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Introduction 1

Introduction

Extended affine Lie algebras form a category of Lie algebras containing finite-
dimensional semisimple, affine, toroidal and some other interesting classes of Lie
algebras.

Like finite-dimensional simple Lie algebras, extended affine Lie algebras are
defined by a set of axioms prescribing their internal structure, rather than a poten-
tially elusive presentation. The structure of extended affine Lie algebras is now well
understood, and is quite similar to the construction of affine Lie algebras: They are
obtained from a generalized loop algebra, a so-called invariant Lie torus, by taking
a central extension and adding some derivations:

central extension of L
(another Lie torus)

add
derivations ///o/o/o/o/o/o/o/o/o/o/o extended affine Lie algebra

invariant Lie torus L

OO
O�
O�
O�

Invariant Lie tori have been classified. Although there are some rather sophisticated
examples, many of them have a concrete matrix realization or can be described in
terms of familiar objects like finite-dimensional simple Lie algebras and Laurent
polynomial rings. This makes extended affine Lie algebras easily accessible. Since
they are an emerging new area, there are many open questions, opportunities for
research and applications, for example in physics. A short history of extended affine
Lie algebras is given in section 2.1, in particular it describes the role physicists have
played.

The goal of these notes is to provide a survey of the structure theory of extended
affine Lie algebras, accessible to graduate students. Very little is known in the
representation theory of extended affine Lie algebras. The reader can find some
hints in the lectures by Vyjayanthi Chari elsewhere in this book.

The emphasis of these notes is on examples. They are not an exposition of the
structure theory containing all proofs. Such an exposition will hopefully appear
elsewhere. Thus, while we have endeavored to present a complete picture of the
theory by giving precise definitions and statements of theorems, most of the proofs
have been left out. But references to proofs are provided, as far as possible.

Outline. Chapter 1 reviews the construction of affine Kac-Moody algebras and
discusses some natural generalizations, like toroidal algebras. It also contains an
exposition of central extensions of Lie algebras, which are crucial for the theory.
The following Chapter 2 starts with the definition of an extended affine Lie algebra
and then presents some easily proven properties. We also give examples of extended
affine Lie algebras: finite-dimensional split simple, affine Kac-Moody and untwisted
multi-loop algebras. Part of the axioms for an extended affine Lie algebra is the
existence of a root space decomposition. Chapter 3 describes the structure of the
roots occurring in an extended affine Lie algebra, naturally called extended affine
root systems. They turn out to be special types of so-called affine reflection systems,
which is a more easily accessible class of “root systems”. The bulk of Chaper 3 is
therefore devoted to presenting the definition, examples and the structure of affine
reflection systems, and it is only at the very end that we specialize to extended
affine root systems. In Chapter 4 we reverse the picture above: We start with an
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extended affine Lie algebra and, using the structure of affine reflection systems, we
associate to it an ideal, the so-called core, and its central quotient, the centreless
core. It turns out that the core is a Lie torus and that the centreless core is an
invariant Lie torus. This section also presents properties of Lie tori, examples and
parts of their classification. Finally, in Chapter 5 we survey the general construction
of extended affine Lie algebras, as summarized in the picture above.

Prerequisites. We assume that the reader is familiar with the basic structure
theory of complex finite-dimensional semisimple Lie algebras, as for example de-
veloped in [Hu]. Some familiarity with affine Kac-Moody algebras, e.g. chapters
7 and 8 of [Kac], is helpful but not essential, since Section 1.1 will give a short
review of the necessary background. Similarly, knowing split simple Lie algebras
will facilitate reading the notes, but is not required. A short summary of the facts
used here is presented in Section 2.3.

Notation and setting. With some rare exceptions (in 1.1, 5.1 and 5.2), all
vector spaces and algebras are defined over a field F of characteristic 0. We will
not assume that F is algebraically closed , since this is not needed and would not
do proper justice to the theory to be explained here. Thus, F could be, but need
not be the field C of complex numbers or the field R of real numbers or the field
of rational numbers Q or ... Unless specified otherwise, linear maps will always be
F -linear. All unadorned tensor products will be over F .

With the exception of some remarks, all algebras will be associative or Lie
algebras. For an F -algebra A we denote by DerF (L) the Lie algebra of all deriva-
tions of L (recall that an F -linear map d : L → L is a derivation if d([l1, l2]) =
[d(l1), l2] + [l1, d(l2)] holds for all l1, l2 ∈ L). We let Z(L) = {z ∈ L : [z, L] = 0}
denote the centre of a Lie algebra L. We will say that a Lie algebra L is centreless,
if Z(L) = 0, and call L perfect if L = [L,L]. If K is a subspace of a Lie algebra
E, the centralizer of K in E is CE(K) = {c ∈ E : [c,K] = 0}. The symbol g will
always denote a split simple finite-dimensional Lie algebra.

The algebras and vector spaces considered here will often be graded by some
abelian group, usually denoted Λ and always written additively. A Λ-grading of
a vector space V by the abelian group Λ is a decomposition V =

⊕
λ∈Λ V

λ into

subspaces V λ. Suppose V is such a Λ-graded vector space. Then the Λ-support
of V is defined as suppΛ V = {λ ∈ Λ : V λ 6= 0}. A graded subspace of V is
a subspace U of V satisfying U =

⊕
λ(U ∩ V λ). We will say that V has finite

bounded dimension if there exists a constant M such that for all λ ∈ Λ we have
dimV λ ≤M . Note that this is a stronger condition than requiring that V has finite
homogeneous dimension, which by definition just means that every V λ, λ ∈ Λ, is
finite-dimensional.

Given two Λ-graded vector spaces V =
⊕

λ V
λ and W =

⊕
λW

λ, we say an
F -linear map f : V → W has degree λ if f(V µ) ⊂ Wλ+µ holds for all µ ∈ Λ. We
denote by HomF (V,W )λ the linear maps of degree λ and put

grHomF (V,W ) =
⊕

λ∈Λ HomF (V,W )λ and grEndF (V ) = grHomF (V, V ).

We note that grEndF (V ) is a Λ-graded associative algebra with respect to compo-
sition of maps. We give F the trivial grading F = F 0 and define the graded dual
space of V as

V gr∗ = grHomF (V, F ) =
⊕

λ∈Λ(V gr∗)λ.
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Observe that (V gr∗)λ consists of those linear forms ϕ : V → F which satisfy
ϕ(V µ) = 0 whenever λ + µ 6= 0 and can therefore be identified with the usual
dual space (V −λ)∗.

Given a symmetric bilinear form on a vector space V , an endomorphism d of V
is called skew-symmetric if (d(v) | v) = 0 for all v ∈ V . Since we assume that our
base field has characteristic 0, this is equivalent to the condition (d(v1) | v2) + (v1 |
d(v2)) = 0 for all v1, v2 ∈ V . A bilinear form is nondegenerate if (v | u) = 0 for all
u ∈ V implies v = 0.

If A is an algebra, a Λ-grading of the algebra A is a Λ-grading of the underlying
vector space A, say A =

⊕
λ∈ΛA

λ, for which in addition AλAµ ⊂ Aλ+µ holds for all
λ, µ ∈ Λ. Two Λ-graded algebras, say A =

⊕
λ∈ΛAλ and A′ =

⊕
λ∈ΛA

′
λ are called

graded-isomorphic if there exists an algebra isomorphism f : A → A′ respecting
the homogenous subspaces, i.e., f(Aλ) = A′λ for all λ ∈ Λ. We will often deal with
algebras with two gradings, e.g., in Chapter 4. In this case, it is convenient to use
superscripts and subscripts to distinguish them.

These notes grew out of my notes for a lecture series during the Fields Insti-
tute summer school on Geometric Representation Theory and Extended Affine Lie
Algebras, held at the University of Ottawa in June 2009. I would like to thank all
the participants of the summer school for their interest and questions. I also thank
Bruce Allison and Juana Sánchez Ortega for their remarks on an earlier version of
these notes.
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CHAPTER 1

Affine Lie algebras and some generalizations

{n:ch:affgen}
We will always assume that F is a field of characteristic 0. Occasionally we

will need some roots of unity in F , so certainly an algebraically closed field like C
will do.

We denote by g a split simple finite-dimensional Lie algebra over F . For ex-
ample, if F is algebraically closed then this just means that g is a simple and
finite-dimensional. Their structure theory is explained in most standard textbooks,
for example in [Hu]. For more general fields, an example of a split simple g is the
Lie algebra sln(F ) of n×n-matrices over F which have trace 0. These types of Lie
algebra are for example investigated in [Bou3, Ch. VII], [D, Ch. 1] or [J, Ch. IV].

1.1 Realization (construction of affine Kac-Moody Lie algebras)
{n:sec:aff}

In this section we will describe the structure of affine Kac-Moody algebras in
a way which is appropriate for the envisioned generalization later. The reader can
find more details in [Kac], or consult ??–??.

Let ζ ∈ F be a primitive mth root of 1. In other words, the multiplicative
subgroup of F generated by ζ is isomorphic to Z/mZ. For example, in F = C we
can take ζ = exp(2πi/m).

Let σ be an automorphism of g of finite order m ∈ N. Thus, the subgroup 〈σ〉
of the automorphism group of g is isomorphic to Z/mZ. For example, if g = sln(F )
an example of such an automorphism is σ(x) = axa−1, where a is an n× n-matrix
of order m, and an example of such a matrix is a = ζEn where En is the n × n
identity matrix.

Observe that σ is diagonalizable. Indeed, its minimal polynomial divides the
polynomial tm = 1 and therefore has no multiple roots in F . For a general field F
this would of course only say that σ is a semisimple endomorphism. But since as
we assumed that F contains all roots of unity which we need, σ is diagonalizable
over F . To describe its eigenspaces we need some notation. In anticipation of the
later developments we put

Λ = Z and Λ̄ = Z/mZ,

and denote the canonical map Λ→ Λ̄ by λ 7→ λ̄. That σ is diagonalizable, means

g =
⊕

λ̄∈Λ̄ gλ̄ for gλ̄ = {x ∈ g : σ(x) = ζλx} (1.1) {n:eq:aff1}

Of course, some of the gλ̄ could be zero. The eigenspaces of σ are precisely the non-
zero subspaces gλ̄. It is also appropriate to note that gλ̄ is well-defined: if λ̄ = µ̄
then ζλ = ζµ. Finally we point out that the decomposition (1.1) is a Λ̄-grading,
which means that it satisfies

[gλ̄, gµ̄] ⊂ gλ̄+µ̄ for all λ̄, µ̄ ∈ Λ̄. (1.2) {n:eq:aff1.5}

5



6 1. Affine Lie algebras and some generalizations

Let F [t±1] be the ring of Laurent polynomials. This is a unital associative
commutative F -algebra with F -basis {tλ : λ ∈ Z} and multiplication rule tλtµ =
tλ+µ.

The loop algebra associated to the data (g, σ) is the Lie algebra

L = L(g, σ) =
⊕

λ∈Λ gλ̄ ⊗ Ftλ (1.3){n:oneloop}

with product
[uλ̄ ⊗ tλ, vµ̄ ⊗ tµ] = [uλ̄, vµ̄]⊗ tλ+µ. (1.4){n:eq:aff2}

We will sometimes use more precise terminology: If σ = Id, i.e., m = 1, we will call
L(g, Id) = g ⊗ F [t±1] the untwisted loop algebra, and we will call L(g, σ) a twisted
loop algebra if it is clear that σ 6= Id and we want to emphasize this.

We point out that we consider L(g, σ) as a Lie algebra over F . It is therefore
infinite-dimensional. It is also important to note that L is a Λ-graded algebra,
whose homogenous spaces are Lλ = gλ̄ ⊗ Ftλ for λ ∈ Λ. For the reader with some
background in algebraic geometry, a more geometric definition of L(g, σ) is the
following: L(g, σ) is (isomorphic to) the Lie algebra of equivariant maps F× → g,
where σ acts on F× by σ(x) = ζx.

Let κ be the Killing form of g, i.e., κ(u, v) = tr(adu ◦ ad v), and define

ψ : L × L → F, ψ(u⊗ tλ, v ⊗ tµ) = λ δλ,−µ κ(u, v) (1.5){n:eq:aff2.5}

where δλ,−µ is the Kronecker delta: It has the value 1 if λ = −µ and is zero
otherwise.{n:ex:aff1}

Exercise 1.1.1 Check that the map ψ of (1.5) is a 2-cocycle of L, i.e. an
F -bilinear map satisfying

ψ(l, l) = 0 = ψ([l1, l2], l3) + ψ([l2, l3], l1) + ψ([l3, l1], l2) (1.6){n:eq:aff3}

for l, li ∈ L.

A consequence of Exercise 1.1.1 is that we can enlarge our Lie algebra L by
adjoining a 1-dimensional space, denoted Fc here:

L̃ = L̃(g, σ) = L(g, σ)⊕ Fc (1.7){n:aff3.2}

is a Lie algebra over F with respect to the product

[l1 ⊕ s1c, l2 ⊕ s2c]L̃ = [l1, l2]L ⊕ ψ(l1, l2)c

for li ∈ L and si ∈ F . We have added subscripts on the products to emphasize
where the product is calculated, in L̃ or in L. It is obvious from the product
formula, that it is important to know in which Lie algebra the product is being
calculated. But in the future we will leave out the subscripts, if it is clear in which
algebra the product is calculated.

The equations (1.6) are exactly what is needed to make L̃ a Lie algebra. The
map

u : L̃ → L, u(l ⊕ sc) = l

is a surjective Lie algebra homomorphism with kernel Ker(u) = Fc = Z(L̃), the

centre of L̃. In other words, u is a central extension (see 1.3 for a short review
of central extensions). In fact, u is the “biggest” central extension, the so-called
universal central extension, see [G] and [Wi] for a proof.

The Lie algebra L̃ has a canonical derivation d, the so-called degree derivation

d
(
(u⊗ tλ)⊕ sc

)
= λu⊗ tλ, (λ ∈ Z, u ∈ gλ̄, s ∈ F ). (1.8){n:eq:aff3.5}
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Hence we can form the semidirect product L̂ = L(g, σ)̂ = L̃o Fd with product

[l̃1 ⊕ s1d, l̃2 ⊕ s2d]L̂ = [l̃1, l̃2]L̃ + s1d(l̃2)− s2d(l̃1)

for l̃i ∈ L̃ and si ∈ F . In untangled form,

L̂ =
(⊕

λ∈Z(gλ̄ ⊗ Ftλ)
)
⊕ Fc ⊕ Fd (1.9) {n:eq:aff8}

is the Lie algebra with product

[uλ̄ ⊗ tλ ⊕ s1c⊕ s′1d, vµ̄ ⊗ tµ ⊕ s2c⊕ s′2d]

=
(
[uλ̄, vµ̄]⊗ tλ+µ + µs′1vµ̄ ⊗ tµ − λs′2uλ̄ ⊗ tλ

)
⊕ λ δλ,−µ κ(uλ̄, vµ̄) c. (1.10) {n:eq:aff9}

{n:ueb1}
Exercise 1.1.2 Show [L̂, L̂] = L̃ and Z(L̃) = Fc = Z(L̂).

The importance of the Lie algebras L(g, σ)ˆ stems from the following.
{n:th-kac}

Theorem 1.1.3 (Realization Theorem [Kac, Th. 7.4, Th. 8.3, Th. 8.5])
Suppose F is algebraically closed.

(a) The Lie algebra L(g, σ)ˆ is an affine Kac-Moody Lie algebra, and every
affine Kac-Moody Lie algebra is isomorphic (as F -algebra) to some L(g, σ)ˆ.

(b) L(g, σ)ˆ ∼= L(g, σ′)ˆ where σ′ is a diagram automorphism with respect to
some Cartan subalgebra of g.

We note that diagram automorphisms have order 1, 2 or 3, with the latter case
only occurring for g of type D4.

1.2 Multiloop and toroidal Lie algebras
{n:sec:toroidal}

We will discuss some (straightforward) generalizations of L = L(g, σ), the cen-

tral extension L̃ and the big Lie algebra L̂.

The first idea is to replace the Laurent polynomial ring F [t±1] by a ring with
similar properties. Instead of one variable we will use the Laurent polynomial ring
F [t±1

1 , . . . , t±1
n ] in n variables. This ring has indeed very similar properties to the

ring F [t±1]. We put Λ = Zn and define

tλ = tλ1
1 · · · tλnn for λ = (λ1, . . . , λn) ∈ Λ

Then {tλ : λ ∈ Λ} is an F -basis of F [t±1
1 , . . . , t±1

n ] and the multiplication rule in
F [t±1

1 , . . . , t±1
n ] is tλtµ = tλ+µ, which is the “same” as in the 1-variable case. Also,

F [t±1
1 , . . . , t±1

n ] is still a unital commutative associative F -algebra. We can therefore
define the untwisted multiloop algebra, the “several variables” generalization of the
untwisted loop algebra of 1.1 as

L(g) = g⊗ F [t±1
1 , . . . , t±1

n ], (1.11) {n:untloo}

which becomes a Lie algebra with respect to the product

[u⊗ tλ, v ⊗ tµ] = [u, v]⊗ tλ+µ

for u, v ∈ g and λ, µ ∈ Zn. We will meet this Lie algebra again in Example 4.5.5.
To continue the analogy we let σ = (σ1, . . . , σn) be a family of n commuting

finite order automorphisms of g, say σi has order mi ∈ N+. Let ζi ∈ F be a
primitive mi-th root of 1 (recall that we assumed that F has an ample supply of
them). We put

Λ̄ = (Z/m1Z)⊕ · · · ⊕ (Z/mnZ)
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and let λ 7→ λ̄ be the obvious map. The automorphisms σi are simultaneously
diagonalizable:

g =
⊕

λ̄∈Λ̄ gλ̄, gλ̄ = {u ∈ g : σi(u) = ζλii u, 1 ≤ i ≤ n}. (1.12) {n:eq:aff4}

As in the one-variable case, the decomposition (1.12) is a Λ̄-grading: [gλ̄, gµ̄] ⊂ gλ̄+µ̄

for λ̄, µ̄ ∈ Λ̄. It follows from this that

L(g,σ) =
⊕

λ∈Λ gλ̄ ⊗ Ftλ (1.13){n:multdeff}

is a subalgebra of g ⊗ F [t±1
1 , . . . , t±1

n ], called the multiloop algebra associated to
g and σ. If all σi = Idg it coincides with the untwisted multiloop algebra de-
fined above. Multiloop algebras are investigated in the papers [ABFP1], [ABFP2],
[ABP1], [ABP2], [ABP3] and [ABP4].

Following our procedure in Section 1.1 we should now make a central extension
to get a bigger Lie algebra L̃ and then add some derivations:

L̃ = L ⊕ C � �
add

derivations //

central
extension

��

L̂ = L̃oD

L = L(g,σ)

666v6v6v6v6v6v6v6v6v6v6v6v6v6v

(1.14){n:eq:aff4.5}

To define the Lie algebra product on L̃ we would use a 2- ψ : L× L → C where C
is some vector space and then put

[l1 ⊗ c1, l1 ⊗ c2]L̃ = [l1, l2]L ⊕ ψ(l1, l2) (1.15){n:eq:aff5}

for li ∈ L and ci ∈ C. The Lie algebra L̂ should be a semidirect product with D
acting on L̃ by derivations.

But here is where the problems start, or things become interesting depending
on one’s taste. In the one-variable case the 2-cocycle ψ of (1.5) was the only possible

choice up to scalars, i.e., the universal central extension L̃ of L had a 1-dimensional
centre C = Fc. This is no longer true in the case of several variables. It is not so
surprising that there exists a 2-cocycle with values in Fn: We can simply use the
same formula as in (1.5).

{n:ueb3}
Exercise 1.2.1 Let L = L(g,σ) be a multiloop algebra and embed Λ ⊂ Fn

canonically. Then ψ : L × L → Fn, given by

ψ(u⊗ tλ, v ⊗ tµ) = δλ+µ,0 κ(u, v)λ , (1.16){n:eq:aff6}

is a 2- of L.

However, this is still not the “biggest” possible choice. Rather, the centre of
the universal central extension is infinite-dimensional if n ≥ 2, and the so-called
universal 2-cocycle, i.e., the 2-cocycle used in (1.15) to describe the universal central

extension L̂ of L, is described in the following result.

{n:ucemm}
Theorem 1.2.2 ([Ne6]) Let L = L(g,σ) be a multiloop algebra. We embed

Λ ⊂ Fn canonically, put Γ = m1Z ⊕ · · · ⊕ mnZ and let C =
⊕

γ∈Γ Cγ where
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Cγ = Fn/Fγ. Then the universal 2-cocycle is the map ψu : L × L → C whose
γ-component is

ψu(u⊗ tλ, v ⊗ tµ)γ = κ(u, v)δλ+µ,−γ λ̄ ∈ Cγ . (1.17){n:eq:aff7}

Observe that (1.16) is just the 0-component of (1.17). The theorem is well-
known in the untwisted case (all σi = Idg, so Γ = Λ), in which it can be deduced
from the description of the universal central extension of the Lie algebra g ⊗ A
where A is any unital commutative associative F -algebra, see [Kas] and [MRK].
(In these references the centre C of the universal central extension is described as
ΩA/dA where ΩA is the module of Kähler differentials, which is also the same as
the first cyclic homology group HC1(A).)

In the untwisted case, the L̂ was termed the n-toroidal Lie algebra based on
g. The reader should however be warned that this terminology is not standard. It
is sometimes used for the Lie algebra L̃ with the 2-cocycle of Exercise 1.2.1, and
sometimes also for the Lie algebras of the form L̂ = L⊕ C ⊕D for an appropriate
subalgebra D of derivations, e.g. in [DFP].

Thus, there are many possibilities for C in the diagram (1.14), and it is not
clear which one is the best possible choice. In fact, we will later in 5.4 allow almost
any central extension.

Assuming that we have settled for some space C, which D should we take? For
simplicity we will discuss this only in the untwisted case. If n = 1 we added the
degree derivation d defined in (1.8). This is far from being an arbitrary derivation.
The full derivation algebra of the Lie algebra g⊗A for A is described in [BM, Th. 1]:

DerF (g⊗A) =
(

DerF (g)⊗A
)
⊕
(
F Id⊗DerF (A)

)
= IDer(g⊗A)⊕

(
F Id⊗DerF (A)

)
. (1.18) {n:eq:aff11}

where DerF (g)⊗A and F Id⊗DerF (A) act on g⊗A in the obvious way.
Since g ⊗ A is perfect, up to a canonical isomorphism, this is then also the

derivation algebra of the universal central extension of g⊗A (see for example [BM,
Th. 2.2]). From

DerF [t±1] = F [t±1]d

we see that we added a rather special derivation, one which can be used to define
the Λ-grading of L. This will be made more precise in 5.1 and 5.3 where we will
describe Fd as the space SCDerF (L) of skew centroidal derivations of L, see also
Exercise 1.2.4.

We can do something similar in multi-variable case. Define the i-th degree
derivation ∂i of L(g)⊕ C by

∂i(u⊗ tλ ⊕ c) = λi u⊗ tλ for λ = (λ1, . . . , λn) ∈ Λ = Zn (1.19) {n:eq:aff10}

and put
D = spanF {∂i : 1 ≤ i ≤ n},

the space of degree derivations. Possible (interesting) choices for D are:

1. D = D,

2. F [t±1
1 , . . . , t±1

n ]D (in physics parlance: “all vector fields”), and

3.
⊕

λ∈Λ Ft
λ{
∑n
i=1 si∂i :

∑
i si = 0} (the “divergence 0 vector fields”).

It will turn out (Theorem 5.4.1) that for the Lie algebras which we are going to
study in the next chapters, the choices (1) and (3) are the correct ones. In addition,
there will be a surprise: semidirect products in (1.14) will not be enough!
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{n:ex:invfo}
Exercise 1.2.3 Recall that a bilinear form (·|·) on a Lie algebra L is called

invariant (= associative) if ([l1, l2] | l3) = (l1 | [l2, l3]) holds for all li ∈ L. Show:
(a) The set IF(L) of invariant bilinear forms on L is a vector space with respect

to the obvious scalar multiplication and addition defined by (β1 + β2)(l1, l2) =
β1(l1, l2) + β2(l1, l2) for βi ∈ IF(L) and li ∈ L.

