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In this article we present a method to construct gradings of Lie algebras. It requires the

existence of an abelian inner ideal B of the Lie algebra whose subquotient, a Jordan pair,

is covered by a finite grid, and it produces a grading of the Lie algebra L by the weight

lattice of the root system associated to the covering grid. As a corollary one obtains a

finite Z-grading L = L_,, & --- & L, such that B = L,. In particular, our assumption on B

holds for abelian inner ideals of finite length in nondegenerate Lie algebras.

1 Introduction

A finite Z-grading of a Lie algebra L over a unital commutative ring ® is a nontrivial Z-

grading with finite support, i.e., there exists a positive natural number n and a family

(L;) —n<i<n of ®-submodules of L such that

n
L= QB Liy Lp+L,#0, [LiLj]C L

i=—n
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for all 7,j with the understanding that L;,; = 0if [i + j| > n. In this case, one says that L
is (2n + 1)-graded. Simple Lie algebras that have a (2n + 1)-grading and that are defined
over a field of characteristic > 4n + 1 or O were classified by Zelmanov [31] up to the
description of finite Z-gradings of simple associative algebras with involutions. This
description was later given by Smirnov [29, 30].

The main result of this article is a method to construct finite Z-gradings of Lie
algebras. Roughly speaking, we show that a sufficiently nice “top” L, creates a (2n + 1)-
grading of L.

What are nice “tops”? The submodule L,, of any (2n + 1)-grading of L is an abelian
inner ideal in the sense of Benkart [3], i.e., a ®-submodule B satisfying [B,[L,B]] C B
and [B,B] = 0. The pair (L,,L_,) of the “wings” of the (2n + 1)-grading is a Jordan pair
with respect to the Jordan triple products {x,y,z} = [[x,¥],z]. It is enough to specify
the Jordan triple product since we will assume throughout the paper that 2 and 3 are
invertible in @, and from Section 4 on that 5 too is invertible. It is these two algebraic
structures, abelian inner ideals in Lie algebras and Jordan pairs, that form the basis of
our approach.

We do not require that we are given submodules L,,,L_,, of L. Rather, we associate
a Jordan pair S to any abelian inner ideal B of L, which for the case of a nondegenerate
(2n + 1)-graded L and B = L, is isomorphic to (L,,L_p). (We recall that a Lie algebra
is nondegenerate if [x,[L,x]] = 0 implies x = 0.) This works as follows. Mimicking the
definition of the kernel of an inner ideal in a Jordan pair [18], we define the kernel of
an abelian inner ideal B in a Lie algebra L as Ker; B = {x € L : [B,[x,B]] = 0}. Then
S = (B,L/Kery, B) is a Jordan pair, called the subquotient of B, with respect to the Jordan
triple products induced by the double commutator of L. That a sufficiently nice “top” L,

creates a (2n + 1)-grading of L can now be expressed more precisely.

Theorem 1.1. Let L be a Lie algebra and suppose B is an abelian inner ideal of L whose
subquotient S is covered by a finite grid. Then there exists a finite Z-grading, say a
(2n + 1)-grading, such that B=L,,KeryB=L_,, .1 & - ® Ly and (L,,L_,) = S. O

For the nonexpert in Jordan theory we mention that a grid in a Jordan pair is a
special family of idempotents, see [22, 26] for details. The assumption on S is for example
fulfilled in case the subquotient is a nondegenerate and Artinian Jordan pair, since these
can be characterized as those Jordan pairs that are covered by a finite division grid [[18];
Theorem 5.2]. And as we show in Proposition 3.5, the subquotient of an abelian inner

ideal is always nondegenerate and Artinian if L itself is nondegenerate and B has finite
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length, i.e. every proper chain of inner ideals of L contained in B is finite. Let us now
discuss some of the techniques and concepts used in the proof of the result.

e Idempotents: Idempotents in Jordan pairs are of course a well-known
concept. Motivated by the Jordan pair case, we call a pair of elements
(et,e")inLxL,LalLiealgebra, anidempotent of Lif (e",h, = [e",e " ]|,e")
is an slp-triple in L and (ade")® = 0. Then (ade”)® = 0 and adh, is
diagonalizable with eigenvalues 0, +1,+2 i.e., L=L o®L 1 LoD L; DL,
forthe eigenspaces L; of ad h, (it is here that we need our assumption that
5 is invertible in ®). As in Jordan theory, the Peirce decomposition of one
idempotent can be refined by considering a finite family € of idempotents
in L which is compatible in the sense that [h,, hf] =0 fore, f € €.

