime,
(c) q is graded-nondegenerate and (D,−) is graded-semiprime.

(iii) J is graded-strongly prime iff q is graded-nondegenerate and (D,−) is graded-prime.
(iv) ([MN, 3.14, 3.15] for Λ = 0) The following are equivalent:

(a) J is graded-simple,
(b) q is graded-nondegenerate and (D,−) is graded-simple,
(c) J is graded isomorphic to one of the following:

(I) AC(q, S, F0) for a graded-nondegenerate q over a graded-field F with Clifford-ample subspace
F0 , or

(II) a polarized AC(q, S, F0) ⊕ AC(q, S, F0), where AC(q, S, F0) is as in (I).
In this case, u is D-faithful.
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Proof. We will first establish some preliminary results on the structure of graded ideals of J . Thus,
let I be a graded ideal of J . We will use the multiplication formulas (4.2), (4.3) to evaluate the
possibilities for I . First, invariance of I under P (ei), P (e1, e2) and P (u) shows that

I = B0e1 ⊕ N ⊕ B0e2, (1)

for some graded k-submodules B0 ⊆ D0, N ⊆ M . From P (e1)I ⊆ I we obtain B0 = B0. Furthermore,
we claim

q graded-nondegenerate and B0 = 0 �⇒ I = 0. (2)

Indeed, in this case P (N)e2 + {N, e2, M} ⊆ B0 implies q(N) + q(N, M) ⊆ B0 = 0, whence Nλ ⊆ gr Rad q
for all λ ∈ Λ, and then N = 0, therefore I = 0. Next we claim

(
D,−)

graded-simple, q graded-nondegenerate �⇒ J graded-simple. (3)

First notice that by Corollary 3.8 either D is a division-graded algebra or is the direct sum of two
copies of a division-graded algebra with the exchange automorphism. Let I be a proper graded ideal
of J which we write in the form (1). Then B0 �= D , since B0 = D would imply e1 ∈ I , which in
turn would force e2 = P (u)e1 ∈ I , e1 + e2 ∈ I and then I = J . Now, as in the proof of [MN, 3.14], it

follows that no b0 ∈ B0 is invertible in D: If b−1
0 ∈ D , then b−2

0 = q(b−1
0 u) ⊆ D0, since q(M) ⊆ D0, and

e1 = b2
0b−2

0 e1 = P (b0e1)(b
−2
0 e1) ∈ P (I) J ⊆ I . Hence, if D is division-graded, Bλ

0 = 0 for all λ ∈ Λ, and
then B0 = 0. If, otherwise, D = A � A for a division-graded A with the exchange automorphism, let
b0 = (a,0) or (0,a) be in B0 for a homogeneous a ∈ Aλ . Then (a,a) = b0 + b0 ∈ B0, and since (a,a) is
not invertible in D , we get a = 0 and then B0 = 0, in which case I = 0 by (2).

(
D,−)

graded-(semi)prime and q graded-nondegenerate �⇒ J graded-(semi)prime. (4)

We suppose I, K are graded ideals of J with I = K in the semiprime case, satisfying P (I)K = 0. By (1),
we can write I, K in the form I = B0e1 ⊕ N ⊕ B0e2 and K = C0e1 ⊕ L ⊕ C0e2. From P (B0e1)C0e1 = 0
we get B2

0C0 = 0. If D is graded-(semi)prime (always in the semiprime case by Remark 3.4), then
B0 = 0 or C0 = 0. If D is not graded-prime, then it easily follows that D is a subdirect sum A �s A of
two copies of a graded-prime algebra A with the exchange automorphism. In this case, let 0 �= b0 ∈
B0, 0 �= c0 ∈ C0 be homogeneous elements. Then, by graded-primeness of A, b2

0c0 = 0 implies that
b0 = (b,0), c0 = (0, c) or b0 = (0,b), c0 = (c,0) for homogeneous b, c ∈ A, respectively. Without loss
of generality, assume b0 = (b,0) and c0 = (0, c). Hence b0 + b0 = (b,b) ∈ B0 and 0 = (b2,b2)(0, c) =
(0,b2c), thus b2c = 0. But, again by the graded-primeness of A we have that b2 = 0 or c = 0, that is,
b = 0 or c = 0, which is a contradiction. Then B0 = 0 or C0 = 0. Therefore I = 0 or K = 0 by (2).

For the proof of the other directions we again establish some preliminary results. Let B be a
graded ideal of (D,−). A straightforward verification using the multiplication rules (4.2), (4.3) shows
that then

B̃ := (B ∩ D0)e1 ⊕ BM ⊕ (B ∩ D0)e2

is a graded ideal of J . Since BM = 0 implies B ⊆ AnnD(M) = 0, it is clear that

B̃ = 0 ⇐⇒ B = 0.

On the other hand, if B̃ = J , then 1 ∈ D0 = B ∩ D0, hence B = D . Then

B̃ = J ⇐⇒ B = D.
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It now follows easily from the multiplication rules in Definition 4.2 that

J graded-(semi)prime �⇒ (
D,−)

graded-(semi)prime, and (5)

J graded-simple �⇒ (
D,−)

graded-simple. (6)

For the proof of (ii) we also need(
D,−)

graded-semiprime �⇒ J1 graded-nondegenerate. (7)

Indeed, if d0 ∈ D0 is a homogeneous trivial element of J1, then d2
0 D0 = 0. In particular, d2

0 = 0. But in
a graded-semiprime commutative algebra, all homogeneous nilpotent elements vanish, so d0 = 0.

Finally, by using Proposition 2.23(i) and the fact that Q 1 = q in our situation we have

J graded-nondegenerate ⇐⇒ q graded-nondegenerate and J1 graded-nondegenerate. (8)

Now the proof of (i)–(iv) follows easily: (i) is (5). For (ii), the fact that any graded-nondegenerate
Jordan triple system is also graded-semiprime together with (i), (7) and (8) yields: J graded-
nondegenerate (by (8)) ⇒ q graded-nondegenerate and J graded-semiprime (by (i)) ⇒ q graded-
nondegenerate and (D,−) graded-semiprime (by (7)) ⇒ q graded-nondegenerate and J1 graded-
nondegenerate (by (8)) ⇒ J graded-nondegenerate.

For (iii), we have by definition of graded-strongly primeness and (i) and (ii) that J graded-strongly
prime implies q graded-nondegenerate and (D,−) graded-prime. The converse direction follows from
(ii) and (4). Finally (iv) follows from (3), (6) and graded-nondegeneracy of J characterized by (8).
Note that then u is D-faithful since {d ∈ D: du = 0} is a proper graded ideal of (D,−). The remaining
statements in (iv) are an immediate application of Corollary 3.8. �

The assumption that D acts faithfully on M in the preceding proposition and the following corol-
lary will be automatic in the application later on.

Corollary 4.5. Let J = AC(q, S, D0) = D0e1 ⊕ M ⊕ D0e2 be an ample Clifford system with D acting faithfully
on M.

(a) The following are equivalent:
(i) Every nonzero homogeneous element of M is invertible,

(ii) D is a graded-field and q is graded-anisotropic in the sense that 0 �= q(m) ∈ D for every nonzero
homogeneous m ∈ M,

(iii) J is division-triangulated.
In this case M is a free D-module.

(b) Let k be a field. Then J is a triangulated Jordan triple torus iff
(I) D is a torus, say with suppΛ D = Γ , hence D = kt[Γ ] is a twisted group algebra, and

(II) M is a free D-module with a homogeneous D-basis {ui: i ∈ I}, say ui ∈ Mδi , with q(ui) �= 0 and
(δi + Γ ) �= (δ j + Γ ) for i �= j.

If in this case D = D0 , then {ui: i ∈ I} is an orthogonal basis: q(ui, u j) = 0 for i �= j.

Proof. (a) If (i) holds, the invertibility criterion (4.1) together with q(du) = d2 implies that D is a
graded-field and then that q is graded-anisotropic. Suppose (ii). Then clearly every nonzero homoge-
nous m ∈ M is invertible. Moreover, it follows as in Lemma 3.12 that D0 is a division-graded triple,
whence J is division-triangulated. The implication (iii) ⇒ (i) is clear. It is a standard fact that any
graded module over a division-graded algebra is free with a homogeneous basis.

(b) Suppose J is a triangulated Jordan triple torus. Then (a) applies. Since D → D.u ⊂ M is injective
and homogeneous of degree 0, D is a torus. Hence D = kt[Γ ] is a twisted group algebra for Γ =
suppΛ D , a subgroup of Λ. As in (a), M is a free D-module with a homogeneous basis {ui: i ∈ I}.
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We have q(ui) �= 0 because ui �= 0. Since 0 �= Dγ Mμ for γ ∈ Γ and μ ∈ suppΛ M , the condition
(δi + Γ ) �= (δ j + Γ ) for i �= j follows from dimk Mλ � 1. The converse is easily verified. Observe that
q(ui, u j) ∈ Dδi+δ j , but δi + δ j /∈ Γ if D = D0. Otherwise, δi = −δ j +γ = δ j + (γ − 2δ j) for some γ ∈ Γ

and γ − 2δ j ∈ Γ by (2.1) since Γ =L in the notation of loc. cit. and S = −S . �
Example 4.6. Let Λ = Zn and let J = AC(q, S, D0) = D0e1 ⊕ M ⊕ D0e2 be a Λ-triangulated ample
Clifford system such that D0 generates D as algebra. For L = suppΛ D0 we therefore have Z[L] =
suppΛ D = Γ , a subgroup of Λ, and for S = suppΛ M we get from (2.1) that 2S ⊂L⊂ S , so Λ = Z[S]
and 2Λ ⊂ Z[L] = Γ ⊂ Λ, proving that Λ/Γ is a finite group. It follows that Γ is free of rank n, thus
D is isomorphic to a Laurent polynomial ring in n variables. Moreover, from L + S ⊂ S (or from
Corollary 4.5(b)) we get Γ + S ⊂ S , whence the set of coset S/Γ embeds in the finite group Λ/Γ

and is therefore finite. Thus, M is free of finite rank.