(b) If L is perfect, any invariant bilinear form is symmetric.

(c) Let S be a unital associative F -algebra. A bilinear form b on S is called
invariant if b(s1s2, s3) = b(s1, s2s3) = b(s2, s3s1) for si ∈ S.

(i) The set IF(S) of invariant bilinear forms on S is a vector space with respect
to the obvious operations.

(ii) Any linear form λ ∈ S∗ with λ([S, S]) = 0 gives rise to an invariant bilinear
form bλ on S, defined by bλ(s1, s2) = λ(s1s2).

(iii) The map (S/[S, S])∗ → IF(S), given by λ 7→ bλ, is a vector space isomor-
phism.

(d) Let L be a perfect Lie algebra with a 1-dimensional space IF(L), say IF(L) =
Fκ. Also, let S be a unital associative commutative F -algebra. We consider L⊗S
as Lie algebra with respect to the product [l1⊗ s1, l2⊗ s2] = [l1, l2]⊗ s2s2, cf. (1.5).
For λ ∈ IF(S) define a bilinear form κ⊗ λ on L⊗ S by

(κ⊗ λ) (l1 ⊗ s2, l2 ⊗ s2) = κ(l1, l2)λ(s1, s2).

Then κ⊗ λ ∈ IF(L⊗ S) and the map IF(S) → IF(L⊗ S), given by λ 7→ κ⊗ λ, is
an isomorphism of vector spaces.

{n:ex:derloop}
Exercise 1.2.4 Define the ith degree derivation ∂i of the Laurent polynomial

ring S = F [t±1
1 , . . . , t±1

n ] by ∂i(t
λ) = λit

λ, so that the derivation ∂i of (1.19) becomes
∂i(u ⊗ tλ) = u ⊗ ∂i(tλ) = (Id⊗∂i)(u ⊗ tλ) (this double meaning of ∂i should not
create any confusion). Show:

(a) The derivation algebra DerF (S) of S is given by

DerF (S) = SD =
⊕

λ∈Zn Ft
λD

where, as above, D = spanF {∂i : 1 ≤ i ≤ n}. The derivation algebra is a Zn-graded
Lie algebra with Lie algebra product determined by

[tλ∂i, t
µ∂j ] = tλ+µ(µi∂j − λj∂i).

Thus, for n = 1 we obtain the usual Witt algebra, see for example [MP, 1.4].
(b) (tλ | tµ) = δλ+µ,0 defines a nondegenerate symmetric bilinear form (·|·) on

S which is invariant as defined in Exercise 1.2.3.
(c) Let SDerF (S) be the subalgebra of derivations of S, which are skew-sym-

metric with respect to the form (·|·) of (b). Then

SDerF (S) =
⊕

λ∈Zn Ft
λ
{∑n

i=1 si∂i :
∑
i siλi = 0

}
.

In particular, for n = 1 we get SDerF (F [t±1]) = Fd for d = ∂1.

1.3 Appendix on central extensions of Lie algebras
{n:appcen}

Central extensions will turn out to be an important tool in the construction of
extended affine Lie algebras. Although this provides one with a bigger and hence
potentially more complicated Lie algebra, central extensions turn up naturally in
the general theory and the biggest of them (the universal central extension) is in
fact quite “nice”. For example, universal central extensions often have a simpler
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presentation and a much richer representation theory than the original Lie algebra.
In this appendix we review the necessary background.

{n:defexten}
Definition 1.3.1 (Extensions) An extension of a Lie algebra L is a surjective

homomorphism f : K → L of Lie algebras. A homomorphism from an extension
f : K → L to another extension f ′ : K ′ → L is a Lie algebra homomorphism
g : K → K ′ satisfying f = f ′◦g. In other words, the diagram below is commutative.

K
g //

f ��@@@@@@@ K ′

f ′~~}}}}}}}}

L

(1.20) {n:exthomdi}

We will use abelian extensions, i.e., extensions f : K → L with Ker f an abelian
ideal in the construction of an extended affine Lie algebra in Section 5.4.

{n:ucedef}
Definition 1.3.2 (central extensions) A central extension of L is an extension

f : K → L whose kernel Ker f is contained in the centre Z(K) of K. A central
extension f : K → L is called a covering if K is perfect, i.e., K = [K,K]. It is
traditional (but not always advisable) to not specify the morphism f and simply
say that K is a central extension of L or a covering.

A central extension u : L → L is called a universal central extension if there
exists a unique homomorphism from u : L → L to any other central extension
f : K → L of L. It is obvious from the universal property that two universal central
extensions of L are isomorphic as central extensions and hence in particular their
underlying Lie algebras are isomorphic. We denote the universal central extension
of L by u : uce(L)→ L or simply uce(L).

{n:sub:ucethm}
Theorem 1.3.3 ([vdK, Prop. 1.3], [G, §1]) A Lie algebra L has a universal

central extension if and only if L is perfect. In this case, the universal central
extension u : uce(L)→ L is perfect too, i.e., u is a covering.

The process of taking universal central extensions stops at uce(L), due to the
following equivalent conditions for a Lie algebra L:

(i) Id : L→ L is a universal central extension, i.e., uce(L) = L,

(ii) every central extension f : K → L is direct product K = L̃ × Ker f such

that f |L̃ is an isomorphism between L̃ and L.

If (i) and (ii) hold, one calls L centrally closed .

Examples 1.3.4 (a) It is an immediate corollary of the Levi-Malcev Theorem
that every finite-dimensional semisimple Lie algebra is centrally closed ([Bou3, VII,
§6.8, Cor. 3] or [We, Cor. 7.9.5]).

(b) An example of a universal central extension is the Virasoro algebra: It is the
universal central extension of the Witt algebra DerF (F [t±1]), see for example [MP,
I.9, Prop. 4]. Hence the Virasoro algebra is centrally closed, while DerF (F [t±1])
is not. On the other hand, the higher rank Witt algebra DerF (F [t±1

1 , . . . , t±1
n ]),

n > 1, is centrally closed ([RSS, V, Th. 5.1]).
{n:sub:2coc}

Definition 1.3.5 (Central extensions via 2-cocycles.) We have already seen in
1.1 that one can construct central extensions of a Lie algebra L by using 2-cocycles,
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which, we recall, are bilinear maps ψ : L× L→ C into a vector space C satisfying
for all l, l1, l2, l3 ∈ L

ψ(l, l) = 0 and ψ([l1, l2], l3) + ψ([l2, l3], l1) + ψ([l3, l1], l2) = 0. (1.21) {n:sub:2cocy1}

The first equation is of course equivalent to ψ(l1, l2) = −ψ(l2, l1). Given a 2-cocycle
ψ : L× L→ C, the algebra

K = L⊕ C by [l1 ⊕ c1, l2 ⊕ c2]K = [l1, l2]L ⊕ ψ(l1, l2) (1.22){n:eq:2coc2}

(li ∈ L, ci ∈ C) is a Lie algebra and prL : K → L, prL(l ⊕ c) = l, is a central
extension of L, which we will denote by E(L,C, ψ) or E(L,ψ) for short.

Conversely, given a central extension f : K → L, let s : L → K be a section
of f in the category of vector spaces, i.e., a linear map s : L → K such that
f ◦ s = IdL. Such a section always exists: We can choose a subspace L′ of K,
which is complementary to C = Ker f , and take s = (f |L′)−1 which makes sense
since (f |L′) : L′ → L is an invertible linear map (but in general not a Lie algebra
homomorphism since L′ need not be a subalgebra). Given a section s, the map

ψs : L× L→ C, ψs(l1, l2) = [s(l1), s(l2)]K − s([l1, l2]L) (1.23){n:appcen1}

turns out to be a 2-cocycle. Moreover, the map

K → L⊕ C, x 7→ f(x)⊕
(
x− (s ◦ f)(x)

)
= f(x)⊕ xC ,

where xC is the C-component of x ∈ K, is an isomorphism from the central exten-
sion f : K → L to the central extension E(L,Ker f, ψs). To summarize, modulo
some verifications left as an exercise, we have proven the following well-known re-
sult.{n:appcenprop}

Proposition 1.3.6 For any 2-cocycle ψ the construction (1.22) is a central
extension E(L,ψ) of L and, conversely, every central extension L is isomorphic as
central extension to some E(L,ψ).

{n:uebcover}
Exercise 1.3.7 Let ψ : L×L→ C be a 2-cocycle and let C ′ be a subspace of

C satisfying ψ(L,L) := spanF {ψ(l1, l2) : li ∈ L} ⊂ C ′. Then E(L,C ′, ψ) is also a
central extension, and if E(L,C, ψ) is a covering then C = ψ(L,L).

{n:sub:examcoc}
Examples 1.3.8 (a) Any Lie algebra L has many uninteresting central exten-

sions. One can simply take the direct product of L with an abelian Lie algebra, i.e.,
L × C with product [(l1, c1), (l2, c2)] = ([l1, l2], 0) for li ∈ L, ci ∈ C, and consider
the canonical projection prL : L× C → L, which is a central extension (but not a
covering, unless L is perfect and C = {0}). Observe that the canonical inclusion
inc : L→ L× C is a section of prL, not only in the category of vector spaces, but
even in the category of Lie algebras. Its associated 2-cocycle is ψinc = 0.

(b) Let h : L → C be a linear map into some vector space C. Then βh :
L× L→ C, βh(l1, l2) = h([l1, l2]) is a 2-cocycle, a so-called 2-coboundary .

The two examples are related in the following exercise.
{n:uebcen}

Exercise 1.3.9 For a central extension f : K → L of L with C = Ker f the
following are equivalent:

(i) The extension f : K → L is split in the category of Lie algebras, i.e, there
exists a section L→ K of f , which is a Lie algebra homomorphism.

(ii) For any section s of f the associated 2-cocycle ψs is a 2-coboundary.
(iii) There exists a section s of f , for which the associated 2-cocycle ψs is a

2-coboundary.
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(iv) As central extension, f is isomorphic to the central extension prL : L⊕C →
L.

If these conditions are fulfilled, one calls f a split extension.
{n:uebcent1}

Exercise 1.3.10 Let ψ : L × L → C be a 2-cocycle and let π : C → C ′ be a
linear map. Show:

(a) ψ′ = π ◦ ψ is a 2-cocycle of L and the map

E(π) : E(L,C, ψ)→ E(L,C ′, ψ′), l ⊕ c 7→ l ⊕ π(c)

is a homomorphism of central extensions of L:

E(L,C, ψ)
E(π) //

prL
$$IIIIIIIIII

E(L,C ′, ψ′)

prL
yytttttttttt

L

(b) If π is surjective, the map E(π) is a central extension of L′ = E(L,C ′, π◦ψ),
which as central extension of L′ has the form E(L′, C ′′, ψ′′) for

ψ′′(l1 ⊕ c′1, l2 ⊕ c′2) =
(
(Id−γ ◦ π) ◦ ψ

)
(l1, l2),

where γ : C ′ → C is a section of π with γ(C ′) = C ′′.

(c) Conversely, suppose f ′ : L′ → L is a central extension and f : E(L,C, ψ)�
L′ is a surjective homomorphism of central extensions. Then π = f |C maps C
onto C ′ = Ker f ′ and there exists a unique isomorphism of extensions Φ : L′ →
E(L,C ′, ψ′), ψ′ = π ◦ ψ such that all triangles in the diagram below commute:

E(L,C, ψ)
f //

E(π)

''OOOOOOOOOOO

prL

��??????????????????? L′

Φ

zztttttttttt

f ′

�������������������

E(L,C ′, ψ′)

prL

��
L

{n:uebcent2}
Exercise 1.3.11 Let C = C1 ⊕ C2 be a vector space direct sum and denote

by πi : C → Ci the canonical projections. Let ψ : L × L → C be a 2-cocycle with
the property that π2 ◦ ψ is a 2-coboundary. Then for ψ1 = π1 ◦ ψ,

E(L,C, ψ) ∼= E(L,C1, ψ1)× C2

as central extensions of L (even as central extensions of the Lie algebra E(L,C1, ψ1)).
{n:generic}

Example 1.3.12 Let (·|·) : L × L → F be a symmetric bilinear form, which
is invariant, see Exercise 1.2.3. We denote by SDerF (L) the subalgebra of DerF (L)
which consists of all skew-symmetric derivations, where a derivation d ∈ DerF (L)
is called skew-symmetric if (d(l1) | l2) + (l1 | d(l2)) = 0 for all l1, l2 ∈ L. Observe
that the inner derivations are an ideal of SDerF (L):

IDer(L) = {ad l : l ∈ L} / SDerF (L). (1.24) {n:iderdef}

Let D be a subspace of SDerF (L) and let D∗ be its dual space. Then the map
ψD : L× L→ D∗, given by

ψD(l1, l2)(d) =
(
d(l1) | l2) (1.25) {n:examcoc1}
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for li ∈ L and d ∈ D, is a 2-cocycle of L.
{n:uebgeneric}

Exercise 1.3.13 Show: (a) (1.25) defines indeed a 2-cocycle.
(b) ψD for D ⊂ IDer(L) is a 2-coboundary.

(c) If D̃ is a subspace of D, then the central extension E(L,D∗, ψD) of L factors

through the central extension E(L, D̃∗, ψD̃) of L,

E(L,D∗, ψD)� E(L, D̃∗, ψD̃)� L.

Definition 1.3.14 (Graded central extensions) Let Λ be an abelian group, and
let L =

⊕
λ∈Λ L

λ be a Λ-graded Lie algebra. We say that f : K → L is a Λ-graded
central extension of L if K is a Λ-graded Lie algebra and f is a central extension
which is at the same time a homomorphism of Λ-graded algebras: f(Kλ) ⊂ Lλ for
all λ ∈ Λ. A Λ-graded central extension f : K → L is called a Λ-covering, if f is a
covering, i.e., K is perfect. We note that an arbitrary central extension of a graded
Lie algebra need not be a graded central extension.

A homomorphism of a Λ-graded central extension f : K → L to another Λ-
graded central extension f ′ : K ′ → L is a homomorphism g : K → K ′ of Λ-graded
Lie algebras satisfying f = f ′ ◦ g, cf. (1.20).

To define graded central extensions of a Λ-graded Lie algebra L via a 2-cocycle,
we need (obviously) a Λ-graded 2-cocycle, i.e., a 2-cocycle ψ : L × L → C into a
Λ-graded vector space C =

⊕
λ∈Λ C

λ which is graded of degree 0,

ψ(Lλ, Lµ) ⊂ Cλ+µ for all λ, µ.

For a graded 2-cocycle ψ the Lie algebra K = L⊕C of (1.22) is naturally Λ-graded
by

Kλ = Lλ ⊕ Cλ

and the central extension prL : K → L is a Λ-graded central extension. Conversely,
if f : K → L is a Λ-graded central extension, we can choose a section s : L → K
of the underlying vector spaces of degree 0, meaning s(Lλ) ⊂ Kλ. The 2-cocycle
associated to s in (1.23) is then a graded 2-cocycle. Thus, Proposition 1.3.6 holds
in an analogous way for graded central extensions.

The following proposition also shows that one does not have to introduce a new
object of a “graded universal central extension”.

{n:appcenth}
Proposition 1.3.15 ([Ne2, 1.16]) Let L =

⊕
λ∈Λ L

λ be a Λ-graded perfect Lie
algebra. Then its universal central extension u : uce(L) → L is Λ-graded, hence a
Λ-covering. Moreover, Ker u is a graded subspace of uce(L).

{n:grcocy}
Example 1.3.16 We also have the graded versions of the Example 1.3.8 (de-

tails left to the reader) and the Example 1.3.12, whose details follow.
Let L =

⊕
λ∈Λ L

λ be a Λ-graded Lie algebra and let (·|·) be an invariant bilinear
form on L, which is Λ-graded in the following sense:

(Lλ | Lµ) = 0 if λ+ µ 6= 0. (1.26){n:grabidef}

We define the Λ-graded subalgebra of grEndF (L)

grSDerF (L) = grEndF (L) ∩ SDerF (L) =
⊕

λ∈Λ

(
SDerF (L)

)λ
(1.27)

where (SDerF (L))λ consists of all skew-symmetric derivations of degree λ. If D ⊂
grSDerF (L) is a graded subspace of grSDerF (L), the 2-cocycle ψD of (1.25) is Λ-
graded and maps L × L into Dgr∗, thus giving rise to a graded central extension
E(L,Dgr∗, ψD) of L.
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{n:uebcent3}
Exercise 1.3.17 Show that the 2-cocycles ψ of (1.5), (1.16) and (1.17) can be

obtained in the form (1.25), i.e., find an invariant bilinear form on L = L(g, σ) resp.
L = L(g,σ) and a subspace D ⊂ SDerF (L) such that ψ and ψD yield isomorphic
central extensions of L.

It is not so surprising that the 2-cocycles we used in Sections 1.1 and 1.2 can
all be obtained in the form ψD for D ⊂ grSDerF (L). This is a special case of the
following general result. {n:thgencen}

Theorem 1.3.18 ([Ne6]) Let L =
⊕

λ∈Λ L
λ be a Λ-graded Lie algebra, which

(i) is perfect and finitely generated as Lie algebra,
(ii) has finite homogeneous dimension: dimLλ <∞ for all λ ∈ Λ, and

(iii) has an invariant nondegenerate Λ-graded symmetric bilinear form.

(a) Then DerF (L) = grDerF (L) is Λ-graded and has finite homogeneous di-
mension, whence the same is true for SDerF (L).

(b) The universal central extension uce(L) has finite homogenous dimension
with respect to the Λ-grading of (1.3.15). Moreover,

uce(L) ∼= E(L,Dgr∗, ψD)

as central extensions of L, where D is any graded subspace of SDerF (L) which
complements IDer(L) in SDerF (L), and ψD is the 2-cocycle of (1.25).

Remarks 1.3.19 (a) Theorem 1.2.2 is an application of Theorem 1.3.18, as is
Theorem 4.2.10(c).

(b) The Exercise 1.3.11 gives some indication why it is sufficient to take a
subspace of SDerF (L) complementing IDer(L) and not an arbitrary subspace of
SDerF (L).

{n:uebcent4}
Exercise 1.3.20 In the setting of Theorem 1.3.18, every Λ-graded central

covering of L is isomorphic as central extension to a central extension E(L,Bgr∗, ψB)
for some graded subspace B of D.
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CHAPTER 2

Extended affine Lie algebras: Definition and first
examples

{n:ch:eala-def-exam}
Rather than constructing Lie algebras in a concrete way as we have done in

Chapter 1, in this chapter we will define extended affine Lie algebras by a set of
axioms and give examples. We will see that these examples encompass all the
examples of Chapter 1 (with the exception of the choice 2. for D in 1.2).

As before we will consider Lie algebras over an arbitrary field F of characteristic
0, but we will no longer assume that F has enough roots of unity (multiloop algebras
will not be play a role here), except in Section 2.4 where F = C).

2.1 Definition of an extended affine Lie algebra
{n:sec:eala-def}

An extended affine Lie algebra, or EALA for short, is a pair (E,H) consisting
of a Lie algebra E over F and subalgebra H satisfying the following axioms (EA1)
– (EA6).

(EA1): E has an invariant nondegenerate symmetric bilinear form (·|·).

(EA2): H is nontrivial finite-dimensional toral and self-centralizing subalgebra
of E.

Before we can state the other four axioms, we need to draw some consequences
of the axioms (EA1) and (EA2). But first we give explanations of some of the
notions used. In these notes a toral subalgebra, sometimes also called an ad-
diagonalizable subalgebra is a subalgebra H which induces a decomposition of E
via the adjoint representation of H:

E =
⊕

α∈H∗ Eα, (2.1) {n:eq:eala-def0}

Eα = {e ∈ E : [h, e] = α(h)e for all h ∈ H}. (2.2) {n:eq:eala-def0a}

We will refer to (2.1) as the root space decomposition of (E,H) and to the non-
zero subspaces Eα as the root spaces. Such a subalgebra H is necessarily abelian,
whence H ⊂ E0 = {e ∈ E : [h, e] = 0 for all h ∈ H}. That H is also required to be
self-centralizing means

H = E0.

Now to the consequences of (EA1) and (EA2). Because of invariance of the bilinear
form (·|·), we have

(Eα | Eβ) = 0 if α+ β 6= 0, (2.3) {n:eala-def5}

in particular the restriction of the bilinear form to E0 = H is nondegenerate. Be-
cause of this and finite-dimensionality of H, every linear form α ∈ H∗ is represented
by a unique tα ∈ H, defined by the condition that (tα | h) = α(h) holds for all

17
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h ∈ H. This allows us to transport the restricted form (·|·) | H×H to a symmetric
bilinear form on H∗, also denoted (·|·) and defined by

(α | β) = (tα | tβ), α, β ∈ H∗. (2.4) {n:ealadef2}

This transport of bilinear forms is a standard procedure in the theory of semisimple
Lie algebras, see for example [Hu, §8]. We can now define

R = {α ∈ H∗ : Eα 6= 0} (set of roots of (E,H)),

R0 = {α ∈ R : (α | α) = 0} (null roots),

Ran = {α ∈ R : (α | α) 6= 0} (anisotropic roots).

(2.5){n:eq:eala-def4}

We prefer to call R the set of roots of (E,H) and not the “root system” since
we want to restrict the latter term for root systems in the usual sense, see Exam-
ple 3.2.2. We point out that by definition 0 is a root,

0 ∈ R0 ⊂ R.
This is the customary convention for EALAs and has some notational advantages.

We define the core of (E,H) as the subalgebra Ec of E generated by all
anisotropic root spaces:

Ec = 〈
⋃
α∈Ran Eα 〉subalg

We can now state the remaining four axioms.

(EA3): For every α ∈ Ran and xα ∈ Eα, the operator adxα is locally nilpotent
on E.

(EA4): Ran is connected in the sense that for any decomposition Ran = R1 ∪
R2 with (R1 | R2) = 0 we have R1 = ∅ or R2 = ∅.

(EA5): The centralizer of the core Ec of E is contained in Ec: {e ∈ E :
[e, Ec] = 0} ⊂ Ec.

(EA6): The subgroup Λ = spanZ(R0) ⊂ H∗ generated by R0 in (H∗,+) is a
free abelian group of finite rank. In other words, Λ ∼= Zn for some n ∈ N
(including n = 0!).

The term locally nilpotent in (EA3) means that for every e ∈ E there exists an
n ∈ N, possibly depending on e, such that (adxα)n(e) = 0. The property (EA5) is
called tameness. The condition [e, Ec] = 0 is of course equivalent to [e, Eα] = 0 for
all α ∈ Ran. The rationale for this axiom is the following. The subalgebra Ec is in
fact an ideal of E (Theorem 4.3.1). Hence we have a representation ρ of E on Ec,
given by ρ(e)(xc) = [e, xc] for e ∈ E and xc ∈ Ec. The kernel of the representation
ρ is the centralizer of Ec in E. Therefore tameness means that Ker ρ ⊂ Ec. The
idea here is that the core Ec should control E. We will make this more precise
in Section 5.4. The rank of the free abelian group Λ in axiom (EA6) is called the
nullity of (E,H). It is invariant under isomorphisms. We will describe EALAs of
nullity 0 and 1 below.

Although the structure of an EALA requires the existence of an invariant non-
degenerate symmetric bilinear form (·|·) in the axiom (EA1), which is then used
to define the anisotropic roots, it turns out that this bilinear form is really not so
important. Because of this, we have defined an EALA as a pair (E,H) and not as a
triple (E,H, (·|·)) as it is for example done in [AF]. Consequently, an isomorphism
from an EALA (E,H) to another EALA (E′, H ′) is a Lie algebra isomorphism
f : E → E′ such that f(H) = H ′. It is immediate that any isomorphism induces a
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bijection f ′ between the set of roots R and R′ of (E,H) and (E′, H ′) respectively.

It then follows that f ′ maps Ran onto R′
an

, whence also R0 onto R′
0
. One can

then show that f ′ preserves the forms on X = spanF (R) and X ′ = spanF (R′) up
to scalars.

For F = C one can define a special class of EALAs. We call a pair (E,H) a
discrete EALA if it satisfies the axioms (EA1) – (EA5) and in addition

(DE): R is a discrete subset of H∗ with respect to the natural topology of the
finite-dimensional complex vector space H∗.

