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ABSTRACT: In this paper we present a method to construct gradings of Lie algebras. It requires the

existence of an abelian inner ideal B of the Lie algebra whose subquotient, a Jordan pair, is covered by

a finite grid, and it produces a grading of the Lie algebra L by the weight lattice of the root system

associated to the covering grid. As a corollary one obtains a finite Z-grading L = L−n ⊕ · · · ⊕ Ln

such that B = Ln. In particular, our assumption on B holds for abelian inner ideals of finite length in

nondegenerate Lie algebras.

Introduction

A finite Z-grading of a Lie algebra L over a unital commutative ring Φ is a non-trivial
Z-grading with finite support, i.e., there exists a positive natural number n and a family
(Li)−n≤i≤n of Φ-submodules of L such that

L =
n⊕

i=−n

Li, L−n + Ln 6= 0, [Li, Lj ] ⊂ Li+j

for all i, j with the understanding that Li+j = 0 if |i + j| > n. In this case, one says that
L is (2n + 1)-graded. Simple Lie algebras which have a (2n + 1)-grading and which are
defined over a field of characteristic ≥ 4n + 1 or 0 were classified by Zelmanov [Z], up to
the description of finite Z-gradings of simple associative algebras with involutions. This
description was later given by Smirnov [Sm1, Sm2].

The main result of this paper is a method to construct finite Z-gradings of Lie algebras.
Roughly speaking, we show that a sufficiently nice “top” Ln creates a (2n + 1)-grading of
L.
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What are nice “tops”? The submodule Ln of any (2n + 1)-grading of L is an abelian
inner ideal in the sense of Benkart [Be1], i.e., a Φ-submodule B satisfying [B, [L, B]] ⊂ B
and [B, B] = 0. The pair (Ln, L−n) of the “wings” of the (2n+1)-grading is a Jordan pair
with respect to the Jordan triple products {x, y, z} = [[x, y], z]. It is enough to specify
the Jordan triple product since we will assume throughout the paper that 2 and 3 are
invertible in Φ, and from §4 on that 5 too is invertible. It is these two algebraic structures,
abelian inner ideals in Lie algebras and Jordan pairs, that form the basis of our approach.

We do not require that we are given submodules Ln, L−n of L. Rather, we associate
a Jordan pair S to any abelian inner ideal B of L, which for the case of a nondegenerate
(2n + 1)-graded L and B = Ln is isomorphic to (Ln, L−n). (We recall that a Lie algebra
is nondegenerate if [x, [L, x]] = 0 implies x = 0.) This works as follows. Mimicking the
definition of the kernel of an inner ideal in a Jordan pair [LN1], we define the kernel of
an abelian inner ideal B in a Lie algebra L as KerL B = {x ∈ L : [B, [x,B]] = 0}. Then
S = (B, L/ KerL B) is a Jordan pair, called the subquotient of B, with respect to the
Jordan triple products induced by the double commutator of L. That a sufficiently nice
“top” Ln creates a (2n + 1)-grading of L can now be expressed more precisely.

Theorem A. Let L be a Lie algebra and suppose B is an abelian inner ideal of L
whose subquotient S is covered by a finite grid. Then there exists a finite Z-grading, say
a (2n + 1)-grading, such that B = Ln, KerL B = L−n+1 ⊕ · · · ⊕ Ln and (Ln, L−n) ∼= S.

For the non-expert in Jordan theory we mention that a grid in a Jordan pair is a
special family of idempotents, see [N1, N5] for details. The assumption on S is for
example fulfilled in case the subquotient is a nondegenerate and Artinian Jordan pair,
since these can be characterized as those Jordan pairs that are covered by a finite division
grid [LN1; Th. 5.2]. And as we show in Prop. 2.6, the subquotient of an abelian inner
ideal is always nondegenerate and Artinian if L itself is nondegenerate and B has finite
length, i.e. every proper chain of inner ideals of L contained in B is finite. Let us now
discuss some of the techniques and concepts used in the proof of the result.

• Idempotents: Idempotents in Jordan pairs are of course a well-known concept.
Motivated by the Jordan pair case, we call a pair of elements (e+, e−) in L × L, L a Lie
algebra, an idempotent of L if (e+, he = [e+, e−], e−) is an sl2-triple in L and (ad e+)3 = 0.
Then (ad e−)3 = 0 and ad he is diagonalizable with eigenvalues 0,±1,±2, i.e., L = L−2 ⊕
L−1⊕L0⊕L1⊕L2 for the eigenspaces Li of ad he (it is here that we need our assumption
that 5 is invertible in Φ). As in Jordan theory, the Peirce decomposition of one idempotent
can be refined by considering a finite family E of idempotents in L which is compatible in
the sense that [he, hf ] = 0 for e, f ∈ E.

These definitions are well-behaved with respect to subquotients: If E is a compatible
family of idempotents in L and B is an abelian inner ideal of L such that e+ ∈ B for all e ∈
E, then the canonical image of E in the subquotient is a compatible family of idempotents
in the Jordan pair sense. It is crucial for our work that we can also go backwards. Indeed,
the essence of Prop. 4.5 is that any finite family of compatible idempotents in S can be
lifted to a compatible family of idempotents in L. We note that the lifting of a single
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idempotent is essentially a graded version of the Jacobson-Morozov Lemma.

• 3-graded root systems: The combinatorics of grids in Jordan pairs is best de-
scribed using 3-graded root systems, see [LN2; §18]. To any grid G in a Jordan pair one
can associate a 3-graded root system R = R1 ∪R0 ∪R−1 and an enumeration of the grid
as G = (gα : α ∈ R1) such that the relations between the idempotents in G are described
by the combinatorics (angles) of R. For example, the idempotents gα, gβ are orthogonal
if and only if the roots α, β are orthogonal. In general, the root system R is locally finite,
but for Theorems A and B we will only be using finite grids and hence finite root systems.
For the root system R we denote by P(R) the abelian group of the weights of R. We recall
that R ⊂ P(R) canonically. Theorem A is a corollary of the following result.

Theorem B. Let B be an abelian inner ideal of a Lie algebra L whose subquotient
S = (B, L/ KerL B) is covered by a finite standard grid G with associated 3-graded root
system R = R1 ∪R0 ∪R−1.

Then G lifts to a compatible family E = (eα : α ∈ R1), eα = (e+
α , e−α ), of idempotents

in L whose joint Peirce spaces induce a P(R)-grading of L:

L =
⊕

ω∈P(R)

Lω, where Lω = {x ∈ L : [hα, x] = 〈ω, α∨〉x for all α ∈ R1}

and hα = [e+
α , e−α ]. Moreover,

B =
⊕

ω∈R1

Lω, KerL B =
⊕

ω 6∈R−1

Lω.

The subalgebra g generated by all e±α is R-graded in the sense of [N5]. If Φ is a field of
characteristic 0 then g is a finite-dimensional split semisimple Lie algebra of type R with
splitting Cartan subalgebra h =

∑
α∈R1

Φhα and is isomorphic to the Tits-Kantor-Koecher
algebra of the Jordan pair generated by G.

Our assumption that G be a standard grid is not serious (but necessary for the second
part of Theorem B), since any covering grid can be replaced by a covering standard grid
with the same Peirce spaces and associated 3-graded root system. We point out that the
P(R)-grading of L constructed above has many of the features of a grading of L by a root
systems, as defined by [BM], [BeZ] and [N5], see 4.6.

The support supp L = {ω ∈ P(R) : Lω 6= 0} of the P(R)-grading of L contains R but
possible more weights. We construct a group homomorphism ϕ: P(R) → Z such that for
a suitable positive integer n we have |ϕ(ω)| ≤ n for ω ∈ supp L with ϕ(ω) = n ⇔ ω ∈ R1.
One then obtains a (2n + 1)-grading of L and hence a proof of Theorem A by putting
Li =

⊕
ϕ(ω)=i Lω for −n ≤ i ≤ n. We note that in case of an irreducible R, equivalently a

simple subquotient S, the number n above can be chosen as the Coxeter number h of R.
Namely, in this case we can take ϕ(ω) =

∑
α∈R1

〈ω, α∨〉, and we have
∑

α∈R1
〈β, α∨〉 = h

for all β ∈ R1.
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Applications: It is an immediate corollary of Th. A that C = L−n is another
abelian inner ideal with KerL C = L−n ⊕ · · · ⊕ Ln−1. Thus, the abelian inner ideal B is
complemented by C in the sense that L = B ⊕ KerL C = C ⊕ KerL B (Th. 5.1). This
is essential for characterizing Lie algebras in which every inner ideal is complemented
[FGG3].

Using the Tits-Kantor-Koecher construction we can give another application of our
results, namely to inner ideals in Jordan pairs (Cor. 5.4): If the subquotient of an inner
ideal B of a Jordan pair V is covered by a finite grid, it can be lifted to a finite grid in
V which induces a finite Z-grading of V . Moreover, B is complemented in the sense of
[LN1].

The paper is organized as follows. After a review of some concepts from the theory
of Lie algebras and Jordan pairs in §1, we study the kernel and subquotient of an inner
ideal in a Lie algebra in §2. In §3 we review and prove some results for 3-graded root
systems. The main work is done in §4, in particular in Prop. 4.5 and Th. 4.7, which
together provide a proof of Th. B. For the applications in Jordan pairs, it is necessary
to prove parts of these results in the graded setting. The final section §5 is devoted to
the applications mentioned above. We also discuss there some examples illustrating the
relationship between abelian inner ideals and finite Z-gradings of Lie algebras.

1. Preliminaries

1.1 Basic notions. Throughout this paper we will be dealing with Lie algebras,
Jordan algebras and Jordan pairs over a ring of scalars Φ containing µ · 1Φ ∈ Φ× for
µ = 2, 3 where Φ× denotes the invertible elements of Φ. So both the Jordan algebras and
Jordan pairs considered here are linear. From section 4 on we will also assume that 5 · 1Φ

is invertible in Φ.

We will use standard notation. For example, the product in a Lie algebra will be
denoted [x, y], while ad x or adx is the adjoint map determined by x. We will also use the
abbreviation [x1, x2, . . . , xn−1, xn] = (ad x1) (ad x2) · · · ad xn−1(xn).

For Jordan pairs V = (V +, V −) we will follow the terminology of [L1]. In particular,
it follows from [L1; p. 55] that a pair V = (V +, V −) of Φ-modules with trilinear maps
{· · ·} : V σ × V −σ × V σ → V σ, σ = ±, is a Jordan pair if and only if the triple products
satisfy the two conditions:

{x, y, z} = {z, y, x} (J1)
{u, v, {x, y, z}}+ {x, {v, u, y}, z} = {{u, v, x}, y, z}+ {x, y, {u, v, z}}. (J2)

1.2 Nondegeneracy and primeness. Let V = (V +, V −) be a Jordan pair. An
element x ∈ V σ, σ = ±, is called an absolute zero divisor if Qx = 0, and V is said to be
nondegenerate if it has no nonzero absolute zero divisors, semiprime if QB±B∓ = 0 implies
B = 0, and prime if QB±C∓ = 0 implies B = 0 or C = 0, for any ideals B = (B+, B−),
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C = (C+, C−) of V . Similarly, given a Lie algebra L, x ∈ L is an absolute zero divisor
if ad2

x = 0, L is nondegenerate if it has no nonzero absolute zero divisors, semiprime if
[I, I] = 0 implies I = 0, and prime if [I, J ] = 0 implies I = 0 or J = 0, for any ideals I, J
of L. A Jordan pair or Lie algebra is strongly prime if it is prime and nondegenerate.