5. Graded-simple-triangulated Jordan triple systems

In this section we prove (Theorem 5.10) that under some mild additional assumptions the graded-
simple hermitian matrix and ample Clifford systems give us in fact all the possibilities for graded-
simple-triangulated Jordan triple systems, and we describe them completely in Corollary 5.11. Finally,
we describe the division-triangulated and tori, in particular the case Λ = Zn , among the graded-
triangulated Jordan triple systems in Corollaries 5.12, 5.13 and 5.14.

Unless specified otherwise, J = J1 ⊕ M ⊕ J2 is a Jordan triple system over k triangulated by
(u; e1, e2). We refer the reader to Section 2 for unexplained notation. We will not right away as-
sume that J is graded or even graded-simple. Rather, to prove the main result of this section we will
perform certain reductions to more specific situations (passing to a completion of J over the Laurent
series ring or passing to an isotope) and, unfortunately, graded-simplicity can not always be main-
tained under these reductions. We will therefore begin this section by presenting these reductions.

Let J be an arbitrary Jordan triple system and let t be an indeterminate over k. We denote by

Ĵ = J
(
(t)

) =
{ ∑

i�N

xit
i: xi ∈ J , N ∈ Z

}

the Jordan triple system over k whose Jordan triple product is defined by

P̂

( ∑
i�N

xit
i
)( ∑

j�M

y jt
j
)

=
∑

i�N, j�M

P (xi)y jt
2i+ j +

∑
i2>i1�N, j�M

{xi1 , y j, xi2}ti1+i2+ j.

Note that this makes sense since in any fixed degree the sum on the right-hand side is finite.
Observe that Ĵ contains J = J t0 as a subsystem. It is also easy to check that

∑
i�N xiti with xN �= 0

is invertible in Ĵ if xN is invertible in J .

Assumption 5.1. J = J1 ⊕ M ⊕ J2 is a Jordan triple system triangulated by (u; e1, e2) for which the
k-linear map L : J1 → C0 : x1 �→ L(x1) defined in 2.1 is injective. Note that then L : J2 → C∗

0 is also
injective because L(x2)c∗

0 = (L(x∗
2)c0)

∗ and x∗
2 ∈ J1. Recall that C denotes the subalgebra of Endk(M)

generated by C0.

Lemma 5.2. If J satisfies Assumption 5.1 with respect to the triangle T = (u; e1, e2) then so does Ĵ , also with
respect to T . Moreover:

(i) The Peirce spaces of Ĵ with respect to T are Ĵ i = J i((t)) and M̂ = M((t)).
(ii) Let Ĉ be the subalgebra of Endk M((t)) generated by Ĉ0 = L(̂ J1) = C0((t)), and let π̂ be the reversal invo-

lution of Ĉ with respect to Ĉ0 (cf. 2.13). Then C is canonically isomorphic to the subalgebra of Ĉ preserving
degrees. Identifying C with this subalgebra we have π̂|C = π and, with obvious meaning, ∗̂|C = ∗.
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(iii) For m ∈ M we put m̂ = u + tm and note that m̂ is invertible in J ((t)). Then for all c ∈ C ⊆ Ĉ and Q̂ 2(.) =
P̂ (.)e1:

Q̂ 2(cm̂) = 0 = Q̂ 2(cm̂,m̂) �⇒ Q 2(cm) = 0 = Q 2(cm,m),

Q̂ 2
(
m̂, cc∗m̂

) = 0 �⇒ Q 2
(
m, cc∗m

) = 0, and

Q̂ 2(cM,m̂) = 0 �⇒ Q 2(cM,m) = 0.

(iv) If J i does not contain nonzero elements with trivial square cf. (2.8), then neither does Ĵ i .

Proof. (i) and (ii) are clear. (iii) That m̂ = u + tm is invertible in Ĵ follows from the invertibility
criterion mentioned above. We have Q̂ 2(cm̂) = P̂ (cu + ctm)e1 = Q 2(cu)+ Q 2(cu, cm)t + Q 2(cm)t2 and
Q̂ 2(cm̂,m̂) = Q 2(cu, u) + (Q 2(cu,m) + Q 2(cm, u))t + Q 2(cm,m)t2, which implies the first equation.
The others follow similarly. �

Our second reduction is passing to an isotope. Recall that for an arbitrary Jordan triple system
and an invertible element v of J the isotope J (v) is the Jordan triple system with multiplication
P (v)(x)y = P (x)P (v)y. The following lemma, whose proof is left to the reader, describes which prop-
erties are maintained by passing from J to a special isotope.

Lemma 5.3. Suppose J is triangulated by T = (u; e1, e2), and let m ∈ M be an invertible element. Then v =
e1 + Q 2(m)−1 is invertible in J and the isotope J̃ := J (v) with P̃ = P (v) is triangulated by T̃ = (̃u; ẽ1, ẽ2) =
(m; e1, Q 2(m)) with Peirce spaces J̃1 = J1 , M̃ = M and J̃2 = J2 as k-modules. Moreover, denoting the data
for J̃ by L̃, C̃0 , etc., we have:

(i) L̃ = L as k-linear maps, hence C̃0 = C0 and (C̃, π̃ ) = (C,π) as algebras with involution. In particular, if
J satisfies Assumption 5.1 then so does J̃ with respect to T̃ .

(ii) For n,n1 ∈ M we have Q̃ 2(n) = Q 2(n) and Q̃ 2(n,n1) = Q 2(n,n1).
(iii) If J1 does not contain nonzero x1 ∈ J1 with x2

1 = 0 the same holds for J̃1 .
(iv) Suppose J = ⊕

λ∈Λ Jλ is graded-triangulated by (u; e1, e2) ∈ J 0 . If m ∈ Mλ is homogeneous, then J̃ is
graded-triangulated with

J̃μ1 = Jμ1 , M̃μ = Mμ+λ, J̃μ2 = Jμ+2λ

2 (μ ∈ Λ).

We point out that J̃1 and J1 are in general not isomorphic as triple systems, rather we have
P̃ (x1)y1 = P (x1) ȳ1.

From now on we will use the notations Ĵ and J̃ to denote the Jordan triple systems of Lemmas 5.2
and 5.3.

Proposition 5.4. Suppose J satisfies Assumption 5.1, and let R be a π -invariant ideal of C satisfying R ∩ C0
= 0. Then for all r ∈ R, x1 ∈ J1 , c ∈ C and m ∈ M the following hold:

(i) r + rπ = r2 = rrπ = rL(x1)rπ = r(cπ − c) = 0. Also [r, C] = 0, so R is a central ideal.
(ii) Q i(ru) = 0 = Ti(ru) for i = 1,2.

(iii) Q 2(rm) = 0 = Q 2(rm,m).
(iv) Q 1(rm)2 = 0.
(v) T2(rm)2 = Q 1(rm)∗ .

(vi) If either (a) M = Cu or (b) J1 does not contain nonzero x1 ∈ J1 with x2
1 = 0 (cf. 2.8), then

Q 2(RM, M) = 0.
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Proof. (i) By 2.15 and 2.16, r + rπ = L(T1(ru)), rL(x1)rπ = L(P (ru)P (u)x1) and rrπ = L(Q 1(ru)) all lie
in R ∩C0. Hence r +rπ = rrπ = rL(x1)rπ = 0 and, because of injectivity of L, also Q 1(ru) = 0 = T1(ru).
It now follows that r2 = −rrπ = 0. Linearizing cL(x1)cπ ∈ C0, we have

cL(x1)d
π + dL(x1)cπ ∈ C0. (1)

Specializing (1) for d = r and using that rπ = −r, we get cL(x1)r = rL(x1)cπ . For c = 1 we then have
L(x1)r = rL(x1). Since C0 generates C as a k-algebra, this forces [r, C] = 0. Then cL(x1)r = rL(x1)cπ

evaluated for x1 = e1 shows r(cπ − c) = 0.
(ii) We have already shown in the proof of (i) that Q 1(ru) = 0 = T1(ru) = Q 1(ru, u). By 2.20,

(ru)∗ = rπ u = −ru, and then by 2.18, 0 = T1(ru)∗ = T2((ru)∗) = −T2(ru) and 0 = Q 1(ru)∗ =
Q 2((ru)∗) = Q 2(−ru) = Q 2(ru).

(iii) We first prove that it is enough to show (iii) for invertible m by passing to Ĵ . Indeed, because
of (iii) of Lemma 5.2 it is enough to establish (iii) for Ĵ . But for Ĵ we know that for any m ∈ M the
element m̂ = u + tm is invertible in Ĵ and that Ĵ also satisfies Assumption 5.1. Let R̂ be the ideal of
Ĉ generated by R ⊆ C ⊆ Ĉ , that is R̂ = R((t)). Then R̂ ∩ Ĉ0 = (R ∩ C0)((t)) = 0 follows. Thus, without
loss of generality we can assume that m is invertible.

We then pass to the isotope J̃ , and note that J̃ satisfies the assumptions of this proposition.
Moreover, because of (ii) of Lemma 5.3, it will be sufficient to prove (iii) for m = ũ ∈ J̃ , or equivalently
for u ∈ J . But (iii) for m = u is just (ii).