It is justified to call a discrete EALA an EALA, since one can show that a discrete
EALA also satisfies (EA6). Indeed, this follows from Proposition 3.4.2 and Theo-
rem 3.4.3. However, not every EALA over C is a discrete EALA (see [Ne5, 6.17]).

Some historical comments. Although there were some precursors (papers
by Saito and Slodowy for nullity 2), it was in the paper [HT] by the physicists
Høegh-Krohn and Torrésani that the class of discrete extended affine Lie algebras
was introduced, however not under this name. Rather, they were called “irreducible
quasi-simple Lie algebras” and later ([BGK, BGKN]) “elliptic quasi-simple Lie al-
gebras”. The stated goal of the paper [HT] was applications in quantum gauge
theory. The theory developed there did however not stand up to the scrutiny of
mathematicians. The errors of [HT] were corrected in the AMS memoir [AABGP]
by Allison, Azam, Berman, Gao and Pianzola. There also the name “extended
affine Lie algebras” appears for the first time. But not in the sense as defined
above. Rather, the authors develop the basic theory of what here are called dis-
crete EALAs. Nevertheless, [AABGP] has become the standard reference even for
the more general extended affine Lie algebras, since many of the results presented
there for discrete extended affine Lie algebras easily extend to the more general
setting. The definition of an extended affine Lie algebra given above is due to the
author ([Ne4]) and was motivated by the fact that all the examples presented in
[AABGP] did make sense over an arbitrary base field F and not just over C only.
Before [Ne4] the tameness axiom (EA5) was not part of the definition of an EALA.
However, as examples show ([BGK, §3] or [Ne5, 6.10]), it seems impossible to clas-
sify EALAs without (EA5). After [Ne4], several generalizations of EALAs have
been proposed. They are surveyed in [Ne5].

2.2 Some elementary properties of extended affine Lie algebras
{n:sec:ealaelem}

The following chapters will (hopefully) show that extended affine Lie algebras
share many properties with familiar Lie algebras, like finite-dimensional split simple
Lie algebras or affine Kac-Moody Lie algebras. Some of these properties are imme-
diate consequences of the axioms. The following (strongly recommended!) exercise
gives an incomplete list of such properties.

{n:ex:eala-def1}
Exercise 2.2.1 Let (E,H) be an EALA. We use the notation of above. Show

the following:
(a) For α, β ∈ R we have

[Eα, Eβ ] ⊂ Eα+β . (2.6) {n:ealagrad}

Thus the root space decomposition (2.1) is a grading by the abelian group spanZ(R) ⊂
H∗.
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(b) H is a Cartan subalgebra, defined as a nilpotent subalgebra which is self-
normalizing: H = {e ∈ E : [e,H] ⊂ H}.

(c) For α, β ∈ R we have (Eα | Eβ) = 0 unless α + β = 0. The restriction
of the bilinear form (·|·) to Eα × E−α is nondegenerate, i.e., if xα ∈ Eα satisfies
(xα | E−α) = 0 then xα = 0. In particular, R = −R.

(d) For α ∈ R and xα ∈ Eα and y−α ∈ E−α,

[xα, y−α] = (xα | y−α) tα. (2.7){n:eala-def2}

In particular, [Eα, E−α] = Ftα, and if α ∈ Ran then

[[Eα, E−α], Eα] = Eα. (2.8){n:eala-def4}

(e) The core Ec satisfies

Ec =
(
⊕α∈Ran Eα

)
⊕
(⊕

α∈R0(Ec ∩ Eα)
)
. (2.9)

Using (2.7), one can show that EALAs are built out of “little” sl2’s and Heisen-
berg’s (albeit in a complicated way).

{n:ealafact}
Proposition 2.2.2 Let (E,H) be an extended affine Lie algebra, with anisotro-

pic root Ran and null roots R0.

(a) Let α ∈ Ran. Then dimEα = 1, and for any eα ∈ Eα there exists fα ∈ E−α
such that (eα, hα = [eα, fα], fα) ∈ Eα ×H × E−α is an sl2-triple:

Eα ⊕ [Eα, E−α]⊕ E−α = Feα ⊕ Fhα ⊕ Ffα ∼= sl2(F ).

(b) Let α ∈ R0. Then for any 0 6= xα ∈ Eα there exists yα ∈ E−α such that
[xα, yα] = tα and

Fxα ⊕ Ftα ⊕ Fyα ∼= h3,

the 3-dimensional Heisenberg algebra.

It is not true that dimEα = 1 if α ∈ R0 (this is already not true in the examples
of Sections 2.3 and 2.4). But we will show in Theorem 4.3.5 that all root spaces
Eα are finite-dimensional in a rather strong way.

The following exercise shows that one can “extend” the 3-dimensional Heisen-
berg subalgebras in (b) above.

Exercise 2.2.3 In the setting and notation of Proposition 2.2.2(b) show that
there exists dα ∈ H such that

[dα, xα] = xα and [dα, yα] = −yα.
Hence

Fxα ⊕ Ftα ⊕ Fdα ⊕ Fyα
is a 4-dimensional subalgebra. It is 2-step solvable, not nilpotent and isomorphic
to the subalgebra {(

0 a b
0 c d
0 0 0

)
: a, b, c, d ∈ F

}
of gl3(F ).

And now an exercise which implies that in an EALA one can produce many
so-called elementary automorphisms.{n:ex:eala-def2}

Exercise 2.2.4 Let M be an F -vector space. One calls an endomorphism
f ∈ EndF (M) locally nilpotent if for every m ∈ M there exists n ∈ N, possibly
depending on m, such that fn(m) = 0.

(a) Show that the following conditions are equivalent for f ∈ EndF (M):
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(i) f is locally nilpotent,
(ii) for every finitely spanned subspace N of M there exists a finite-

dimensional subspace P of M such that N ⊂ P and f(P ) ⊂ P ,
(iii) f is nilpotent on every finite-dimensional and f -invariant subspace of

M .

(b) Let f ∈ EndF (M) be locally nilpotent and define the exponential exp f of
f by

(exp f)(m) =
∑
n∈N

1
n!f

n(m),

for m ∈M (note that the sum on the right is always finite). Show that exp f is an
invertible endomorphism of M with inverse given by (exp f)−1 = exp(−f).

(c) Let L be a Lie algebra and let d be a locally nilpotent derivation of L. Show
that then exp d is an automorphism of L, called an elementary automorphism.

We will next present some examples of EALAs.

2.3 Extended affine Lie algebras of nullity 0
{n:sec:eala0}

Let g be a finite-dimensional split simple Lie algebra with splitting Cartan
subalgebra h, for example sll(F ) or a finite-dimensional simple Lie algebra over an
algebraically closed field. We will show that then (g, h) is an EALA of nullity 0.
The facts needed to prove this can be found in [Bou3, VIII, §2] or in [Hu, §8] for F
algebraically closed. Let us now verify the axioms (EA1)–(EA6).

(EA1) Up to a scalar, there exists only one invariant nondegenerate symmetric
bilinear form on g, the Killing form κ. Hence we can (and will) take (·|·) = κ.

(EA2) By definition of a splitting Cartan subalgebra, the Lie algebra g has a
root space decomposition

g = g0 ⊕
(⊕

α∈Φ gα
)
, g0 = h,

where Φ is the root system of (g, h) (which is a reduced root system in the usual
sense, see Example 3.2.2) and where the root spaces gα are defined as in (2.2).
Hence the set of roots R of (g, h) is

R = {0} ∪ Φ. (2.10) {n:sec:eala01}

It is a basic fact that κ(tα, tα) 6= 0 for tα ∈ h representing α ∈ Φ via κ(tα, h) = α(h)
for all h ∈ h. Hence, the anisotropic and null roots are

Ran = Φ and R0 = {0}.
(EA3) is now obvious: From [gα, gβ ] ⊂ gα+β for α ∈ Φ and β ∈ R and finite-

dimensionality of g, it is clear that adxα for xα ∈ gα is not only locally nilpotent
but even (globally) nilpotent.

(EA4) is another way of saying that Φ is an irreducible root system. This is
indeed the case and follows from the simplicity of g.

(EA5) We first need to determine the core gc of g. By definition, gc is the
subalgebra of g generated by

⊕
α∈Φ gα. Since h =

∑
α∈Φ[gα, g−α] we have

gc = g.

It is now a tautology that (EA5) holds, i.e., that the centralizer of the core gc is
contained in gc = g. Of course, we know even more: The centralizer of the core
equals the centre of g, and is therefore {0}.

(EA6) We have Λ = 〈R0〉 = 〈{0}〉 = {0}.
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We have now shown:

A finite-dimensional split simple Lie algebra is an EALA of nullity 0, (2.11) {n:eala-def:prop}

obviously a discrete EALA. We will see in Proposition 3.4.5 that the converse of
(2.11) is true too. We thus know all the nullity 0 examples of EALAs, and can
therefore focus on the higher nullity examples. We will answer the case of nullity 1
in the next section.

2.4 Affine Kac-Moody Lie algebras again
{n:sec:ealaone}

To justify the name extended affine Lie algebra, we will now show that any
affine Kac-Moody Lie algebra is an extended affine Lie algebra. To do so, we
will need some basic facts about affine Kac-Moody Lie algebras. All of them can
be found in Kac’s book [Kac]. Since this reference uses C as base field, we will
do the same in this section. But everything we say here holds true for arbitrary
algebraically closed fields of characteristic 0 (see [Kac, Remark 0.7]). Thus we let

L =
⊕

n∈Z gn̄ ⊗ Ctn

L̂ = L̂(g, σ) = L ⊕ Cc⊕ Cd

be the complex Lie algebra described in (1.9) and (1.10). Recall that g is a finite-
dimensional simple Lie algebra over C and σ is a diagram automorphism of g. We
let m ∈ {1, 2, 3} be the order of σ, and denote the canonical map Z → Z/mZ by
n 7→ n̄. Recall from (1.1) and (1.2) that σ induces a Z/mZ-grading of g, namely

g = g0̄ ⊕ · · · ⊕ gm−1

where gn̄ = {x ∈ g : σ(x) = ζnx} for a primitive mth root of unity ζ. For example,
for m = 2 we get a Z/2Z-grading g = g0̄ ⊕ g1̄ with g0̄ = {x ∈ g : σ(x) = x} and
g1̄ = {x ∈ g : σ(x) = −x}. We identify g0̄ ≡ g0̄ ⊗ Ct0.

We now verify the axioms (EA1) – (EA5) and (DE) which, we recall, implies
(EA6).

(EA1) We let κ be the Killing form of g and define a bilinear form (·|·) on L̂,
using the notation of (1.10),(

uλ̄ ⊗ tλ ⊕ s1c⊕ s′1d | vµ̄ ⊗ tµ ⊕ s2c⊕ s′2d
)

= κ(uλ̄, vµ̄)δλ,−µ + s1s
′
2 + s2s

′
1.

(2.12){n:eq:ealaone1}

The form is visibly symmetric. The reader is invited in Exercise 2.4.2 to show that
it is an invariant nondegenerate symmetric bilinear form on L̂, as required in (EA1)
(In fact it is up to a scalar the only such form which is graded with respect to the

root space decomposition of L̂). In anticipation of the later developments, we point
out that (·|·) has the following features:

• L̂ is an orthogonal sum of L and Cc⊕ Cd: L̂ = L ⊥ (Cc⊕ Cd),
• Cc⊕ Cd is a hyperbolic plane, i.e., (c | c) = 0 = (d | d) while (c | d) = 1.
• The Laurent polynomial ring C[t±1] has a nondegenerate symmetric bilin-

ear form ε given by ε(tλ, tµ) = δλ,−µ. It is invariant in the sense of Exer-
cise 1.2.3(c) and is graded as defined in (1.26). For σ = Idg, the bilinear
form on the loop algebra g⊗C[t±1] is simply the tensor product form κ⊗ ε,
and for a general σ the form is obtained by restriction.
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(EA2) To construct a subalgebra H as required in axiom (EA2) we start with a
Cartan subalgebra h of g. Since σ is a diagram automorphism, it leaves h invariant.
We let

h0̄ = h ∩ g0̄ = {h ∈ h : σ(h) = h}
and put

H = h0̄ ⊕ Cc⊕ Cd.
One knows that g0̄ is a simple Lie algebra with Cartan subalgebra h0̄ ([Kac,
Prop. 7.9]). The grading property implies that [g0̄, gn̄] ⊂ gn̄ for n ∈ Z. Hence
g0̄ acts on gn̄ by the adjoint action. Let ∆n̄ be the set of weights of the g0̄-module
gn̄ with respect to h0̄:

gn̄ =
⊕

γ∈∆n̄
gn̄,γ

gn̄,γ = {x ∈ gn̄ : [h0̄, x] = γ(h0̄)x for all h0̄ ∈ h0̄}.

In particular, ∆0̄ \ {0} is the root system of g0̄ with respect to h0̄ and h0̄ = g0̄,0.
We extend ∆n̄ ⊂ h∗0̄ to a linear form on H by zero, i.e., for γ ∈ ∆n̄ we put

γ(h0̄ ⊕ sc⊕ s′d) = γ(h0̄)

for s, s′ ∈ C and define a linear form δ on H by

δ(h0̄ ⊕ sc⊕ s′d) = s′.

Then for γ ∈ ∆n̄, n ∈ Z, we have

L̂γ⊕nδ = {u ∈ L̂ : [h, u] = (γ ⊕ nδ)(h)u for all h ∈ H}

=

{
gn̄,γ ⊗ tn, γ ⊕ nδ 6= 0,

H, γ ⊕ nδ = 0.

(2.13) {n:eq:ealaone2}

Hence L̂ =
⊕

α∈R L̂α has a root space decomposition with respect to H with set of
roots

R = {γ ⊕ nδ : γ ∈ ∆s̄, n̄ = s̄, 0 ≤ s < m}. (2.14) {n:eq:ealaone3}

This establishes (EA2).
To check the other axioms we first need to determine which of the roots in R

are the null respectively anisotropic roots. Following the procedure in Section 2.1,
we consider the restriction of the bilinear form (·|·) to H. With obvious notation
this is (

h0̄ ⊕ s1c⊕ s′1d | h′0̄ ⊕ s2c⊕ s′2d) = κ(h0̄, h
′
0̄) + s1s

′
2 + s2s

′
1.

Since κ|h0̄×h0̄
is nondegenerate, this is indeed a nondegenerate symmetric bilinear

form on H, as it should be. Let tγ ∈ h0̄ be the element representing γ ∈ h∗0̄:
κ(tγ , h0̄) = γ(h0̄) for all h0̄ ∈ h0̄. For the canonical extension of γ to a linear form
of H, also denoted by γ, we then get (tγ | h) = γ(h) for all h ∈ H. Moreover
(c | h0̄⊕ sc⊕ s′d) = s′ = δ(h0̄⊕ sc⊕ s′d) shows that δ is represented by tδ = c ∈ H.
Therefore α = γ ⊕ nδ ∈ R is represented by

tγ⊕nδ = tγ ⊕ nc.

Now observe (tγ⊕nδ | tγ⊕nδ) = (tγ ⊕ nc | tγ ⊕ nc) = κ(tγ , tγ). It is of course well-
known that κ(tγ , tγ) 6= 0 for 0 6= γ ∈ ∆0̄. But one can (easily) show that this also
holds for any 0 6= γ ∈ ∆n̄. The anisotropic and null roots are therefore

Ran = {γ ⊕ nδ ∈ R : γ 6= 0} and R0 = Zδ, (2.15) {n:eq:ealaone4}
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which in the theory of affine Kac-Moody algebras are usually called real and imag-
inary roots. We are now set for the verification of the remaining axioms.

(EA3) holds in the stronger form: ad L̂λ, α ∈ Ran, is nilpotent. (We have
already seen the same phenomenon in the Example 2.3 of a finite-dimensional split
simple Lie algebra. Perhaps the reader wonders if this is true in general. The
answer is yes.)

(EA4) The verification of (EA4) is left to the reader.

(EA5) The core of L̂ is L̂c =
(⊕

n∈Z gn̄ ⊗ Ctn
)
⊕ Cc, and therefore equals the

derived algebra [L̂, L̂] of L̂. The centralizer of L̂c in L̂, in fact the centre of L̂ is

Cc ⊂ L̂c, see Exercise 1.1.2.

(DE) In this example the subgroup Λ = 〈R0〉 equals R0 = Zd and is a discrete
subset of H∗.

We have now shown one implication of the following result.
{n:ealaone:th}

Theorem 2.4.1 ([ABGP]) A complex Lie algebra E is a discrete EALA of
nullity 1 if and only if E is an affine Kac-Moody Lie algebra.

{n:ex:ealaone1}
Exercise 2.4.2 Check the following details of the construction above.
(a) (2.12) defines an invariant symmetric bilinear form on L̂.

(b) L̂ has a root space decomposition whose root spaces are given by (2.13)
and whose set of roots is (2.14).

(c) κ(tγ , tγ) 6= 0 for any 0 6= γ ∈ ∆n̄.

(d) (EA4) holds for (L̂, H).

2.5 Higher nullity examples
{n:sec:ealan}

We have seen all examples of EALAs of nullity 0 and 1. In this section we
will construct examples of higher nullity. To simplify things we consider untwisted
algebras (no non-trivial finite order automorphism are involved). We can therefore
go back to our standard setting: g is a split simple Lie algebra over a field F of
characteristic 0.

As in Section 1.2 let F [t±1
1 , . . . , t±nn ] be the Laurent polynomial ring in n vari-

ables and let
L = L(g) = g⊗ F [t±1

1 , . . . , t±nn ]

be the associated untwisted multiloop algebra. We have seen in Exercise 1.2.1 that
L has a 2-cocycle ψ : L × L → Fn =: C, given by (1.16): ψ(u ⊗ tλ, v ⊗ tµ) =
δλ+µ,0 κ(u, v)λ. We can therefore define the central extension

K = L⊕ C

with product (1.22). In (1.19) we have defined degree derivations ∂i, i = 1, . . . , n,
of K. Let

D = spanF {∂1, . . . , ∂n} (2.16){n:ealandeg}
and define the Lie algebra E as the semidirect product,

E =
(
L(g)⊕ C

)
oD.

Let h be a Cartan subalgebra of g and put

H = h⊕ C⊕D.

We claim that (E,H) is an EALA of nullity n.
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(EA1) We will mimic the construction of an invariant nondegenerate symmetric
bilinear form in Section 2.4 and require

• (L(g) | C⊕D) = 0.
• C⊕D is a hyperbolic space with (C | C) = 0 = (D | D) and

(
∑
i sici |

∑
i s
′
i∂i) =

∑
i sis

′
i,

where c1, . . . , cn is the canonical basis of Fn. Thus C⊕D is the orthogonal
sum of the n hyperbolic planes Fci ⊕ F∂i.
• On L(g) the form is the tensor product form of the Killing form κ of g and

the natural invariant bilinear form on F [t±1
1 , . . . , t±1

n ].

Putting all these requirements together, we arrive at the global formula for an
invariant bilinear form on E, which is completely analogous to (2.12):(

u⊗ tλ ⊕
∑
i sici ⊕

∑
j s
′
j∂j | v ⊗ tµ ⊕

∑
i tici ⊕

∑
j t
′
j∂j
)

= κ(u, v)δλ,−µ +
∑
i(sit

′
i + tis

′
i).

(2.17) {n:eq:ealan0}

(EA2) Let h be a splitting Cartan subalgebra and let Φ be the usual root
system of (g, h), thus 0 6∈ Φ. We put ∆ = {0} ∪ Φ and then have the root space
decomposition g =

⊕
γ∈∆ gγ with g0 = h. We embed ∆ ↪→ H∗ by requiring

γ | C ⊕ D = 0 for γ ∈ ∆. Also we embed Λ = Zn ↪→ H∗ by λ(h ⊕ C) = 0 and
λ(∂i) = λi for λ = (λ1, . . . , λn) ∈ Λ. Then E has the root space decomposition
E =

⊕
α∈REα with root spaces

Eγ⊕λ = gγ ⊗ tλ (γ ⊕ λ 6= 0), E0 = H, (2.18) {n:eq:ealan1}

Ran = Φ× Λ, R0 = Λ. (2.19) {n:eq:ealan2}

It is now not difficult to verify the remaining axioms (EA3) – (EA5) and (DE).
Thus:

Lemma 2.5.1 The pair (E,H) constructed above is a discrete EALA of nullity
n.

There is however no analogue of Proposition 2.11 and Theorem 2.4.1: There are
many more EALAs of nullity n ≥ 2. We have just seen the “tip of the iceberg”!
Other examples can be found in Ch.III of [AABGP], some of them involving heavy-
duty nonassociative algebras, like octonion algebras and Jordan algebras over Lau-
rent polynomial rings!

{n:ueb4}
Exercise 2.5.2 Supply the missing details of the proof that (E,H) above is a

discrete EALA of nullity n. In particular, prove:
(a) (2.17) defines an invariant nondegenerate symmetric bilinear form on E.

(b) The root spaces of (E,H) and the anisotropic and null roots are as stated
in (2.18) and (2.19).
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CHAPTER 3

The structure of the roots of an EALA

{n:sec:roots}
In this chapter we will describe the structure of the set of roots R of an EALA

(E,H), defined in (2.5). We have already seen some examples: R can be a finite
irreducible reduced root system (2.10), R can be an affine root system (2.14), i.e.,
the set of roots of an affine Kac-Moody Lie algebra, or R can be of the form
R = S × Zn where S \ {0} is a finite irreducible reduced root system (2.19). Thus
any description of the general case has to encompass all these different examples.

It turns out that the roots of an EALA form an extended affine root system and
that the latter is naturally described as a special case of affine reflection systems.
We therefore first introduce the latter, describe their structure and then specialize
later to extended affine root systems. Affine reflection systems are themselves
special cases of reflection systems, whose theory is developed in [LN].

3.1 Affine reflection systems: Definition
{n:sec:ars}

Throughout this section we work with a triple (R,X, (·|·)) where

• X is a finite-dimensional vector space over a field F of characteristic 0,
• (·|·) is a symmetric bilinear form on X and
• R ⊂ X.

For any such triple (R,X, (·|·)) we define

X0 = {x ∈ X : (x | X) = 0}, the radical of (·|·),
R0 = {α ∈ R : (α|α) = 0}, (null roots)

Ran = {α ∈ R : (α|α) 6= 0}, (anisotropic roots)

〈x, α∨〉 = 2
(x|α)

(α|α)
, (x ∈ X and α ∈ Ran)

sα(x) = x− 〈x, α∨〉α. (3.1) {n:sec:ars1}

By definition we therefore have R = R0∪Ran. The map sα : X → X is a reflection
in α, i.e., s2

α = IdX and {x ∈ X : sα(x) = −x} = Fα. It is also orthogonal with
respect to (·|·): (sα(x) | sα(y)) = (x | y) for all x, y ∈ X.

We call (R,X, (·|·)), or just R for short, an affine reflection system if

(AR1): 0 ∈ R and R spans X,
(AR2): sα(R) = R for all α ∈ Ran,
(AR3): for every α ∈ Ran the set 〈R,α∨〉 is finite and contained in Z, and
(AR4): R0 = R ∩X0.

An affine reflection system is said to be

• reduced if for every α ∈ Ran and c ∈ F : cα ∈ Ran ⇐⇒ c = ±1,
• connected if for any decomposition Ran = R1 ∪ R2 with (R1 | R2) = 0 we

have R1 = ∅ or R2 = ∅.

27



28 3. The structure of the roots of an EALA

The nullity of (R,X) is the rank of the torsion-free abelian group Z[R0] = spanZ(R0)
generated by R0 in (X,+). Thus, by definition,

nullity of (R,X) = dimQ(Z[R0]⊗Z Q) = dimF (Z[R0]⊗Z F ).

Since the vector space Z[R0] ⊗Z F maps onto spanF (R0), the nullity of (R,Z)
is bounded below by dimF spanF (R0). It is in general not equal to it. But this
is of course so for nullity 0: (R,X) has nullity 0 if and only if R0 = {0} ⇐⇒
dimF spanF (R0) = 0.

Remarks 3.1.1 - For a large part of the theory it is not necessary that X be
finite-dimensional, see [LN]. But assuming this right from the start, simplifies the
presentation.