1.3 Inner ideals and Jordan elements. Given a Jordan pair V = (V +, V −), an
inner ideal of V is any Φ-submodule B of V σ such that {B, V −σ, B} ⊂ B. Similarly, an
inner ideal of a Lie algebra L is a Φ-submodule B of L such that [B, L,B] ⊂ B. An abelian
inner ideal is an inner ideal B which is also an abelian subalgebra, i.e., [B, B] = 0. In the
following we will mainly consider abelian inner ideals. This is not such a great restriction
as it may look at first sight since in a nondegenerate simple Artinian Lie algebra every
inner ideal B 6= L is abelian ([Be2; Lemma 1.13]).

For b ∈ L the following conditions are equivalent [Be2; Lemma 1.8]:

(i) ad3
b = 0,

(ii) there exists an abelian inner ideal B containing b ∈ B.

Any element b ∈ L satisfying these two conditions is called a Jordan element. Any Jordan
element b gives rise to the abelian inner ideals [b] := [b, b, L] and (b) := Φb + [b].

1.4 Lemma. Let I be an ideal of a Lie algebra and x ∈ I a Jordan element of I.
For any a, b ∈ I, we have

(i) X2AX = XAX2,

(ii) X2AX2 = 0,

(iii) ad2
X2(a) = X2A2X2,

(iv) X2ABX2 = X2BAX2 = adX2(a) adX2(b)

where capital letters denote the adjoint maps with respect to those elements.

Proof. (i), (ii), (iii) follow as in [Be2; Lemma 1.7 (i), (ii), (iii)] since X3(a) = 0. For
(iv) we use (ii) and get X2ABX2 = X2[A,B]X2+X2BAX2 = X2 ad[a,b] X

2+X2BAX2 =
X2BAX2, and from (iii) that ad2

X2(a+b) = X2 ad2
a+b X2. But ad2

X2(a+b) = X2A2X2 +
X2B2X2 + 2 adX2(a) adX2(b) (since the operators adX2(a) and adX2(b) commute because
the inner ideal [x, [x, I]] is abelian), and X2 ad2

a+b X2 = X2A2X2+X2B2X2+2X2ABX2.
Hence, X2ABX2 = adX2(a) adX2(b), as required.

1.5 Let (V +, V −) be a pair of Φ-submodules of a Lie algebra L such that {x, y, z} :=
[[x, y], z] ∈ V σ for all x, z ∈ V σ and y ∈ V −σ. It is a straightforward consequence of the
Jacobi identity that the pair V = (V +, V −) satisfies the identity (J2) defining a Jordan
pair, but not necessarily the identity (J1). However, both identities are fulfilled for a pair
(B, C) of abelian inner ideals, and hence (B,C) is a Jordan pair.

1.6 Gradings. Let L be a Lie algebra and let Γ be an abelian group, written
additively. We say that L is graded by Γ and call this a Γ-grading of L if there exists a
decomposition L =

⊕
γ∈Γ Lγ , where the Lγ are Φ-submodules of L, satisfying [Lγ , Lδ] ⊂
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Lγ+δ for all γ, δ ∈ Γ. A finite Z-grading is a non-trivial Z-grading such that the support
set supp L = {γ ∈ Z : Lγ 6= 0} is finite. Hence L = L−n ⊕ · · · ⊕ Ln for some positive
integer n. If Ln + L−n 6= 0, we will call such a grading a (2n + 1)-grading. Note that if L
is nondegenerate then both Ln and L−n are non-zero.

Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra. A Φ-submodule M of L will be called a
graded submodule if M =

⊕
γ∈Γ(M ∩ Lγ), in which case we will write M =

⊕
Mγ where

Mγ = M ∩ Lγ . An inner ideal B is graded if its underlying submodule is graded. We
will refer to the elements of Lγ , γ ∈ Γ, as homogeneous elements. We will say that L
is graded-nondegenerate with respect to Γ if it does not have homogeneous absolute zero
divisors.

If ∆ is another abelian group, we will say that a ∆-grading L =
⊕

δ∈∆ Lδ is compatible
with the given Γ-grading if, putting Lγ

δ = Lγ ∩ Lδ, we have Lγ =
⊕

δ∈∆ Lγ
δ for all γ ∈ Γ,

or equivalently Lδ =
⊕

γ∈Γ Lγ
δ for all δ ∈ ∆. Of course, two compatible Γ- and ∆-gradings

are the same as a Γ⊕∆-grading, but it is usually more instructive to keep the two gradings
apart.

Similarly, a Γ-grading of a Jordan pair V = (V +, V −) consists of decompositions
V σ =

⊕
γ∈Γ V σ

γ of V σ with V σ
γ being Φ-submodules of V σ such that {V σ

γ , V −σ
δ , V σ

ε } ⊂
V σ

γ+δ+ε for all γ, δ, ε ∈ Γ. Graded inner ideals of a Γ-graded Jordan pair and homogeneous
elements are defined analogously to the case of Lie algebras. The proof of the following
lemma is a simple verification, left to the reader.

1.7 Lemma. Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra with a compatible (2n+1)-
grading L = L−n ⊕ · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ · · · ⊕ Ln. Then V = (Ln, L−n) is a Γ-graded
Jordan pair with respect to (V ±)γ = Lγ

±n and the triple products {x, y, z} defined in 1.5.
Moreover,

(i) a Φ-submodule B of L±n is an abelian inner ideal of L if and only if it is an inner
ideal of V , and

(ii) if L is graded-nondegenerate with respect to Γ or nondegenerate, then so is the
Jordan pair V .

1.8 Socle and chain conditions. (i) Recall that the socle of a nondegenerate
Jordan pair V is Soc V = (Soc V +, Soc V −) where Soc V σ is the sum of all minimal inner
ideals of V contained in V σ [L2]. The socle of a nondegenerate Lie algebra L is Soc L,
defined as the sum of all minimal inner ideals of L [DFGG].

(ii) By [L2; Th. 2] for the Jordan pair case and [DFGG; Th. 3.6] for the Lie case,
the socle of a nondegenerate Jordan pair or Lie algebra is the direct sum of its simple
ideals. Moreover, each simple component of Soc L is either inner simple or contains an
abelian minimal inner ideal [Be2; Th. 1.12].

(iii) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the descend-
ing chain condition on all inner ideals. While any nondegenerate Artinian Jordan pair
coincides with its socle (by the elemental characterization of the socle, [L2; Th. 1]), for
a nondegenerate Artinian Lie algebra L we only have that L has an essential socle in the
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sense that every non-zero ideal has a non-zero intersection with the socle [DFGG; Cor.
3.7 and Remark 3.8].

2. Kernels and subquotients

2.1 Kernels. Let V = (V +, V −) be a linear Jordan pair and B ⊂ V + an in-
ner ideal of V . Following [LN1], the kernel of B is the set KerV B = {x ∈ V − :
{B, x, B} = 0}. Then (0, KerV B) is an ideal of the Jordan pair (B, V −) and the quotient
S = (B, V −)/(0, KerV B) = (B, V −/ KerV B) is called the subquotient of V with respect
to B. The kernel and the corresponding subquotient of an inner ideal B ⊂ V − are defined
similarly.

The analogous versions of all of these results hold for inner ideals in Lie algebras, if
we replace the Jordan triple product {x, y, z} by the left double commutator [[x, y], z], cf.
1.5.

2.2 Definition. Let B be an inner ideal of a Lie algebra L. The kernel of B is the
Φ-submodule KerL B = {x ∈ L : [B, B, x] = 0}.

In the following lemma we will consider the pair (L,L) of a Lie algebra L with respect
to the triple products of 1.5. We will use the concepts of subpairs, ideals and quotients
which are defined in an obvious way, see [L1; 1.3] for the case of Jordan pairs.

2.3 Lemma. Let B be a Φ-submodule of the Lie algebra L. Then (B, L) is a subpair
of (L,L) if and only if B is an inner ideal of L.

In the remainder of this proposition we will assume that B is an inner ideal of L and
consider the subpair (B,L) of (L,L). Then the following holds.

(a) (0, KerL B) is the largest among all ideals I = (I+, I−) of the pair (B, L) such
that I+ = 0. Moreover, K = KerL B satisfies

[K, L, B] + [L,B, K] + [B, K,L] ⊂ K. (1)

Hence the pair S = (B, L/ KerL B), called the subquotient of B, has well-defined triple
products

{mx̄n} = [[m, x], n] and {x̄m ȳ} = [[x,m], y]

where m,n ∈ B, x, y ∈ L and L → L/ KerL B : x → x̄ is the canonical map.

(b) S always satisfies the 5-linear identity (J2), and is a Jordan pair if B is an abelian
inner ideal.

(c) If B is an abelian inner ideal then [B, L] ⊂ KerL B and KerL B = {x ∈ L :
[b, b, x] = 0 for all b ∈ B}.

(d) Assume L is a Γ-graded Lie algebra and B is a graded abelian inner ideal. Then
KerL B is a Γ-graded Φ-submodule, and S is a Γ-graded Jordan pair with respect to the
quotient grading induced by the Γ-grading of L.
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The proof is a straightforward exercise which will be left to the reader.

2.4 Proposition. Let L = L−n⊕ · · · ⊕L0⊕ · · · ⊕Ln be a (2n + 1)-grading of a Lie
algebra L with associated Jordan pair V = (Ln, L−n).

(i) Let B ⊂ Ln be an inner ideal of V . Then the kernel of the abelian inner ideal B
of L is

KerL B = KerV B ⊕ L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln.

(ii) If L is nondegenerate, then

KerL Ln = L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln,

and the Jordan pairs (Ln, L−n) and (Ln, L/ KerL Ln) are isomorphic.

In particular, any nondegenerate Jordan pair V = (V +, V −) is a subquotient, namely
isomorphic to the subquotient of its Tits-Kantor-Koecher algebra with respect to the inner
ideal V + of V .

Proof. (i) As pointed out in 1.3, B is an abelian inner ideal of L, and it is easy to see
that KerL B = KerV B ⊕ L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln. If L is nondegenerate, then so is
the Jordan pair V = (Ln, L−n) and hence KerV Ln = 0 by [LN1; 1.4]. Now (ii) follows
easily from (i).

2.5 By definition, a properly ascending chain 0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bn of inner
ideals of a Lie algebra L has length n. The length of an inner ideal B is the supremum of
the lengths of chains of inner ideals of L contained in B.

The following elemental characterization of strong primeness for Lie algebras [GG;
Th. 1.6] will be used in the proof of our next result: A Lie algebra L (over an arbitrary
ring of scalars) is strongly prime (as defined in 1.2) if and only if [x, [y, L]] = 0 implies
x = 0 or y = 0, for every x, y ∈ L.