(iv) now follows easily from (iii) since Q 2(rm) = 0 implies Q 1(rm)2 = P (Q 1(rm))e1 =
P (rm)P (e2)P (rm)e1 = P (rm)P (e2)Q 2(rm) = 0.

(v) We have T2(rm)2 = P (T2(rm))e2 = P ({rm, e1, u})e2, where, by [L, JP21] and because of
P (e1)u = 0 and Q 2(rm) = 0 by (iii),

P
({rm, e1, u})e2 = P (rm)P (e1)P (u)e2 + P (u)P (e1)P (rm)e2

+ L(rm, e1)P (u)L(e1, rm)e2 − P
(

P (rm)P (e1)u, u
)
e2

= Q 2(rm) + Q 1(rm)∗ + Q 2
(
rm, P (u)rm

)
= Q 1(rm)∗ + Q 2

(
rm, (rm)∗

)
.

By 2.19, (rm)∗ = r∗m∗ = r∗(T1(m) · u − m) = L(T1(m))r∗u − r∗m where in the last equality we used
2.6 and the fact that C∗ is the subalgebra generated by L( J2), and hence commutes with C . Since
rπ = −r we then get from 2.14 and 2.20 that

Q 2
(
rm, (rm)∗

) = Q 2
(
rm, r∗(T1(m) · u − m

))
= Q 2

(
m, rπ L

(
T1(m)

)
r∗u

) − Q 2
(
m, rπ r∗m

)
= −Q 2

(
m, rL

(
T1(m)

)
rπ u

) + Q 2
(
m, rr∗m

)
= Q 2

(
m, rr∗m

)
since rL(T1(m))rπ = 0 by (i). Therefore, if we can establish Q 2(m, rr∗m) = 0 we are done. As in the
proof of (iii) we imbed J into Ĵ . Then Lemma 5.2(iii) shows that it is sufficient to prove this for an
invertible m. But for invertible m we have C∗m ⊆ Cm, since by [L, JP21] and 2.5

L(x2)m = P (x2,m)e2 = P
(

P (m)P (m)−1x2,m
)
e2

= L
(
m, P (m)−1x2

)
P (m)e2 = {

Q 1(m), P (m)−1x2,m
}

= L
(

Q 1(m)
)
L
(

P (m)−1x2
)
m ∈ Cm.
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Hence Q 2(m, RC∗m) ⊆ Q 2(m, RCm) ⊆ Q 2(m, Rm) = 0 by (iii).
(vi) In case (a) we have, using 2.17, Q 2(RM, M) = Q 2(RCu, Cu) ⊆ Q 2(Ru, Cu) = T2(Rπ Cu) =

T2(RCu) ⊆ T2(Ru). Now the claim follows from (ii).
In case (b) first note that neither J2 = J∗

1 contains a nonzero x2 ∈ J2 with x2
2 = 0. It then follows

from (iv) and (v) that

T2(RM) = 0. (2)

Next we show

Q 2(RM,m) = 0 for invertible m ∈ M. (3)

Indeed, applying Lemma 5.3, in particular (ii) and (iii), we see that it suffices to prove (3) for m = u,
in which case it reduces to (2). Finally, we can show that Q 2(RM,m) = 0 for arbitrary m ∈ M: By
Lemma 5.2 it suffices to show Q̂ 2(RM,m̂) = 0, for m̂ = u + tm. But this holds by (3) since Ĵ satisfies
our assumptions. �

Recall that C0 is a Jordan triple system with P (c0)(d0) = c0d0c0 and that L : J1 → C0, x1 �→ L(x1)

is a nonzero specialization (see 2.7). In particular, L(x2
1) = (L(x1))

2 and if Assumption 5.1 holds then
J1 ∼=Λ C0 as graded Jordan triple systems if J is graded by Λ.

Lemma 5.5. Suppose J is graded-triangulated and satisfies Assumption 5.1 with respect to (u; e1, e2) ⊆ J 0 .
Let R be a π -invariant graded ideal of C such that R ∩ C0 = 0. If C0 does not contain nonzero homogeneous
elements which square to zero, then Q 2(RM,m) = 0 for invertible homogeneous m ∈ M.

Proof. We pass from J to the isotope J̃ of Lemma 5.3. Since by that lemma all our assumptions are
maintained, it follows from (ii) of Lemma 5.3 that it suffices to prove T2(RM) = 0. To do so, let r ∈ R
and n ∈ M be homogeneous elements. By Proposition 5.4(iv), L(Q 1(rn))2 = L(Q 1(rn)2) = 0, which
implies that Q 1(rn) = 0 by our assumptions. But then by Proposition 5.4(v), L(T2(rn))2 = L(T2(rn)2) =
L(Q 1(rn)∗) = 0. Since C0 ∼=Λ J1 does not contain nonzero elements with square 0, the same holds for
C∗

0 = L( J2). Hence T2(rn) = 0 follows, and this implies T2(RM) = 0 as desired. �
Lemma 5.6. Suppose J is graded-triangulated by (u; e1, e2). Then C ′ := C{c − cπ : c ∈ C}C = C[C, C]C is a
(π,−)-graded ideal of C such that C ′M ⊆ Cu.

Proof. The first part of the lemma is straightforward. That C ′M ⊆ Cu follows from [MN, 1.6.13]. �
Assumption 5.7. J is graded-triangulated with grading group Λ and fulfills Assumption 5.1 with re-
spect to a triangle (u; e1, e2) ⊆ J 0.

Lemma 5.8. Suppose J fulfills Assumption 5.7. If R is a maximal (π,−)-invariant and graded ideal of C with
R ∩ C0 = 0, then M = Cu or C0 does not contain nonzero homogeneous elements with trivial square.

Proof. If R is a maximal (π,−)-invariant and graded ideal of C with R ∩ C0 = 0, consider the
(π,−)-graded-simple algebra C̆ := C/R and let ϕ : C → C̆ be the canonical epimorphism. Since ϕ
is homogeneous of degree 0, the ideal ϕ(C ′) = C̆ ′ = C̆[C̆, C̆]C̆ is graded and invariant under the in-
duced maps π̆ and c �→ c̆, whence either C̆ ′ = C̆ or C̆ ′ = 0. If C̆ ′ = C̆ , then 1̆ ∈ C̆ ′ and so 1 = c′ + r
where c′ ∈ C ′ . Now 12 = 1 = c′2 + c′r + rc′ + r2, but r2 = 0 by Proposition 5.4(i). Hence 1 ∈ C ′ which
by Lemma 5.6 implies M ⊆ Cu, so M = Cu.

Otherwise C̆ ′ = 0. Then [C̆, C̆] = 0, that is, C̆ is commutative and hence π̆ is trivial. In this case
(C̆, −̆) is graded-simple. By Corollary 3.8, C̆ is either division-graded or the direct sum of two copies of
a division-graded algebra with the exchange automorphism. In particular, C̆ does not contain nonzero
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homogeneous elements with trivial square. So neither does the subspace C̆0 = ϕ(C0) nor C0 since
R ∩ C0 = 0. �
Proposition 5.9. Suppose J is a graded-triangulated Jordan triple system for which J1 is graded-simple. Then
Assumption 5.7 holds. If R is a proper (π,−)-invariant graded ideal of C then R ∩ C0 = 0 and Q 2(RM,m) = 0
for invertible homogeneous m ∈ M.

Proof. Since J1 is graded-simple and the specialization L : J1 → C0, x1 �→ L(x1) is nontrivial, it is
injective, proving Assumption 5.7. It is then an isomorphism of graded Jordan triple systems, whence
C0 is also graded-simple. Therefore the graded ideal R ∩ C0 of the Jordan triple system C0 must be
either 0 or C0. But if R ∩ C0 = C0, then C0 ⊆ R which implies C = R contradicting that R is proper. So
R ∩ C0 = 0. By Lemma 5.8, M = Cu or C0 does not contain nonzero homogeneous elements of trivial
square. If M = Cu, then Q 2(RM, M) = 0 by Proposition 5.4(vi). Otherwise, it follows from Lemma 5.5
that Q 2(RM,m) = 0 for invertible homogeneous m ∈ M . �

Now we are ready to establish our main result.

Theorem 5.10. (See [MN, 4.3] for Λ = 0.) Let J be a graded-simple-triangulated Jordan triple system satisfying
one of the following conditions

(a) every nonzero m ∈ M is a linear combination of invertible homogeneous elements, or
(b) the grading group Λ is torsion-free.

Then (C,π,−) is graded-simple, u is C-faithful, and exactly one of the following two cases holds:

(i) C is not commutative and M = Cu. In this case, π �= Id and J is graded isomorphic to the graded-simple
diagonal hermitian matrix system H2(C, C0,π,−);

(ii) C is commutative. In this case, π = Id and J is graded isomorphic to the graded-simple ample Clifford
system AC(q, M, S, C,−, C0), where q(m) = L(Q 1(m)) and S(m) = m.

In both cases, the triangles are preserved by the isomorphisms.

Remarks. (1) We point out that the assumptions (a) or (b) are only needed to show that (C,π,−)

is graded-simple. Our proof shows that any graded-triangulated Jordan triple system with a graded-simple
(C,π,−) satisfies (i) or (ii)! We also note that hermitian matrix systems are of course also defined
for commutative coordinate algebras C . But in the commutative case they are isomorphic to ample
Clifford systems.

(2) This theorem generalizes [MN, Proposition 4.3]: Λ = 0 is a special case of our assumption (b).
Our proof is slightly different from the proof given in [MN] and in fact corrects a small inaccuracy
there: The Isotope Trick [MN, 4.1] cannot be applied since J̃ does not necessarily inherit simplicity
from J .