- We need the bilinear form (·|·) to define R0 and the reflections. But although
we will sometimes write (R,X, (·|·)), we will not consider (·|·) as part of the structure
of an affine reflection system. For example, in the definition of an isomorphism
below we will not require that the bilinear forms are preserved. See [LN], where
this point of view is emphasized.

- The requirement 0 ∈ R is in line with the previous chapter, in which 0 was
considered a root of an EALA. This conflicts with the traditional approach to root
systems in which 0 is not a root, see for example [Bou2], [Hu] or [Kac]. The question
whether 0 is a root or is not a root, has lead to heated debates. In the author’s
opinion, there are some advantages of considering 0 as a root, which however can
only be fully seen when one develops the theory for affine reflection systems. But
perhaps the reader can be convinced by the natural (?) example (R,X) = ({0}, {0})
of an affine reflection system.

- The condition 〈β, α∨〉 ∈ Z in axiom (AR3) makes sense since every field of
characteristic 0 contains (an isomorphic copy of) the field of rational numbers,
which allows us to identify Z ≡ Z1F .

- By definition 〈X0, α∨〉 = 0 for all α ∈ Ran. Hence sα(x0) = x0 for x0 ∈ X0.
Also, the inclusion R ∩ X0 ⊂ R0 in (AR4) is always true. Therefore the axioms
(AR2)–(AR4) can be replaced by the following conditions

(AR2)′ sα(Ran) = Ran for all α ∈ Ran,
(AR3)′ for every α ∈ Ran the set 〈Ran, α∨〉 ⊂ Z is finite,
(AR4)′ R0 ⊂ X0.

This new set of axioms makes it (even more) clear that the conditions on R0 are
rather weak: We (may) need R0 to span X from (AR1), we need R0 ⊂ X0 for
(AR4)′ and we need 0 ∈ R, which is no condition since one can always add 0 to R0.
We will see this phenomena re-appearing in the examples, e.g., in Example 3.2.1,
and in the definition of an extension datum in Definition 3.3.1.

- The definition of a connected affine reflection system is the same as the axiom
(EA4) in the definition of an EALA.

- The definition of an affine reflection system given in [LN] is not the same as
the one given here. The equivalence of two definitions follows from [LN, Prop. 5.4].

An isomorphism from an affine reflection system (R,X, (·|·)) to another affine
reflection system (R′, X ′(·|·)′) is a vector space isomorphism f : X → X ′ satisfying

f(Ran) = R′an and f(R0) = R′0

If such a map exists, (R,X, (·|·)) and (R′, X, (·|·)′) are called isomorphic. One can
show, as a corollary of the Structure Theorem 3.3.2, that an isomorphism f also
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satisfies f ◦ sα = sf(α) ◦ f for all α ∈ Ran, equivalently,

〈x, α∨〉 = 〈f(x), f(α)∨〉

for all x ∈ X and α ∈ Ran. This is always fulfilled if f is an isometry for (·|·) and
(·|·)′ respectively. But in general an isomorphism is not necessarily an isometry.
For example, one can always multiply the bilinear form (·|·) by a non-zero scalar
without changing 〈x, α∨〉.

Since a reflection sα is an isometry, it follows from (AR2) and (AR4) that sα
leaves Ran and R0 invariant and is thus an automorphism of (R,X). The subgroup
W (R) of the automorphism group of (R,X) generated by all reflections sα, α ∈ Ran,
is (obviously) called the Weyl group of (R,X). (It will not play a big role in this
chapter.)

3.2 Examples of affine reflection systems
{n:sec:arsex}

We will now give some immediate examples of affine reflection systems.
{n:arsexreal}

Example 3.2.1 (The real part of an affine reflections system) Let (R,X, (·|·))
be an affine reflection system. Then

Re(R) = {0} ∪Ran, Re(X) = spanF (Ran),

(·|·)Re = (·|·)Re(X)×Re(X)

defines an affine reflection system, called the real part of (R,X), with

Re(R)an = Ran, Re(R)0 = {0},

in particular Re(R) has nullity 0.
Observe that (·|·)Re need not be nondegenerate, see Example 3.2.3 for an ex-

ample.
The fact that one can “throw away” the non-zero null roots and still have an

affine reflection system indicates that one has little control over the null roots in a
general affine reflection system. This will be made even more evident in the concept
of an extension datum 3.3.1, used in the general Structure Theorem 3.3.2 for affine
reflection systems. It is therefore natural to define subclasses of affine reflection
system by imposing conditions on the null roots. For example, we will do so when
we define extended affine root systems in Section 3.4.

In [Ne5, 3.6] the author claimed that an affine reflection system of nullity 0 is
a finite root system. The example above show that this is far from being true. But
what remains true is the converse, also claimed in [Ne5, 3.6]: A finite root system
is an affine reflection system of nullity 0, as we will show now.

{n:arsexfin}
Example 3.2.2 (Finite root systems) Let Φ be a (finite) root system à la

Bourbaki [Bou2, VI, §1.1]. Recall that this means that Φ is a subset of an F -vector
space Y satisfying the axioms (RS1)–(RS3) below.

(RS1): Φ is finite, 0 6∈ Φ and Φ spans Y .
(RS2): For every α ∈ Φ there exists a linear form α∨ ∈ Y ∗ such that α∨(α) = 2

and sα(Φ) = Φ, where sα is the reflection of Y defined by sα(y) = y−α∨(y)α,
(RS3): for every α ∈ Φ the set α∨(Φ) is contained in Z.

Observe that the reflection sα defined in (RS2) satisfies sα(α) = −α and sα(y) = y
for α∨(y) = 0. It therefore seems to depend on α and the linear form α∨. However,
since Φ is finite, there exists at most one reflection s with s(Φ) = Φ and s(α) = −α
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([Bou2, VI, §1.1, Lemme 1]). It is therefore not necessary to indicate α∨ in the
notation of sα.

Note that we do not assume that Φ is reduced . This more general concept of a
root system is necessary for the Structure Theorem 3.3.2 of affine reflection systems.
The reader who is only familiar with the theory of reduced finite root systems, as
for example developed in [Hu, Ch. III], can perhaps be comforted by the fact that
the difference is not very big. Indeed, every finite root system is a direct sum of
connected (= irreducible) root systems and there is only one irreducible non-reduced
root system of rank l, namely

BCl = Bl ∪Cl = {±εi : 1 ≤ i ≤ l} ∪ {±εi ± εj : 1 ≤ i, j ≤ l}
where here and in the following ε1, . . . , εl is the standard basis of F l. (Note 0 ∈ BCl
in anticipation of the convention introduced below.)

In the context of finite-dimensional Lie algebras, non-reduced root systems arise
naturally as the roots of a finite-dimensional semisimple Lie algebra L with respect
to a maximal ad-diagonalizable subalgebra H ⊂ L which is not self-centralizing,
hence not a Cartan algebra. In particular, non-reduced root systems do not occur
over an algebraically closed field. However, they do occur in the context of infinite-
dimensional Lie algebras, even over algebraically closed fields, see Example 3.2.5.

Given a finite root system (Φ, Y ), define

S = {0} ∪ Φ and (x | y) =
∑
α∈Φ α∨(x)α∨(y) (3.2){n:arsexfin1}

for x, y ∈ Y . Then (·|·) is a nondegenerate symmetric bilinear form on Y with re-
spect to which all reflections sα are isometric ([Bou2, VI, §1.1, Prop. 3]). Moreover,
(α | α) is a positive integer for every α ∈ Φ (viewing Q ⊂ F canonically) and

〈y, α∨〉 = α∨(y) = 2 (y|α)
(α|α)

for all y ∈ Y . Hence sα as defined in (RS2) is also given by the formula (3.1). We
have S0 = {0} = X0 = X0 ∩ S. Since 〈Φ, α∨〉 ⊂ Z we have shown that

(S, Y, (·|·)) as defined in (3.2) is a finite affine reflection system of nullity 0.

We will characterize finite root systems within the category of affine reflection
systems in Corollary 3.3.3.

In the following we will always assume that a finite root system contains 0. We
will usually use the symbol S for a finite root system, and put

S× = S \ {0} = Φ.

We will also need the following subsets of roots of a finite root system S:

Sdiv is the set of divisible roots, where α ∈ S is called divisible if α/2 ∈ S. In
particular 0 ∈ Sdiv. We put S×div = Sdiv ∩ S× = Sdiv \ {0}.

Sind = S \ S×div, the subsystem of indivisible roots.

We also need the fact that there exists a unique symmetric bilinear form (·|·)u on
Y which is invariant under the Weyl group W (S) and which satisfies 2 ∈ {(α|α)u :
0 6= α ∈ C} ⊂ {2, 4, 6, 8} for every connected component C of S. This follows easily
from [Bou2, Prop. 7]. Observe that

S×div = {α ∈ S : (α|α)u = 8}.
We use (·|·)u to define short and long roots:
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Ssh = {α ∈ S : (α|α)u = 2} is the set of short roots.
Slg = {α ∈ S : (α|α)u ∈ {4, 6}} is the set of long roots in S.

Thus Slg = S \ (Ssh ∪ Sdiv). For example, for S = BCl we have

BCl,sh = {±εi : 1 ≤ i ≤ l},
BC×l,div = {±2εi : 1 ≤ i ≤ l},
BCl,lg = {±εi ± εj : 1 ≤ i 6= j ≤ l},

in particular BC1,lg = ∅, and if S is simply laced , i.e., S× = Ssh, then Sdiv = {0}
and Slg = ∅.

{n:arsexn}
Example 3.2.3 (Untwisted affine reflection systems) Let (S, Y, (·|·)Y ) be a

finite root system. Hence 0 ∈ S and Φ = S \ {0}, as stipulated in Example 3.2.2.
Also, let Z be an n-dimensional F -vector space, say with a basis ε1, . . . , εn. We
define

X = Y ⊕ Z,
Λ = Zε1 ⊕ · · · ⊕ Zεn ⊂ Z,
R =

⋃
ξ∈S{ξ ⊕ λ : λ ∈ Λ} ⊂ Y ⊕ Z,

(x1 | x2)X = (y1 | y2)Y for xi = yi ⊕ zi with yi ∈ Y and zi ∈ Z.

By construction we then have

X0 = Z, R0 = Λ, Ran =
⋃
ξ∈Φ ξ ⊕ Λ

where of course ξ ⊕ Λ = {ξ ⊕ λ : λ ∈ Λ}. For α = ξ ⊕ λ ∈ Ran with ξ ∈ S and
λ ∈ Λ the reflection sα satisfies

sα(y ⊕ z) = sξ(y)⊕ (z − 〈y, ξ∨〉λ). (3.3) {n:eq:arsexn1}

We will leave it to the reader to verify that

(R,X) is an affine reflection system of nullity n. (3.4) {n:arsexn2}

Observe that (R,X) is the set of roots of the EALA constructed in Section 2.5, see
in particular (2.19).

Observe that spanF (Ran) = X = Re(X) in case S 6= {0}. This shows that the
form (·|·)Re of the real part Re(R) of R need not be nondegenerate.

Exercise 3.2.4 Show the claim in (3.4), and also that (R,X) is reduced resp.
connected if and only if (S, Y ) is so.

{n:arsexone}
Example 3.2.5 (Affine root systems) By definition, an affine root system is

the set of roots of an affine Kac-Moody Lie algebra, which we studied in Section 1.1
and then again in Section 2.4, where we showed that an affine Kac-Moody algebra
is an EALA of nullity 1. Our goal here is not surprising. We want to show that

an affine root system is an affine reflection system of nullity 1. (3.5) {n:arsexone1}

Let us first collect the data necessary to prove this. We use the notation established
in Section 2.4. Thus, L̂ = L̂(g, σ) is an affine Kac-Moody Lie algebra over C, σ
is a diagram automorphism of the simple finite-dimensional Lie algebra g of order
m ∈ {1, 2, 3}, and ∆s̄ denotes the set of weights of the (g0̄, h0̄)-module gs̄ ⊂ g,
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s = 0, . . . ,m − 1. One knows that ∆0̄ is a reduced irreducible root system in

h∗0̄ =: Y . The roots of L̂ with respect to H = h0̄ ⊕ Cc⊕ Cd are

R = {γ ⊕ nδ : γ ∈ ∆s̄, n̄ = s̄, 0 ≤ s < m},

see (2.14), hence

X = spanC(R) = Y ⊕ Cδ.
The bilinear form (·|·)X used to determine the (an)isotropic roots in R has the form

(x1 | x2)X = (y1 | y2)Y

where xi = yi ⊕ aiδ with yi ∈ Y and ai ∈ C, and where (·|·)Y is the nondegenerate
symmetric bilinear form on Y , obtained by transporting the Killing form κ |h0̄×h0̄

from h0̄ to Y . It follows that

X0 = Cδ and Ran = {γ ⊕ nδ ∈ R : γ 6= 0}.

We can now verify the axioms (AR1)–(AR4).

(AR1) holds by definition. (AR2) is a consequence of [Kac, Prop. 3.7(b)].
Concerning (AR3), it follows from the structure of (·|·)X that

〈x, α∨〉 = 〈y, γ∨〉 for x = y ⊕ aδ ∈ X and α = γ ⊕ nδ ∈ Ran. (3.6){n:arsexone3}

This implies that 〈R,α∨〉 is a finite set since

S = ∆0̄ ∪ · · · ∪∆m−1

is a finite set (S is actually a finite root system; for m > 1 see the table below).

Moreover 〈R,α∨〉 ⊂ Z because L̂ is an integrable L̂-module ([Kac, Lemma 3.5]).
Thus (AR3) holds, and (AR4) follows from (3.6) and (γ | γ) = 0⇔ γ = 0 for γ ∈ S.
This proves (3.5).

To motivate the definition of extension data in Definition 3.3.1 and the Struc-
ture Theorem 3.3.2 for affine reflection systems, we will now look at R and S more
closely. In the untwisted case, i.e., m = 1, we have of course

∆0̄ = S, R = S × Zδ (m = 1).

Thus R is an untwisted affine root system of nullity 1, a special case of the Exam-
ple 3.2.3. For m = 2, 3 the structure of ∆s̄ and S is summarized in the table below.
Proofs can be extracted from [Kac, 7.9, 7.8, 8.3].

(g,m) ∆0̄ ∆1̄ S

(A2l, 2), l ≥ 1 A1 or Bl(l ≥ 2) ∆0̄ ∪ {±2εi : 1 ≤ i ≤ l} BCl

(A2l−1, 2), l ≥ 2 Cl {0} ∪ Cl,sh Cl

(Dl+1, 2), l ≥ 3 Bl {0} ∪ Bl,sh Bl

(E6, 2) F4 {0} ∪ F4,sh F4

(D4, 3) G2 {0} ∪G2,sh G2

(3.7){n:table1}

We can now rewrite R. For subsets T ⊂ S and Ξ ⊂ Zδ we put

T ⊕ Ξ = {τ ⊕ nδ : τ ∈ T, nδ ∈ Zδ}
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and abbreviate B1 = A1 = {0,±α}. For m = 2 we get

R = (∆0̄ ⊕ 2Zδ) ∪
(
∆1̄ ⊕ (1 + 2Z)δ

)
=

{
({0} ⊕ Zδ) ∪

(
(Bl \{0} ⊕ Zδ

)
∪
(

BC×div⊕(1 + 2Z)δ
)
, g = A2l

({0} ⊕ Zδ) ∪ (Ssh ⊕ Zδ) ∪ (Slg ⊕ 2Zδ), g 6= A2l .

For (g,m) = (D4, 3) one knows ∆1̄ = ∆2̄ = {0} ∪G2,sh, whence

R = (∆0̄ ⊕ 3Zδ) ∪
(
∆1̄ ⊕ (1 + 3Z)δ

)
∪
(
∆2̄ ⊕ (2 + 3Z)δ

)
= ({0} ⊕ Zδ) ∪ (Ssh ⊕ Zδ) ∪ (Slg ⊕ 3Zδ).

In all three cases R has a simultaneous description in terms of the root system S
and subsets Λsh,Λlg,Λdiv ⊂ Zδ as

R = R0 ∪ (Ssh ⊕ Λsh) ∪ (Slg ⊕ Λlg) ∪ (S×div ⊕ Λdiv) (3.8) {n:arsexone4}

where

Λsh = Zδ = R0, Λdiv = (1 + 2Z)δ, Λlg =


Zδ, g = A2l, m = 2,

2Zδ, g 6= A2l, m = 2,

3Zδ, m = 3.

(3.9) {n:arsexone5}

If we define Λξ for ξ ∈ S by Λξ ∈ {Λ0 = R0,Λsh,Λlg,Λdiv} according to ξ belong
to the corresponding subset of S, then (3.8) becomes

R =
⋃
ξ∈S ξ ⊕ Λξ. (3.10) {n:arsexone7}

Note that we also recover [Kac, Th. 5.6(b)]:

R ∩X0 = R ∩ Zδ.
{n:arsexaone}

Example 3.2.6 (Type A1 generalized) We consider a final example of an affine
reflection system to motivate the definition of an extension datum in Definition 3.3.1
below.

Let Z be a finite-dimensional F -vector space and define the vector space X and
a symmetric bilinear form on X by

X = Fα⊕ Z, (a1α⊕ z1 | a2α⊕ z2) = a1a2,

where 0 6= α and ai ∈ F . We define R ⊂ X in terms of three non-empty subsets
Λ0,Λα,Λ−α ⊂ Z as follows:

R = Λ0 ∪ (α⊕ Λα) ∪ (−α⊕ Λ−α). (3.11) {n:arsexaone0}

It is then immediate that

X0 = Z, R0 = Λ0, Ran = (α⊕ Λα) ∪ (−α⊕ Λ−α).

We will now discuss under which conditions (R,X, (·|·)) is an affine reflection sys-
tem. Let us start with (AR2). For si ∈ {±1}, µ ∈ Λs1α and λ ∈ Λs2α we have

〈s1α⊕ µ, (s2α⊕ λ)∨〉 = 2 s1s2,

ss2α⊕λ(s1α⊕ µ) = −s1α⊕ (µ− 2s1s2λ)

Hence, all reflections ss2α⊕λ leave R invariant if and only if µ− 2s1s2λ ∈ Λ−s1α for
µ, λ as above, i.e., in obvious short form Λs1α − 2s1s2Λs2α ⊂ Λ−s1α. In particular,

Λα − 2Λα ⊂ Λ−α, Λ−α − 2Λ−α ⊂ Λα for s1 = s2,
Λ−α + 2Λα ⊂ Λα for s1 = −1 = −s2.
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For λ ∈ Λα we therefore get λ − 2λ = −λ ∈ Λ−α, whence −Λα ⊂ Λ−α and,
analogously, Λ−α ⊂ −Λα. We therefore obtain

Λ−α = −Λα, (3.12) {n:arsexaone2}

or with the notation of above Λs1α = s1Λα. It is now easy to see that (AR2) is
equivalent to the two conditions (3.12) and

2Λα − Λα ⊂ Λα. (3.13){n:arsexaone4}

It then follows that R is an affine reflection system if and only if

(i) (3.12) and (3.13) hold,
(ii) 0 ∈ Λ0, and

(iii) Z = spanF (Λ0 ∪ Λα ∪ Λ−α).

Observe the similarity with the previous examples: R has the form

R =
⋃
ξ∈S ξ ⊕ Λξ

where S = {0,±α} is a finite root system and (Λξ : ξ ∈ S) is a family of subsets in
X0. However, in the previous examples the Λξ were subgroups of (Z,+) while here
we only have the condition (3.13). Does this imply that Λα is a subgroup? The
answer is no! For example, in Z = F the subset Λα = 1 + 2Z ⊂ F satisfies (3.13).

A subset A of an abelian group (Z,+) is called a reflection subspace if 2a1−a2 ∈
A for all ai ∈ A (see [L] or [Ne5, 3.3] for a justification for this terminology). Hence,
(3.13) just says that Λα is a reflection subspace. The structure of two special types
of reflection subspaces is described in Exercise 3.2.7 below.

While in general Λα is far from being a subgroup, one can always “re-coordina-
tize” R to at least get 0 ∈ Λα. Namely, for a fixed λ ∈ Λα we have α + Λα =
(α+ λ) + (Λα − λ). Hence, with α̃ = α+ λ and Λα̃ = Λα − λ, we obtain

R = Λ0 ∪ (α̃+ Λα̃) ∪
(
− (α̃+ Λα̃)

)
, (3.14){n:arsexaone5}

where now Λα̃ not only satisfies (3.13) but also 0 ∈ Λα̃. In other words, Λα̃ is a
pointed reflection subspace as defined in Exercise 3.2.7 and therefore also satisfies
Λα̃ = −Λα̃.

The process of re-coordinatization works well in this example. The reason is
that the finite root system S in (3.14) is reduced. Re-coordinatization will not work
if S is not reduced, as for example in the case (g,m) = (A2l, 2) of Example 3.2.5.
This “explains” why in the property (ED2) of an extension datum in 3.3.1 we
require 0 ∈ Λξ only for an indivisible root ξ ∈ S.

{n:arsexlem}
Exercise 3.2.7 Let A be a subset of an abelian group (Z,+). As above we

put 2A−A = {2a1 − a2 : ai ∈ A}. We denote by Λ = spanZ(A) the Z-span of A in
Z. A subset A ⊂ Z is called symmetric if A = −A.

(a) The following equivalent conditions characterize symmetric reflection sub-
spaces A ⊂ Z:

(i) 2A−A ⊂ A and A = −A,
(ii) 2λ+ a ∈ A for every λ ∈ Λ and a ∈ A,
(iii) A is a union of cosets modulo 2Λ,
(iv) a1 − 2a2 ∈ A for all ai ∈ A.

(b) The following are equivalent for A ⊂ Z:
(i) 0 ∈ A and A− 2A ⊂ A,
(ii) 0 ∈ A and 2A−A ⊂ A,
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(iii) 2Z[A] ⊂ A and 2Z[A]−A ⊂ A,
(iv) A is a union of cosets modulo 2Z[A], including the trivial coset 2Z[A].

In this case A is called a pointed reflection subspace.

(c) Every pointed reflection subspace is symmetric.

(d) If A is a symmetric reflection subspace then A + A is a pointed reflection
subspace.

3.3 The Structure Theorem of affine reflection systems
{n:sec:arstrut}

After the many examples in Section 3.2, the following definition should not be
too surprising.

{n:arsed}
Definition 3.3.1 Let S be a finite root system as defined in Example 3.2.2.

Recall S× = S \ {0} and Sind = {0} ∪ {α ∈ S : α/2 6∈ S} = S \ S×div. Also, let Z be
a finite-dimensional F -vector space. An extension datum of type (S,Z), sometimes
simply called an extension datum, is a family (Λξ : ξ ∈ S) of subsets Λξ ⊂ Z
satisfying the axioms (ED1)–(ED3) below.

(ED1): For η, ξ ∈ S×, µ ∈ Λη and λ ∈ Λξ we have µ − 〈η, ξ∨〉ξ ∈ Λsξ(η), in
obvious short form

Λη − 〈η, ξ∨〉Λξ ⊂ Λsξ(η).

(ED2): 0 ∈ Λξ for ξ ∈ Sind, and Λξ 6= ∅ for ξ ∈ S \ Sind = S×div.

(ED3): Z = spanF
(⋃

ξ∈S Λξ
)
.

The axiom (ED1) is trivially true for η = 0 since 〈η, ξ∨〉 = 0 and sξ(0) = 0.
Also, if S×div = ∅, then there is no Λξ for ξ ∈ S×div and so the second condition in
(ED2) is trivially fulfilled. (ED3) simply serves to determine Z. If it does not hold,
one can simply replace Z by spanZ(

⋃
ξ∈S Λξ).

The definition of an extension datum above is a special case of the notion of an
extension datum for a pre-reflection system, introduced in [LN, 4.2]. (The reader
will note that the axiom (ED1) in [LN] simplifies since in our setting the subset Sre

of [LN] is Sre = San = S \ {0}.) The Structure Theorem 3.3.2 below is proven in
[LN, Th. 4.6] for extensions of pre-reflection systems. Affine reflection systems are
special types of such extensions, namely finite-dimensional extensions of finite root
systems.

The rationale for the concept of an extension datum is the following Structure
Theorem for affine reflection systems.