2.6 Proposition. Let B be an abelian inner ideal of a Lie algebra L, K = KerL B
the kernel of B, and V = (B, L/K) the subquotient of L relative to B.

(i) A Φ-submodule of B is an inner ideal of L if and only if it is an inner ideal of V .

(ii) If C is an inner ideal of L, then C = (C + K)/K is an inner ideal of V .

(iii) If L is nondegenerate (strongly prime), then V is nondegenerate (strongly prime).

If L is nondegenerate, then,

(iv) V has nonzero socle if and only if B contains minimal inner ideals. In fact,
Soc B = Soc L ∩B, and

(v) B has finite length if and only if V is Artinian. In this case, B ⊂ Soc L and
V ∼= (B, I/ KerI B), where I is any ideal of L containing B.

(vi) If L is strongly prime and B is nonzero and of finite length, then V is a simple
nondegenerate Artinian Jordan pair.
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Proof. (i) and (ii) are trivial. (iii) Suppose that L is strongly prime. If {b, L/K, b′} = 0
for some b, b′ ∈ B, then [[b, L], b′] = 0 and hence b = 0 or b′ = 0 by the elemental
characterization of strong prime Lie algebras in 2.5. Suppose now that {a, B, c} = 0 for
some a, c ∈ L. i.e., [[a,B], c] ⊂ K. By 1.4.iv, we have for any b ∈ B

0 = [b, b, a, c, B] ⊃ [b, b, a, c, b, b, L] = [[b, b, a], [b, b, c], L],

which, again by the elemental characterization of strong primeness in 2.5 implies [b, [b, a]] =
0 or [b, [b, c]] = 0, i.e., ā = 0 or c̄ = 0. A similar argument applies when L is nondegenerate
to yield nondegeneracy of V .

(iv) By (iii) V is nondegenerate, and by (i) the minimal inner ideals of V which are
contained in B are those minimal inner ideals of L which are contained in B.

(v) By [LN1; Cor. 4.8], B has finite length if and only if V is Artinian. In this
case, B = SocB ⊂ Soc L, since Artinian nondegenerate Jordan pairs coincide with their
socles. Let I be an ideal of L containing B. The injection j: I → L induces the Jordan
pair monomorphism (1B , j̄): (B, I/ KerI B) → (B,L/ KerL B), but since Artinian non-
degenerate Jordan pairs are von Neumann regular, (1B , j̄) is actually an isomorphism:
L/K = {L/K, B, L/K} = [[L,B], L] = I.

(vi) By (iii) and (v), V is a strongly prime Artinian Jordan pair. Hence, by the socle
structure theorem, see 1.8, V = Soc V is a simple Jordan pair.

2.7 Jordan algebras of a Lie algebra. In the recent paper [FGG2], the first
three authors of this paper showed how to attach a Jordan algebra Lx to any Jordan
element x of a Lie algebra L (over a ring of scalars Φ containing 1

6 ). We will show that Lx

can be regarded as the x-homotope of the subquotient of L relative to the abelian inner
ideal B = (x) = Φx + [x, x, L]. To do so, the following facts will be used.

2.8 (i) Let V = (V +, V −) be a Jordan pair and x ∈ V −σ, σ = ±. The Φ-module
V σ becomes a Jordan algebra with respect to the product a • b := 1

2{a, x, b}, called the
x-homotope of V and denoted by V (x) [L1; 1.9]. Its U -operator is Ua = QaQx.

(ii) Let B = (x) be the (abelian) inner ideal generated by a Jordan element x of L,
and put V = (B, L/ KerL B). Then V (x) is the Jordan algebra defined on the Φ-module
L/ KerL B with product a • b = 1

2 [[a, x], b].

(iii) Actually, the definition of Jordan algebra at a Jordan element given in [FGG2]
is slightly different from that of (ii): kerL x := {z ∈ L : [x, [x, z]] = 0} is used there instead
of KerL B. Nevertheless, both definitions agree in the nondegenerate case.

2.9 Lemma. Let L be a nondegenerate Lie algebra and let x ∈ L be a Jordan
element. Then KerL[x] = KerL(x) = kerL x.

Proof. Let z ∈ KerL[x]. By 1.4.iii we have for every a ∈ L that

0 = [[x, x, a], [[x, x, a], z]] = ad2
ad2

x a z = ad2
x ad2

a ad2
x z
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which implies Uāz̄ = 0 for every ā ∈ Lx, the Jordan algebra of L at x. But Lx is
nondegenerate by [FGG2; Prop. 2.15], and hence ULx z̄ = 0 implies z̄ = 0, i.e., ad2

x z = 0,
which proves the equality KerL[x] = kerL x.

Let z ∈ kerL x. For any λ ∈ Φ and a ∈ L, we have [λx + [x, x, a], [λx + [x, x, a], z]] =
λ2[x, x, z] + 2λ[[x, x, a], [x, z]] + [[x, x, a], [x, x, a], z] where every summand is zero since
ad3

x = 0 and ad2
x z = 0. Thus, z ∈ KerL(x). The reverse inclusion KerL(x) ⊂ KerL[x] is

trivial.

3. Some results on 3-graded root systems

In this section we will state and prove some results on 3-graded root systems. The
first result holds for locally finite root systems as studied in [LN2] and deals with the
coroot system R∨ of R ([LN2; 4.9]), the root lattice Q(R) and the weight lattice P(R)
of R ([LN2; §7]). We will use special elementary configurations (triangles, quadrangles
and diamonds) defined in [LN2; §18]. Following the convention of [LN2] we will always
assume 0 ∈ R.

3.1 Proposition. Let (R, R1) be a 3-graded root system with coroot system R∨.

(a) The root lattice Q(R∨) of R∨ is isomorphic to the abelian group presented by
generators x̌α, α ∈ R1, and relations

(i) x̌α = x̌β + x̌γ for all triangles (α; β, γ) ⊂ R1, and

(ii) x̌α + x̌γ = x̌β + x̌δ for all quadrangles (α, β, γ, δ) ⊂ R1.

(b) A function ω: R1 → Z extends to a weight ω̃ of R if and only if ω satisfies

(i) ω(α) = ω(β) + ω(γ) for all triangles (α; β, γ) ⊂ R1, and

(ii) ω(α) + ω(γ) = ω(β) + ω(δ) for all quadrangles (α, β, γ, δ) ⊂ R1.

In this case, the extension ω̃ is unique and ω also satisfies

(iii) 2ω(α) + ω(γ) = ω(β) + ω(δ) for all diamonds (α; β, γ, δ) ⊂ R1.

The proof is essentially an application of [LN2; Prop. 11.12] with P the parabolic
subset (R0∪R1)∨ of R∨, while (b) follows immediately from (a). Details will be contained
in [LN3].

3.2 Let (R, R1) be a finite 3-graded root system. Recall that any root α gives rise
to a unique weight α̃

defined by α̃(β) = 〈α, β∨〉 for β ∈ R. We will identify α̃ = α. For ω ∈ P(R) and for
an orthogonal system O ⊂ R1 we define

τ(ω) =
∑

α∈R1
〈ω, α∨〉 and τO(ω) =

∑
α∈O 〈ω, α∨〉.

3.3 Proposition. Let (R, R1) be a finite 3-graded root system. Then there exist a
positive integer n and a group homomorphism ϕ: P(R) → Z such that
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(i) ϕ(α) = n for α ∈ R1, and

(ii) |ϕ(ω)| < n for every ω ∈ P(R) satisfying |τO(ω)| ≤ 1 for every orthogonal system
O ⊂ R1.

If R is irreducible then τ satisfies (i) and (ii) with n the Coxeter number of R.

We will first consider an irreducible R and show that ϕ = τ satisfies (i) and (ii).
The general case will then be dealt with in 3.11. In the irreducible case we will use the
classification of irreducible 3-graded root systems, as given in [LN2; 17.8 and 17.9]. This
will also give us some more precise information about τ(ω). We let h denote the Coxeter
number of R, which can be found in the tables of [Bou; VI].

3.4 Rectangular grading Ap
l , 1 ≤ p ≤ [ l+1

2 ]. Here R = Al so the Coxeter number
h = l + 1. Let q = l + 1 − p. Up to isomorphism we can assume that the 1-part R1 of
this 3-grading is given by R1 = {εi − εj : 1 ≤ i ≤ p < j ≤ h}. It is then easily seen that
τ(β) = h for every β ∈ R1. Moreover, R1 is a disjoint union of q orthogonal systems Oi

of length p, whence |τ(ω)| ≤ ∑q
i=1 |τOi(ω)| ≤ q < h for ω as in 3.3(ii).

3.5 Odd quadratic form grading Bqf
l . Here R = Bl, l ≥ 2, so h = 2l. Up to

isomorphism, the 1-part of R1 of this 3-grading is R1 = {ε1} ∪ {ε1 ± εi : 2 ≤ i ≤ l}. Each
(ε1; ε1 + εi, ε1 − εi) is a triangle. It then follows from 3.1(b.i) that τ(ω) = l〈ω, ε∨1 〉 for any
ω ∈ P(R). In particular, τ(α) = 2l for ω = α ∈ R1 and τ(ω) ∈ {0,±l} for any ω ∈ P(R)
satisfying 3.3(ii).

3.6 Hermitian grading Cher
l . Here R = Cl, l ≥ 3, so h = 2l. Up to isomorphism,

the 1-part R1 of this 3-grading is given by R1 = {εi + εj : 1 ≤ i, j ≤ l}. For i 6= j, the
family (εi + εj : 2εi, 2εj) is a triangle, whence (εi + εj)∨ = (2εi)∨ + (2εj)∨. It then follows
that

τ(ω) = l
( l∑

i=1

〈ω, (2εi)∨〉
)

holds for any ω ∈ P(R). In particular τ(β) = 2l for any β ∈ R1, while τ(ω) ∈ {0,±l} for
ω as in 3.3(ii).

3.7 Even quadratic form grading Dqf
l . Here R = Dl, l ≥ 4, and h = 2(l − 1).

Up to isomorphism R1 = {ε1 ± εi : 1 < i ≤ l}. Since (ε1 + ε2, ε1 + εi, ε1 − ε2, ε1 − εi) is a
quadrangle for 2 < i ≤ l, we get τ(ω) = (l − 1)

(〈ω, (ε1 + ε2)∨〉+ 〈ω, (ε1 − ε2)∨〉
)

for every
ω ∈ P(R). This easily implies (i) and (ii) of 3.3.

3.8 Alternating grading Dalt
l . Here R = Dl, l ≥ 4 and h = 2(l − 1). We

abbreviate (ij) = εi + εj . Up to isomorphism we then have R1 = {(ij) : 1 ≤ i < j ≤ l}.
We first consider the case of an even l. Then O = {(12), (34), . . . (l−1, l)} is an orthogonal
system such that R1 = O ∪⋃l−2

i=1 Oi where each Oi is an orthogonal system of two roots
with the property that each Oi together with two roots of O forms a quadrangle. This
implies τ(ω) = (l − 1)

∑
α∈O 〈ω, α∨〉. If l is odd, we apply the previous considerations
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to the 3-graded subsystem with 1-part {(ij) : 1 ≤ i < j ≤ l − 1}, and get that τ(ω) =
(l − 2)

(∑
α∈O 〈ω, α∨〉) +

∑l−1
i=1〈ω, (il)∨〉. In both cases, (i) and (ii) of 3.3 easily follow.