(3) The assumption (a), which, admittedly, looks somewhat funny at first sight, is fulfilled in the
most important application of the theorem, the division-triangulated case (Corollary 5.12).

Proof of Theorem 5.10. We will proceed in four steps.
(I) (C,π,−) is graded-simple. Let R be a maximal (π,−)-invariant graded ideal of C . Such an ideal

R exists by Zorn. Our claim (I) then means R = 0. This will follow if we can show rm = 0 for homoge-
neous r ∈ R and m ∈ M . Recall that Q 2 is graded-nondegenerate by Proposition 2.23(ii). It is therefore
sufficient to prove

Q 2(rm) = 0 = Q 2(rm, M) for homogeneous r ∈ R and m ∈ M. (1)

Since J1 is graded-simple by Proposition 2.23(ii), it follows from Proposition 5.9 that J satisfies As-
sumption 5.7. Since R is in particular proper, it also follows from Proposition 5.9 that C0 ∩ R = 0 and
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Q 2(rm,n) = 0 for invertible homogeneous n ∈ M . Also, Q 2(rm) = 0 by Proposition 5.4(iii). Thus, (1)
holds in case (a).

We also know from Lemma 5.8 that M = Cu or C0 does not contain nonzero homogeneous ele-
ments with trivial square. But if M = Cu then Q 2(rm, M) = 0 by Proposition 5.4(vi), hence again (1)
follows. We can therefore assume that C0 does not have nonzero homogeneous elements with triv-
ial square. We will use our assumption (b) to prove (1) in this case. We claim that in fact C0 does
not contain nonzero elements with trivial square: Let x = ∑

xλi ∈ C0, with 0 �= xλi ∈ Cλi
0 , such that

x2 = 0. Since Λ is torsion-free, it can be ordered (as a group) and we can therefore consider (xλ)2 for
λ = max{λi}. But x2 = 0 implies (xλ)2 = 0, hence xλ = 0 by the absence of nonzero homogeneous el-
ements of trivial square, contradiction. Since ( J1, e1) ∼=Λ (C0,1) as triple systems with tripotents, the
subspace J1 does not contain nonzero elements with trivial square. But then Q 2(rm, M) = 0 = Q 2(rm)

follows from (vi) and (iii) of Proposition 5.4.
(II) u is C-faithful. By (I), we have that C is (π,− )-graded-simple. Now, Z = {z ∈ C : zu = 0} is

obviously a left ideal of C . It is also a right ideal since for d ∈ C and z ∈ Z we have zCu = zCπ u (by
2.20) = zC∗u (by 2.6) = C∗zu = 0. Also, Z is graded since u ∈ M0, and finally it is (π,−)-invariant
since zπ u = (zu)∗ = 0 by 2.20 and zu = zu = zu = 0. Then Z must be C or 0. But note that Z �= C
since 1 /∈ Z . Hence Z = 0, that is, u is C-faithful.

We will now distinguish the two cases π �= Id and π = Id.
(III) π �= Id: Then C is noncommutative. Indeed, since C0 ⊂ H(C,π) generates C as an algebra, C

is commutative iff π = Id. Also, there exists a homogeneous c ∈ C such that cπ �= c, and then the
(π,−)-graded ideal C ′ = C{c − cπ : c ∈ C}C (Lemma 5.6) is nonzero and hence equals C , in particular
1 ∈ C ′ . By Lemma 5.6 again, this implies M = Cu. By Theorem 3.3 J is then graded isomorphic to the
hermitian matrix system H2(C, C0,π,−) as claimed in (i).

(IV) π = Id: Then C is commutative and −-graded-simple. We will prove that in this case J is
graded isomorphic to an ample Clifford system. By C-faithfulness, this will follow from Theorem 4.3
as soon as we have established (x1 − x∗

1) · m = 0 for all x1 ∈ J1 and m ∈ M . Now by 2.21 we know
(x1 − x∗

1) · m = Γ1(x1;m)u. By linearity of Γ1 in x1 and m, it therefore remains to prove

Γ1(x1;m) = 0 for homogeneous x1 ∈ J1 and m ∈ M . (2)

Since C is commutative, 2.22 shows Γ1(x1;m)2m = 0, so Γ1(x1;m) is never invertible. If (C,− ) is
graded-simple, it is a division-graded algebra and so (2) holds. Otherwise, by Corollary 3.8, identify
C = A � A with the direct sum of two copies of a division-graded commutative algebra A and − is
the exchange automorphism. Then we have that

Γ1(x1;m) = 0 for all homogeneous −-invariant x1 ∈ J1 and m ∈ M. (3)

Let x1 ∈ J1 and m ∈ M be arbitrary homogeneous elements. Since C = A � A we get 1 = ε + ε for
orthogonal idempotents ε and ε in C0, namely ε = 1A . We now claim that

(
x1 − x∗

1

) · m = ε
(

y1 − y∗
1

) · n1 + ε
(
z1 − z∗

1

) · n2 (4)

for some homogeneous y1 = y1 and z1 = z1 in J1 and ni = ni ∈ M . The proof of (4) given in the proof
of [MN, 4.4] for Λ = 0 also works in our setting. But (4) together with (3) implies (2), finishing the
proof of the theorem. �

From the previous Theorem 5.10 together with Proposition 3.9 and Proposition 4.4(iv) we get the
following classification.

Corollary 5.11. (See [MN, 4.4] for Λ = 0.) A graded-simple-triangulated Jordan triple system satisfying (a) or
(b) of Theorem 5.10 is graded isomorphic to one of the following triple systems:
non-polarized
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(I) diagonal H2(A, A0,π,−) for a graded-simple noncommutative A with graded involution π and auto-
morphism −;

(II) Mat2(B) with P (x)y = xyx for a noncommutative graded-simple associative unital B with graded auto-
morphism − and (yij) = (yij) for (yij) ∈ Mat2(B);

(III) Mat2(B) with P (x)y = xyt x for a noncommutative graded-simple associative unital B with graded invo-
lution ι and (yij) = (yι

i j) for (yij) ∈ Mat2(B);
(IV) AC(q, S, F0) for a graded-nondegenerate q over a graded-field F with Clifford-ample subspace F0;

or polarized

(V) H2(B, B0,π) ⊕ H2(B, B0,π) for a diagonal hermitian matrix system H2(B, B0,π) with graded-simple
noncommutative B;

(VI) Mat2(B) ⊕ Mat2(B) for a noncommutative graded-simple associative unital B with P (x)y = xyx;
(VII) AC(q, S, F0) ⊕ AC(q, S, F0) for AC(q, S, F0) as in (IV).

Conversely, the Jordan triple systems in (I)–(VII) are graded-simple-triangulated.

Corollary 5.12. For a graded-triangulated Jordan triple system J the following are equivalent:

(i) J is graded-simple and every homogeneous 0 �= m ∈ M is invertible,
(ii) J is division-triangulated,

(iii) J is graded isomorphic to one of the following:
(I) diagonal hermitian matrix system H2(A, A0,π,−) for a noncommutative division-graded A.

(II) AC(q, S, F0) for a graded-anisotropic q over a graded-field F with Clifford-ample subspace F0 .

Proof. If (i) holds we can apply Theorem 5.10: J is graded isomorphic to a hermitian matrix system or
to an ample Clifford system, and C is u-faithful. The assumption on M together with Corollaries 3.12
and 4.5 then show that J is graded isomorphic to one of the two cases in (iii) and that J is division-
triangulated. The implication (ii) ⇒ (i) is trivial, and (iii) ⇒ (i) follows from the quoted corollaries. �
Corollary 5.13. A graded Jordan triple system J over a field k is a triangulated Jordan triple torus iff J is graded
isomorphic to

(I) a diagonal hermitian matrix system H2(A, A0,π,−) for a noncommutative torus A, or to
(II) an ample Clifford system AC(D,q, M) with D, M as described in Corollary 4.5(b).

Proof. This follows from Corollary 5.12 and the description of tori in Lemma 3.12 and Corol-
lary 4.5. �
Corollary 5.14. J is a Zn-triangulated Jordan triple torus iff J is graded isomorphic to

(I) a diagonal hermitian matrix system H2(A, A0,π,−) where A is a quantum Zn-torus, see Example 3.13
and π = πrev is the reversal involution, or to

(II) an ample Clifford system as described in Example 4.6.

Proof. All statements follow from the quoted references. Note that by construction D0 generates D in
the Clifford case, so that we are indeed in the setting of Example 4.6. �
6. Graded-simple-triangulated Jordan algebras and Jordan pairs

In this section we specialize our results on graded-triangulated Jordan triple systems to Jordan
algebras and Jordan pairs: We classify graded-simple-triangulated Jordan algebras (Theorem 6.3) and
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Jordan pairs (Theorem 6.12), and we deduce from these theorems the classifications of division-trian-
gulated Jordan algebras and pairs (Corollaries 6.5, 6.14). As an example, we describe the classification
of Zn-triangulated Jordan algebra tori (Corollary 6.6) and Jordan pair tori (Corollary 6.15).

In this paper all Jordan algebras are assumed to be unital, with unit element denoted 1 or 1 J if
we need to be more precise, and with Jordan product written as Ux y. A homomorphism of Jordan
algebras is a k-linear map f : J → J ′ satisfying f (Ux y) = U f (x) f (y) and f (1 J ) = 1 J ′ .