{n:arsstructh}
Theorem 3.3.2 (Structure Theorem for affine reflection systems)

(a) Let (S, Y, (·|·)Y ) be a finite root system and let L = (Λξ : ξ ∈ S) be an extension
datum of type (S,Z). Define (R,X, (·|·)X) by

X = Y ⊕ Z
R =

⋃
ξ∈S ξ ⊕ Λξ ⊂ Y ⊕ Z = X,

(y1 ⊕ z1 | y2 ⊕ z2)X = (y1 | y2)Y

for yi ∈ Y and zi ∈ Z. Then (R,X, (·|·)X) is an affine reflection system, denoted
A(S,L), with

R0 = Λ0, X0 = Z and Ran =
⋃

06=ξ∈S ξ ⊕ Λξ.
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For α = ξ ⊕ λ ∈ Ran and x = y ⊕ z ∈ X the reflection sα is given by

sα(x) = sξ(y)⊕ (z − 〈y, ξ∨〉λ)

(b) Conversely, let (R,X, (·|·)X) be an affine reflection system.

(i) Let f : X → X/X0 =: Y be the canonical map, put S = f(R) and let (·|·)Y
be the induced bilinear form on Y , that is (f(x1) | f(x2))Y = (x1 | x2)X .
Then (S, Y, (·|·)Y ) is a finite root system, the so-called quotient root system
of (R,X).

(ii) There exists a linear map g : Y → X satisfying f ◦g = IdY and g(Sind) ⊂ R.
(iii) For g as in (ii) and ξ ∈ S define Λξ ⊂ Ker(f) =: Z by

R ∩ f−1(ξ) = g(ξ)⊕ Λξ. (3.15){n:arsstructh1}

Then L = (Λξ : ξ ∈ S) is an extension datum of type (S,Z).
(iv) (R,X) is isomorphic to the affine reflection system A(S,L) constructed in

(a).

Let us note that it is not reasonable to expect g(S) ⊂ R in (b.ii) above, since R
may be reduced while S is not, see for example the case (g,A2l) in Example 3.2.5.
The quotient root system S is uniquely determined, but not so the extension datum,
see [LN, Th. 4.6(c)].

{n:arsclass0}
Corollary 3.3.3 An affine reflection system (R,X, (·|·)) is nondegenerate in

the sense that (·|·) is nondegenerate if and only if R is a finite root system.

Proof If (R,X, (·|·)) is an affine reflection system with a nondegenerate form
(·|·), then {0} = X0 = Ker f , so f is the identity. We have seen the other direction
in Example 3.2.2.

{n:arsrealcl}
Corollary 3.3.4 ([LN, Cor. 5.5]) Let (R,X, (·|·)) be an affine reflection system

over F = R. Then there exists a positive semidefinite symmetric bilinear form (·|·)≥
on X such that (R,X, (·|·)≥) is an affine reflection system with the same anisotropic
and null roots and reflections.

The morale of the Structure Theorem is

affine reflection system = finite root system + extension datum

Thus properties of an affine reflection system can be described in terms of properties
of its quotient root system and the associated extension datum. Some examples of
this philosophy are given in the Proposition 3.3.5 and the Exercise 3.3.6 below.

{n:ex:arsstrut3}
Proposition 3.3.5 ([LN, Cor. 5.2]) Let R be an affine reflection system, let S

be its quotient root system and let (Λξ : ξ ∈ S) be the associated extension datum.
We define

Λdiff =
⋃

06=ξ∈S Λξ − Λξ.

Then ZΛdiff = Λdiff . Moreover:
(a) R is tame in the sense that R0 ⊂ Ran −Ran if and only if R0 ⊂ Λdiff .
(b) All root strings

S(β, α) = R ∩ (β + Zα), (β ∈ R,α ∈ Ran)

are unbroken, i.e., Z(β, α) = {n ∈ Z : β + nα ∈ R} is either a finite interval in Z
or equals Z, if and only if Λdiff ⊂ R0.

(c) A tame affine reflection system with unbroken root strings is symmetric.
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{n:ex:arsstrut1}
Exercise 3.3.6 Let R be an affine reflection system, let S be its quotient root

system and let (Λξ : ξ ∈ S) be the associated extension datum. We use the notation
of Proposition 3.3.5. Prove:

(a) R is reduced if and only if for all 0 6= ξ ∈ S with 2ξ ∈ S we have

Λ2ξ ∩ 2Λξ = ∅.

In particular, S need not be reduced for R to be reduced!
(b) R is connected iff S is connected (= irreducible) .
(c) R is symmetric, i.e., R = −R, iff Λ0 is symmetric.
(d) For all α ∈ Ran and β ∈ R the α-string through β, i.e., S(β, α) has length
|S(β, α)| ≤ 5.

(e) Let (α, β) ∈ Ran × R and define d, u ∈ N by put −d = minZ(β, α) and
u = maxZ(β, α). Then u− d = 〈β, α∨〉.

We will now describe how the examples of affine reflection systems of Section 3.2
fit into the general scheme of the Structure Theorem 3.3.2 above.

{n:arsedexam}
Examples 3.3.7 (a) Let L = (Λξ : ξ ∈ S) be an extension datum of type

(S,Z). Observe that the only conditions on Λ0 are 0 ∈ Λ0 from (ED2) and that
Λ0 together with the other Λξ’s spans Z by (ED3). This is in line with our earlier
observation that one has little control over the null roots R0 of an affine reflection
system. Following the Example 3.2.1 we define a new extension datum Re(L) =
(Re(Λξ) : ξ ∈ S) of type (S,Re(Z)) by

Re(Z) = spanF
(⋃

06=ξ∈S Λξ
)
, Re(Λξ) =

{
{0} for ξ = 0,

Λξ for ξ 6= 0.

If L is the extension datum associated to the affine reflection system (R,X), then
Re(L) is the extension datum associated to the affine reflection system Re(R), the
real part of (R,X).

(b) All Λξ = {0}, whence Z = {0}, defines a trivial extension datum for any
root system S. It is “used” when we view the finite root system S as an affine
reflection system, as we have done in Example 3.2.2.

(c) Let Λ be a subgroup of a finite-dimensional vector space Z such that
spanF (Λ) = Z. Then for any finite root system S the family (Λξ ≡ Λ : ξ ∈ S)
is an extension datum of type (S,Z). It is used to construct the untwisted affine
reflection systems of Example 3.2.3.

(d) Let R be an affine root system . We have seen that R is an affine reflection
system. Its quotient root system S and its associated extension datum (Λξ : ξ ∈ S)
are described in Example 3.2.5 using the very same symbols, see the formulas (3.10)
and (3.15).

(e) The family L̃ = (Λ0,Λα̃,Λ−α̃) in Example 3.2.6 is an extension datum, but
not necessarily L = (Λ0,Λα,Λ−α) since 0 need not lie in Λ±α. In fact, replacing L

by L̃ was the rationale for the re-coordinatization in 3.2.6.

To describe the classification of affine reflection systems we need some more
properties of the subsets Λξ of an extension datum. They are given in the following
exercise (just do it!). Recall from Exercise 3.2.7 that a reflection subspace A is
called symmetric if A = −A and is called pointed if 0 ∈ A.
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{n:arsedlem}
Exercise 3.3.8 Let (Λη : η ∈ S) be an extension datum of type (S,Z). Show:
(a) Every Λξ for 0 6= ξ ∈ S is a symmetric reflection subspace and is even a

pointed reflection subspace if ξ ∈ S×ind.
(b) For w ∈W (S), the Weyl group of S, we have

Λξ = Λw(ξ). In particular, Λξ = Λ−ξ = −Λξ. (3.16){n:arsedlem1}

(c) Whenever 0 6= ξ ∈ S and 2ξ ∈ S, then

Λ2ξ ⊂ Λξ.

(d) ZΛξ ⊂ Λξ for ξ ∈ S×ind.

Let L = (Λξ : ξ ∈ S) be an extension datum and assume that S is irreducible.
Then W (S) acts transitively on the roots of the same length ([Bou2, VI, §1.3,
Prop. 11]), i.e., on {0}, Ssh, Slg and Sdiv (some of these sets might be empty).
Because of (3.16), there are therefore at most four different subsets Λ0, Λsh, Λlg

and Λdiv among the Λξ, defined by

Λξ =


Λ0, ξ = 0;

Λsh, ξ ∈ Ssh;

Λlg, ξ ∈ Slg;

Λdiv, ξ ∈ S×div.

(3.17){n:arsed1}

Of course, Λlg or Λdiv only exists if the corresponding subset of roots exits. The
assertions below referring to Λlg or Λdiv should be interpreted correspondingly.

We have seen in Exercise 3.3.8 (did you do it?), that the subsets Λsh and Λlg

are pointed reflection subspaces and that Λdiv is a symmetric reflection subspace.
Assuming only these properties, does however not give an extension datum since
only parts of the axiom (ED1) are fulfilled, namely those with η = ±ξ. We also
need to evaluate what happens for η 6= ±ξ with 〈η, ξ∨〉 6= 0. We will do this in the
following examples.

Examples 3.3.9 Let S be an irreducible root system. We suppose that we are
given a pointed reflection subspace Λsh of a finite-dimensional vector space, and if
Slg 6= ∅ or S×div 6= ∅ then also a pointed reflection subspace Λlg and a symmetric
reflection subspace Λdiv. We define Λξ, ξ ∈ S×, by (3.17), put Λ0 = {0} and ask,
when is the family

Lmin = ({0},Λsh,Λlg,Λdiv)

defined in this way an extension datum in Z = span
(⋃

ξ∈S Λξ
)
? Note that we only

have to check (ED1). We will consider some examples of S.

(a) S = A1: In this case there are no further conditions, so Lmin describes all
possible extension data for A1 with Λ0 = {0}.

(b) S = A2: In this case there exist roots η, ξ with 〈η, ξ∨〉 = 1, namely those
for which ∠(η, ξ) = π

3 . Evaluating (ED1) for those roots yields Λsh − Λsh ⊂ Λsh,
forcing Λsh to be a subgroup of Z. Thus, Lmin is an extension datum for S = A2

iff Λsh is a subgroup.
(c) S simply laced, rankS ≥ 2: The argument in (b) works whenever Ssh

contains roots η, ξ with 〈η, ξ∨〉 = 1. Since this is the case here, we get that Lmin is
an extension datum iff Λsh is a subgroup of Z.
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(d) S = B2 = {±ε1,±ε2,±ε1 ± ε2}: Here we have pointed reflection subspaces
Λsh and Λlg. Since non-zero roots of the same length are either proportional or
orthogonal, (ED1) is fulfilled for them. Because (ED1) is invariant under sign
changes, we are left to evaluate the case of two roots η, ξ of different lengths forming
an obtuse angle of 3π

4 , for example η = ε1, ξ = ε2 − ε1.
If 〈η, ξ∨〉 = −2, then η is long, ξ is short and so (ED1) becomes Λlg + 2Λsh ⊂

Λlg. If η is short, ξ is long, we have 〈η, ξ∨〉 = −1 and thus get the condition
Λsh + Λlg ⊂ Λsh. To summarize: Lmin is an extension datum for S = B2 iff Λsh

and Λlg are pointed reflection subspaces satisfying

Λlg + 2Λsh ⊂ Λlg and Λsh + Λlg ⊂ Λsh. (3.18) {n:arsed2}

Note that (3.18) implies 2Λsh ⊂ Λlg ⊂ Λsh.
(e) S = Bl, l ≥ 3. Recall S = {±εi : 1 ≤ i ≤ l} ∪ {±εi ± εj : 1 ≤ i 6= j ≤ l}.

Since the short roots in S are either proportional or orthogonal, (ED1) is fulfilled
for all short roots η, ξ. But there exist long roots η, ξ ∈ S with ∠(η, ξ) = π

3 , whence
〈η, ξ∨〉 = 1 and so (ED1) reads Λlg − Λlg ⊂ Λlg. This forces Λlg to be a subgroup.
As for S = B2, (ED1) for roots of different lengths leads to the condition (3.18). It
is then easy to check that Lmin is an extension datum for S = Bl, l ≥ 3, iff Λsh is
a pointed reflection subspace, Λlg is a subgroup and (3.18) holds.

Continuing in this way, one arrives at the following.
{n:structextdat}

Theorem 3.3.10 (Structure of extension data) Let S be an irreducible
finite root system and define a family Lmin as in (3.17) with Λ0 = {0}. Then Lmin

is an extension datum if and only if Λsh and Λlg are pointed reflection subspaces,
Λdiv is a symmetric reflection subspace and the following conditions, depending on
S, hold.

(i) S is simply laced, rankS ≥ 1 : No further condition for S = A1, but Λsh is
a subgroup if rankS ≥ 2.

(ii) S = Bl(l ≥ 2), Cl(l ≥ 3), F4 : Λsh and Λlg satisfy

Λlg + 2Λsh ⊂ Λlg and Λsh + Λlg ⊂ Λsh.

Moreover,
• Λlg is a subgroup if S = Bl, l ≥ 3 or S = F4, and
• Λsh is a subgroup if S = Cl or S = F4.

(iii) S = G2 : Λsh and Λlg are subgroups satisfying

Λlg + 3Λsh ⊂ Λlg and Λsh + Λlg ⊂ Λsh.

(iv) S = BC1 : Λsh and Λdiv satisfy

Λdiv + 4Λsh ⊂ Λdiv and Λsh + Λdiv ⊂ Λsh.

(v) S = BCl(l ≥ 2) : Λsh, Λlg and Λdiv satisfy

Λlg + 2Λsh ⊂ Λlg, Λsh + Λlg ⊂ Λsh,
Λdiv + 2Λlg ⊂ Λdiv, Λlg + Λdiv ⊂ Λlg,
Λdiv + 4Λsh ⊂ Λdiv, Λsh + Λdiv ⊂ Λsh.

In addition, if l ≥ 3 then Λlg is a subgroup.

The inclusions Λdiv + 4Λsh ⊂ Λdiv and Λsh + Λdiv ⊂ Λsh in case (v) above are
consequences of the other inclusions. Since 0 lies in Λsh and also in Λlg if it exists,
the displayed inclusions in the Structure Theorem above imply

Λdiv ⊂ Λlg ⊂ Λsh. (3.19) {n:arsed3}
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The details of this theorem are given in [AABGP, II, §2] for the special case
of extended affine root systems and then in [Y3] in general (it follows from the
Structure Theorem 3.3.2 that an affine reflection system is the same as a “root
system extended by a torsion-free abelian group of finite rank” in the sense of
[Y3]). The reference [AABGP] also contains a classification of discrete extension
data for extended affine root systems of low nullity.

Exercise 3.3.11 Without looking at [AABGP] or [Y3], work out some of the
cases in Theorem 3.3.10 above.

3.4 Extended affine root systems
{n:sec:ears}

Let us come back to the beginning of this chapter. Our goal was to describe
the structure of the set of roots occurring in an extended affine Lie algebra. After
all the preparations in Sections 3.1–3.3, this is now easy.

We start with the same setting as in Section 3.1, i.e., X is a finite-dimensional
vector space over a field F of characteristic 0, R is a subset of X and (·|·) is a
symmetric bilinear form on X. As in Section 3.1 we define R0 = {α ∈ R : (α|α) =
0}, Ran = {α ∈ R : (α|α) 6= 0} and

〈x, α∨〉 = 2
(x|α)

(α|α)
, (x ∈ X and α ∈ Ran).

{n:earsdef}
Definition 3.4.1 A triple (R,X, (·|·)) as above is called an extended affine

root system or EARS for short, if the following seven axioms (EARS1)–(EARS7)
are fulfilled.

(EARS1): 0 ∈ R and R spans X,
(EARS2): R has unbroken finite root strings , i.e., for every α ∈ Ran and
β ∈ R there exist d, u ∈ N = {0, 1, 2, . . .} such that

{β + nα : n ∈ Z} ∩R = {β − dα, . . . , β + uα} and d− u = 〈β, α∨〉.
(d stands for “down” and u for “up”.)

(EARS3): R0 = R ∩X0.
(EARS4): R is reduced as defined in Section 3.1: for every α ∈ Ran we have
Fα ∩Ran = {±α}.

(EARS5): R is connected in the sense of Section 3.1: whenever Ran = R1∪R2

with (R1 | R2) = 0, then R1 = ∅ or R2 = ∅.
(EARS6): R is tame, i.e., R0 ⊂ Ran +Ran.
(EARS7): The abelian group spanZ(R0) is free of finite rank.

In analogy with the concept of discrete EALAs we call (R,X, (·|·)) for F = C
or F = R a discrete extended affine root system if (EARS1)–(EARS6) hold and in
addition

(DE): R is a discrete subset of X, equipped with the natural topology.

As for EALAs, a discrete extended affine root system necessarily satisfies (EARS7),
see Proposition 3.4.2(c) below, so that it is justified to call it an EARS.

We will immediately connect EARS to affine reflection systems:
{n:earsstrut}

Proposition 3.4.2 (a) A pair (R,X) satisfying (EARS1)–(EARS3) is an
affine reflection system. In particular:

(i) An extended affine root system is an affine reflection system which is , con-
nected, symmetric, tame and which has unbroken root strings.
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(ii) If F = R we can assume that (·|·) is positive semidefinite.

(b) Let (R,X) be an affine reflection system with quotient root system S and
extension datum L. Then (R,X) is an extended affine root system if and only if

(i) S is irreducible, hence L = (Λ0,Λsh,Λlg,Λdiv),
(ii) Λ0 = Λsh + Λsh, Λdiv ∩ 2Λsh = ∅, and

(iii) (EARS7) holds.

(c) For an extended affine root system (R,X) over F = R or F = C the
following are equivalent:

(i) R is discrete;
(ii) R0 is a discrete subset of X;

(iii) spanZ(R0) is a discrete subgroup of X.

In this case, all reflection subspaces Λξ of (b) are discrete too, and spanZ(R0) is a
free abelian group of finite rank.

Proof (a) Obviously (AR1) = (EARS1) and (AR4) = (EARS3). The axiom
(AR2), i.e., sα(R) = R, follows from (EARS2): sα(β) = β + (u − d)α and −d ≤
u− d ≤ u. Also (AR3) is immediate from (EARS2).

In any affine reflection system the root strings R∩(β+Zα) for (β, α) ∈ R×Ran

are finite. This is Exercise 3.3.6(d) and an immediate consequence of the Structure
Theorem 3.3.2. Also, a tame affine reflection system with unbroken roots strings
is necessarily symmetric by Proposition 3.3.5. The characterization of an EARS in
(i) is now clear. (ii) follows from Corollary 3.3.4.

(b) follows from Proposition 3.3.5 and Exercise 3.3.6, since for a connected R
= irreducible S the formula (3.19) implies Λdiff = Λsh + Λsh.

(c) (i)⇒ (ii) is obvious. Suppose (ii) holds. We know from (b) that R0 = Λ0 =
Λsh + Λsh. Since Λsh is a pointed reflection subspace, so is Λ0 (Exercise 3.2.7).
Hence 2 · spanZ(Λ0) ⊂ Λ0 is discrete. But then so is spanZ(Λ0). Thus (ii) ⇒ (iii).

By (3.19) and (b.ii), Λdiv ⊂ Λlg ⊂ Λsh ⊂ Λ0. Hence, if (iii) holds, then all Λξ
are discrete subsets of X. But then so is is R, as a finite union of discrete subsets.
This shows (iii) ⇒ (i).

It is well-known fact that every discrete subgroup of a finite-dimensional real
vector space is free of finite rank.

A quick comparison of [AABGP, Definition 2.1] and our Definition 3.4.1 to-
gether with Proposition 3.4.2(a) will convince the reader that an extended affine
root system in the sense of [AABGP] is the same as a discrete extended affine root
system over R in our sense. The reason for the generalization and the change of
name is the same as the one justifying our more general notion of extended affine
Lie algebras: We are considering EALAs over arbitrary fields of characteristic 0
and the set of roots of an EALA will not be an extended affine root system in the
sense of [AABGP].

Finally, here is the result which brings us back to EALAs.
{n:ears&eala}

Theorem 3.4.3 Let (E,H) be an EALA over F and let R ⊂ H∗ be its set of
roots. Put X = spanF (R) and let (·|·)X be the restriction of the bilinear form (2.4)
to X. Then (R,X, (·|·)X) is an extended affine root system. If F = C, then (E,H)
is a discrete EALA if and only if (R,X, (·|·)X) is a discrete extended affine root
system.
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Remarks 3.4.4 (a) For (E,H) a discrete EALA over F = C, the theorem is
proven in [AABGP, I, Th. 2.16], using discreteness. The generalization to arbitrary
EALAs is due to the author, see [Ne4, Prop. 3]. It has been further generalized to
other classes of Lie algebras, the so-called invariant affine reflection algebras, see
[Ne5, Th. 6.6 and Th. 6.8]. Special cases have also been proven in [Az1] and [MY].
That R is symmetric, is an easy exercise, namely Exercise 2.2.1(c).

(b) In view of the theorem above, one can ask if every extended affine root
system is the set of roots of some extended affine Lie algebra. This is however not
the case, see [AG, Th. 6.2] for a detailed discussion of this question.

As a first application of this theorem, we can now completely characterize
EALAs of nullity 0.{n:fdeala}

Proposition 3.4.5 The following are equivalent:

(i) (E,H) is an EALA of nullity 0,
(ii) (E,H) is an EALA with a finite-dimensional E,

(iii) E is a finite-dimensional split simple Lie algebra with splitting Cartan sub-
algebra H.

In this case, E equals its core and the set of roots R coincides with the quotient
root system S of R and is an irreducible reduced finite root system.

Proof We will show (i) ⇔ (ii) ⇒ (iii). The implication (iii) ⇒ (i) has already
been proven in (2.11).

(i) ⇒ (ii): By definition of the nullity of (E,H), we have R0 = {0}. Since R is
an EARS by Theorem 3.4.3, it follows from Proposition 3.4.2 that Λsh ⊂ Λsh+Λsh =
Λ0 = R0 = {0}, so Λsh = {0} and then Λdiv ⊂ Λlg ⊂ {0} by (3.19). Hence R = S
is a finite root system, which is reduced since R is reduced. Since dimH < ∞ by
the axiom (EA2) and dimEα = 1 for α ∈ Ran = R \ {0} by Proposition 2.2.2, it is
now clear that E is finite-dimensional.

(ii) ⇒ (i): We know |R| < ∞ since E is finite-dimensional. From R0 = Λ0 =
Λdiff = ZΛdiff by Proposition 3.3.5, we can then conclude that R0 = {0}. So (E,H)
has nullity 0.

(i) and (ii)⇒ (iii): Let r be the radical of the finite-dimensional Lie algebra E.
As an ideal, it is invariant under the adjoint action of H. Hence r =

⊕
α∈R(r∩Eα).

Suppose 0 6= xα ∈ r ∩ Eα for some α ∈ Ran = R \ {0}. By Proposition 2.2.2,
xα embeds into an sl2-triple (xα, hα, yα) ∈ Eα × H × E−α. It then follows that
sl2(F ) ∼= Eα× [Eα, E−α]⊕E−α ⊂ r, contradiction. Therefore r ⊂ E0 = H. We now
get [r, E] =

⊕
α∈R[r, Eα] = {0}. Indeed, for α 6= 0 we have [r, Eα] ⊂ r ∩ Eα = {0},

while for α = 0 we have [r, E0] = [r, H] = {0} since H is abelian. Thus r = Z(E),
and so E is reductive ([Bou1, §6.4, Porp. 5]). This means E = Z(E)⊕ [E,E] with
[E,E] semisimple. But Eα ⊂ [E,E] for α ∈ Ran = R \ {0}, and therefore the core
Ec is contained in [E,E] too. For the centralizer CE(Ec) = {c ∈ E : [c, Ec] = 0} of
Ec in E we now get Z(E) = CE([E,E]) ⊂ CE(Ec) ⊂ Ec, where the last inclusion
follows from the tameness axiom (EA5). Since then Z(E) ⊂ [E,E] we have shown
that E = [E,E] is semisimple. The subalgebra H is a splitting Cartan subalgebra
of E, and R is the root system of (E,H). As R is connected = irreducible, E is
simple.