3.9 Bi-Cayley grading Ebi
6 . Here R = E6 and h = 12. By [N2] the 1-part of

this 3-grading is cog-isomorphic with the 16 tripotents of a bi-Cayley grid B in a Jordan
triple system as defined in [N1; III, §3.1]. By definition, a cog-isomorphism is a bijection
which preserves the elementary relations (orthogonality, collinearity and governing) in R1

and in B. In particular, it follows from [N1; III, §3.1] that, letting e±i ∈ B correspond
to α±i ∈ R1, the 1-part R1 = (ασ

i : σ = ±, 1 ≤ i ≤ 8) is the union of the 1-parts of
two Dqf

5 -gradings, namely (ασ
i : σ = ±, 1 ≤ i ≤ 4) and (α±i : σ = ±, 5 ≤ i ≤ 8). By

3.7 we therefore have τ(ω) = 4
(〈ω, (α+

1 )∨〉 + 〈ω, (α−1 )∨〉 + 〈ω, (α+
5 )∨〉 + 〈ω, (α−5 )∨〉) for

any ω ∈ P(R), which implies (ii) of 3.3. That also (i) holds then follows from the Peirce
relations in the bi-Cayley grid B.

3.10 Albert grading EAlb
7 . Here R = E7 and h = 18. We will proceed as in 3.9.

The 1-part R1 of this 3-grading is cog-isomorphic to the 27 tripotents of an Albert grid in a
Jordan triple system. The structure of the Albert grid ([N1; III, §3.2]) then shows that R1

contains an orthogonal system (α1, α2, α3) such that R1 \ {α1, α2, α3} =
⋃12

i=1 Oi, where
each Oi = {β+

I , β−i } is an orthogonal system such that (β+
i , αj , β

−
i , αk) is a quadrangle

for a unique pair j, k ∈ {1, 2, 3}. The Peirce relations in the Albert grid show that
τ(ω) = 9

∑3
i=1〈ω, α∨i 〉 for any ω ∈ P(R) and that (i) and (ii) of 3.3 hold.

3.11 Proof of 3.3. We have seen in 3.4–3.10 that 3.3 holds for an irreducible root
system. Let R =

⋃s
i=1 R(i) be the decomposition of R into its irreducible components,

let n = lcm(h1, . . . , hn) where hi is the Coxeter number of the irreducible component R(i)

and let τi be the function of 3.2 for R(i). We claim that

ϕ(ω) =
∑s

i=1
n
hi

τi(ω)

fulfills (i) and (ii) of 3.3. Obviously ϕ: P(R) → Z is a group homomorphism. For β ∈ R1∩
R(i) we have ϕ(β) = n

hi
τi(β) = n. For ω as in (ii) note first that the number of irreducible

components on which ω does not vanish is at most two. Indeed, if 〈ω, α∨i 〉 6= 0 for αi,
i = 1, 2, 3, belonging to different components, then (α1, α2, α3) is an orthogonal system.
Because |〈ω, α∨i 〉| = 1 there exists {i, j} ⊂ {1, 2, 3} such that 〈ω, α∨i 〉 + 〈ω, α∨k〉 = ±2,
contradiction. The same argument also shows that if ω does not vanish on two irreducible
components then ω has nonnegative values on one component, say on R(i), and nonpositive
values on the second component, say on R(j). We therefore get

ϕ(ω) = n
hi

τi(ω) + n
hj

τj(ω) < n
hi

τi(ω) < n
hi

hi = n,

and similarly ϕ(ω) > n
hj

τj(ω) > −n.

4. Lifting of idempotents

From now on we assume that all modules, and hence all Lie algebras and Jordan pairs
are defined over a ring of scalars Φ with µ1Φ ∈ Φ× for µ = 2, 3, 5.
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4.1 Lemma. Let S = {−2,−1, 0, 1, 2}, let M be a Φ-module and suppose H,F ∈
EndΦ M satisfy

∏
σ∈S (H − σ) = 0 and [H, F ] = −2F , where we abbreviated H − σ =

H − σ IdM for σ ∈ S. Then F 3 = 0.

Proof. If σ, τ ∈ S with σ 6= τ then 0 < |σ−τ | ≤ 4, whence (σ−τ)1Φ ∈ Φ×. Therefore
M has an eigenspace decomposition M =

⊕
σ∈S Mσ where Mσ = Ker(H − σ) [Be2;

Lemma 2.1]. From [H, F ] = −2F we get F lMσ ⊂ Mσ−2l for any l ∈ N. We claim

F lM−4+2l = 0 = F lM−3+2l for 1 ≤ l ≤ 3. (1)

Indeed, F lM−4+2l ⊂ M−4 and F lM−3+2l ⊂ M−3. Since (S +4)1Φ = {2, 3, . . . , 6}1Φ ⊂ Φ×

and (S+3)1Φ = {1, . . . , 5}1Φ ⊂ Φ×, it follows that M−4 = 0 = M−3, proving (1). Because
any σ ∈ S is of the form σ = −4 + 2l or σ = −3 + 2l for suitable l ∈ {1, 2, 3}, we get
F 3Mσ = F 3−lF lMσ = 0 by (1), and F 3 = 0 follows.

4.2 Proposition. Let Γ be an abelian group, L =
⊕

γ∈Γ Lγ a Γ-graded Lie algebra.
If 0 6= e ∈ Lα, α ∈ Γ, satisfies (ad e)3 = 0 and [[e, u], e] = 2e for some u ∈ L−α, then
there exists v ∈ L−α ∩ Ker ad e such that (e, [e, f ], f), f = u − v, is an sl2-triple with
(ad f)3 = 0.

For Γ = {0} the result is proven in [Se; Lemma V.8.2] (Φ a field) and in [DFGG;
Lemma 2.9]. Our proof is an easy adaptation of Seligman’s proof, which — as Seligman
states — “is really a summary of certain results of Jacobson”.

Proof. We put h = [e, u] ∈ L0 and thus have [h, e] = 2e. Let E = ad e ∈ EndΦ L
and H = ad h. Since E is homogeneous, Ker E is a Γ-graded submodule: Ker E =⊕

γ∈Γ (Ker E ∩ Lγ). One proves as in [J2; p. 99] that H(KerE) ⊂ Ker E and that
H(H − 1)(H − 2)|KerE = 0, whence H(Ker E ∩ Lγ) ⊂ Ker E ∩ Lγ and H(H − 1)(H −
2)|(Ker E ∩ Lγ) = 0 for all γ ∈ Γ. For 0 ≤ i 6= j ≤ 2 we have (i − j)1Φ ∈ Φ×.
Therefore H|(KerE ∩ Lγ) is diagonalizable with eigenvalues 0, 1Φ and 2 · 1Φ. It then
follows that H + 2|(Ker E ∩ Lγ) is invertible for all γ ∈ Γ. Since [e, [h, u]] = −2[e, u]
we have [h, u] + 2u ∈ KerE ∩ L−α. Hence there exists v ∈ L−α ∩ Ker E such that
[h, u] + 2u = [h, v] + 2v. It follows that (e, h, f), f = u − v, is an sl2-triple. Then∏5

j=1(H − 3 + j) = 0 by [J1; Lemma 1]. Finally 4.1 shows (ad f)3 = 0.

4.3 Compatible families of idempotents. We say that (e+, e−) ∈ L × L is
an idempotent in L if [[eσ, e−σ], eσ] = 2eσ for σ = ±, and [e+, e+, e+, L] = 0. For an
idempotent e = (e+, e−), we always let he = [e+, e−]. It is known ([J1; Lemma 1]) that
adhe is diagonalizable with eigenvalues 0, ±1,±2, so by 4.1 also [e−, e−, e−, L] = 0. Thus
(e+, he, e

−) is an sl2-triple with (ad eσ)3 = 0, and

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, where Li = Li(he) = {x ∈ L : [he, x] = ix}. (1)

Following the concepts used in the theory of Jordan pairs, we define the Peirce spaces of
an idempotent e = (e+, e−) ∈ L = L× L by

Li = Li(he) = (Li, L−i), for i ∈ {0,±1,±2}
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and call (1) the Peirce decomposition of e. We note that it is a 3- or 5-grading with
e ∈ L2(he).

A family E = (eα)α∈A of idempotents in L is called compatible if [he, hf ] = 0 for all
e, f ∈ E , and Peirce-compatible if every e ∈ E lies in a Peirce space of every f ∈ E . A
Peirce-compatible family is easily seen to be compatible.

Any family E = (eα)α∈A of idempotents gives rise to joint Peirce spaces

Lω = Lω(E) =
⋂

α∈A Lω(α)(hα) = {x ∈ L : [hα, x] = ω(α)x for all α ∈ A},

where ω = (ω(α))α∈A ∈ {0,±1,±2}A, and hα = [e+
α , e−α ]. For simplicity we will just write

ω ∈ ZA. A compatible family E is called toral if

L =
⊕

ω∈ZA Lω. (2)

Since |ω(α)| ≤ 2 it follows that this decomposition is a ZA-grading of L. It is easily seen
that every finite compatible family is toral.

If L =
⊕

γ∈Γ Lγ is a Γ-graded Lie algebra, an idempotent e = (e+, e−) will be
called homogeneous if e+ ∈ Lγ and e− ∈ L−γ for some γ ∈ Γ. Since then he ∈ L0 the
Peirce decomposition (1) of e is compatible with the given Γ-grading. More generally, the
decomposition (2) of a toral family E of homogeneous idempotents of L is a ZA-grading
which is compatible with the given Γ-grading. We will also use the analogous concepts for
a Γ-graded Jordan pair V . For example, if V σ =

⊕
γ∈Γ V σ

γ an idempotent e = (e+, e−)
of V is homogeneous if e ∈ V +

γ and e− ∈ V −
−γ for some γ ∈ Γ.

4.4 Lemma. Let B be an abelian inner ideal of L, and let f = (f+, f−) be an
idempotent in L with f+ ∈ B, thus L =

⊕2
i=−2 Li(hf ). Then

(a) [f+, f+, f−, f−, x2] = 4x2 for any x2 ∈ L2(hf ), and

(b) KerL B ∩ L−2(hf ) = 0.

Proof. (a) From the Jacobi identity we get [f+, f+, f−, f−, x2] = [f+, hf , f−, x2] +
[f+, f−, f+, f−, x2] = 0 + [f+, f−, hf , x2] = 2[f+, f−, x2] = 4x2, since Li(hf ) is the i-
eigenspace of ad he.

(b) Let y ∈ KerL B ∩ L−2(hf ). Since L−2(hf ) = [f−, f−, L2(f)], we can write y =
[f−, f−, x2] for some x2 ∈ L2(f). Then 0 = [f+, f+, y] = [f+, f+, f−, f−, x2] = 4x2

implies x2 = 0, hence y = 0.

4.5 Proposition. Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra and let B be a
Γ-graded abelian inner ideal of L. Suppose further that E = (eα)α∈A is a toral family of
homogeneous idempotents such that all e+

α ∈ B. We thus have a ZA-grading L =
⊕

ω Lω

as defined in 4.3 which is compatible with the given Γ-grading.