In order to apply our results we will view Jordan algebras as Jordan triple systems with identity
elements. Thus, to a Jordan algebra J we associate the Jordan triple system T ( J ) defined on the k-
module J with Jordan triple product Px y = Ux y. The element 1 J ∈ J satisfies P (1 J ) = Id. Conversely,
every Jordan triple system T containing an element 1 ∈ T with P (1) = Id is a Jordan algebra with unit
element 1 and multiplication Ux y = Px y.

For many concepts there is no or not a big difference between J and T ( J ). For example, a Jordan
algebra J is graded by Λ if and only if T ( J ) is graded by Λ, in which case 1 J ∈ J 0. In this case, a
graded ideal of J is the same as a graded ideal of T ( J ), and we will call J graded-simple if T ( J ) is
so. Moreover, if e ∈ J is an idempotent, i.e., e2 = e, then e is a tripotent of T ( J ) and the Peirce spaces
of J and T ( J ) with respect to e coincide, i.e., T ( J i(e)) = T ( J )i(e), i = 0,1,2. In particular, the Peirce
spaces J i(e) are graded if e ∈ J 0. We thus get the following corollary from Theorem 1.4.

Corollary 6.1. If J is a graded-simple Jordan algebra with an idempotent 0 �= e ∈ J 0 , then the Peirce space
J2(e) is a graded-simple Jordan algebra, and if J0(e) �= 0 then J0(e) is graded-simple too.

A graded Jordan algebra J is called graded-triangulated by (u; e1, e2) if ei = e2
i ∈ J 0, i = 1,2, are

supplementary orthogonal idempotents and u ∈ J1(e1)
0 ∩ J1(e2)

0 with u2 = 1 and u3 = u. It is called
Λ-triangulated if it is graded-triangulated and suppΛ J generates Λ as a group. Note that any x ∈ J
with x2 = 1 satisfies 2x3 = x2 ◦ x = 2x and Ux3−x = UxUx2−1 = 0 by [J, (1.5.4) and (3.3.4)], whence
x2 = 1 implies x3 = x in case 1

2 ∈ k or x is homogeneous and J is graded-nondegenerate. Of course,
we also have x2 = 1 ⇒ x3 = x if J is special. In any case, with our definition of a triangle in a Jordan
algebra, J is graded-triangulated by (u; e1, e2) iff T ( J ) is graded-triangulated by (u; e1, e2). Also, J is
Λ-triangulated iff T ( J ) is so.

This close relation to graded-triangulated Jordan triple systems also indicates how to get examples
of graded-triangulated Jordan algebras: We take a Jordan triple system which is graded-triangulated
by (u; e1, e2) and require P (e) = Id for e = e1 + e2. Doing this for our two basic examples, yields the
following examples of graded-triangulated Jordan algebras.

Definition 6.2. (A) Hermitian matrix algebras: This is the graded Jordan triple system H2(A, A0,π,−)

of Definition 3.1 with automorphism − = Id, which we will write as H2(A, A0,π). Note that this is a
Jordan algebra with product U (x)y = P (x)y = xyx and identity element 1 J = E11 + E22. If for example
A = B � Bop and π is the exchange involution, then H2(A, A0,π) ∼=Λ Mat2(B) where Mat2(B) is the
Jordan algebra with product Ux y = xyx.

(B) Quadratic form Jordan algebras: This is the graded ample Clifford system AC(q, M, S, D,−, D0) of
Definition 4.2 with automorphism − = Id and S|M = Id. Since then P (e) = Id we get indeed a graded-
triangulated Jordan algebra denoted ACalg(q, M, D, D0) or just ACalg(q, D, D0) if M is unimportant.
Note that this Jordan algebra is defined on D0e1 ⊕ M ⊕ D0e2 and has product Ux y = q(x, ỹ)x − q(x)̃y
where q(d1e1 ⊕ m ⊕ d2e2) = d1d2 − q(m) and (d1e1 ⊕ m ⊕ d2e2)̃ = d2e1 ⊕ −m ⊕ d1e1. (If 1

2 ∈ k it is
therefore a reduced spin factor in the sense of [M2, II, §3.4].)

Theorem 6.3. A graded-simple-triangulated Jordan algebra satisfying

(a) every nonzero m ∈ M is a linear combination of invertible homogeneous elements, or
(b) the grading group Λ is torsion-free,

is graded isomorphic to one of the following Jordan algebras:
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(I) diagonal H2(A, A0,π) for a graded-simple noncommutative A;
(II) Mat2(B) for a noncommutative graded-simple associative unital B;

(III) ACalg(q, F , F0) for a graded-nondegenerate q over a graded-field F with Clifford-ample subspace F0 .

Conversely, all Jordan algebras in (I)–(III) are graded-simple-triangulated.

Proof. Let J be a graded-simple-triangulated Jordan algebra that satisfies (a) or (b). Then T ( J ) is a
graded-simple-triangulated Jordan triple system with e = 1 J satisfying (a) or (b) of Theorem 5.10,
hence graded isomorphic as Jordan triple system to H2(C, C0,π), where (C,π) is graded-simple, or
to ACalg(q, C, C0), where C is division-graded. But because the graded isomorphisms appearing in
Theorem 5.10 preserve the triangles, they are in fact isomorphisms of Jordan algebras. Therefore J
is graded isomorphic to H2(C, C0,π), where (C,π) is graded-simple, or to ACalg(q, C, C0), where C
is a graded-field. In the second case J is of type (III) of the statement for F0 = C0 and F = C . On
the other hand, it follows from Proposition 3.7 that (C,π) is graded-simple iff either C is graded-
simple or C ∼=Λ B � B for a graded-simple associative B and π is the exchange involution. Hence
H2(C, C0,π), where (C,π) is graded-simple, is as in (I) or (II) of the statement. The converse follows
from Corollary 5.11. �
Definition 6.4. As in the Jordan triple system case, a graded Jordan algebra J is called division-graded
if every nonzero homogeneous element is invertible in J .

We say that J is division-triangulated if it is graded-triangulated, the Jordan algebras J i , i = 1,2,
are division-graded and every homogeneous 0 �= m ∈ M is invertible in J . It is called division-Λ-
triangulated if it is division-triangulated as well as Λ-graded.

A division-(Λ)-triangulated Jordan algebra J is called a (Λ)-triangulated Jordan algebra torus if J is
defined over a field k and dimk Jλ

i � 1 and dimk Mλ � 1.
Thus, J is a division-(Λ)-triangulated Jordan algebra iff T ( J ) is a division-(Λ)-triangulated Jordan

triple system. We therefore get the Jordan algebra versions of the Corollaries 5.12–5.14. We formulate
the first and last of them, and leave the translation of the second, Corollary 5.13, to the reader.

Corollary 6.5. For a graded-triangulated Jordan algebra J the following are equivalent:

(i) J is graded-simple and every homogeneous 0 �= m ∈ M is invertible,
(ii) J is division-triangulated,

(iii) J is graded isomorphic to one of the following:
(I) a diagonal hermitian matrix algebra H2(A, A0,π) for a noncommutative division-graded A;

(II) a quadratic form Jordan algebra ACalg(q, F , F0) for a graded-anisotropic q over a graded-field F with
Clifford-ample subspace F0 .

Corollary 6.6. A graded Jordan algebra J over a field k is a Zn-triangulated Jordan algebra torus iff J is graded
isomorphic to

(I) a diagonal hermitian matrix algebra H2(A, A0,π) where A is a noncommutative quantum Zn-torus and
πrev is the reversal involution, see Example 3.13, or to

(II) a quadratic form Jordan algebra ACalg(q, M, D, D0) = D0e1 ⊕ M ⊕ De2 , where
(a) D = k[Γ ] is the group algebra of a subgroup Γ ⊂ Zn with 2Zn ⊂ Γ , hence Γ is free of rank n and D

is isomorphic to a Laurent polynomial ring in n variables,
(b) D0 is a Clifford-ample subspace, hence D0 = D if char k �= 2,
(c) M is a Zn-graded D-module which is free of finite rank, with a homogeneous basis, say {u0, . . . , ul},

and the ui have degree δi ∈ Zn with δ0 = 0 and δi + Γ �= δ j + Γ for i �= i,
(d) the D-quadratic form q : M → D satisfies q(u0) = 1, 0 �= q(ui) ∈ D2δi and q(ui, u j) = 0 for i �= j.

Remark 6.7. For Λ = Zn Corollary 6.6 is proven in [AG, Propositions 4.53 and 4.80] and in an
equivalent form (structurable algebras instead of Jordan algebras) in [F, §3, Theorem 9], assuming
char k �= 2,3 [F] or k = C in [AG].
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Let now V = (V +, V −) be a Jordan pair. A grading of V by Λ is a decomposition V σ = ⊕
λ∈Λ V σ [λ],

σ = ±, such that the associated polarized Jordan triple system T (V ) is graded with homogeneous
spaces T (V )λ = V +[λ] ⊕ V −[λ]. The properties of graded Jordan triple systems we have considered
so far in this paper make sense for graded Jordan pairs too. For example, a graded Jordan pair V
is graded-nondegenerate if every homogeneous absolute zero divisor of V + or V − vanishes. It is im-
mediate that V is graded-nondegenerate if and only if T (V ) is graded-nondegenerate. As usual, V
is said to be graded-simple if Q (V σ )V −σ �= 0 and every graded ideal is either trivial or equal to V ;
V is graded-prime if it does not contain nonzero graded ideals I and K such that Q (Iσ )K −σ = 0 and
graded-semiprime if Q (Iσ )I−σ = 0 implies I = 0. For properties defined in terms of ideals we have
the following lemma, whose proof is again a straightforward adaptation of the proof in the ungraded
situation.

Lemma 6.8. (See [N1, 1.5] for Λ = 0.) Let V be a graded Jordan pair.