These definitions are well behaved with respect to subquotients: If € is
a compatible family of idempotents in L and B is an abelian inner ideal
of L such that e € B for all e € &, then the canonical image of £ in
the subquotient is a compatible family of idempotents in the Jordan pair
sense. It is crucial for our work that we can also go backwards. Indeed,
the essence of Proposition 5.4 is that any finite family of compatible
idempotents in S can be lifted to a compatible family of idempotents in
L. We note that the lifting of a single idempotent is essentially a graded
version of the Jacobson-Morozov Lemma.

e 3-graded root systems: The combinatorics of grids in Jordan pairs is best
described using 3-graded root systems, see [[19]; §18]. To any grid §
in a Jordan pair one can associate a 3-graded root system R = R; U
Ro U R_; and an enumeration of the grid as § = (g, : « € R;) such
that the relations between the idempotents in § are described by the
combinatorics (angles) of R. For example, the idempotents g,,gs are
orthogonal if and only if the roots «, 3 are orthogonal. In general, the
root system R is locally finite, but for Theorems 1.1 and 1.2 we will only
be using finite grids and hence finite root systems. For the root system R
we denote by P(R) the abelian group of the weights of R. We recall that
R C P(R) canonically. Theorem 1.1 is a corollary of the following result.

Theorem 1.2. Let B be an abelian inner ideal of a Lie algebra L whose subquotient
S = (B,L/Ker; B) is covered by a finite standard grid § with associated 3-graded root
systemR=R; URgUR_;.
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Then § lifts to a compatible family € = (e, : @ € R1), e, = (e}, e,,), of idempotents

) Yo

in L whose joint Peirce spaces induce a P(R)-grading of L:

L= @ L,, where L,={x€L:[hyx]=(wa")xforallacR;}
)

weP(R
and h, = [e, e, ]. Moreover,
B= @Lw, Ker; B = @ L.
wER, w¢R_,

The subalgebra g generated by all et is R-graded in the sense of [26]. If @ is a field of
characteristic O then g is a finite-dimensional split semisimple Lie algebra of type R with
splitting Cartan subalgebrah = ", ®h, and is isomorphic to the Tits-Kantor-Koecher
algebra of the Jordan pair generated by §. O

Our assumption that § be a standard grid is not serious (but necessary for the
second part of Theorem 1.2), since any covering grid can be replaced by a covering
standard grid with the same Peirce spaces and associated 3-graded root system. We
point out that the P(R)-grading of L constructed above has many of the features of a
grading of L by a root systems, as defined by [2], [5] and [26], see 5.2.

The support supp L = {w € P(R) : L, # 0} of the P(R)-grading of L contains R but
possible more weights. We construct a group homomorphism ¢: P(R) — Z such that for
a suitable positive integer n we have [p(w)| < n forw € supp L with p(w) =n & w € R;.
One then obtains a (2n + 1)-grading of L and hence a proof of Theorem 1.1 by putting
L; = eBw(w):i L, for —n < i < n. We note that in case of an irreducible R, equivalently a
simple subquotient S, the number n above can be chosen as the Coxeter number h of R.
Namely, in this case we can take p(w) = >, ., (w,a"), and we have > . (8,a") = h for
all g € R,.

Applications: It is an immediate corollary of Theorem 1.1 that C = L_, is another
abelian inner ideal with Ker;C = L_, & --- & L,_,. Thus, the abelian inner ideal B is
complemented by C in the sense that L = B @ Ker;, C = C @ Ker, B (Theorem 6.1). This is
essential for characterizing Lie algebras in which every inner ideal is complemented [11].

Using the Tits-Kantor-Koecher construction we can give another application of
our results, namely to inner ideals in Jordan pairs (Corollary 6.4): If the subquotient of
an inner ideal B of a Jordan pair V is covered by a finite grid, it can be lifted to a finite
grid in V which induces a finite Z-grading of V. Moreover, B is complemented in the sense
of [18].
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The paper is organized as follows. After a review of some concepts from the
theory of Lie algebras and Jordan pairs in Section 2, we study the kernel and subquotient
of an inner ideal in a Lie algebra in Section 3. In Section 4 we review and prove some
results for 3-graded root systems. The main work is done in Section 5, in particular in
Proposition 5.4 and Theorem 5.5, which together provide a proof of Theorem 1.2. For
the applications in Jordan pairs, it is necessary to prove parts of these results in the
graded setting. The final Section 6 is devoted to the applications mentioned above. We
also discuss there some examples illustrating the relationship between abelian inner

ideals and finite Z-gradings of Lie algebras.