CHAPTER 4

The core and centreless core of an EALA

{n:sec:core}
In the previous chapter we have studied affine reflection systems per se. The

rationale for doing so became clear only in the end, when we saw in Theorem 3.4.3
that the set of roots R of an EALA (E,H) is an extended affine root system, a
special type of an affine reflection system.

In this chapter we start by drawing consequences of the Structure Theorem 3.3.2
of affine reflection systems and the description of extended affine root systems in
Proposition 3.4.2. The examples in Section 2.4 and Section 2.5 indicate that the
core Ec and centreless core Ecc = Ec/Z(Ec) of an extended affine Lie algebra
(E,H) really are the “core” of the matter. We will show in Theorem 4.3.1 and in
Corollary 4.3.3 that both are so-called Lie tori, a new class of Lie algebras which
we will introduce in Section 4.1. We will present some basic properties of Lie tori
in Section 4.2 and describe some examples in Section 4.4 and 4.5.

With some justification, this chapter could therefore also be entitled “On Lie
tori”. But the reader can be re-assured that we are not getting side-tracked too
much: In the next chapter we will see that Lie tori are precisely what is needed to
construct EALAs.

4.1 Lie tori: Definition {n:sec:lietordef}

Lie tori are special objects in the following category of graded Lie algebras.
{n:sladef}

Definition 4.1.1 Let (S, Y ) be a finite irreducible, but not necessarily reduced
root system, as defined in Example 3.2.2. We denote by Q(S) = spanZ(S) ⊂ Y the
root lattice of S. To avoid some degeneracies we will always assume that S 6= {0}.
Let Λ be an abelian group.

A (Q(S),Λ)-graded Lie algebra is a Lie algebra L with compatible Q(S)- and
Λ-gradings. It is convenient (and helpful) to use subscripts for the Q(S)-grading
and superscripts for the Λ-grading. Thus,

L =
⊕

q∈Q(S) Lq =
⊕

λ∈Λ L
λ

are Q(S)- and Λ-gradings of L, and compatibility means

L =
⊕

q∈Q(S), λ∈Λ L
λ
q for Lλq = Lq ∩ Lλ.

Hence for λ, µ ∈ Λ and p, q ∈ Q(S)

Lλ =
⊕

q∈Q(S) L
λ
q , Lq =

⊕
λ∈Λ L

λ
q and [Lλq , L

µ
p ] ⊂ Lλ+µ

q+p .

Thus, L has three gradings, by Q(S), Λ and Q(S)⊕Λ whose interplay will be crucial
in the following. Corresponding to these three different gradings are three support
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sets:

suppQ(S) L = {q ∈ Q(S) : Lq 6= 0},

suppΛ L = {λ ∈ L : Lλ 6= 0}, and

suppQ(S)⊕Λ L = {(q, λ) ∈ (Q(S),Λ) : Lλq 6= 0}.
{n:lietorax}

Definition 4.1.2 We keep the notation of 4.1.1. A Lie torus of type (S,Λ) is
a (Q(S),Λ)-graded Lie algebra L over F , a field of characteristic 0, satisfying the
axioms (LT1)–(LT3) below.

(LT1): suppQ(S) L ⊂ S, hence L =
⊕

ξ∈S Lξ.

(LT2): If Lλξ 6= 0 and ξ 6= 0, then there exist eλξ ∈ Lλξ and fλξ ∈ L
−λ
−ξ such that

Lλξ = Feλξ , L−λ−ξ = Ffλξ , (4.1){n:lietordef1}

and for xτ ∈ Lτ we have

[[eλξ , f
λ
ξ ], xτ ] = 〈τ, ξ∨〉xτ . (4.2){n:lietordef2}

(LT3): (a) L0
ξ 6= 0 if ξ ∈ S×ind, i.e., 0 6= ξ ∈ S and ξ/2 6∈ S.

(b) As a Lie algebra, L is generated by
⋃

06=ξ∈S Lξ.

(c) Λ = spanZ(suppΛ L).

We will say that L is a Lie torus (without qualifiers) if L is a Lie torus of type
(S,Λ) for some pair (S,Λ).

A Lie torus is called invariant , if L has an invariant nondegenerate symmetric
bilinear form (·|·) which is graded in the sense of (1.26):

(Lλξ | Lµτ ) = 0 if λ+ µ 6= 0 or ξ + τ 6= 0.

Two Lie tori L and L̃, both of type (S,Λ), are called graded-isomorphic if

there exists a Lie algebra isomorphism f : L → L̃ such that f(Lλξ ) = L̃λξ for all

(ξ, λ) ∈ S × Λ. Thus, a graded-isomorphism of Lie tori is an isomorphism in the
category of graded Lie algebras. But we will nevertheless use the term “graded-
isomorphism” to emphasize that Lie tori are graded algebras.

Remarks 4.1.3 (a) Let L be a Lie torus. Hence, by (LT1), L =
⊕

ξ∈S Lξ =⊕
ξ∈S, λ∈Λ L

λ
ξ . We will determine suppQ(S) L in Corollary 4.2.3 below. The axiom

(LT2) implies that

dimLλξ = 1 if 0 6= ξ and Lλξ 6= 0 (4.3){n:lietordef3}
and that

(eλξ , h
λ
ξ , f

λ
ξ ) with hλξ = [eλξ , f

λ
ξ ] ∈ L0

0 (4.4){n:lietordef5}
is an sl2-triple. The condition (LT3.a) together with (LT2) ensures that a Lie torus
has enough sl2-triples.

The other two conditions in (LT3) are not really serious; they just serve to nor-
malize things: If (LT3.c) does not hold, one can simply replace Λ by spanZ(suppΛ L).
Also,

(LT3.b) ⇐⇒ Lλ0 =
∑

0 6=ξ∈S
∑
µ∈Λ [Lµξ , L

λ−µ
−ξ ] (4.5){n:lietordef4}

for all λ ∈ Λ. If one has a Lie algebra for which all axioms except (4.5) hold, one
can replace the subspaces Lλ0 by the right hand side of (4.5) and then gets a Lie
torus. Observe that (4.5) for λ = 0 together with (LT2) yields

L0
0 =

∑
Fhλξ (4.6){n:lietordef6}
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where the sum in (4.6) is taken over all pairs (ξ, λ) for which hλξ exists, i.e., those

with Lλξ 6= 0 and ξ 6= 0.

(b) A Lie torus is a special type of a so-called division-(S,Λ)-graded Lie alge-
bras, or more generally of a root-graded Lie algebra. This and also the different
approaches to root-graded Lie algebras are discussed in [Ne5, §5]. Lie tori were first
defined by Yoshii in [Y3, Y4], using the notion of a root-graded Lie algebra. The
definition above is due to the author [Ne3].

Viewing a Lie torus as a special type of a root-graded Lie algebra is the approach
used in the classification of Lie tori.

(c) Why was a Lie torus christened a “Lie torus”? The historically correct an-
swer is: Because of pure analogy with already existing names like a quantum torus,
defined in 4.4.7, or an alternative or Jordan torus. All of these are graded algebras,
in which every non-zero homogeneous element is invertible. If one interprets the
elements e and f of the sl2-triple (4.4) as invertible elements of L, then a Lie torus
is a graded Lie algebra in which most of the non-zero homogenous elements are
invertible. It is certainly unusual to speak of “invertible elements” in a Lie algebra.
But the examples below will provide some justification to that: We will see that the
“invertible elements” of L are given by invertible elements of its coordinate algebra.

Besides the analogy with the already existing concepts of “tori” in categories
of (non)associative algebras, the fact that a toroidal Lie algebra is a Lie torus, see
Example 4.5.5, reinforces the choice of the name Lie torus.

4.2 Some basic properties of Lie tori
{n:lietorprop}

Throughout this section L is a Lie torus of type (S,Λ). We use the notation of
Definition 4.1.2. We describe basic properties of Lie tori and prove some of them,
in particular those for which there does not yet exist a published proof.

We first show that the homogeneous subspaces of the Q(S)-grading of L are
weight spaces for the ad-diagonalizable subalgebra

h = spanF {h0
ξ : ξ ∈ S×ind}. (4.7) {n:frhdef}

{n:weisp}
Lemma 4.2.1 The subspaces Lτ , τ ∈ S, are given by

Lτ = {l ∈ L : [h0
ξ , l] = 〈τ, ξ∨〉l for all ξ ∈ S×ind}. (4.8) {n:weisp1}

Proof The inclusion from left to right holds by (4.2). For the proof of the
other inclusion we write l ∈ L as l =

∑
α lα with lα ∈ Lα. Then l satisfies [h0

ξ , l] =

〈τ, ξ∨〉l for all ξ ∈ S×ind if and only if for every α ∈ S we have 〈α − τ, ξ∨〉lα = 0 for

all ξ ∈ S×ind. Since spanF (Sind) = Y and the bilinear form on Y associated with

the root system S is nondegenerate, there exists ξ ∈ S×ind with 〈α − τ, ξ∨〉 6= 0 for
every pair (α, τ) ∈ S2 with α 6= τ . Hence, any l belonging to the set on the right
hand side of (4.8) has lα = 0 for α 6= τ , proving l ∈ Lτ .

{n:weylref}
Proposition 4.2.2 For every (ξ, λ) ∈ suppQ(S)⊕Λ L with ξ 6= 0 the map

ϕλξ = exp
(

ad(eλξ )
)

exp
(

ad(−fλξ )
)

exp
(

ad(eλξ )
)

is a well-defined automorphism of the Lie algebra L with the property

ϕλξ (Lµτ ) = L
µ−〈µ,ξ∨〉λ
sξ(τ) (4.9) {n:weylref1}
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for all τ ∈ S and µ ∈ Λ. Moreover, for every w ∈ W (S), the Weyl group of S,
there exists an automorphism ϕw of the Lie algebra L such that

ϕw(Lµτ ) = Lµw(τ)

for all τ ∈ S and µ ∈ Λ.

This proposition can be proven in the same way as [AABGP, Prop. 1.27].
{n:lietorsupp}

Corollary 4.2.3 ([ABFP2, Lemma 1.10]) The Q(S)-support of L satisfies

suppQ(S) L =

{
S if S is reduced,

S or Sind if S is non-reduced.

As a consequence of this corollary, suppQ(S) L is always a finite irreducible root

system. It is immediate that L is also a Lie torus of type (suppQ(S),Λ). Without
loss of generality we can therefore assume that S = suppQ(S) L if this is convenient.

{n:divsupp}
Proposition 4.2.4 For ξ ∈ S define

Λξ = {λ ∈ Λ : Lλξ 6= 0},

so that suppΛ L =
⋃
ξ∈S Λξ. Then the family (Λξ : ξ ∈ S) satisfies the axioms

(ED1) and (ED2) of Definition 3.3.1,

Λη − 〈η, ξ∨〉Λξ ⊂ Λsξ(η) (ED1)

0 ∈ Λξ for ξ ∈ Sind and Λξ 6= ∅ for ξ ∈ S×div (ED2)

Hence Λξ is a pointed reflection subspace for ξ ∈ S×ind, a symmetric reflection

subspace for ξ ∈ S×div and

Λξ = Λw(ξ) for all w ∈W (S). (4.10){n:divsupp1}

Defining Λsh, Λlg and Λdiv as in 3.17, we have

Λsh ⊃ Λlg ⊃ Λdiv, (4.11){n:divsupp2}

suppΛ L = Λ0 = Λsh + Λsh, (4.12){n:divsupp3}

∅ = 2Λsh ∩ Λdiv, (4.13){n:divsupp4}

Λ = spanZ(Λsh). (4.14){n:divsupp5}

The support families (Λξ : ξ ∈ S) are the same for L and L/Z(L).

Proof (ED1) is a consequence of Proposition 4.2.2 and (ED2) of (LT3.a). It
then follows as in Chapter 3 that Λξ, ξ ∈ S×, are pointed respectively symmetric
reflection subspaces such that (4.10) and (4.11) hold. (4.12) and (4.13) are proven
in [Y3, Th. 5.1] and [ABFP2, Lemma 1.1.12]. (4.14) follows from (4.11) and (4.12).
The last claim is also proven in [Y3, Th. 5.1].

{n:liesplit}
Proposition 4.2.5 Let g be the subalgebra generated by {L0

ξ : ξ ∈ S×ind}, and

define h by (4.7).
(a) Then g is a finite-dimensional split simple Lie algebra with splitting Cartan

subalgebra h.

(b) The root system Sind and the root system of (g, h) are canonically iso-

morphic. Namely, for every ξ ∈ S×ind there exists a unique ξ̃ ∈ h∗, defined by

ξ̃(h0
η) = 〈ξ, η∨〉 for η ∈ S×ind, such that the map ξ 7→ ξ̃ extends to an isomorphism

between the root system Sind and the root system of (g, h).
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Proof This is a special case of a result for arbitrary root-graded Lie algebras,
see [Ne1, Remark 2 of §2.1] and [Ne5, Prop. 5.9]. It is essentially a corollary to the
Chevalley-Serre presentation of finite-dimensional split simple Lie algebras. For Lie
tori it was announced in [Ne3, §3]. The details of the proof are given in [ABFP2,
Prop. 1.2.2].

The following Exercise 4.2.7 lists some more basic properties of Lie tori. You
will need Exercise 4.2.6(a) in part (d) of 4.2.7.

{n:ex:centex}
Exercise 4.2.6 (a) Let K be a perfect Lie algebra. Then K/Z(K) is a perfect

and centreless Lie algebra.
(b) Let E be a Lie algebra with an invariant nondegenerate symmetric bilinear

form (·|·), and let K be an ideal of E with K = [E,K]. Then {z ∈ K : (z | K) =
0} = Z(K).

{n:ex:lietor}
Exercise 4.2.7 Let L be a Lie torus of type (S,Λ). Show:
(a) Lλ0 is given by the formula (4.5).
(b) L is perfect.
(c) The centre satisfies Z(L) =

⊕
λ∈Λ Z(L)λ for Z(L)λ = Z(L) ∩ Lλ0 .

(d) Let Y =
⊕

λ∈Λ Y
λ
0 , Y λ0 = Y ∩Lλ0 , be a graded subspace of Z(L). Then L/Y

is a Lie torus with respect to the subspaces (L/Y )λξ = Lλξ /Y
λ
ξ , where for ξ 6= 0 we

put Y λξ = {0} and thus have (L/Y )λξ
∼= Lλξ as vector spaces. In particular, L/Z(L)

is a centreless Lie torus.
(e) For λ, µ ∈ Λξ, ξ ∈ S×, we have hλξ ≡ h

µ
ξ mod Z(L).

(f) L0 = g⊕ Z(L)0 and L0
0 = h⊕ Z(L)0.

(g) Let I be a Λ-graded ideal of L, whence I =
⊕

λ∈Λ I
λ for Iλ = I ∩Lλ. Then

either I = L or I ⊂ Z(L). In particular, a centreless Lie torus is graded-simple
with respect to the Λ-grading of L.

Since a Lie torus is perfect by part (b) of the exercise above, it has a universal
central extension (Theorem 1.3.3).

{n:ucelie}
Theorem 4.2.8 ([Ne3, §5], [Ne6]) Let u : uce(L) → L be a universal central

extension of a Lie torus L =
⊕

ξ,λ L
λ
ξ of type (S,Λ). Then uce(L) is also a Lie

torus of type (S,Λ), say uce(L) =
⊕

ξ,λ uce(L)λξ , and u maps uce(L)λξ onto Lλξ .
{n:ucelierem}

Remark 4.2.9 It follows from this theorem and the exercise above that in
order to describe Lie tori up to graded isomorphism, one can proceed in two steps:

(A) Classify centreless Lie tori, up to graded isomorphism. We will discuss some
examples of this classification in 4.4 and 4.5.

(B) Describe the universal central extension of the centreless Lie tori from (A).
They are unique up to isomorphism. We will not say anything about this
here. The reader can find some results in [BGK, BGKN, Ne4, Ne6] for
Lie tori arising from EALAs and in [ABG1, ABG2, BS, Ne6] for general
root-graded Lie algebras.

Once (A) and (B) completed, an arbitrary Lie torus of type (S,Λ) is then obtained
as uce(L)/C where L is taken from the list in (A) and where C is a graded subspace
of the centre of uce(L).

The following results only holds for special types of Lie tori.
{n:torfg}

Theorem 4.2.10 ([Ne3, Th. 5], proven in [Ne6]) Let L =
⊕

ξ∈S, λ∈Λ L
λ
ξ be a

Lie torus of type (S,Λ) where Λ is a finitely generated abelian group.
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(a) Then L is finitely generated as Lie algebra and has bounded homogeneous
dimension with respect to the Q(S)⊕ Λ-grading of L.

(b) Moreover, the Lie algebra DerF (L) = grDerF (L) where grDerF (L) is natu-
rally Q(S)⊕Λ-graded and has bounded homogeneous dimension with respect to this
grading.

(c) If L is invariant, its universal central extension is isomorphic to the cen-
tral extension E(L,Dgr∗, ψD) where D is any graded complement of IDer(L) in
SDerF (L).

Part (c) of this theorem is an immediate corollary of parts (a) and (b) and of
Theorem 1.3.18.

4.3 The core of an EALA{n:betdes}
We will now connect extended affine Lie algebras and Lie tori, and first intro-

duce some notation. Let (E,H) be an EALA with set of roots R. We have seen in
Theorem 3.4.3 that R is an extended affine root system, hence an affine reflection
system. We can therefore apply the Structure Theorem 3.3.2. Recall the following
data describing the structure of R:

• X = spanF (R) ⊂ H∗, X0 = {x ∈ X : (x | X) = 0} = {x ∈ X : (x | R) = 0},
f : X → X/X0 = Y the canonical projection,

• S = f(R) the quotient root system, a finite irreducible but possibly non-
reduced root system, and Sind = {α ∈ S : α/2 6∈ S} ∪ {0},

• g : Y → X a linear map satisfying f ◦ g = IdY and g(Sind) ⊂ R,
• (Λξ : ξ ∈ S) the associated extension datum, defined by R ∩ f−1(ξ) =
g(ξ)⊕ Λξ and Λξ ⊂ X0,

• Λ = spanZ
(⋃

ξ∈S Λξ
)
, a free abelian group of finite rank (this is axiom

(EARS7)).

Hence

R =
⋃
ξ∈S

(
g(ξ)⊕ Λξ

)
⊂ g(Y )⊕X0,

Ran =
⋃
ξ∈S×

(
g(ξ)⊕ Λξ

)
,

R0 = 0⊕ Λ0 = R ∩X0.
{n:ealcor}

Theorem 4.3.1 ([AG] for F = C) Let K = Ec be the core of an EALA (E,H).
We use the notation of above and define subspaces

Kλ
ξ = K ∩ Eg(ξ)⊕λ =

{
Eg(ξ)⊕λ ξ 6= 0,

K ∩ E0⊕λ, ξ = 0.
(4.15){n:lietordef8}

(a) Then K =
⊕

ξ, λK
λ
ξ is a Lie torus of type (S,Λ), where Λ is free abelian of

finite rank.

(b) K is a perfect ideal of E.

(c) Let (·|·) be a nondegenerate invariant bilinear form on E, whose existence
is guaranteed by the axiom (EA1). Then the radical of the restricted bilinear form
(·|·)|K×K equals the centre Z(K), that is

{z ∈ K : (z | K) = 0} = Z(K) =
⊕

λ∈Λ Z(K) ∩Kλ
0 . (4.16){n:betdes2}
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{n:ealcorem}
Remark 4.3.2 The subspaces Kλ

ξ in (4.15) and hence the Lie torus structure
of K depend on the section g. A different choice of g leads to a so-called isotope of
K, see [AF] and [Ne5, Prop. 6.4].

{n:ccore}
Corollary 4.3.3 We use the notation of Theorem 4.3.1, and put Ecc = K/Z(K)

= L, the centreless core of (E,H). Then L is an invariant centreless Lie torus of
type (S,Λ) with respect to the homogeneous subspaces

Lλξ = Kλ
ξ

/(
Z(K) ∩Kλ

ξ

)
and the bilinear form (·|·)L defined by

(x̄ | ȳ)L = (x | y)

where x, y ∈ K, x̄ and ȳ are the canonical images in L and (·|·) is the bilinear form
of 4.3.1(c).

{n:yosrem}
Remark 4.3.4 Yoshii ([Y4]) has shown that any Lie torus of type (S,Λ) with

Λ a torsion-free abelian group admits a non-zero graded invariant symmetric bi-
linear form. This implies that the existence of a nondegenerate such form on Ecc.
However, Yoshii’s proof uses the existence of invariant nondegenerate symmetric
bilinear forms on Jordan tori ([NY]) and hence relies on the classification of Jordan
tori.

We can now show that all root spaces of an EALA are finite-dimensional in a
strong form.

{n:bdd}
Proposition 4.3.5 ([Ne4, Prop. 3]) An EALA has finite bounded dimension.

The same is true for its core and centreless core.

Proof Let K = Ec be the core of the EALA (E,H). By Theorem 4.3.1, K is
a Lie torus of type (S,Λ), where Λ is a free abelian group of finite rank. Hence,
by Theorem 4.2.10, one knows that K has finite bounded dimension with respect
to its double grading, say dimKλ

ξ ≤M1 for all pairs (ξ, λ). By the same reference,

one also knows that the Lie algebra DerF (K) of all F -linear derivations of K has a
double grading by Q(S) and Λ,

DerF (K) =
⊕

ξ∈S, λ∈Λ(DerF K)λξ ,

where (DerF K)λξ is the subspace of those derivations mapping Kµ
τ to Kλ+µ

ξ+τ , and

that DerF (K) has finite bounded dimension with respect to this grading, say
dimF (DerF K)λξ ≤M2 for all pairs (ξ, λ).

Since K is an ideal, we have a Lie algebra homomorphism ρ : E → DerF (K),
given by ρ(e) = ad e|K . It is homogenous of degree 0, i.e., ρ(Eα) ⊂ (DerF K)λξ for

α = g(ξ) ⊕ λ as in (4.15). Moreover, by the tameness axiom (EA5) for an EALA
we know that Ker ρ ⊂ K (whence Ker ρ = Z(K), but we won’t need this). It now
follows that dimEα = dim Ker(ρ|Eα) + dim ρ(Eα) ≤ dimKλ

ξ + dim(DerF K)λξ ≤
M1 +M2.

4.4 Lie tori of type Al, l ≥ 3
{n:sec:lietypeA}

As explained in Remark 4.2.9, in classifying Lie tori one can restrict one’s
attention to the case of centreless Lie tori, at least modulo the solution of problem
(B) in 4.2.9. In this section we will describe centreless Lie tori of type A.
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The reader will expect that this will have something to do with trace-0-matrices.
This turns out to be correct, but only with the proper interpretation of “trace-
0”. It will not be sufficient to consider trace-0-matrices over F . We will see in
Theorem 4.4.4 and the Example 4.5.1 that they only lead to nullity 0-examples.
Rather, one must allow matrices with entries from a possibly non-commutative
associative algebra. Things get even more general for Lie tori of type A2 and A1,
see the Remark 4.4.10.

To avoid some degeneracies, in this section we let N be a natural number with
N ≥ 3. We start with an arbitrary associative unital F -algebra A. In particular,
A need not be commutative, and hence

[A,A] = spanF {a1a2 − a2a1 : a1, a2 ∈ A}

is in general non-zero. As usual, glN (A) is the Lie algebra of all N × N matrices
with entries in A and Lie algebra product [x, y] = xy − yx, the usual commutator
of the matrices x and y. We define the special linear Lie algebra slN (A) as the
derived algebra

slN (A) = [glN (A), glN (A)].

of glN (A). In particular, slN (A) is an ideal of glN (A). To analyze the structure of
slN (A) we use the matrix units Eij , i.e., the N ×N matrices with 1 at the position
(ij) and 0 at all other positions. They satisfy the basic multiplication rule

[aEij , bEmn] = δjm abEin − δni baEmj (4.17){n:quant2}

where δ∗ is the usual Kronecker delta. We put EN =
∑N
i=1Eii. Some properties of

the Lie algebra slN (A) are listed in the following (very worthwhile) exercise.
{n:ex:slgen}

Exercise 4.4.1 (a) slN (A) = {x ∈ glN (A) : tr(x) ∈ [A,A]}.
(b) As a vector space, slN (A) decomposes as

slN (A) = slN (A)0 ⊕
(⊕

i 6=j AEij
)
, where (4.18){n:quant1}

slN (A)0 = slN (A) ∩
(⊕N

i=1AEii
)

=
∑
i 6=j [AEij , AEji] =

∑
i 6=j spanF {abEii − baEjj : a, b ∈ A}

= {cEN : c ∈ [A,A]} ⊕
(⊕N−1

i=1 {a(Eii − Ei+1,i+1) : a ∈ A}
)

(c) For a commutative A:

slN (A) = {x ∈ glN (A) : tr(x) = 0} = slN (F )⊗F A.