(i) If I = (I+, I−) is a graded ideal of V , then I+ ⊕ I− is a graded ideal of T (V ).
(ii) Let πσ : T (V ) → V σ , σ = ±, be the canonical projection. If J is a graded ideal of T (V ), then

J˜ := (
J ∩ V +, J ∩ V −)

and J̃ := (
π+( J ),π−( J )

)
,

are graded ideals of V satisfying J˜
+ ⊕ J˜

− ⊆ J ⊆ J̃+ ⊕ J̃− and

Q
(̃

Jσ
)

V −σ + Q
(

V σ
)̃

J−σ + {
V σ V −σ J̃σ

} ⊆ J˜
σ .

(iii) V is graded-(semi)prime or graded-simple if and only if T (V ) is, respectively, graded-(semi)prime or
graded-simple.

Idempotents in a Jordan pair V and tripotents in T (V ) correspond to each other naturally: Any
idempotent e = (e+, e−) of V , i.e., Q (eσ )e−σ = eσ , gives rise to the tripotent e+ ⊕ e− of T (V ), and
conversely any tripotent of T (V ) arises in this way. Moreover, we have the following obvious though
fundamental fact. If V = V 2(e) ⊕ V 1(e) ⊕ V 0(e) is the Peirce decomposition of V with respect to an
idempotent e = (e+, e−), then the Peirce spaces of T (V ) with respect to e+ ⊕e− are T (V )i(e+ ⊕e−) =
T (V i(e)), i = 0,1,2. The following corollary is a consequence of Lemma 6.8(iii) and Theorem 1.4.

Corollary 6.9. If 0 �= e ∈ V [0] is an idempotent of a graded-simple Jordan pair V , then the Peirce space V 2(e)
is graded-simple and if V 0(e) �= 0, then V 0(e) is also graded-simple.

Definition 6.10. Recall [N3] that a triple of nonzero idempotents (u; e1, e2) of a Jordan pair V is a
triangle if ei ∈ V 0(e j), i �= j, ei ∈ V 2(u), i = 1,2, u ∈ V 1(e1) ∩ V 1(e2), and the following multiplication
rules hold for σ = ±: Q (uσ )e−σ

i = eσ
j , i �= j, and Q (eσ

1 , eσ
2 )u−σ = uσ .

A graded Jordan pair V is said to be graded-triangulated if V contains a triangle (u; e1, e2) in V [0]
and V = V 1 ⊕ M ⊕ V 2, where V i = V 2(ei), i = 1,2, and M = V 1(e1)∩ V 1(e2). It is then immediate that
V is graded-triangulated if and only if T (V ) is so. Naturally, we call V Λ-triangulated if T (V ) is so.
However, rather than applying the Jordan triple classification to graded-(Λ)-triangulated Jordan pairs,
we will use the Jordan algebra Classification Theorem 6.3. Namely, it is well known [N3, p. 470] that
V is covered by a triangle (u; e1, e2) if and only if V ∼= ( J , J ) where J is the homotope algebra J =
V +(e−) , e = e1 + e2, with multiplication Ux y = Q (x)Q (e−)y and unit element e+ , which is covered
by the triangle (u+; e+

1 , e+
2 ). If V is graded-(Λ)-triangulated then so is J , and V ∼=Λ ( J , J ), since the

isomorphism V ∼= ( J , J ) is given by (Id, Q (e−)). Conversely, if J is a graded-(Λ)-triangulated Jordan
algebra (or Jordan triple system), then the associated Jordan pair ( J , J ) is graded-(Λ)-triangulated.
We therefore obtain the following two types of examples of graded-triangulated Jordan pairs.
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Example 6.11.

(A′) Hermitian matrix pairs: V = ( J , J ) where J = H2(A, A0,π) is a hermitian matrix algebra as in
example (A) of Definition 6.2.

(B′) Quadratic form pairs: V = ( J , J ) where J = ACalg(q, D, D0) is a quadratic form Jordan algebra
as in example (B) of Definition 6.2. We note that V ∼=Λ (AC(q, Id, D0),AC(q, Id, D0)) where
AC(q, Id, D0) is the corresponding ample Clifford system.

Theorem 6.12. A graded-simple-triangulated Jordan pair satisfying

(a) every nonzero m ∈ Mσ is a linear combination of invertible homogeneous elements, or
(b) the grading group Λ is torsion-free,

is graded isomorphic to a Jordan pair ( J , J ) where J is a graded-simple-triangulated Jordan algebra as de-
scribed in Theorem 6.3. Conversely, all these Jordan pairs ( J , J ) are graded-simple-triangulated.

Proof. Let V be graded-simple-triangulated by (u; e1, e2). Then V is graded isomorphic to the Jordan
pair of the unital Jordan algebra J = V +(e−) . The algebra J is then graded-simple with Jλ = V +[λ],
and graded-triangulated by (u+; e+

1 , e+
2 ). Thus J is graded isomorphic to an algebra described in

Theorem 6.3. Conversely, let V = ( J , J ) be the Jordan pair for J as in (I)–(III). It follows from The-
orem 5.11 that the associated Jordan triple system T (V ) is graded-simple-triangulated, hence V is
graded-simple-triangulated by Lemma 6.8(iii). �
Definition 6.13. A graded Jordan pair V is said to be division-graded if it is nonzero and every nonzero
element in V σ [λ] is invertible in V [λ]. A graded-triangulated Jordan pair V will be called division-
triangulated, respectively division-Λ-triangulated, if the associated Jordan triple system T (V ) = V + ⊕
V − is so. Similarly, a division-triangulated Jordan pair defined over a field k is a triangulated Jordan
pair torus if dimk V σ

i [λ] � 1, i = 1,2, and dimk Mσ [λ] � 1 for σ = ±. The notion of a Λ-triangulated
Jordan pair torus is the obvious one.

Since invertibility in V is equivalent to invertibility in the unital Jordan algebra associated to V ,
we get the following corollaries.

Corollary 6.14. For a graded-triangulated Jordan pair V the following are equivalent:

(i) V is graded-simple and every homogeneous 0 �= m ∈ Mσ , σ = ±, is invertible,
(ii) V is division-triangulated,

(iii) V is graded isomorphic to the Jordan pair ( J , J ) where J is one of the Jordan algebras of Corollary 6.5.

Corollary 6.15. V is a triangulated Jordan pair torus iff V is graded isomorphic to a Jordan pair ( J , J ) where
J is one of the following:

(I) J = H2(A, A0,π) is a diagonal hermitian matrix algebra of a noncommutative torus A;
(II) J = ACalg(q, F , F0) for a graded-anisotropic q over a graded-field F with Clifford-ample subspace F0 ,

with F = D and M as described in Corollary 4.5(b).

7. Graded-simple Lie algebras of type B2

In this section we apply our results on graded-simple-triangulated Jordan algebras and pairs from
the previous Section 6 and obtain a classification of (B2,Λ)-graded-simple and centreless division-
(B2,Λ)-graded Lie algebras in Theorem 7.12 and Theorem 7.13. In particular, we classify centreless Lie
tori of type (B2,Λ) in Corollary 7.14.

We begin by recalling the relevant definitions from the theory of root-graded Lie algebras (Defi-
nition 7.1 and Definition 7.3). The link to triangulated Jordan structures is given by the Tits–Kantor–
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Koecher construction, reviewed in 7.2 in general and then in Proposition 7.4 for the particular types
of Lie algebras studied in this section.

Since we realize B2-graded Lie algebras as central extensions of Tits–Kantor–Koecher algebras of
triangulated Jordan pairs, we assume in this section that all Lie algebras, Jordan pairs and related algebraic
structures are defined over a ring k in which 2 · 1k and 3 · 1k are invertible.

Definition 7.1. Let R be a finite reduced root system (R could even only be locally finite in the sense
of [LN1]). We suppose that 0 ∈ R , and denote by Q(R) the root lattice of R . A Lie algebra L over k is
called (R,Λ)-graded if

(1) L has a compatible Q(R)- and Λ-gradings, i.e., L = ⊕
λ∈Λ Lλ and L = ⊕

α∈Q(R) Lα such that for

Lλ
α = Lλ ∩ Lα we have

Lα =
⊕
λ∈Λ

Lλ
α, Lλ =

⊕
α∈Q(R)

Lλ
α, and

[
Lλ
α, Lκ

β

] ⊆ Lλ+κ
α+β,

for λ,κ ∈ Λ, α,β ∈Q(R).
(2) {α ∈Q(R): Lα �= 0} ⊆ R .
(3) For every 0 �= α ∈ R the homogeneous space L0

α contains an element e �= 0 that is invertible in the
following sense: There exists f ∈ L0−α such that h = [e, f ] acts on Lβ , β ∈ R , by

[h, xβ ] = 〈
β,α∨〉

xβ, xβ ∈ Lβ (7.1)

where 〈α,β∨〉 denotes the Cartan integer of the two roots α,β ∈ R .
(4) L0 = ∑

0�=α∈R [Lα, L−α], and {λ ∈ Λ: Lλ
α �= 0 for some α ∈ R} spans Λ as abelian group.

It follows that {α ∈Q(R): Lα �= 0} = R . Also, any invertible element e generates an sl2-triple (e,h, f ).
If Λ is not spanned by the support, we will simply speak of an R-graded Lie algebra with a compatible
Λ-grading. An (R,Λ)-graded or R-graded Lie algebra with a compatible Λ-grading is graded-simple
if it is graded-simple with respect to the Λ-grading. A Lie algebra is (R,Λ)-graded-simple, or R-
graded-simple if it is (R,Λ)-graded and graded-simple, respectively R-graded with a compatible
graded-simple Λ-grading.