2 Preliminaries
2.1 Basicnotions

Throughout this article we will be dealing with Lie algebras, Jordan algebras and Jordan
pairs over a ring of scalars @ containing p- 1¢ € ®* for p = 2,3 where ®* denotes the
invertible elements of ®. So both the Jordan algebras and Jordan pairs considered here
are linear. From Section 5 on we will also assume that 5 - 1¢ is invertible in ®.

We will use standard notation. For example, the product in a Lie algebra will be
denoted [x, y], while ad x or ady is the adjoint map determined by x. We will also use the
abbreviation [x;,X2,...,Xn_1,Xn] = (adx;) (ad x2) - - -ad x5, 1(Xp).

For Jordan pairs V = (V', V) we will follow the terminology of [16]. In particu-
lar, it follows from [[16]; p. 55] that a pair V = (V*, V) of ®-modules with trilinear maps
{++}: V9 xV?7%xV? = V? o= =,is a Jordan pair if and only if the triple products

satisfy the two conditions:

{X,Y,Z}:{Z,Y,X} (Jl)
{u,vi{x,y,z}} + {x{v,u, v} 2z} = {{u,v,x},y, 2z} + {x,y,{u,v,z}}. (J2)

2.2 Nondegeneracy and primeness

Let V = (V',V ") be a Jordan pair. An element x € V7, o = +, is called an absolute zero
divisor if Qy = 0, and V is said to be nondegenerate if it has no nonzero absolute zero
divisors, semiprime if Qz:BT = 0 implies B = 0, and prime if Qz-CT = 0 implies B = 0 or
C =0, for any ideals B= (B*,B~),C = (C",C") of V. Similarly, given a Lie algebra L, x € L

is an absolute zero divisor if ad = 0, L is nondegenerate if it has no nonzero absolute



6 Antonio Fernandez Lopez et al

zero divisors, semiprime if [I,I] = 0 implies I = 0, and prime if [I,J] = 0 implies I = 0 or
J =0, for any ideals I,J of L. A Jordan pair or Lie algebra is strongly prime if it is prime

and nondegenerate.

2.3 InnerIdeals and Jordan Elements

Given a Jordan pair V = (V', V"), an inner ideal of V is any ®-submodule B of V? such
that {B,V~?,B} C B. Similarly, an inner ideal of a Lie algebra L is a ®-submodule B of L
such that [B,L,B] C B. An abelian inner ideal is an inner ideal B which is also an abelian
subalgebra, i.e., [B, B] = 0. In the following we will mainly consider abelian inner ideals.
This is not such a great restriction as it may look at first sight since in a nondegenerate
simple Artinian Lie algebra every inner ideal B # L is abelian ([[4]; Lemma 1.13]).
For b € L the following conditions are equivalent [[4]; Lemma 1.8]:

(i) adj =0,

(ii) there exists an abelian inner ideal B containing b € B.
Any element b € L satisfying these two conditions is called a Jordan element. Any Jordan
element b gives rise to the abelian inner ideals [b] := [b, b, L] and (b) := ®b + [b].

Lemma 2.1. Let I be an ideal of a Lie algebra and x € I a Jordan element of I. For any
a,b € I, we have
(i) X2AX = XAX?,
(i) X2AX? =0,
(i) adf. ) = X2A2X?,
(iv) X?ABX?* = X?BAX? = adx:(g)adxz ()

where capital letters denote the adjoint maps with respect to those elements. O

Proof. (i), (ii), (iii) follow as in [[4]; Lemma 1.7 (i), (ii), (iii)] since X3(a) = 0. For (iv) we
use (ii) and get X2ABX? = X?[A,B|X? + X?BAX* = X*ad|,;X* + X?BAX* = X?BAX?, and
from (iii) that ad%. .., = X*ad},,X2. But adjs, ) = X2A2X? + X?B2X? + 2adxz(g)adxz ()
(since the operators ady:) and ady:;) commute because the inner ideal [x, [x,]]] is
abelian), and X?ad,, ,X? = X2A2X? + X?B*X* + 2X?ABX?. Hence, X?ABX? = ady: q)adxz (),