(a) Put Bω = B ∩ Lω for w ∈ ZA. Then B = ⊕ωBω, where each Bω is a Γ-graded
submodule. Moreover, Bω 6= 0 only when ω(α) ≥ 0 for all α ∈ A, and if ω(α) = 2 for
some α ∈ A then Bω = Lω.
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(b) Let K = KerL B and put Kω = K ∩ Lω for w ∈ ZA. Then K = ⊕ωKω, where
each Kω is a Γ-graded submodule and Kω = 0 if ω(α) = −2 for some α ∈ A.

(c) Let V = (B, L/K), and put gα = eα = (e+
α , e−α ) ∈ V . Then E = G = (gα)α∈A is a

compatible family of homogeneous idempotents in V whose joint Peirce spaces are

Vω(G) = (Bω, L−ω/K−ω).

Hence V = ⊕ω(Bω, L−ω/K−ω).

(d) Let f = (f+, f−) ∈ V γ
ω (G) =

(
(V +

ω )γ , (V −
ω )−γ

)
be a homogeneous idempotent of

V . Then there exists a homogeneous idempotent e ∈ (Lγ
ω, L−γ

−ω) such that (e+, e−) = f .
The extended family E∪{e} is again toral. Moreover, if E and G∪{f} are Peirce-compatible
families, then so is E ∪ {e}.

Proof. (a) We have [hα, B] = [[e+
α , e−α ], B] = [e+

α , [e−α , B]] ⊂ B since B is an abelian
inner ideal of L. This implies B = ⊕ωBω and that each Bω is homogeneous.

If ω(α) < 0 for some α ∈ A, for b ∈ Bω we have ω(α)b = [hα, b] = [e+
α , [e−α , b]] = 0,

since [e−α , b] ∈ L(hα)ω(α)−2 = 0 because |ω(α)− 2| ≥ 3.

If ω(α) = 2, then Lω ⊂ L2(hα) = [e+
α , e+

α , L] ⊂ B.

(b) follows from [K,L, B] ⊂ K, using 2.3 and 4.4.

(c) It is immediate from the definition of the Jordan triple product of V that E is a
family of homogeneous idempotents. Indeed, we have {g+

α , g−α , b} = [[e+
α , e−α ], b] = [hα, b]

and, {g+
α , g−α , x} = −[hα, x] for b ∈ B and x ∈ L. These formulas also show that the left

multiplication operators D(eσ
α, e−σ

α ) in V are given by D(g+
α , g−α ) = ad hα on B = V +,

and D(g+
α , g−α ) = −can ◦ adhα on V − for can: L → L/K the canonical map. It follows

that G is a compatible family of idempotents of V . For ω ∈ ZA and b ∈ B we have
b ∈ Bω ⇔ [hα, b] = ω(α)b for all α ∈ A ⇔ b ∈ V +

ω(α)(gα) for all α ∈ A. Also for
x =

∑
ν∈ZA xν , xν ∈ Lν , we get {g−α , g+

α , x} = −∑
ν ν(α)xν . From this it easily follows

that V −
ω (G) = L−ω/K−ω.

(d) Put e+ = f+. We have (ad e+)3L = [e+, (ad e+)2L] ⊂ [e+, B] = 0 since B is an
abelian inner ideal. Let u ∈ L−γ

−ω(E) such that u = f− ∈ Vω(G)−. Then [[e+, u], e+] =
[[e+, e−], e+] = 2e+. By 4.2 there exists v ∈ L−γ

−ω(E)∩Ker ad e+ such that (e+, [e+, e−], e−),
e− = u − v, is an sl2-triple with (ad e−)3 = 0, i.e., e = (e+, e−) is a homogeneous
idempotent of L. Since he = [e+, e−] ∈ L0

0, the extended family is again toral. Also,
[[e−, u], e+] ∈ KerL B, so

2f− = [[f−, f+], f−] = [[u, e+], u] = [[e−, e+], u] = [[e−, u], e+] + [e−, [e+, u]]
= [[e−, e+], e−] = −[he, e

−] = 2e−.

Hence f− = e−, and e is indeed a lift of f .

By construction e ∈ Lγ
ω(E). For the second part of (d) it therefore remains to prove

that (e+
α , e−α ), α ∈ A, lies in the Peirce space of e, i.e., [h, eσ

α] = σµeσ
α for h = [e+, e−],
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σ = ±, and some µ ∈ {0,±1,±2}. But we know that there exists µ ∈ {0,±1,±2} such
that {fσ, f−σ, gσ

α} = µgσ
α, so in particular [h, e+

α ] = [[e+, e−], e+
α ] = [[f+, f−], g+

α ] = µg+
α ,

while [h, e−α ] = −[[e−, e+], e−α ] = −{f−, f+, g−α } = −µe−α , so [h, e−α ] + µe−α ∈ Kω. Since
E is Peirce-compatible, e−α ∈ Lω for some ω ∈ ZA, whence Kω = 0 by (b). Therefore
[h, e−α ] = −µe−α .

4.6 Weight-graded Lie algebras. Let R be a root system. A P(R)-graded
Lie algebra L =

⊕
ω∈P(R) Lω is called an R-weight-graded Lie algebra [N6] if it has the

following properties:

(i) For every α ∈ R× = R \ {0} there exists a non-zero pair (eα, fα) ∈ Lα × L−α

such that hα = [eα, fα] acts on Lω by [hα, xω] = 〈ω, α∨〉xω where xω ∈ Lω.

(ii) L0 =
∑

0 6=ω∈P(R) [Lω, L−ω].

(iii) For all σ, τ ∈ supp L = {ω ∈ P(R) : Lω 6= 0} there exists α ∈ R such that
〈σ − τ, α∨〉.1Φ ∈ Φ×.

In this case, we will call S = (eα, fα : α ∈ R×) a splitting family and simply write
S = (eα : α ∈ R×) in case S is normalized in the sense that fα = e−α. An R-graded Lie
algebra as defined in [N5] is an R-weight-graded Lie algebra with suppL = R a reduced
root system.

We note that (iii) is of course automatic if Φ is a field of characteristic 0. Also, if L
is R-graded, (iii) just means 2, 3 ∈ Φ× and hence is always fulfilled under our assumption
on Φ. For R a finite root system and Φ a field, the notion of an R-graded Lie algebra
has been introduced and studied by Berman-Moody in case R is simply-laced and 6= A1

[BM], and by Benkart-Zelmanov in the remaining cases [BeZ].

If L only satisfies (i) and (iii), it is easily checked that then

Lc =
( ∑

0 6=ω [Lω, L−ω]
)⊕ ( ⊕

0 6=ω Lω

)
(1)

is an ideal of L, called the core, which is R-weight-graded.

The next theorem uses the concept of standard grids in Jordan pairs for which the
reader is referred to [N2; 3.5] or [N4; 1.7]. We note that every covering grid can be
changed to a covering standard grid with the same Peirce spaces and the same associated
3-graded root system. We also recall our basic assumption for this section: All algebraic
structures are defined over Φ in which i · 1Φ, i = 2, 3, 5, is invertible.

4.7 Theorem. Let B be an abelian inner ideal in a Lie algebra L, and suppose
that the subquotient V = (B, L/ KerL B) is covered by a standard grid G with associated
3-graded root system (R, R1), hence G = (gα)α∈R1 for idempotents gα = (g+

α , g−α ) in
V . Let E = (eα)α∈R1 be a toral family of Peirce-compatible idempotents in L such that
eα = (e+

α , e−α ) = gα for all α ∈ R1. We put hα = [e+
α , e−α ] and denote by Lω, ω ∈ ZR1 , the

joint eigenspaces of (hα)α∈R1 :

Lω = {x ∈ L : [hα, x] = ω(α)x for all α ∈ R1}. (1)
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We let supp L = {ω : Lω 6= 0}.
(a) Every ω ∈ supp L has a unique extension to a weight of R, also denoted ω, such

that ω(α) = 〈ω, α∨〉 for all α ∈ R1. Moreover, putting Lω = 0 for ω ∈ P(R) \ supp L, the
decomposition L =

⊕
ω∈P(R) Lω is a grading by the abelian group P(R).

(b) Every ω ∈ supp L has the property that
∑

α∈O 〈ω, α∨〉 ∈ {0,±1 ± 2} for every
finite orthogonal system O ⊂ R1. Moreover, for σ = ± we have ω ∈ Rσ1 if and only if
there exists a finite orthogonal system O ⊂ R1 such that

∑
α∈O 〈ω, α∨〉 = σ2.

(c) B =
⊕

α∈R1
Lω and KerL B =

⊕
ω 6∈R−1

Lω.

(d) For 0 6= µ ∈ R0, written as µ = α−β with α, β ∈ R1, the element eµ = [e+
α , e−β ] is

well-defined up to sign. Moreover, L satisfies the conditions (i) and (iii) of 4.6 with respect
to the family S = (eα, : α ∈ R×) where eα = e+

α , e−α = e−α for α ∈ R1 and eµ as defined
above for some chosen decomposition 0 6= µ = α− β ∈ R0. Hence the core

Lc =
( ∑

0 6=ω [Lω, L−ω]
)⊕ ( ⊕

0 6=ω Lω

)

of L, cf. 4.6(1), is an R-weight-graded ideal of L.

(e) Let h =
∑

α∈R1
Φhα ⊂ L0. Then h is an abelian subalgebra of L, and

g =
( ⊕

α∈R1
Φe+

α

)⊕ (
h⊕∑

0 6=µ∈R0
Φeµ

)⊕ (⊕
α∈R−1

Φe−α
)

is a subalgebra of L which is R-graded and hence in particular 3-graded. If Φ is a field
of characteristic 0, then g is the Tits-Kantor-Koecher algebra of the Jordan pair spanned
by G. In particular, if Φ is a field of characteristic 0 and R is finite then g is a finite-
dimensional split semisimple Lie algebra with splitting Cartan subalgebra h.

The proof of the theorem will be given in 4.12. In the subsections 4.8–4.11 we will
establish some additional results on the structure of L which are of independent interest.
Throughout the assumptions of 4.7 are assumed to hold, except that we do not assume
(nor use) that G covers V .

4.8 Let α, β, γ ∈ R1. Then for σ = ± we have [ [eσ
α, e−σ

α ], eσ
β ] = 〈β, α∨〉eσ

β =
[ [eσ

β , e−σ
α ], eσ

α], while for α 6= β 6= γ and α − β + γ = δ ∈ R1 there exists µ ∈ {±1, 2}
such that [ [eσ

α, e−σ
β ], eσ

γ ] = µeσ
δ = [ [eσ

γ , e−σ
β ], eσ

α] for σ = ±, where µ is determined by the
corresponding equation for G, i.e., {gσ

α, g−σ
β , gσ

δ } = µgσ
δ .