The definition of a root-graded Lie algebra is taken from [N3]. Originally, root-graded Lie algebras
were defined over fields of characteristic 0 by a different system of axioms, [BM] and [BZ]. As ex-
plained in [N3, Remark 2.1.2], an R-graded Lie algebra in the sense of [BZ] and [BM] is the same as an
R-graded Lie algebra as defined above. A lot is known about the structure of root-graded Lie algebras,
see [N4, 5.10] for a summary of results. We will use here that L is a Lie algebra graded by a 3-graded
root system R iff L is a central covering of the Tits–Kantor–Koecher algebra TKK(V ) of a Jordan pair
V covered by a grid whose associated root system is R [N3, 2.7].

7.2. Review of TKK-algebras. Recall, see e.g. [N3, 1.5], that the Tits–Kantor–Koecher algebra TKK(V ) of
a Jordan pair V , in short the TKK-algebra of V = (V +, V −), is a Z-graded Lie algebra defined on the
k-module

TKK(V ) = V − ⊕ δ
(

V +, V −) ⊕ V +

where δ(V +, V −) is the span of all inner derivations δ(x, y) = (D(x, y),−D(y, x)), (x, y) ∈ V , of V .
The Z-grading TKK(V ) = ⊕

i∈Z TKK(V )(i) is a 3-grading in the sense that it has support {0,±1},
namely TKK(V )(±1) = V ± and TKK(V )(0) = δ(V +, V −). The Lie algebra product is determined by
[x+, y−] = δ(x+, y−) and by the natural action of δ(V +, V −) on V ±: [δ(x+, y−), u+] = {x+, y−, u+}
and [δ(x+, y−), v−] = −{y−, x+, v−}. It is important for the connection between Jordan theory
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and Lie algebras that, conversely, for any 3-graded Lie algebra L = L(1) ⊕ L(0) ⊕ L(−1) the “wings”
(L(1), L(−1)) form a Jordan pair V L with Jordan triple product

{
xσ , y−σ , zσ

} = [[
xσ , y−σ

]
, zσ

]
(7.2)

for xσ , zσ ∈ V σ = L(σ1) and y−σ ∈ V −σ = L(−σ1) , σ = ±. Moreover, the ideal L′ = L(−1) ⊕
[L(−1), L(1)] ⊕ L(1) of L is a central extension of the TKK-algebra TKK(V L), namely L′/C ∼= TKK(V L)

for

C = {
d ∈ [L(−1), L(1)]: [d, L±(1)] = 0

}
.

We note that because of 1
2 , 1

3 ∈ k, a Jordan pair can be defined by the Jordan triple products { . , . , . }.
Formula (7.2) is crucial: It allows one to transfer properties between the Jordan pair and the associated
Lie algebras. An example is Proposition 7.4 below.

A grading of V by Λ extends to a grading of TKK(V ) by Λ using the canonical grading of
δ(V +, V −). The gradings of TKK(V ) used in the following will all be induced in this way from grad-
ings of V . We point out that suppΛ V ⊆ suppΛ TKK(V ), but both span the same subgroup of Λ.

Definition 7.3. To define special cases of root-graded Lie algebras, we extend the definition of an
invertible element to any e ∈ Lλ

α , α �= 0, requiring the inverse f ∈ L−λ−α and Eq. (7.1) for h = [e, f ]. Then,
an (R,Λ)-graded or R-graded Lie algebra L with a compatible Λ-grading is division-graded if every
nonzero element in Lλ

α , α �= 0, is invertible, and a Lie torus if it is division-graded, k is a field and
dimk Lλ

α � 1 for all 0 �= α ∈ R . As usual, in this case we will speak of a division-(R,Λ)-graded Lie
algebra and a Lie torus of type (R,Λ), or division-R-graded Lie algebras and Lie tori of type R if Λ is not
necessarily spanned by the Λ-support.

We now specialize R = B2 = C2 = {0} ∪ {±ε1 ± ε2} ∪ {±2ε1,±2ε2} and observe that R is 3-graded
with 1-part R1 = {2ε1, ε1 + ε2,2ε2} (an isomorphic realization of this 3-graded root system will be
used in Example 7.11).

Proposition 7.4.

(a) The TKK-algebra TKK(V ) of a graded-triangulated Jordan pair V = V 1 ⊕ M ⊕ V 2 is B2-graded with
compatible Λ-grading. Its homogeneous spaces are

TKK(V )λ±2εi
= V ±

i [λ],
TKK(V )λ±(ε1+ε2) = M±[λ],

TKK(V )λεi−ε j
= δ

(
e+

i , M−[λ]), (i, j) ∈ {
(1,2), (2,1)

}
,

TKK(V )λ0 =
∑

i=1,2

δ
(
e+

i , V −
i [λ]) + δ

(
u+, M−[λ]).

Conversely, if L is a B2-graded Lie algebra with compatible Λ-grading, then its centre Z(L) is contained
in L0 , namely Z(L) = {x ∈ L0: [x, Lα] = 0 for α ∈ (±R1)}, and L/Z(L) is graded isomorphic to the TKK-
algebra of the graded-triangulated Jordan pair V = (V +, V −) given by

V ±
i [λ] = Lλ±2εi

and M±[λ] = Lλ
±(ε1+ε2).

(b) Let L be a B2-graded Lie algebra with compatible Λ-grading and let V be the associated graded-
triangulated Jordan pair defined in (a). Then L is

(i) graded-simple if and only if L = TKK(V ) and V is graded-simple;



Author's personal copy

E. Neher, M. Tocón / Journal of Algebra 344 (2011) 78–113 109

(ii) division-graded if and only if V is division-triangulated;
(iii) a Lie torus if and only if V is a triangulated Jordan pair torus;
(iv) (B2,Λ)-graded iff V is Λ-triangulated. In particular, L is division-(B2,Λ)-graded iff V is division-

Λ-triangulated, and a Lie torus of type (B2,Λ) iff V is a Λ-triangulated Jordan pair torus.

Proof. (a) is the graded version of [N3, 2.3–2.6]. The generalization from Λ = {0} to arbitrary Λ is
immediate. We note that for a root-graded Lie algebra L we have L/L′ and the centre of L coincides
with the central subspace C defined above.

In (b) the equivalence of graded-simplicity is a general fact [GN, 2.5], and (iii) is immediate from
(ii) and the formulas in (a). For the proof of (ii) one shows that e ∈ Lα , α ∈ R±1, is invertible in the
sense of Definition 7.1, say with inverse f ∈ L−α , iff e has the appropriate invertibility property in
the Jordan pair V , again with inverse f . This proves in particular the implication �⇒. For the other
direction, it then suffices to show that for a root-graded Lie algebra L invertibility in the spaces Lα ,
α ∈ R1, forces invertibility in Lγ , γ ∈ R0. This can be done by using Lγ = [Lα, L−β ] for appropriate
α,β ∈ R1. We leave the details to the reader, in particular in view of Remark 7.5. �
Remark 7.5. In characteristic 0, a centreless Lie torus of type (B2,Zn) is the same as the centreless
core of an extended affine Lie algebra of type B2. The latter has been studied in [AG, §4] for k = C.
Therefore, in this setting the torus part of the theorem above is implicit in [AG, §4].

One can also define Lie algebras graded by non-reduced root systems. A B2-graded Lie algebra is
then a special type of a BC2-graded Lie algebra. In the setting of BC2-graded Lie algebras the torus
version of Proposition 7.4 has been proven in [F, Theorem 3], where Jordan pairs and Jordan algebras
are replaced by structurable algebras, and a triangulated Jordan algebra torus by a so-called quasi-
torus.

Remark 7.6. We have formulated Proposition 7.4 in terms of triangulated Jordan pairs, since it is in
this setting that the proposition can be generalized to describe division-R-graded Lie algebras and Lie
tori of type R for any 3-graded root system R . We will however not need this here.

Remark 7.7. We have seen in Theorem 6.12 that a graded-triangulated Jordan pair V = (V +, V −)

is isomorphic to the Jordan pair ( J , J ) associated to a graded-triangulated Jordan algebra J . Since
isomorphic Jordan pairs lead to isomorphic TKK-algebras, one also has the Jordan algebra version of
Proposition 7.4. We leave the formulation to the reader.

Remark 7.8. For easier comparison with the literature [AG,BY,F] we indicate how to “find” the Λ-
triangulated Jordan algebra J in a B2-graded Lie algebra L, using the notation of above. As a k-module,
J = ⊕

λ∈Λ(Lλ
2ε1

⊕ Lλ
ε1+ε2

⊕ Lλ
2ε2

). For a,b ∈ J , the Jordan algebra product is given by a ·b = 1
2 [[a,1−],b]

where 1− = f1 + f2 and f i ∈ L0
−2εi

is the inverse of the invertible element ei ∈ L2εi whose existence is
guaranteed by condition (3) in Definition 7.1. The identity element of J is 1 J = e1 + e2, the elements
ei are idempotents of J , and J is triangulated by (u; e1, e2) for u the invertible element in L0

ε1+ε2
.

Proposition 7.4 reduces the classification of the various types of B2-graded Lie algebras to deter-
mining the TKK-algebras of the corresponding triangulated Jordan pairs and Jordan algebras, which we
have described in the previous Section 6. Models for these TKK-algebras were given in [N3] for arbi-
trary triangulated Jordan pairs over arbitrary rings. A more precise description can be obtained in the
graded-simple and division-graded case. To this end, we re-visit the description of the TKK-algebras
of the two types of Jordan pairs and algebras that appear in the classification of division-triangulated
Jordan pairs and algebras in Corollary 6.14 and Corollary 6.5.