(d) The centre of slN (A) is Z(slN (A)) = {zEN : z ∈ Z(A) ∩ [A,A]} where
Z(A) = {z ∈ A : za = az for all a ∈ A} is the centre of A.

(e) For a, b ∈ A and i 6= j,

(aEij , Eii − Ejj , bEji)

is an sl2-triple if and only if a is invertible and b = a−1.

The exercise shows that the structure of a general slN (A) is quite similar to
that of slN (F ). In particular, the decomposition (4.18) is a Q(Al)-grading where

Al = {εi − εj : 1 ≤ i, j ≤ N}, l = N − 1.

is the root system of type Al and

slN (A)εi−εj = AEij for i 6= j.
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In fact, slN (A) is the prototype of an Al-graded Lie algebra (see [BerM]). At this
level of generality we are far from the structure of a Lie torus. Most importantly, we
are missing a compatible Λ-grading of slN (A). We will use gradings of A, defined
as follows.

{n:asstor}
Definition 4.4.2 Let A =

⊕
λ∈ΛA

λ be a unital associative Λ-graded F -
algebra. Then A is called an associative torus of type Λ if it satisfies (AT1)–(AT3)
below.

(AT1): if every non-zero Aλ contains an invertible element,
(AT2): dimAλ ≤ 1 for all λ ∈ Λ, and
(AT3): spanZ(suppΛA) = Λ.

One calls A simply an associative torus if A is an associative torus of type Λ for
some abelian group Λ. See 4.4.5 for a short discussion of associative tori.

These definitions are justified by the following exercise, describing when slN (A)
is a Lie torus of type (Al,Λ).

{n:ex:sltor}
Exercise 4.4.3 (a) The Lie algebra slN (A) has a Λ-grading compatible with

the Q(Al)-grading (4.18) if and only if A is Λ-graded. In this case, the compatible
Λ-grading of slN (A) is given by slN (A) =

⊕
λ∈Λ slN (A)λ where slN (A)λ consists

of matrices in slN (A), which have all their entries in Aλ.
(b) With respect to the compatible gradings of (a), the Lie algebra slN (A) is a

Lie torus of type (AN−1,Λ) if and only if A is an associative torus of type Λ.
(c) The Lie torus slN (A) is invariant with respect to the bilinear form (·|·)sl

given by (
∑
i,j xijEij |

∑
p,q ypqEpq)sl =

∑
i,j(xijyji)0 where a0 for a ∈ A denotes

the A0-component of a.

But we not only have an example of a Lie torus of type (Al,Λ), we actually
have all centreless examples.

{n:typeAcl}
Theorem 4.4.4 Let l ≥ 3. A Lie algebra L is a centreless Lie torus of type

(Al,Λ) if and only if L is graded-isomorphic to sll+1(A) for A an associative torus
of type Λ. In this case, L is an invariant Lie torus.

Proof This is a special case of the Coordinatization Theorem of Al-graded
Lie algebras ([BerM, Recognition Theorem 0.7]): A centreless Lie algebra L is Al-
graded (l = N−1) if and only if L is Q(Al)-graded-isomorphic to slN (A)/Z(slN (A))
for some associative F -algebra A. If L is a Lie torus, it follows as in the Ex-
ercise 4.4.3 above that A is an associative torus. But Z(slN (A)) = {0} for an
associative torus ([NY, (3.3.2)] and Exercise 4.4.1).

Besides [BerM], related results are proven in [BGK, Th. 2.65] (see Corol-
lary 4.4.9 below), [GN, 2.11 and 3.4] and [Y2, Prop. 2.13].

{n:twigrrev}
Review 4.4.5 (Associative tori versus twisted group algebras) In view of The-

orem 4.4.4 it is of interest to know more about associative tori. First of all, the
identity 1A of an associative torus A satisfies 1A ∈ A0. Hence a−1 ∈ A−λ for every
invertible a ∈ Aλ. Moreover, since the product of two invertible elements in an
associative algebra is again invertible, it follows that suppΛA is a subgroup of Λ,
whence (AT3) is equivalent to

(AT3)′: suppΛA = Λ.
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Next, choose a family (uλ : λ ∈ Λ) of invertible elements uλ ∈ Aλ. This is then
in particular an F -basis of A so that the algebra structure of A is completely
determined by the equations

uλuµ = c(λ, µ)uλ+µ (4.19) {n:quant3}

for λ, µ ∈ Λ and suitable non-zero scalars c(λ, µ) ∈ F . It is not necessary that
c(λ, µ) = 1, see for example Exercise 4.4.8. Rather, given an F -vector space with
basis (uλ : λ ∈ Λ) one can define a multiplication on A by (4.19), and this multi-
plication is associative if and only if

c(λ, µ) c(λ+ µ, ν) = c(µ, ν) c(λ, µ+ ν) (4.20){n:quant4}

holds for all λ, µ, ν ∈ Λ. In this case, the algebra is an associative torus of type Λ.
It is clear from the construction that, conversely, any associative torus is obtained
in this way from a family (c(λ, µ))λ,µ of non-zero scalars. The algebras constructed
in this way are called twisted group algebras. The reader with some knowledge
in group cohomology will recognize that the families (c(λ, µ)) satisfying (4.20) are
precisely the 2-cocycles of Λ with values in F \{0}. One can show that two families
define graded-isomorphic tori if and only if their cohomology classes coincide.

{n:groudef}
Example 4.4.6 (Group algebra) Although, as we have pointed out, the c(λ, ν)

need not equal 1 in general, the family for which all c(λ, µ) = 1 satisfies (4.20) and
so yields an example of a Λ-torus, called the group algebra of Λ and denoted F [Λ].
In particular, this implies that associative tori exist for all Λ, and hence Lie tori
exist for all types (Al,Λ), l ≥ 2.

The Lie tori that arise as cores of an EALA have type (S,Λ) where Λ is a free
abelian group of finite rank. This condition on Λ follows from the axiom (EA6) or,
equivalently from the axiom (EARS7). We therefore discuss this special case now.

{n:quantordef}
Definition 4.4.7 Let q = (qij) be an n×n matrix such that the entries qij ∈ F

satisfy qii = 1 = qijqji for all 1 ≤ i, j ≤ n. The quantum torus associated to q is

the associative algebra Fq presented by the generators ti, t
−1
i , 1 ≤ i ≤ n subject to

the relations

tit
−1
i = t−1

i ti, and titj = qij tjti for all 1 ≤ i, j ≤ n.

For example, if all qij = 1, then Fq = F [t±1
1 , . . . , t±1

n ] is the Laurent polynomial ring

in n variables. Thus, a general Fq is a non-commutative version of F [t±1
1 , . . . , t±1

n ],
the coordinate ring of the n-dimensional algebraic torus (F \ {0})n, which explains
the name “quantum torus”.

{n:ex:quntor}
Exercise 4.4.8 Let Fq be a quantum torus. Show:

(a) Fq =
⊕

λ∈Zn Ft
λ for tλ = tλ1

1 · · · tλnn .

(b) The tλ satisfy the multiplication rule tλtµ = c(λ, µ)tλ+µ with

c(λ, µ) =
∏

1≤j<i≤n q
λiµj
ij .

(c) Fq is an associative torus of type Zn.
(d) Every associative torus of type Zn is graded-isomorphic to some quantum

torus Fq.
(e) The centre Z(Fq) = {z ∈ Fq : [z,Fq] = 0} of the associative algebra Fq is

a graded subspace of Fq, namely Z(Fq) =
⊕

γ∈Γ Ft
γ , where Γ is a subgroup of Zn
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given by

Γ = {γ ∈ Zn : c(γ, µ) = c(µ, γ) for all µ ∈ Zn}
= {γ ∈ Zn :

∏n
j=1 q

γj
ij = 1 for 1 ≤ i ≤ n}.

Moreover, the following are equivalent:

(i) All qij are roots of unity.
(ii) [Zn : Γ] <∞.

(iii) Fq is finitely generated as a module over its centre Z(Fq).

Combining this exercise with Theorem 4.4.4 we obtain the classification of the
cores of EALAs of type A:

{n:bgkcor}
Corollary 4.4.9 ([BGK, Th. 2.65]) The Lie algebra slN (Fq) for a quantum

torus Fq is a centreless Lie torus of type (AN−1,Zn). Conversely, any centreless
Lie torus of type (AN−1,Zn) with N ≥ 4 is graded-isomorphic to some slN (Fq).

{n:remonA}
Remark 4.4.10 The attentive reader will have noticed that we didn’t say

anything about Lie tori of type (A1,Λ) and (A2,Λ) in Theorem 4.4.4 and Corol-
lary 4.4.9. Of course, sl3(A) of an associative Λ-torus will be centreless Lie tori of
type (A2,Λ). The limitation N ≥ 4 in Theorem 4.4.4 is justified, since for N = 3
there are more examples: One needs coordinate algebras A which are no longer
associative but only alternative. Moreover, one needs to replace the matrix algebra
sl3(A) by something more general, a Tits-Kantor-Koecher algebra or an abstractly
defined Lie algebra, see [BGKN] for details. Analogous remarks apply for the A1-
case, in which the coordinates come from certain Jordan algebras (called Jordan
tori) and in which sl2 has to be replaced by a Jordan algebra.

One has classification theorems for Lie tori of all types. For each type they
are listed with references up to 2007 at the beginning of §7 in [AF]. An additional
recent reference is [NT] for S = B2.

4.5 Some more easy examples of Lie tori
{n:sec:lietorex}

We describe some more easy examples, where easy means that they do not re-
quire some knowledge of non-associative algebras, like Jordan algebras, alternative
or structurable algebras.

{n:lietonu}
Example 4.5.1 (Λ = {0}) Let g be a finite-dimensional split simple Lie algebra

with splitting Cartan subalgebra h. Then g has a root space decomposition g =⊕
ξ∈S gξ where g0 = h and S is the root system of (g, h), a finite reduced root

system. Since g is simple, S is also irreducible. Using standard properties of finite-
dimensional split simple Lie algebras, it is easy to check that g =

⊕
ξ∈S gξ is a Lie

torus of type (S, {0}).
Conversely, if L is a Lie torus of type (S, {0}), then L is a finite-dimensional

split simple Lie algebra. Indeed, L = g in the notation of Proposition 4.2.5.
Note that this fits nicely into the picture of EALAs of nullity 0, which we have

characterized in Proposition 3.4.5 as finite-dimensional split simple Lie algebras.
{n:lieuntwistgen}

Example 4.5.2 As in the previous Example 4.5.1 let g be a finite-dimensional
split simple Lie algebra with splitting Cartan subalgebra h and root system S. We
would like to consider a Lie algebra of the form g ⊗ A where A is an associative
algebra. For g of type A we could take non-commutative “coordinates” A to get
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a Lie torus, see Section 4.4. However, for g not of type A the algebra A must be
commutative in order for g⊗A to be a Lie algebra.

Therefore, we let A =
⊕

λ∈ΛA
λ be a commutative associative torus of type Λ

and consider g⊗A, which becomes a Lie algebra (over F ) by defining

[u1 ⊗ a1, u2 ⊗ a2] = [u1, u2]⊗ a1a2

for ui ∈ g and ai ∈ A.

Exercise 4.5.3 Show: The Lie algebra g ⊗ A of Example 4.5.2 is centreless
Lie torus of type (S,Λ) with respect to the homogeneous subspaces

(g⊗A)λξ = gξ ⊗Aλ.

The support of the Q(S)⊕ Λ-graded Lie algebra g⊗A is the set

suppQ(S)⊕Zn g⊗A = S × Λ.

Moreover, g⊗A is an invariant Lie torus with respect to the bilinear form

(x⊗ aλ | y ⊗ bµ) = κ(x, y) (aλbµ)0

where κ is the Killing form of g and c0 for c ∈ A is the 0-component of c.

The Example 4.5.2 works for any type of S. But it yields all examples only for
special types of the root system S, as described in the following.

{n:typede}
Theorem 4.5.4 Any centreless Lie torus of type (S,Λ) for S of type Dl, l ≥ 4

or El, l = 6, 7, 8, is graded-isomorphic to an example as in Example 4.5.2 for g of
the corresponding type and A a commutative associative torus of type Λ.

Proof The proof is analogous to the proof of Theorem 4.4.4: One applies the
Coordinatization Theorem of [BerM] to see that L has the form g ⊗ A for some
commutative associative F -algebra A. One then has to discuss when such a Lie
algebra is a Lie torus. This turns out to be the case exactly when A is a torus.

{n:lieuntwist}
Example 4.5.5 (Untwisted multiloop algebras) For EALAs it is of interest to

describe the centreless Lie tori of type (S,Λ) with Λ a free abelian group of finite
rank, say of rank n. Hence Λ ∼= Zn. It is immediate that g⊗A is a Lie torus of type
(S,Zn) if and only if A is a commutative quantum torus, i.e., a Laurent polynomial
ring in several, say n variables. In other words, these are the untwisted multiloop
algebra of (1.11),

L(g) = g⊗F F [t±1
1 , . . . , t±1

n ]

Hence by Theorem 4.2.8 the universal central extension of L(g), the toroidal Lie
algebras of Section 1.2 are also Lie tori. Finally, Theorem 4.5.4 has the following
corollary.

{n:bgk}
Corollary 4.5.6 ([BGK]) Any centreless Lie torus of type (S,Zn) with S = Dl,

l ≥ 4 or S = El, l = 6, 7, 8, is graded-isomorphic to an untwisted multiloop algebra
L(g) as in Example 4.5.5.

Perhaps the reader now expects that the next example will be the general mul-
tiloop algebras L(g,σ) defined in (1.13). However, an arbitrary multiloop algebra is
in general not a Lie torus, see [ABFP2, Th. 3.3.1] and [Na, Th. 5.1.4] for a charac-
terization of centreless Lie tori which are multiloop algebras. But this phenomenon
does not occur in nullity 1.
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{n:ex:twiaff}
Exercise 4.5.7 Verify that the loop algebra L(g, σ) of (1.3) is an invariant Lie

torus of type (S,Z) where S is the root system of Table 3.7.
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CHAPTER 5

The construction of all EALAs

{n:sec:const}
Recall Theorem 4.3.1: If (E,H) is an EALA, its core Ec and its centreless core

Ecc are Lie tori, the latter being an invariant Lie torus. Moreover, if (S,Λ) is the
type of the Lie tori Ec and Ecc, then Λ is a free abelian group of finite rank. Thus:

core Ec (Lie torus)

�� �O
�O
�O

EALA (E,H)oo o/ o/ o/ o/ o/ o/ o/ o/ o/

centreless core Ecc (invariant Lie torus)

In this chapter we will reverse this diagram: We will construct an EALA starting
from an invariant Lie torus.

To motivate the construction it is useful to look again at the construction of
an affine Kac-Moody Lie algebra in Sections 1.1 and 2.4. It can be summarized as
follows: We start with a twisted loop algebra L = L(g, σ), which as we now know is

an invariant Lie torus (Exercise 4.5.7). We then take a central extension L̃, which
in this example is the universal central extension and hence by Theorem 4.2.8 again
a Lie torus (of course, in this example one can also verify this directly). Finally,

we add some (not all) derivations to L̃ to get an affine Kac-Moody Lie algebra.
Moreover and most importantly, all affine Kac-Moody Lie algebras are obtained
in this way (Kac’s Realization Theorem 1.1.3). To summarize, using the EALA
terminology:

central extension of L
(another Lie torus)

add
derivations ///o/o/o/o/o/o/o/o/o/o/o EALA (E,H)

invariant Lie torus L

OO
O�
O�
O�

To do something like this in general, one faces the following two problems.

(A) An invariant Lie torus has in general many central extensions. For example,
the untwisted multiloop algebra L = g⊗F [t±1

1 , . . . , t±1
n ] is an invariant Lie torus by

Example 4.5.5. If n ≥ 2, its universal central extension has an infinite-dimensional
centre, a result we already mentioned in Section 1.2, see in particular Theorem 1.2.2.
Hence, there are many possible central extensions. Should we only consider the
universal central extension?

(B) Which derivations should we add? Already in the affine case we did not
add all derivations, as follows for example from Exercise 1.2.4!

It turns out that the two problems are closely related, and we will solve both
at the same time. Rather than taking a 2-step approach, we will take one big step,

57
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by taking what one may call an affine extension (after all, the result will be an
extended affine Lie algebra). In fact, affine extensions are a special case of so-called
double extensions, see for example [Bor]. Thus, the goal is

central extension of L // EALA (E,H)

invariant Lie torus L

OO

affine
extension

333s3s3s3s3s3s3s3s3s3s3s3s3s3s

(5.1){n:outline}

The key idea is based on the construction of a 2-cocyle in Example 1.3.12: Any
subspace D of skew-symmetric derivations will give rise to a 2-cocycle and hence
to a central extension. But not only do we get examples of central extensions.
By Theorem 1.3.18 and Exercise 1.3.20, up to isomorphism all central coverings
of L are of the form E(L,D,ψD) for some graded subspace D of SDer(L) with
D∩ IDer(L) = {0}. Observe that we can indeed apply this theorem: The invariant
Lie torus L

(i) is perfect by Exercise 4.2.7 and is finitely generated as Lie algebra by The-
orem 4.2.10 (recall that Λ is free of finite rank, where (S,Λ) is the type of
L),

(ii) has finite homogeneous dimension, even bounded homogeneous dimension
also by Theorem 4.2.10, and

(iii) has an invariant nondegenerate Λ-graded symmetric bilinear form, by defi-
nition of an invariant Lie torus.

But we need more than just a central covering. For example, the axiom (EA2) re-
quires that we construct an ad-diagonalizable subalgebra H for which the subspaces
Lλξ , ξ 6= 0, are root spaces, as can be seen from Theorem 4.3.1. By Lemma 4.2.1
we can realize the subspaces Lξ as root spaces of some natural subalgebra h ⊂ L.
But we do not have a result, which describes the subspaces Lλ in a similar fashion,
i.e., as root spaces of some toral subalgebra. There is in fact no natural choice of a
subalgebra to do so. Rather, we will distinguish these subspaces “externally”, i.e.,
via an action of some non-inner derivation algebra. The required formalism to do
this, is described in the next section. This has nothing to do with Lie algebras.
Rather, it is a topic in the theory of graded vector spaces, and we will therefore
describe it in this setting.

5.1 Degree maps
{n:sec:degree}

In this section, V is vector space over a field F , which could be of arbitrary char-
acteristic until Proposition 5.1.3(b). Also, Λ denotes an arbitrary abelian group.
We recall that a Λ-grading of V is simply a direct vector space decomposition of
V by a family (V λ : λ ∈ Λ) of subspaces V λ ⊂ V . Our goal in this section is to
present a method describing the homogeneous subspaces V λ of a given Λ-grading
of V as the joint eigenspaces of a subspace of diagonalizable endomorphisms.

To motivate the construction, let us first look at the converse, namely inducing
a grading of V via the action of endomorphisms. We will say that a subspace
T ⊂ EndF (V ) is a subspace of simultaneously diagonalizable endomorphisms, if

V =
⊕

λ∈T∗ V
λ where (5.2){n:degree1}

V λ = {v ∈ V : t(v) = λ(t)v for all t ∈ T}.
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In this case, T obviously consists of pairwise commuting diagonalizable endomor-
phisms. Conversely, it is well-known that a finite-dimensional subspace of pairwise
commuting diagonalizable endomorphisms is a subspace of simultaneously diagonal-
izable endomorphisms (this is no longer true if T is infinite-dimensional). Observe
that the decomposition (5.2) is a grading of V by the group spanZ(suppT∗ V ) where
suppT∗ V = {λ ∈ T ∗ : V λ 6= 0}. Our goal is to realize a given grading of V in this
way.

To do so, we will use the F -vector space

D(Λ) = HomZ(Λ, F )

consisting of all maps θ : Λ→ F which are Z-linear: θ(λ1 +λ2) = θ(λ1) + θ(λ2) for
all λi ∈ Λ. This is an F -vector space by defining for θ, θi ∈ D(Λ) and s ∈ F the
sum θ1 + θ2 and the scalar multiplication sθ by (θ1 + θ2)(λ) = θ1(λ) + θ2(λ) and
(sθ)(λ) = s(θ(λ)).

{n:uebdegree}
Exercise 5.1.1 (a) Show D(Λ) ∼= HomF (Λ⊗Z F, F ) = (Λ⊗F F )∗. Thus D(Λ)

is naturally a dual vector space.
(b) If Λ is free of rank n, say with Z-basis ε1, . . . , εn, then D(Λ) = F∂1 ⊕ · · · ⊕

F∂n where ∂i ∈ D(Λ) is defined by ∂i(
∑
jmjεj) = mi. In particular, dimF D(Λ) =

n.

We now suppose that V =
⊕

λ∈Λ V
λ is a Λ-grading of the vector space V . Any

θ ∈ D(Λ) defines an endomorphism ∂θ ∈ EndF (V ) by

∂θ(v
λ) = θ(λ) vλ for vλ ∈ V λ.

We put
D(V ) = {∂θ : θ ∈ D(Λ)}

and call the elements of D(V ) degree maps. If A =
⊕

λ∈ΛA
λ is a Λ-grading of an

algebra A, the maps ∂θ are derivations and D(A) is then called the space of degree
derivations.

The map ∂ : D(Λ)→ D(V ) is clearly F -linear and surjective by definition. Its
kernel is {θ ∈ D(Λ) : θ(suppΛ V ) = 0}. To make ∂ an isomorphism we will

from now on assume spanZ(suppΛ V ) = Λ. (5.3) {n:degree2}

As we have pointed out at previous occasions, this is not a serious assumptions since
one can always replace Λ by spanZ(suppΛ V ) without changing the given grading.
Since now ∂ is an isomorphism, we can define a linear form evλ ∈ D(V )∗ for every
λ ∈ Λ:

evλ(∂θ) = θ(λ)

The F -linear map
ev : Λ→ D(V )∗, λ 7→ evλ

is called the evaluation map. By construction,

V λ ⊂ {v ∈ V : d(v) = evλ(d)v for all d ∈ D(V )} (5.4) {n:degree3}

since for d = ∂θ and v ∈ V λ we have ∂θ(v
λ) = θ(λ)vλ = evλ(∂θ)v

λ.

Definition 5.1.2 In the setting of above, i.e., V =
⊕

λ∈Λ V
λ is Λ-graded and

(5.3) holds, we will say that a subspace T ⊂ D(V ) induces the Λ-grading of V if

V λ = {v ∈ V : t(v) = evλ(t)v for all t ∈ T}
holds for all λ ∈ Λ.
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{n:degprop}
Proposition 5.1.3 Let V =

⊕
λ∈Λ V

λ be a Λ-grading of the vector space V
such that (5.3) holds.

(a) A subspace T ⊂ D(V ) induces the Λ-grading of V if the restricted evaluation
map

evT : Λ→ T ∗, evT (λ) = evλ |T
is injective.

(b) Suppose F has characteristic 0 and Λ is torsion-free, i.e., nλ = 0 for some
n ∈ Z implies λ = 0. Then Λ embeds into the F -vector space U = Λ⊗Z F and for
every subspace S ⊂ D(Λ) separating the points of Λ in U the corresponding subspace
T = ∂(S) ⊂ D(V ) induces the Λ-grading of V . In particular, D(V ) induces the
Λ-grading of V .

5.2 The centroid of Lie algebras, in particular of Lie tori
{n:sec:centr}

After the intermezzo on how to induce gradings of vector spaces in the previous
Chapter 5.1 we now come back to Lie algebras, but not immediately to Lie tori and
EALAs. Of course, the topic of this section is motivated by the over-all goal of
this chapter: The construction of EALAs from Lie tori using certain subspaces
of derivations. The derivations, which in Section 5.4 will be used in the general
construction, are products of degree maps, studied in Section 5.1, and so-called
centroidal transformations, to which this section is devoted.