as required. |

Remark 2.2. Let (V',V~) be a pair of ®-submodules of a Lie algebra L such that
{x,y,2} = [[x,y],2] € V° forallx,z € V" andy € V 7.1tis a straightforward consequence
of the Jacobi identity that the pair V = (V*, V™) satisfies the identity (J2) defining a Jor-
dan pair, but not necessarily the identity (J1). However, both identities are fulfilled for a

pair (B, C) of abelian inner ideals, and hence (B, C) is a Jordan pair.
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2.4 Gradings

Let L be a Lie algebra and let I" be an abelian group, written additively. We say that L is
el LY
where the L7 are ®-submodules of L, satisfying [L7,L%] ¢ L7*° for all 7,6 € T. A finite
Z-grading is a nontrivial Z-grading such that the support set suppL = {y € Z : L, # 0}

graded by T and call this a I'-grading of L if there exists a decomposition L =

)

is finite. Hence L =L _,, & - - - & Ly, for some positive integer n. If L, + L_,, # 0, we will call
such a grading a (2n + 1)-grading. Note that if L is nondegenerate then both L, and L_,
are nonzero.

LetL = (P, L” be a-graded Lie algebra. A ®-submodule M of L will be called a
graded submodule if M = (M N L), in which case we will write M = (P M” where
MY = M NL”. An inner ideal B is graded if its underlying submodule is graded. We will
refer to the elements of L7, v € ', as homogeneous elements. We will say that L is graded-
nondegenerate with respect to I' if it does not have homogeneous absolute zero divisors.

If A is another abelian group, we will say that a A-grading L = @, . Ls is
compatible with the given I'-grading if, putting L] = L” N Ls, we have L” = P, L, for
all v € T, or equivalently Ls = EBVErLg for all § € A. Of course, two compatible I'- and
A-gradings are the same as a '  A-grading, but it is usually more instructive to keep the
two gradings apart.

Similarly, a I'-grading of a Jordan pair V = (V', V") consists of decompositions
V7 =@, cr V3 of V7 with V] being ®-submodules of V7 such that {V7, V7, V7} C

3
for all v,0,¢ € T. Graded inner ideals of a I'-graded Jordan pair and homogeneous

o
V’Y+5+e

elements are defined analogously to the case of Lie algebras. The proof of the following
lemma is a simple verification, left to the reader.
Lemma 2.3. Let L = (P, rL” be a I'-graded Lie algebra with a compatible (2n + 1)-
gradingL=L , & - - ®L 1 ®LoPL, & --®Ly,. ThenV = (L,,L_,) is a I'-graded Jordan
pair with respect to (V*)” = L7, and the triple products {x,y,z} defined in Remark 2.2.
Moreover,
(i) a ®-submodule B of L., is an abelian inner ideal of L if and only if it is an
inner ideal of V, and
(ii) if L is graded-nondegenerate with respect to I' or nondegenerate, then so is
the Jordan pair V. O

2.5 Socle and chain conditions

(i) Recall that the socle of a nondegenerate Jordan pair V is SocV = (SocV™,

SocV ) where SocV? is the sum of all minimal inner ideals of ¥ contained
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in V7 [17]. The socle of a nondegenerate Lie algebra L is SocL, defined as
the sum of all minimal inner ideals of L [7].

(ii) By [[17]; Theorem 2| for the Jordan pair case and [[7]; Theorem 3.6] for the
Lie case, the socle of a nondegenerate Jordan pair or Lie algebra is the
direct sum of its simple ideals. Moreover, each simple component of SocL
is either inner simple or contains an abelian minimal inner ideal [[4];
Theorem 1.12].

(iii) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the de-
scending chain condition on all inner ideals. While any nondegenerate
Artinian Jordan pair coincides with its socle (by the elemental charac-
terization of the socle, [[17]; Theorem 1]), for a nondegenerate Artinian
Lie algebra L we only have that L has an essential socle in the sense that
every nonzero ideal has a nonzero intersection with the socle [[7]; Corol-

lary 3.7 and Remark 3.8].