Proof. By [N2; 3.5] all equations hold for gσ in place of eσ. Since [[e+
α , e−β ], e+

γ ] =

{g+
α , g−β , g+

γ }, the claim holds for σ = +. For σ = − we get [ [e−α , e+
β ], e−γ ] = {g−α , g+

β , g+
γ } =

νg−δ , where ν = 〈β, α∨〉 for the first formula and ν = µ for the second. By grading
properties, [[e−α , e+

β ], e−γ ], e−δ ∈ Lω for a suitable ω, where gδ ∈ V−ω = (L−ω, Lω) by
4.5.(c). Since ω(δ) = −2, we have Kδ = 0 by 4.5(b), whence [[e−α , e+

β ], e−γ ] = νe−δ . We also
get [[e−α , e+

β ], e−γ ]− [[e−γ , e+
β ], e−α ] ∈ Kδ = 0.
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4.9 For α, β ∈ R1 with α⊥β we have [e+
α , e−β ] = 0 and [ [eσ

α, e−σ
β ], eσ

γ ] = [[eσ
γ , e−σ

β ], eσ
α]

= 0 for all γ ∈ R1.

Proof. It is immediate from the definitions that [hβ , e+
α ] = [[e+

β , e−β ], e+
α ] = 〈α, β∨〉e+

α =
0 and [hβ , e−β ] = −2e−β . Hence [hβ , [e+

α , e−β ]] = −2[e+
α , e−β ] ∈ L−2(hβ). Thus [e+

α , e−β ] ∈ Lω

where ω(β) = −2. But [e+
α , e−β ] ∈ [B, L] ⊂ K by 2.3. Since Kω = 0 by 4.5, we have

[e+
α , e−β ] = 0. The second equation is clear for σ = +, since it holds in V , cf. 4.8. For

σ = −, we have [ [e−α , e+
β ], e−γ ] = 0 since [e−α , e+

β ] = 0 by what we just proved. Moreover,
[ [e−γ , e+

β ], e−α ] ∈ L−(〈γ,α∨〉+2)(hα) by 4.7(a), whence [ [e−γ , e+
β ], e−α ] = 0 when 〈γ, α∨〉 > 0,

while [[e−γ , e+
β ], e−α ] ∈ L−2(hα) ∩K for γ⊥α, which again implies [[e−γ , e+

β ], e−α ] = 0.

4.10 (a) Let (α; β, γ) ⊂ R1 be a triangle. Then hα = hβ +hγ and [e+
α , e−β ] = [e+

γ , e−α ].

(b) Let (α, β, γ, δ) ⊂ R1 be a quadrangle. Then hα + hγ = hβ + hδ. Moreover,
[e+

β , e−α ] = ε[e+
γ , e−δ ] where the sign ε ∈ {±} is determined from {gσ

α, g−σ
β , gσ

γ } = εgσ
δ .

(c) Let (α;β, γ, δ) ⊂ R1 be a diamond. Then 2hα + hγ = hβ + hδ and [e+
β , e−α ] =

[e+
γ , e−δ ].

Proof. In 4.8 and 4.9 we have established all necessary equations so that the proof of
[N2; Lemma 2.2] works in our more general situation. Details will be left to the reader.

4.11 Let O ⊂ R1 be a finite orthogonal system and define eσ
O =

∑
α∈O eσ

α. Then eO =
(e+

O, e−O) is an idempotent of L with [e+
O, e−O] =

∑
α∈O hα and

∑
α∈O 〈ω, α∨〉 ∈ {0,±1,±2}

for any ω ∈ supp L.

Proof. It is immediate from 4.8 and 4.9 that hO = [e+
O, e−O] =

∑
α∈O[e+

α , e−α ] and that
[hO, eσ

O] = σ2eσ
O. Since (ad e+)3 = 0 it then follows that (e+

O, e−O) is an idempotent. For 0 6=
x ∈ Lω we have [hO, x] =

∑
α∈O[hα, x] = (

∑
α∈O〈ω, α∨〉)x. Now, if |∑α∈O〈ω, α∨〉| ≥ 3

there exists a subsystem O′ ⊂ O of cardinality 2 or 3 such that
∑

α∈O′〈ω, α∨〉 = {±3,±4}.
Hence [h′, x] = µx for µ ∈ {±3,±4}. However, since f = (

∑
α∈O′ e

+
α ,

∑
α∈O′ e

−
α ) is an

idempotent of L with [f+, f−] = h′, the eigenvalues λi of ad h′ lie in {0,±1,±2}. Since
for µ ∈ {±3,±4} we have λi − µ ∈ {±1,±2,±3,±4,±5,±6} · 1Φ ⊂ Φ×, the equation
[h′, x] = µx implies x = 0, contradiction.

4.12 Proof of 4.7. (a) For the proof of Th. 5.3 below we point out that we will
not use in the proof of (a) that G covers V .

By 3.1(b) it suffices to check that for ω ∈ supp(L) we have:

(i) ω(α) = ω(β) + ω(γ) for any triangle (α;β, γ) ⊂ R1, and

(ii) ω(α) + ω(γ) = ω(β) + ω(δ) for any quadrangle (α, β, γ, δ) ⊂ R1.

Let 0 6= x ∈ Lω, and let (α; β, γ) ⊂ R1 be a triangle. Thus, by 4.10(a), ω(α)x =
[hα, x] = [hβ + hγ , x] = (ω(β) + ω(δ))x, i.e., (ω(α) − ω(β) − ω(δ))x = 0. Since |ω(µ)| ≤
2 for any µ ∈ R1, we have that |ω(α) − ω(β) − ω(δ)| ≤ 6. Hence, if ω(α) − ω(β) −
ω(δ) 6= 0, then ω(α) − ω(β) − ω(δ) is invertible in Φ, so x = 0 follows. Thus (i) holds.
Similarly, if (α, β, γ, δ) ⊂ R1 is a quadrangle, we obtain from 4.10(b) that (ω(α) + ω(γ)−
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ω(β) − ω(δ))x = 0. We apply 4.11 to the orthogonal systems (α, γ) and (β, δ) and we
get |ω(α) + ω(γ) − (ω(β) + ω(δ))| ≤ |ω(α) + ω(γ)| + |ω(β) + ω(δ)| ≤ 2 + 2 = 4, hence if
ω(α) + ω(γ) − ω(β) − ω(δ) 6= 0, then ω(α) + ω(γ) − ω(β) − ω(δ) is invertible in Φ and
x = 0 follows. Because Lω 6= 0 we obtain ω(α) + ω(γ)− ω(β)− ω(δ) = 0, i.e., (ii). Thus
ω ∈ supp L uniquely extends to a weight, also denoted by ω. That L =

⊕
ω∈P(R) Lω is a

P(R)-grading is now immediate from 4.7(1).

(c) If ω(α) = 2 for some α ∈ R1, then Lω ⊂ L2(hα) ⊂ B by 4.5, in particular⊕
α∈R1

Lα ⊂ B. Conversely, if Bω 6= 0 then, by 4.5, Bω = V +
ω (G) is a Peirce space of V

with respect to G. Since G covers V , we get ω = α for some α ∈ R1. Thus B =
⊕

α∈R1
Lα.

We know from 4.5 that K =
⊕

ω Kω where Kω = K ∩ Lω, and Kω = 0 if ω(α) = −2
for some α ∈ R1, whence K =

⊕
ω/∈R−1

Kω ⊂ ⊕
ω 6∈R1

Lω. Conversely, by 4.5(c) any
Lω/Kω ⊂ V − is a Peirce space of G. Since the Peirce spaces of G in V − are V −

α , α ∈ R1,
we have Lω/Kω = 0 if ω /∈ R−1, i.e., Lω = Kω for those ω.

(b) The first part of (b) was proven in 4.11. For the second part, the condition is
obviously necessary: If ω = α ∈ Rσ1, σ = ±, then σα is an orthogonal system in R1

with 〈ω, (σα)∨〉 = σ〈α, α∨〉 = 2σ. Conversely, if O ⊂ R1 is an orthogonal system with∑
α∈O〈ω, α∨〉 = 2σ, let eO = (e+

O, e−O) be the idempotent of 4.11, and put hO = [e+
O, e−O]. If

σ = + then Lω ⊂ L2(hO) = [[e+
O, e+

O], L] ⊂ B, so Lω ⊂ V + is a Peirce space with respect
to G and therefore of the form Lω = Lβ for some β ∈ R1. If σ = − then Lω ⊂ L−2(hO).
Since e+

O ∈ B, 4.4(b) shows Kω = 0, whence Lω ⊂ V − is a Peirce space with respect to G,
and therefore of the form Lβ for some β ∈ R−1.

(d) That eµ, 0 6= µ ∈ R0, is well-defined can be proven in the same way as [N4;
Lemma 2.4] by using 4.10 and [LN2; Prop. 18.9] in place of the results quoted in the
proof of [N4; Lemma 2.4].

Condition (i) of 4.6 for α ∈ R1 follows from 4.7(1) since [eα, fα] = hα as defined
in the theorem. It then also holds for α ∈ R−1. For 0 6= µ = α − β ∈ R0 we have
[eµ, e−µ] = [[e+

α e−β ], [e+
β e−α ]] = [[[e+

α e−β ]e+
β ], e−α ] − [e+

β , [[e−β e+
α ]e−α ]] = 〈α, β∨〉hα − 〈β, α∨〉hβ

by 4.8. Since µ∨ = 〈α, β∨〉α∨−〈β, α∨〉β∨ by [LN2; A.4], condition (i) of 4.6 also holds for
µ ∈ R0. Condition (iii) of 4.6 holds because of (b) and our assumption on Φ. As already
mentioned in 4.6, the core of L is then R-weight-graded.

(e) h is abelian by compatibility of E . To check that g is a subalgebra of L, we put
gε = g ∩ Lε and thus have g =

⊕
ε∈R gε with

gε =





h for ε = 0,
Φeε for 0 6= ε ∈ R0,
Φe±α for ±α ∈ R±1.

Clearly [h, g] ⊂ g. In the following we will consider the products [gε, gν ] for 0 6= ε, ν ∈ R
and distinguish the cases (1) ε, ν ∈ R1, (2) ε, ν ∈ R−1, (3) ε ∈ R1, ν ∈ R−1, (4) 0 6= ε ∈ R0,
ν ∈ R1, (5) 0 6= ε ∈ R0, ν ∈ R−1 and (6) 0 6= ε, ν ∈ R0

(1) Let ε = α ∈ R1 and ν = β ∈ R1: We have [e+
α , e+

β ] = 0 since B is abelian.
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(2) Let ε = −α ∈ R−1 and ν = −β ∈ R1: If α 6⊥ β then [e−α , e−β ] ∈ L−α−β = 0
because of 〈α + β, α∨〉 ≥ 3 and (c). If α ⊥ β the assumption L−α−β 6= 0 together with
−〈α + β, α∨〉 = −2 implies the contradiction α + β ∈ R1, whence again [e−α , e−β ] = 0.

(3) Let ε = α ∈ R1 and ν = −β ∈ R−1: If α = β then [e+
α , e−β ] = hα ∈ h. If α 6= β

but α 6⊥ β then 0 6= µ = α − β ∈ R0 and [e+
α , e−β ] = ±eµ ∈ g. Finally, if α ⊥ β then

[e+
α , e−β ] = 0 by 4.9.