The basic idea of the centroid of a Lie algebra (or of any algebra for that matter)
is that it identifies the largest ring over which the given algebra can be considered
as an algebra. For example, if one studies the real Lie algebra L which is sln(C)
considered as a real Lie algebra by restricting the scalars to R, the centroid will be
∼= C and will thus indicate that L can also be considered as a complex Lie algebra.

In general, the centroid will not be a field but only a (commutative) ring.
Hence, considering a Lie algebra as algebra over its centroid, necessitates that in
the following definition and in Lemma 5.2.3 we will deviate from our standard
assumption and consider Lie algebras over rings. The definition of a Lie algebra L
defined over a ring, say k, is not surprising: L is a k-module with a k-bilinear map
[., .] : L × L → L which is alternating, i.e., [l, l] = 0 for all l ∈ L, and satisfies the
Jacobi identity.

{n:centdef}
Definition 5.2.1 ([J, Ch. X]) The centroid Centk(L) of a Lie algebra L defined

over a ring k is defined as

Centk(L) = {χ ∈ Endk(L) : χ([l1, l2]) = [l1, χ(l2)] for all l1, l2 ∈ L}.

Of course, χ ∈ Centk(L) ⇔ χ([l1, l2]) = [χ(l1), l2] for all l1, l2 ∈ L. It is important
to indicate k in the notation Centk(L) since the centroid depends on the base ring
k.

We have k IdL ⊂ Centk(L) for every L. One calls L central if the map k →
CentF (L), s 7→ s IdL, is an isomorphism, and one says that L is central-simple if L
is just that, namely central and simple.

Let L =
⊕

λ∈Λ L
λ be a Lie algebra graded by an abelian group Λ. We can then

also define the Λ-graded centroid as

grCentk(L) = grEndk(L) ∩ Centk(L) =
⊕

λ∈Λ Centk(L)λ
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where Centk(L)λ consists of the centroidal transformations which have degree λ,
i.e., χ(Lµ) ⊂ Lλ+µ for all µ ∈ Λ.

Example 5.2.2 As an immediate example we calculate the centroid of the
Lie algebra L = sl2(C), considered as real Lie algebra by restricting the scalars
to R. We let (e, h, f) be an sl2-triple in sl2(C). Then the relations [h, ce] = 2ce
and [h, cf ] = −2cf for c ∈ C show that χ(ce) and χ(cf) are uniquely determined
by χ(h). For example, 2χ(ce) = χ([h, ce]) = [χ(h), ce]. Moreover, χ(h) ∈ Ch
because [χ(h), ch] = χ([h, ch]) = 0. Hence dimR CentR(L) ≤ 2. On the other side,
C IdL ⊂ CentR(L) is clear, whence C IdL = CentR(L).

We leave it to the reader to show CentR(L) = C IdL for L = sln(C) considered
as real Lie algebra, without using any of the results mentioned below!

The following lemma gives a mathematical meaning to the claims made before
Definition 5.2.1 and lists the most important properties of the centroid of arbitrary
Lie algebras, not only of Lie tori.

{n:centlem}
Lemma 5.2.3 (Folklore) Let L be a Lie algebra defined over a ring k.

(a) The centroid of L is always a unital associative subalgebra of the endo-
morphism algebra Endk(L) of L. Hence Centk(L) is a k-algebra and L becomes
a Centk(L)-module by defining the action of Centk(L) on L by χ · l = χ(l) for
χ ∈ Centk(L) and l ∈ L.

(b) If the centroid of L is commutative, then with respect to the action of
Centk(L) on L defined in (a), L is a Lie algebra over the ring Centk(L). Moreover,
L is central as a Lie algebra over its centroid.

(c) If L is perfect, its centroid is commutative and does not depend on the base
ring k: Centk(L) = CentZ(ZL) where ZL is the Lie algebra L with scalars restricted
to Z.

(d) If L is simple, its centroid is a field and L as a Lie algebra over the field
CentF (L) is central-simple. In particular:

(i) a finite-dimensional simple Lie algebra over an algebraically closed field F
is central-simple, and

(ii) the centroid of a simple real Lie algebra L is either ∼= R Id, in which case
L is central-simple, or is ∼= C Id, in which case L is a simple complex Lie
algebra, considered as a real Lie algebra.

(e) Suppose L is Λ-graded. Then grCentk(L) is a Λ-graded subalgebra of the
full centroid Centk(L). Moreover, grCentk(L) = Centk(L) if L is finitely generated
as an ideal, i.e., there exist l1, . . . , ln ∈ L such that the ideal generated by l1, . . . , ln
is all of L.

(f) If χ ∈ Centk(L) and d ∈ Derk(L), then χ ◦ d ∈ Derk(L). With respect to
this operation, Derk(L) is a Centk(L)-module and IDer(L) is a submodule of the
Centk(L)-module Derk(L).

The proof of this lemma is a straightforward exercise, which the reader will be
asked to do now. The exercise also lists some interesting additional facts on the
centroid. {n:ex:centroid}

Exercise 5.2.4 (a) For any χ ∈ Centk(L) the kernel Kerχ and the image Imχ
are ideals of L satisfying [Kerχ, Imχ] = 0.

(b) Prove Lemma 5.2.3. For part (c) of the Lemma use (a) above.
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(c) If L is perfect, any χ ∈ Centk(L) is symmetric with respect to any invariant
bilinear form on L.

Here is the result, which describes the centroid of the Lie algebras of interest
in this chapter. We will use the notion of an associative torus and a twisted group
algebra, introduced in Definition 4.4.2 and further discussed in 4.4.5–4.4.8.

{n:propcenli}
Proposition 5.2.5 ([BN, Prop. 3.13]) Let L =

⊕
ξ∈S, λ∈Λ L

λ
ξ be a centreless

Lie torus of type (S,Λ).

(a) With respect to the (Q(S)⊕ Λ)-grading of L we have

CentF (L) =
⊕

λ∈Λ CentF (L)λ0 = grCentF (L). (5.5){n:cent1}

In particular, χ(Lξ) ⊂ Lξ for any χ ∈ Centk(L) and ξ ∈ S.

(b) Moreover, with respect to the decomposition (5.5) the centroid CentF (L)
is an associative commutative torus of type Γ, where Γ = suppΛ CentF (L) is a
subgroup of Λ. Hence CentF (L) is a twisted group algebra over Γ.

(c) In particular, if Λ is free abelian of finite rank n, the centroid CentF (L) is
graded-isomorphic to F [Γ], the group algebra of Γ as defined in (4.4.6), and is thus
isomorphic to a Laurent polynomial ring in ν variables, 0 ≤ ν ≤ n. Moreover, L is
a free module over its centroid.

Proof Parts (a) and (b) of this proposition are proven in [BN, Prop. 3.13].
Part (c) is ([Ne3, Th. 7]). The first part of (c) follows from (b): A twisted group
algebra over a free group is a group algebra. The second part is a special case of a
general fact: Any graded module over an associative torus is free.

Example 5.2.6 Let L = slN (A) for A an associative F -algebra, see Section 4.4,
and let Z(A) = {z ∈ A : [z,A] = 0} be the centre of the associative algebra
A. Any z ∈ Z(A) induces a centroidal transformation χz defined by mapping
x = (xij) ∈ slN (A) to χz(x) = (zxij). It is easily seen ([Ne5, 7.9]) that

Z(A)→ CentF (slN (A)), z 7→ χz

is an isomorphism of F -algebras (the only non-obvious part is surjectivity).
Let us now specialize to the case of a Lie torus slN (A) of type (AN−1,Zn). Thus,

by Corollary4.4.9, A = Fq is a quantum torus. A description of the centre Z(Fq) is
given in Exercise 4.4.8(e) (see [BGK, Prop. 2.44] for a proof): Z(Fq) =

⊕
γ∈Γ Ft

γ

where Γ is the subgroup

Γ = {γ ∈ Zn :
∏n
j=1 q

γj
ij = 1 for 1 ≤ i ≤ n}

of Zn. The centre of Fq is therefore isomorphic to a Laurent polynomial ring in,
say, ν variables, as claimed in Proposition 5.2.5(c). To see that the inequalities
0 ≤ ν ≤ n stated there are sharp, we consider the quantum torus associated to the
matrix

q =

[
1 q
q−1 1

]
.

Specializing the description of Γ above we get

Γ =

{
{0}, q not a root of unity,

mZ⊕mZ, q an mth root of unity.

Hence ν = 0 in the first case and ν = 2 = n in the second case.
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However, the following result says it can only happen in type A that the cen-
troidal grading group Γ has smaller rank than Λ.

{n:fgcto}
Theorem 5.2.7 ([Ne3, Th. 7]) Let L be a centreless Lie torus of type (S,Zn)

with S not of type A. Then [Zn : Γ] <∞ and L is a free CentF (L)-module of finite
rank.

This result, together with the Realization Theorem of [ABFP1] implies that
an invariant Lie torus of type (S,Zn), S 6= Al, is graded-isomorphic to a multiloop
algebra as defined in (1.13). A characterization of which multiloop algebras are Lie
tori is the main result of [ABFP2]. A more general approach to realizing Lie tori
as multiloop algebras is developed in [Na].

It is easy to verify Theorem 5.2.7 in case L is a Lie torus of type (S,Zn) and S of
type D or E. As we have seen in Theorem 4.5.4, in this case L = g⊗F [t±1

1 , . . . , t±1
n ].

The centroids of these types of Lie algebras are described in the next example.
{n:centgtensora}

Example 5.2.8 Let g be a finite-dimensional central simple Lie algebra. For
example, by [BN, Remark 3.6] any finite-dimensional split simple Lie algebra is
central and thus central-simple. (Over algebraically closed fields, this also follows
from Lemma 5.2.3(d).) Also, let A be an associative commutative F -algebra.

A straightforward verification shows that for s ∈ F and a ∈ A the map χs,a,
defined by u⊗ b 7→ su⊗ ab, is a centroidal transformation of the Lie algebra g⊗A.
It follows from [ABP3, Lemma 2.3(a)] or [Az2, Lemma 1.2] or [BN, Cor. 2.23] that
these are all the maps in the centroid of g⊗A:

F Idg⊗A ∼= CentF (g⊗A), via s⊗ a 7→ χs,a.

Although this will not be needed in the following, we mention that the centroid
of an EALA is known too. {n:centEALA}

Proposition 5.2.9 Let E be an EALA, let K = Ec be its core and put D =
E/K. Then K is a central Lie algebra, and

CentF (E) = F IdE ⊕V(K), V(K) = {χ ∈ CentF (E) : χ(K) = 0}.
As a vector space, the ideal V(K) of CentF (E) is canonically isomorphic to the
D-module homomorphisms D → Z(K):

V(K) ∼= HomD(D,Z(K)).

This is proven in [BN, Cor. 4.13]. Observe that the reference to [Ne4, Th.6]
in the proof of [BN] can now be replaced by the combination of Theorem 4.2.10(c)
and Exercise 1.3.20.

5.3 Centroidal derivations of Lie tori {n:sec:centder}
In this section L is a centreless Lie torus of type (S,Λ). Regarding L as a

Λ-graded Lie algebra, the results of Section 5.1 apply and provide us with the
subspace

D = D(L) = {∂θ : θ ∈ D(Λ)}
of degree derivations of L. Moreover, we can apply Lemma 5.2.3(f) and get that
χ ◦ ∂θ ≡ χ∂θ is a derivation for any χ ∈ CentF (L). We call the elements of

CDerF (L) = CentF (L)D

centroidal derivations. (A notion of centroidal derivations for arbitrary Λ-graded
Lie algebra is developed in [Ne5, 4.9].) Recall from Proposition 5.2.5 that CentF (L) =
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γ∈Γ CentF (L)γ is a commutative associative torus of type Γ, where Γ is a sub-

group of Λ. Since D consist of degree 0 endomorphisms, CDer(L) is Γ-graded,

CDerF (L) =
⊕

γ∈Γ CDerF (L)γ for (5.6) {n:centder1}

CDerF (L)γ = CentF (L)γ D = CentF (L) ∩ EndF (L)γ .

It is then easily seen that CDerF (L) is a Γ-graded subalgebra of DerF (L). For
χγ ∈ CentF (L)γ , χδ ∈ CentF (L)δ and θ, ψ ∈ D(Λ) the Lie algebra product of
CDerF (L) is given by the formula

[χγ∂θ, χ
δ∂ψ] = χγχδ

(
θ(δ) ∂ψ − ψ(γ) ∂θ

)
. (5.7){n:centder2}

Thus, CDerF (L) is a generalized Witt algebra, see for example [NY, 1.9].

Suppose now that L is an invariant Lie torus, say with respect to the invariant
bilinear from (·|·). We can then consider the skew centroidal derivations

SCDerF (L) = SDerF (L) ∩ CDerF (L),

defined as the centroidal derivations which are skew-symmetric with respect to
(·|·). This is a Γ-graded subalgebra of CDerF (L) whose homogenous components
are given by

SCDerF (L)γ = {χγ∂θ : χγ ∈ CentF (L)γ , θ(γ) = 0}. (5.8){n:centder4}

In particular,
SCDerF (L)0 = D

is a toral subalgebra of SCDerF (L) since [∂θ, χ
δ∂ψ] = θ(δ)∂ψ by (5.7). It is also of

interest to point out that [SCDerF (L)γ , SCDerF (L)−γ ] = 0, which implies that
SCDerF (L) is the semidirect product of the toral subalgebra D and the ideal
spanned by the homogeneous subspaces of non-zero degree,

SCDerF (L) = Dn
(⊕

γ 6=0 SCDerF (L)γ
)
.

For the construction of EALAs, the following theorem is fundamental.

Theorem 5.3.1 ([Ne3, Th. 9]) Let L be an invariant Lie torus of type (S,Λ)
with Λ free of finite rank. Then DerF (L) is a semi-direct product,

DerF (L) = IDerF (L) o CDerF (L), hence (5.9){n:centder3}

SDerF (L) = IDerF (L) o SCDerF (L),

where IDerF (L) denotes the ideal of all inner derivations, see (1.24).

Some remarks on the proof of this theorem follow. By Proposition 5.2.5 the
centroid of L is a Laurent polynomial ring. Let K be its field of fractions, a field of
rational functions. As a CentF (L)-module, L is torsion-free and hence L embeds
into the Lie K-algebra

L̃ = L⊗CentF (L) K,

the so-called central closure of L. If the CentF (L)-module L is finitely generated,
its central closure is a finite-dimensional central-simple Lie algebra. Hence, in this
case DerK(L̃) = IDer(L̃), from which the theorem easily follows. If however L is
not finitely generated as a CentF (L)-module, then we know from Theorem 5.2.7
that L is a Lie torus of type A. More precisely, as a consequence of the results in
[Y1] and [NY] for type A1, [BGKN] for type A2 and Corollary 4.4.9 for type Al,
l ≥ 3, such a Lie torus is graded-isomorphic to sln(Fq). But in this case the result
follows from [BGK, 2.17, 2.53], [BGKN, Th. 1.40] and [NY, Th. 4.11]. We will
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discuss the special case L = g ⊗ F [t±1
1 , . . . , t±nn ] in Example 5.3.2. To avoid any

confusion, we note that the splitting (5.9) is not the one proven in [Be, Th. 3.12]
for arbitrary root-graded Lie algebras.

The importance of the theorem stems from Theorem 1.3.18: It identifies a
natural complement of IDer(L) in SDerF (L). Hence, up to graded-isomorphism,
any graded covering of L has the form E(L,Dgr∗, ψD) for a graded subspace D ⊂
SCDerF (L). Moreover, since D ⊂ SCDerF (L), we can require that D0 ⊂ D be
not too small and use it to distinguish the homogeneous spaces Lλ by applying
Proposition 5.1.3. This will be our approach in Section 5.4. But first some examples.

{n:cderloo}
Example 5.3.2 Let L = g ⊗ A where g is a split simple finite-dimensional

Lie algebra with root system S and where A = F [t±1
1 , . . . , t±1

n ] is a Laurent poly-
nomial ring in n variables. This is an invariant Lie torus of type (S,Zn), see the
Examples 4.5.2 and 4.5.5. We have seen in (1.18) that

DerF (g⊗A) = IDer(g⊗A)⊕ (Idg⊗DerF (A)).

The reader has (or should have) determined DerF (A) in Exercise 1.2.4: DerF (A) =
AD where D = spanZ({∂i : 1 ≤ i ≤ n}) in the notation of the quoted exercise. But
by Exercise 5.1.1, D = D(A) is also the space of degree derivations of A. Since the
Λ-grading of L = g⊗A is concentrated in the factor A, it follows that Id⊗D is the
space of degree derivations of L, whence, by Example 5.2.8, we have

CDerF (g⊗A) = Idg⊗AD = Idg⊗DerF (A).

Thus, for the invariant Lie torus g⊗A the decomposition (1.18) is the same as the
decomposition (5.9)!

We have seen in Example 4.5.2 that L is an invariant Lie torus with respect to
the tensor product form (·|·) = κ⊗ β where κ is the Killing form of g and where β
is the bilinear form on A defined by β(tλ, tµ) = δλ,−µ. It is then easy to identify
SCDerF (L) using (5.8). In particular, for n = 1 we see that SCDer(g ⊗ F [t±1]) =
Fd, where d is the degree derivation of (1.8). In particular, this together with
Theorem 1.3.18 gives a new proof of the theorem, mentioned in Section 1.1, that
the Lie algebra L̃(g, σ) of (1.7) is the universal central extension of the twisted loop
algebra L(g, σ).

5.4 The general construction
{n:sec:genconstr}

Finally, we can describe the ingredients (L,D, τ) of the general construction:

• L =
⊕

ξ∈S,λ∈Λ L
λ
ξ is an invariant Lie torus of type (S,Λ) with Λ a free

abelian group of finite rank; we put Γ = suppΛ Cent(L), see Proposition 5.2.5.

• D =
⊕

γ∈ΓD
γ ⊂ SCDerF (L) is a graded subalgebra such that the evaluation

map

evD0 : Λ→ D0 ∗, λ→ evλ |D0 is injective. (5.10) {n:gencons0}

• τ : D×D → Dgr∗ is an affine cocycle, i.e., τ is a bilinear map satisfying for
all d, di ∈ D

τ(d, d) = 0 and
∑

	 d1 · τ(d2, d3) =
∑

	 τ([d1, d2], d3), (5.11) {n:gencons1}

τ(D0, D) = 0, and τ(d1, d2)(d3) = τ(d2, d3)(d1) (5.12) {n:gencons2}
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Let us discuss the meaning of the conditions above. Recall from Proposi-
tion 5.1.3 that the condition (5.10) implies that D0 induces the Λ-grading of L,
i.e.,

Lλ = {l ∈ L : d0(l) = evλ(d0)l, for all d0 ∈ D0}. (5.13) {n:gencons00}

For example, (5.10) holds for D = D = SCDerF (L)0 or D any graded subalgebra
with D0 = D. In (5.11), the symbol

∑
	 denotes the cyclic sum:

∑
	 d1 ·τ(d2, d3) =

d1 · τ(d2, d3) + d2 · τ(d3, d1) + d3 · τ(d1, d2) and analogously for
∑

	 τ([d1, d2], d3).
Moreover, d · c for c ∈ Dgr∗ is the contragredient action of D on the graded dual
space Dgr∗. The condition (5.11) says that τ is an abelian 2-cocycle, meaning that
Dgr∗ ⊕D is a Lie algebra with respect to the product formula

[c1 ⊕ d1, c2 ⊕ d2] =
(
d1 · c2 − d2 · c1 + τ(d1, d2)

)
⊕ [d1, d2] (5.14){n:gencons4}

for ci ∈ Dgr∗ and di ∈ D. Thus,

0 // Dgr∗ inc // Dgr∗ ⊕D
prD // D // 0

is an abelian extension: Dgr∗ is an abelian ideal, not necessarily contained in the
centre. The conditions in (5.12) will allow us to define a toral subalgebra H and
an invariant bilinear form (·|·) below. We note that an affine cocycle is necessarily
graded of degree 0:

τ(Dγ , Dδ) ⊂ (Dgr∗)γ+δ

for γ, δ ∈ Γ. Moreover, there do exist non-trivial affine cocycles, see [BGK,
Rem. 3.71] and [ERM].

To data (L,D, τ) as above we associate a Lie algebra

E = L⊕Dgr∗ ⊕D

with product (li ∈ L, ci ∈ Dgr∗ and di ∈ D)

[l1 ⊕ c1 ⊕ d1, l2 ⊕ c2 ⊕ d2] =
(
[l1, l2]L + d1(l2)− d2(l1)

)(
ψD(l1, l2) + d1 · c2 − d2 · c1 + τ(d1, d2)

)
⊕ [d1, d2].

(5.15){n:gencons3}

Here [., .]L is the Lie algebra product of L, di(lj) is the natural action of D on L,
and ψD is the central 2-cocycle of (1.25). It is immediate from the product formula
that

(i) L ⊕Dgr∗ is an ideal of E, and the canonical projection L ⊕Dgr∗ → L is a
central extension.

(ii) The Lie algebra Dgr∗ ⊕D of (5.14) is a subalgebra of E.

The Lie algebra E has a a subalgebra

H = h⊕D0 ∗ ⊕D0

where h = spanF {hλξ : ξ ∈ S×, λ ∈ Λ} = spanF {h0
ξ : 0 6= ξ ∈ Sind} as in (4.7). We

embed S into the dual space h∗, using the evaluation map of (5.10), and extend
ξ ∈ S ⊂ h∗ to a linear form of H by ξ(D0 ∗ ⊕D0) = 0. We embed Λ ⊂ D0 ∗, using
the evaluation map of Proposition 5.1.3, and then extend λ ∈ Λ ⊂ D0 ∗ to a linear
form of H by putting λ(h⊕D0 ∗) = 0. Then H is a toral subalgebra of E with root
spaces

Eξ⊕λ =

{
Lλξ , ξ 6= 0,

Lλ0 ⊕ (D−λ)∗ ⊕Dλ, ξ = 0.
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Observe H = E0 since h = L0
0 by Exercise 4.2.7. The symmetric bilinear form (·|·)

on E, defined by(
l1 ⊕ c1 ⊕ d1 | l2 ⊕ c2 ⊕ d2

)
= (l1 | l2)L + c1(d2) + c2(d1),

is nondegenerate and invariant. Here (·|·)L is of course the given bilinear form of
the invariant Lie torus L. With respect to this bilinear form the set of roots of
(E,H) is R = R0 ∪Ran where

R0 = {λ ∈ Λ ⊂ H∗ : Lλ0 6= 0} and

Ran = {ξ ⊕ λ : ξ 6= 0 and Lλξ 6= 0}.
We have now indicated that the axioms (EA1) and (EA2) of an extended affine Lie
algebra holds for the pair (E,H). The verification of the remaining axioms can be
easily be done by the reader, or can be looked up in [Na, Prop. 5.2.4]. This then
shows part (a) of the following theorem.

{n:mainconst}
Theorem 5.4.1 ([Ne4, Th. 6]) (a) The pair (E,H) constructed above is an

extended affine Lie algebra, denoted E = E(L,D, τ). Its core is L ⊕ Dgr ∗ and its
centreless core is L.

(b) Conversely, let (E,H) be an extended affine Lie algebra, and let L =
Ec/Z(Ec) be its centreless core, which by Corollary 4.3.3 is an invariant Lie torus,
say of type (S,Λ), with Λ free of finite rank.

Then there exists a subalgebra D ⊂ SCDerF (L) and an abelian 2-cocycle τ
satisfying the conditions (5.10)–(5.12) on (D, τ) such that E ∼= E(L,D, τ).

We have defined discrete EALAs in Section 2.1 as a special class of EALAs over
the base field F = C. They can now be characterized as follows.

Corollary 5.4.2 ([Ne4, Th. 8]) Let F = C. (a) Let L be an invariant Lie
torus of type (S,Λ) with Λ free of finite rank and let D ⊂ SCDerC(L) be a graded
subalgebra such that the evaluation map ev : Λ → D0 ∗ is injective with discrete
image. Then, for any affine 2-cocycle τ the extended affine Lie algebra E(L,D, τ)
is a discrete EALA. Conversely, any discrete EALA arises in this way.
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