Example 7.9. The TKK-algebra of the Jordan pair ( J , J ) for J = H2(A,π), equivalently, of the Jordan
algebra J [N3, 4.2]. Note that the ample subspace A0 of the hermitian matrix algebra is A0 = H(A,π)

since 1
2 ∈ k. Let
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p2(A,π) :=
{[

a b
c −aπt

]
∈ Mat4(A): a ∈ Mat2(A),b, c ∈ J

}
.

It is easy to see that p2(A,π) is the −1-eigenspace of an involution of the associative algebra
Mat4(A), hence a subalgebra of the general Lie algebra gl4(A). The natural 3-grading of gl4(A) in-
duces one of p2 = p2(A,π): We have p2 = p2,(1) ⊕ p2, (0) ⊕ p2,(−1) , where

p2,(1) =
{[

0 b
0 0

]
: b ∈ H2(A,π)

}
,

p2,(0) =
{[

a 0
0 −aπt

]
: a ∈ Mat2(A)

}
,

p2,(−1) =
{[

0 0
c 0

]
: c ∈ H2(A,π)

}
.

The Lie algebra p has a compatible Λ-grading p = ⊕
λ∈Λ pλ for which pλ consists of the matrices

with all entries in Aλ . The Jordan pair associated to this 3-graded Lie algebra, see the review 7.2, is
V = ( J , J ). We put

sp2(A,π) = p2,(1) ⊕ [p2,(1),p2, (−1)] ⊕ p2,(−1),

called the symplectic Lie algebra associated to (A,π). The proof of [AABGP, III, Proposition 4.2(a), (b)]
also works in our more general setting and yields

sp2(A,π) = [
p2(A,π),p2(A,π)

] = {
X ∈ p2(A,π): tr(X) ∈ [A, A]}.

The Lie algebra sp2(A,π) is C2-graded with root spaces indicated in the following tableau:

⎡
⎢⎢⎣

0 ε1 − ε2 2ε1 ε1 + ε2
ε2 − ε1 0 ε1 + ε2 2ε2

−2ε1 −ε1 − ε2 0 ε2 − ε1
−ε1 − ε2 −2ε2 ε1 − ε2 0

⎤
⎥⎥⎦

It follows from Proposition 7.4 that

TKK(V ) ∼= sp2(A,π)/Z
(
sp2(A,π)

)
.

However, one has the following criterion for sp2(A,π) to be centreless (again [AABGP, III, Proposi-
tion 4.2(d)] works in our more general setting):

Lemma 7.10. If A = Z(A) ⊕ [A, A], e.g. if A is a torus [NY, Proposition 3.3], then sp2(A,π) is centreless and
hence is (isomorphic to) the TKK-algebra of the Jordan algebra J = H2(A,π) and the Jordan ( J , J ).

Example 7.11. The TKK-algebra of the Jordan pair V = ( J , J ) for J = ACalg(q, D) [N3, 5.1, 5.3]. As in
Example 7.9 the Clifford-ample subspace D0 = D since 1

2 ∈ k. Thus J = De1 ⊕ M ⊕ De2 for a graded
commutative associative k-algebra D and q : M → D is a D-quadratic form.

For a D-quadratic form qN : N → D on a D-module N we define the orthogonal Lie algebra of qN as
o(qN ) = {X ∈ EndD(N): qN (Xn,n) = 0 for all n ∈ N}, and the elementary orthogonal Lie algebra eo(qN )

as eo(qN ) = SpanD{n1n∗
2 − n2n∗

1: n1,n2 ∈ N} where n∗
1 is the D-linear form on N defined by n∗

1(n) =
qN (n1,n).
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To describe the TKK-algebra of V or, equivalently of J , we put h1 = e1, h−1 = e2 and define a
D-quadratic form q∞ on

J∞ = Dh2 ⊕ Dh1 ⊕ M ⊕ Dh−1 ⊕ Dh−2

by requiring q∞|M = −q, (Dh2 ⊕ Dh−2) ⊥ (Dh1 ⊕ Dh−1) ⊥ M , and q∞(hi,h−i) = 1, q∞(h±i) = 0 for
i = 1,2. It follows from [N3, (5.3.6)] that

TKK(V ) ∼= eo(q∞),

in particular, TKK(V ) ∼= o(q∞) if M is free of finite rank. To obtain a more detailed description of
the TKK-algebra, we assume in the following that M has a homogeneous D-basis {ui: i ∈ I}, an assumption
which by Corollary 4.5 is always fulfilled if J is division-triangulated. Then J∞ is free too and endo-
morphisms of J∞ can be identified with column-finite (4 + |I|)× (4 + |I|)-matrices over D , which we
do with respect to the basis h2,h1, (ui)i∈I ,h−1,h−2. Let G be the |I| × |I|-matrix representing q with
respect to the basis (ui)i∈I . Then

X ∈ eo(q∞) ⇐⇒ X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b −mt
2G −s 0

c d −mt
1G 0 s

n1 n2 XM m1 m2

t 0 −nt
1G d b

0 −t −nt
2G c a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where a,b, c,d, s, t ∈ D , m1,m2,n1,n2 ∈ D(I) ∼= M and XM ∈ eo(q) (if M has finite rank the latter
condition is equivalent to G XM + Xt

M G = 0). The Lie algebra eo(q∞) has a B2-grading for B2 = {0} ∪
{±εi,±ε2,±ε1 ± ε2} whose homogeneous spaces o(q∞)α , α ∈ B2, are symbolically indicated by the
matrix below. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ε2 − ε1 ε2 ε1 + ε2 ·
ε1 − ε2 0 ε1 · ε1 + ε2

−ε2 −ε1 0 ε1 ε2

−(ε1 + ε2) · −ε1 0 ε2 − ε1
· −(ε1 + ε2) −ε2 ε1 − ε2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here 0 is the 0-root space, while · indicates an entry 0 in the matrices in o(q∞). The isomorphism
TKK(V ) ∼= eo(q∞) is given by considering the 3-grading of the root system B2 whose 1-part is {ε2, ε2 ±
ε1}. Hence

V ± = o(q∞)±(ε1+ε2) ⊕ o(q∞)±ε2 ⊕ o(q∞)±(ε2−ε1)

are the right respectively left columns of the matrices in eo(q∞).

Before we state the main results of this section, we remind the reader that we assume 1
2 , 1

3 ∈ k in
this section.

Theorem 7.12. For a torsion-free Λ the following are equivalent:

(i) L is a B2-graded-simple Lie algebra,



Author's personal copy

112 E. Neher, M. Tocón / Journal of Algebra 344 (2011) 78–113

(ii) L is graded isomorphic to the TKK-algebra of a graded-simple-triangulated Jordan algebra,
(iii) L is graded isomorphic to one of the following Lie algebras:

(I) sp2(A,π)/Z(sp2(A,π)) for a graded-simple A with involution π ,
(II) sl4(B)/Z(sl4(B)) where sl4(B) = {X ∈ gl4(B): tr(X) ∈ [B, B]}, and B is a noncommutative graded-

simple associative algebra,
(III) eo(q∞) in the notation of Example 7.11 for D = F a graded-field and q : M → F a graded-

nondegenerate F -quadratic form on a graded F -module M with base point u ∈ M0 .

Proof. The equivalence of (i) and (ii) follows from Proposition 7.4 and Theorem 6.12. If (ii) holds, the
cases (I) and (III) of Theorem 6.3 correspond to the Lie algebras (I) and (III) above, as follows from
Example 7.9 and Example 7.11. That in case (II) of Theorem 6.3 one gets case (II) above is shown in
[N3, (3.4.3)]. The remaining implication (iii) ⇒ (ii) is easy. �

With an analogous proof we obtain the classification of B2-division-graded Lie algebras.

Theorem 7.13. For a Lie algebra L the following are equivalent:

(i) L is a centreless division-(B2,Λ)-graded Lie algebra,
(ii) L is graded isomorphic to the TKK-algebra of a division-Λ-triangulated Jordan algebra,

(iii) L is graded isomorphic to one of the following Lie algebras:
(I) sp2(A,π)/Z(sp2(A,π)) where A is a noncommutative division-Λ-graded associative algebra with

involution π and generated by H(A,π),
(II) eo(q∞) in the notation of Example 7.11 for D = F a graded-field, q : M → F a graded-anisotropic

quadratic form on a graded F-module M with base point u ∈ M0 and whose Λ-support generates Λ.

In particular, using Lemma 7.10 we get the following corollary.

Corollary 7.14. A Lie algebra L is a centreless Lie torus of type (B2,Λ) iff L is graded isomorphic to one of the
following:

(I) A symplectic Lie algebra sp2(A,π) as in Example 7.9, where A is a noncommutative Λ-torus with involu-
tion π and generated by H(A,π).

(II) An elementary orthogonal Lie algebra eo(q∞) as in Example 7.11 with D a torus, M as described in Corol-
lary 4.5(b), q : M → D graded-anisotropic and Λ spanned by suppΛ M.

Remark 7.15. Centreless division-(B2,Λ)-graded Lie algebras over fields of characteristic 0 and centre-
less Lie tori of type (B2,Λ) are also described in [BY, Theorem 4.3 and Theorem 5.9], using a different
method. Our approach gives a more precise description of these Lie algebras. The special case Λ = Zn

had been established before in [AG, Theorem 4.87]. It could also be deduced from the results in [F,
Theorem 9], see Remark 6.7.

The data A, D , M and q occurring for Λ = Zn in Corollary 7.14 are described in detail in Corol-
lary 6.6.
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