(4) Let 0 6= ε ∈ R0 and ν = γ ∈ R1: We can write ε in the form ε = α−β for suitable
α, β ∈ R1, α 6⊥ β such that [eµ, e+

γ ] = [[e+
α , e−β ], e+

γ ] = {g+
α , g−β , g+

γ }. By [N2; 3.5] this
element is zero if α− β + γ = δ 6∈ R1, and lies in Φe+

δ if δ ∈ R1, cf. 4.8.

(5) Let 0 6= ε ∈ R0 and ν = −γ ∈ R1: As in case (4) we let µ = α − β so that
eµ = [e+

α , e−µ ]. Since then [eµ, e−γ ] = −[[e−β , e+
α ], e−γ ] we are again done by 4.8 in case

ω = β−α+γ ∈ R1. Let us therefore assume ω 6∈ R1. We claim than then [[e−β , e+
α ], e−γ ] = 0.

Because {g−β , g+
α , g−γ } = 0 we get at least [[e−β , e+

α ], e−γ ] ∈ K−ω. We can of course assume
K−ω 6= 0. By 4.10 and 4.5(c) we then have 〈ω, δ∨〉 ≤ 1 for all δ ∈ R1, in particular for
δ = β and δ = γ we get 1 + 〈γ, β∨〉 ≤ 〈λ, β∨〉 and 1 + 〈β, γ∨〉 ≤ 〈α, γ∨〉. By 4.9 we can
also assume β 6⊥ α 6⊥ γ. The inequalities above together with 〈R1, R

∨
1 〉 ≤ 2 then imply

β ` α a γ > β. But then (α;β, ω, γ) is a diamond by [LN2; 18.4] with ω ∈ R1. This
contradiction proves [eµ, eν ] = 0 in this case.

(6) Finally, let 0 6= ε, ν ∈ R0: We write again ε as in (4) and can assume that ν = γ−δ
for suitable γ, δ ∈ R1. Then [eµ, eν ] = [eµ, [e+

γ , e−δ ]] = [[eµ, e+
γ ], e−δ ] + [e+

γ , [eµ, e−δ ]] ∈ g by
what we have already proven. This finishes the proof that g is a subalgebra.

That g is R-graded is now immediate from (d) and the definition of an R-graded
algebra. Since R is a 3-graded root system, g is a 3-graded Lie algebra. The last statements
then follow from [N4; Th. 3.3 and Th. 3.4].

5. Consequences and examples

In this section we will draw some consequences of Th. 4.7. As in the previous section
we assume that all Lie algebras and Jordan pairs are defined over a ring of scalars Φ with
µ1Φ ∈ Φ× for µ = 2, 3, 5.

Following [FGG3] we will say that an abelian inner ideal B of a Lie algebra L is
complemented by an abelian inner ideal if there exists an abelian inner ideal C of L such
that L = B ⊕KerL C = C ⊕KerL B.

5.1 Theorem. Let L be a Γ-graded Lie algebra, and let B be a graded abelian
inner ideal such that the subquotient V = (B, L/ KerL B) is covered by a finite grid G of
homogeneous idempotents. Let R be the finite 3-graded root system R associated to G.

Then the assumptions of Th. 4.7 are fulfilled. In particular, the P(R)-grading L =⊕
ω∈P(R) Lω of L is compatible with the given Γ-grading of L. Moreover:
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(a) L has a finite Z-grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln which is compatible with
the Γ-grading of L and satisfies

Ln = B, KerL B = L−n+1 ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln. (1)

If G is a connected grid, then n in (1) can be taken as the Coxeter number of R.

(b) C = L−n is also a graded abelian inner ideal of L with KerL C = L−n ⊕ · · · ⊕
L0 ⊕ · · ·Ln−1. In particular, B is complemented by C.

Proof. If V is covered by a finite grid of homogeneous idempotents, it follows from
[N2; Th. 3.7] that V is also covered by a finite standard grid of homogeneous idempotents,
say G ⊂ V . By repeated application of 4.5(d) we can construct a finite Peirce-compatible
family E of homogeneous idempotents of L such that the assumptions of Th. 4.7 are
fulfilled. In particular, L =

⊕
ω∈P(R) Lω is graded by P(R). Since all hα, α ∈ R1, lie in

L0
0 this P(R)-grading is compatible with the given Γ-grading.

(a) Let ϕ: P(R) → Z be the homomorphism of 3.3. We regrade L via ϕ, i.e., we define
Li =

⊕
ϕ(ω)=i Lω for i ∈ Z. The remaining statements of (a) then follow from 4.7(c) and

3.3, keeping in mind for the last part that G is connected if and only if R is irreducible
[N2; Th. 3.4].

(b) That also C is an abelian inner ideal is obvious, cf. 1.7. We have L−n =⊕
ω∈R−1

Lω, and hence C also fulfills the assumptions of Th. 4.7 with V replaced by
V op and +/− exchanged in G and E . Then 4.7(c) shows that KerL C is as claimed in the
theorem. It then follows that L = B ⊕KerL C = C ⊕KerL B, i.e., B is complemented by
C.

5.2 Corollary. Let L be nondegenerate. Then every nonzero abelian inner ideal
B of finite length of L is complemented by an abelian inner ideal. In fact, there exists a
finite Z-grading L = L−n ⊕ · · · ⊕ Ln such that B = Ln.

Proof. If L is nondegenerate and B is an abelian inner ideal of finite length, the
subquotient V = (B, L/ KerL B) is nondegenerate and Artinian by 2.6(iii)(v). By [LN1;
Th. 5.2], V is covered by a finite grid, hence there exists a finite Z-grading L = L−n ⊕
· · · ⊕ Ln such that B = Ln and B is complemented by the abelian inner ideal L−n, see
5.1.

5.3 Theorem. Let E be a grid in a Jordan pair V with associated 3-graded root
system (R, R1). We enumerate E = {eα : α ∈ R1}. For ω ∈ ZR1 we define Vω(E) =(
V +

ω (E), V −
ω (E)

)
by

V +
ω (E) =

⋂
α∈R1

V +
ω(α)(gα) and V −

ω (E) =
⋂

α∈R1
V −
−ω(α)(gα). (1)

(a) Every ω ∈ supp V = {ω ∈ ZR1 : Vω(E) 6= 0} has a unique extension to a weight of
R, also denoted ω, such that ω(α) = 〈ω, α∨〉 holds for all α ∈ R1.

(b) Assume V =
⊕

ω Vω(E), which always holds if E is finite. Then, putting Vω = 0
for ω ∈ P(R) \ supp V , the decomposition V =

⊕
ω∈P(R) Vω(E) is a P(R)-grading of V .
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(c) Suppose E is finite. Then there exists a finite Z-grading of V , say V =
⊕n

i=−n Vn,
satisfying

V + =
⊕n

i=0 V +
i , V − =

⊕0
i=−n V −

i , and eσ
α ∈ V σ

σn for all α ∈ R1. (2)

If E is connected, n can be taken as the Coxeter number of R.

Proof. (a) and (b) can be proven in the same way as the proof of 4.7(a) in 4.12, i.e.,
one verifies the conditions (i) and (ii) of 3.1(b), see [LN3] for details. As in the proof of 5.1,
the Z-grading in (c) is then constructed from the P(R)-grading using the homomorphism
ϕ: P(R) → Z of 3.3. The properties mentioned in (2) are immediate from the definition
(1).

5.4 Corollary. Let V be a Jordan pair, and let B ⊂ V + be an inner ideal of V
whose subquotient is covered by a finite grid G.

Then G lifts to a finite grid E in V such that the finite Z-grading of V constructed in
5.3 satisfies B = V +

n . Moreover, C = V −
−n is an inner ideal of V which complements B in

the sense of [LN1].

Proof. Let L be the Tits-Kantor-Koecher algebra of V . We recall that L = L1⊕L0⊕
L−1 is a 3-graded Lie algebra with L±1 = V ±. We will view V as a Z-graded Jordan pair
with respect to the grading induced from L, i.e., V 1 = (V +, 0) and V −1 = (0, V −).

By Prop. 2.4 every inner ideal of V contained in V + is an abelian inner ideal of L with
KerL B = V +⊕L0⊕KerV B, whence B is a graded inner ideal of the 3-graded Lie algebra
L whose subquotient S = (B, L/KerL B) ∼= (B, V −/ KerV B) is covered by a finite grid of
(obviously) homogeneous idempotents. By repeated application of Prop. 4.5, the grid G
lifts to a finite Peirce-compatible family E of idempotents of L which are homogeneous with
respect to the 3-grading of L, whence eσ ∈ V σ for σ = ± and e = (e+, e−) ∈ E . By 4.9,
E is a grid in V . We can then apply 5.3 and in particular get B =

⊕
α∈R1

V +
α (E) = V +

n ,
V −
−n =

⊕
α∈R1

V −
−α(E) and KerV B =

⊕
ω 6∈R−1

V −
ω (E) = V −

−n+1 ⊕ · · · ⊕ V −
0 . It is obvious

that C = V −
−n is an inner ideal of V . Applying what we just proved to C and V op shows

KerV C = V +
0 ⊕ · · ·V +

n−1.

5.5 Abelian inner ideals in simple finite-dimensional Lie algebras. By
5.2, a description of abelian inner ideals in nondegenerate Artinian Lie algebras can be
deduced from a classification of finite Z-gradings of these Lie algebras. Although this is
not very efficient since non-isomorphic Z-gradings can lead to isomorphic abelian inner
ideals, it nevertheless provides a quick classification of abelian inner ideals of those Lie
algebras for which the finite Z-gradings are known.

As an example, we consider in this subsection a finite-dimensional split simple Lie
algebra L over a field Φ of characteristic 0, and let B ⊂ L be an abelian inner ideal. By
5.2, L has a finite Z-grading, say a (2n+1)-grading, with Ln = B. It is folklore that the Z-
gradings of L are obtained as follows: There exists a splitting Cartan subalgebra h of L and
a Z-grading of the root system R of (L, h), say R =

⋃n
i=−n Rn such that Li =

⊕
α∈Ri

Lα,
where the Lα are the root spaces of (L, h), in particular Ln = B =

∑
α∈Rn

Lα. It is
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therefore enough to determine Rn. This can be done as follows, see e.g. [LN2; 17.4, 17.5]:
Any Z-grading (Ri)i∈Z of R is given by a coweight q of R, i.e. a Z-linear map Q(R) → Z,
via Ri = {α ∈ R : q(α) = i}, and any coweight q is uniquely determined by its values
qi = q(βi), where (β1, . . . , βl) is a root basis of R. One then discusses the possibilities for
the family (qi) keeping in mind that the highest root with respect to (β1, . . . , βl) lies in
Rn. As an example, we will give the classification for R = E8 below. Before doing so, we
mention some general facts for L:

• By [Be2; Lemma 1.13] every proper inner ideal of a simple nondegenerate Artinian
Lie algebra is abelian, hence in particular this is so for proper inner ideals of L.

• The inner ideals coming from a 3-grading of L are well-known: They are the V +-
spaces of simple Jordan pairs V whose Tits-Kantor-Koecher algebra is (isomorphic to) L.
Moreover, by 1.7(a), a submodule B ⊂ V + is an inner ideal of the Lie algebra L if and
only if B is an inner ideals of the Jordan pair V . The latter are well-known, see e.g. [Mc]
or [N3; §3].

• If B ⊂ R is a family of pairwise collinear long roots, then B =
⊕

β∈B Lβ is an
abelian inner ideal. This is easily proven using standard facts from root systems. We note
that with b = |B| the corresponding subquotient is isomorphic to the rectangular matrix
pair

(
Mat(1, b, Φ), Mat(b, 1;Φ)

)
= (I1b in the notation of [L1]), and hence the subalgebra

g of 4.7 is isomorphic to slb+1(Φ).

Example R = E8: We will use the enumeration of the simple roots βi as in [Bou;
Planche VII], and let B be the abelian inner ideal associated to Rn with n as in 5.1(1).
To arrive at the following list of isomorphism classes of abelian inner ideals in E8 one
considers the possibilities for qi, 1 ≤ i ≤ 8, starting with q8. If q8 > 0, then in view of the
known coefficients (mi) of any positive root α =

∑8
i=1 miβi (see [Bou; Planche VII]) we

have |Rn| = 1. If q8 = 0 < q7 then |Rn| = 2. Continuing in this way one arrives at the
following list:

(1) Rn is a family of pairwise collinear roots, 1 ≤ |Rn| ≤ 8. For example, |Rn| = 8 is
obtained from q2 > 0 = q3 = · · · = q8.

(2) Rn is a family of 14 roots, obtained from q1 > 0 = q2 = · · · = q8. Two distinct
roots in Rn are either orthogonal or collinear, and there exists a bijection between Rn

and the idempotents in an even quadratic form grid of 14 idempotents, that preserves
orthogonality and collinearity. The corresponding subquotient is therefore a quadratic
form pair of dimension 14 (IV14 in the notation of [L1]), and the Lie algebra g of 4.7 is of
type D8. The corresponding grading of L is a 5-grading. Ri consists of those roots whose
β1-coefficient is i; we have |R1| = 64 and |R0| = 84. (L1, L−1) is the Kantor pair of the
structurable algebra O⊗O, where O is a split octonion.

5.6 Abelian inner ideals of finite length in simple infinite-dimensional
Lie algebras. In the previous subsection we have seen the relationship between abelian
inner ideals (of finite length) and finite Z-gradings in a finite-dimensional split simple Lie
algebra L over a field Φ of characteristic 0. Let us now analyze this relation in the case of
an infinite-dimensional simple Lie algebra L over a field Φ of characteristic 0. Let B be
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a nontrivial abelian inner ideal of finite length of L. Then L has abelian minimal inner
ideals, so (see [DFGG]) L = Soc(L) is 5-graded and there exists a simple associative
algebra A with nonzero socle such that

(i) L = [A, A]/([A,A] ∩ Z(A)) with the induced product of A(−), or

(ii) L = [K,K]/Z(A) ∩ [K, K], where ∗ is an involution of A, K = Skew(A, ∗) and
either Z(A) = 0 or the dimension of A over Z(A) is greater than 16.

On the other hand, by 5.2, L has a finite Z-grading L = L−n⊕ . . .⊕Ln for which B = Ln.
Let us now see that 5.2 indeed holds for n = 2, i.e., there exists a 5-grading of L for which
L2 = B.

5.7 Proposition. Let A be an associative algebra and let L = [A, A]/([A,A]∩Z(A)).

(a) Let e, f ∈ A be idempotents satisfying fe = 0. Then B = eAf is an abelian inner
ideal of A(−), which is contained in [A,A] and which satisfies B ∩ Z(A) = {0}. Hence B
imbeds into the Lie algebra L = [A, A]/([A,A]∩Z(A)) and is an abelian inner ideal in L.
Moreover:

(i) c = f − ef is an idempotent of A which is orthogonal to e and also satisfies
B = eAc.

(ii) There exists a 5-grading of A as associative algebra, A =
⊕2

i=−2 Ai, such that

B = A2 and
KerA(−) B = {x ∈ A−2 : bxb = 0 for all b ∈ B} ⊕ ⊕

i≥−1 Ai.

Assume that A is semiprime or that there exist u2 ∈ A2 and v−2 ∈ A−2 satisfying
u2v−2 = e and v−2u2 = c. Then KerA(−) B =

⊕
i≥−1 Ai and the subquotient of B is

isomorphic to the Jordan pair V = (A2, A−2) with triple product {a, b, c} = abc + cba.

(b) Conversely, if A is simple then every abelian inner ideal B ⊂ L of finite length is
of the form B = eAf , where e, f are orthogonal idempotents. Moreover, the Jordan pair
V = (A2, A−2) described in (a) is simple and Artinian.

Proof. (a) Clearly B2 = 0, and this easily implies that B = eAf is an inner ideal of
A(−). It is also straightforward to check that c is an idempotent of A which is orthogonal to
e and satisfies ef = efc. From this one deduces that B = eAc and then that eac = [e, eac]
for any a ∈ A. Hence B ⊂ [A, A] and B ∩ Z(A) = 0. Let Â = Φ1 ⊕ A be the associative
algebra obtained from A by adjoining a unit element 1. Then (e1, e2, e3) = (e, 1− c− e, c)
is a complete orthogonal system in Â. Let Âjk be the corresponding Peirce spaces, hence
Â =

⊕
1≤i,j≤3 Âjk. Since AÂ + ÂA ⊂ A all Peirce spaces Âjk with (jk) 6= (22) are

in fact contained in A and can be defined in A, e.g. Â11 = {a ∈ A : ea = a = ae},
Â12 = {a ∈ A : ea = a, 0 = a(e + c)}. For (jk) = (22) we have Â22 = Φe2 ⊕ A22

where A22 = {a ∈ A : (e + c)a = 0 = a(e + c)}. We therefore get a decomposition A =⊕
1≤j,k≤3 Ajk with Ajk = Âjk for (jk) 6= (22) which behaves like a Peirce decomposition.
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Put Ai =
⊕

k−j=i Ajk for −2 ≤ i ≤ 2. Then A =
⊕2

i=−2 Ai is a 5-grading of A with
B = eAc = A13 = A2. The remaining claims of (a) can now easily be checked.

(b) That in a simple Artinian associative algebra A every abelian inner ideal of L has
the form eAf with fe = 0 is shown in [Be2; Th. 5.1]. Let us then suppose that L is not
Artinian and let B be a nonzero abelian inner ideal of finite length. By socle theory for
Lie algebras [DFGG, Theorem 4.5], A has nonzero socle (as an associative algebra), and
since it is not Artinian, Z(A) = 0. Therefore L = [A,A]. By [Be1, Lemma 3.14], b2 = 0
for any b ∈ B. Hence, for any b, c ∈ B and a ∈ A, we have [[b, a], c] = bac + cab ∈ A,
which implies that B is an inner ideal of the Jordan algebra A(+). But inner ideals of
finite length of A(+) are of the form eAf with e, f idempotents of A [FG, (16)]. Since
b2 = 0 for any b ∈ B, we have fe = 0. Indeed, b2 = 0 for any b ∈ B implies bc + cb = 0
for any b, c ∈ B; on the other hand, bc− cb = 0 for any b, c ∈ B since B is abelian, hence
B2 = 0. Then it follows by simplicity of A that fe = 0 (otherwise, fe 6= 0 would imply
A = AfeA, and hence B = eAf = eAfeAf = B2 = 0).

5.8 Recall [H] that a simple associative algebra A with an involution ∗ has nonzero
socle if and only if it is ∗-isomorphic to the algebra of finite rank continuous operators
(F(X), ∗), where X is a left vector space endowed with a nondegenerate skew-Hermitian
or symmetric form h over a division algebra with involution (∆,−), and where ∗ denotes
the adjoint involution. In the last case, ∆ is commutative with the identity as involution
and K = Skew(A, ∗) is the finitary orthogonal algebra fo(X,h) [Ba]. Given x, y ∈ X,
we write x∗y to denote the linear operator defined by x∗y(x′) = h(x′, x)y for all x′ ∈ X.
Then x∗y ∈ F(X) with (x∗y)∗ = y∗x. Hence [x, y] := x∗y − y∗x ∈ fo(X, h).

5.9 Proposition. Let A be a simple associative algebra with involution ∗ such that
either Z(A) = 0 or the dimension of A over Z(A) is greater than 16. Put K = Skew(A, ∗)
and L = [K, K]/Z(A) ∩ [K, K].

(a) If B is an abelian inner ideal of L of finite length, then either

(i) B = eKe∗ for e ∈ A an idempotent such that e and e∗ are orthogonal, or

(ii) L = fo(X, h) as in 5.8 and there exist a hyperbolic plane H ⊂ X and a nonzero
isotropic vector x such that H⊥ does not contain infinite dimensional totally
isotropic subspaces and B is given by B = [x,H⊥] := {[x, z] : z ∈ H⊥}.

(b) If B = eKe∗ as in (i), then A has a 5-grading as an associative algebra, A =
A−2 ⊕A−1 ⊕A0 ⊕A1 ⊕A2, which is induced by the idempotents e and e∗, cf. Prop. 5.7.
Moreover, L is 5-graded with B = eKe∗ = L2.

If B = [x,H⊥] ⊂ L = fo(X,h) as in (ii), then L admits a 3-grading, L = L−1 ⊕L0 ⊕
L1, such that B = [x,H⊥] = L1.

Proof. (a) We may assume B 6= 0, and therefore that L has nonzero socle. Then, by
[DFGG; Th. 5.16], A coincides with its socle. We consider two cases.

(1) b2 = 0 for any b ∈ B. If A is Artinian, then we have by [Be1; Th. 5.5] that
B = eKe∗ for some idempotent e in A satisfying e∗e = 0. As in Lemma 5.7 we may
assume that the idempotents e and e∗ are orthogonal. If A is not Artinian, then Z(A) = 0
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and L = [K,K]. It then follows from [FGG1; Prop. 3.6] that B = eKe∗ as before.

(2) b2 6= 0 for some b ∈ B. Then we have by [FGG1; Prop. 3.8] that ∆ is a field
with the identity as involution and B = [x,H⊥]. Moreover, by [FGG1; Lemma 3.7], H⊥

cannot contain infinite dimensional totally isotropic subspaces.

(b) The case B = eKe∗ follows as in the proof of Prop. 5.7 (note that A∗i = Ai). If B =
[x,H⊥] = L1 as in (ii), let e0, e1, e2 be the canonical projections of X = Fx+⊕H⊥⊕Fx−
onto Fx+, H⊥, Fx−, respectively. It is easy to see that e0, e1, e2 are idempotents in
L(X), the algebra of all continuous operators, with e∗0 = e2 and e∗1 = e1, which induce a
5-grading A = A2 ⊕ A1 ⊕ A0 ⊕ A−1 ⊕ A−2 of the simple associative algebra A = F(X).
Moreover, each Ai is invariant under ∗ and Skew(A2, ∗) = Skew(A−2, ∗) = 0. Hence
fo(X, q) = Skew(F(X), ∗) = L1 ⊕ L0 ⊕ L−1 with Li = Skew(Ai, ∗) and B = L1.
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