3 Kernels and subquotients
3.1 Kernels

Let V = (V', V") be a linear Jordan pair and B C V" an inner ideal of V. Following [18],
the kernel of B is the set KeryB = {x € V~ : {B,x,B} = 0}. Then (0,KeryB) is an ideal of
the Jordan pair (B, V) and the quotient S = (B, V~)/(0,KeryB) = (B, V~ /KeryB) is called
the subquotient of V with respect to B. The kernel and the corresponding subquotient of
an innerideal B C V~ are defined similarly.

The analogous versions of all of these results hold for inner ideals in Lie al-
gebras, if we replace the Jordan triple product {x,y,z} by the left double commutator
[[x,v], 2], cf. Remark 2.2.

Definition 3.1. Let B be an inner ideal of a Lie algebra L. The kernel of B is the ®-
submodule Ker;B = {x € L : [B, B, x] = 0}.

In the following lemma we will consider the pair (L,L) of a Lie algebra L with
respect to the triple products of Remark 2.2. We will use the concepts of subpairs, ideals
and quotients which are defined in an obvious way, see [[16]; 1.3] for the case of Jordan

pairs.

Lemma 3.2. Let B be a ®-submodule of the Lie algebra L. Then (B, L) is a subpair of (L, L)

if and only if B is an inner ideal of L.
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In the remainder of this proposition we will assume that B is an inner ideal of L
and consider the subpair (B, L) of (L,L). Then the following holds.
(a) (0,Kery, B) is the largest among all ideals I = (I'",I7) of the pair (B,L) such
that It = 0. Moreover, K = Ker;, B satisfies

[K,L,B] +[L,B,K] + [B,K,L] C K. (3.1)

Hence the pair S = (B,L/Kery, B), called the subquotient of B, has well-
defined triple products

{mxn} =[m,x|,n] and {xmy}=[x,m]y]

where m,n € B, x,y € Land L — L/Ker; B : x — X is the canonical map.

(b) S always satisfies the 5-linear identity (J2), and is a Jordan pair if B is an
abelian inner ideal.

(c) If B is an abelian inner ideal then [B,L] C Ker;B and Ker,B = {x € L :
[b,b,x] =0forall b € B}.

(d) Assume L is a I'-graded Lie algebra and B is a graded abelian inner ideal.
Then Kery B is a I'-graded ®-submodule, and S is a I'-graded Jordan pair
with respect to the quotient grading induced by the I'-grading of L. O

The proof is a straightforward exercise which will be left to the reader.
Proposition 3.3. LetL=L ,@®---®Ly®---® L, be a (2n + 1)-grading of a Lie algebra L
with associated Jordan pair V = (L,,L_,).

(i) Let B C L, be aninnerideal of V. Then the kernel of the abelian inner ideal B
of Lis

Ker;B=KeryB& L (5 1)@+ ®Lo® - @ Ly.
(ii) If L is nondegenerate, then
Ker Ly =L (n_ 1)@ ®Lo& - &Ly,

and the Jordan pairs (L,,L_,) and (L,,L/Ker;L,) are isomorphic.
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In particular, any nondegenerate Jordan pair V = (V', V") is a subquotient,
namely isomorphic to the subquotient of its Tits-Kantor-Koecher algebra with respect
to the innerideal V' of V. O

Proof. (i) As pointed out in Lemma 2.3 (i), B is an abelian inner ideal of L, and it is easy
to see that Ker;B = KeryB® L_(,_1) @ -+~ @© Lo ® - -- © Ly,. If L is nondegenerate, then so is
the Jordan pair V = (L,,L_,) and hence KeryL, = 0 by [[18]; 1.4]. Now (ii) follows easily
from (i). [ |

Remark 3.4. By definition, a properly ascending chain 0 ¢ B; € B, C --- C B, of inner
ideals of a Lie algebra L has length n. The length of an inner ideal B is the supremum of
the lengths of chains of inner ideals of L contained in B.

The following elemental characterization of strong primeness for Lie algebras
[[12]; Theorem 1.6] will be used in the proof of our next result: A Lie algebra L (over an
arbitrary ring of scalars) is strongly prime (as defined in 2.2) if and only if [x, [y, L]] = 0
implies x =0 ory = 0, for every x,y € L.

Proposition 3.5. Let B be an abelian inner ideal of a Lie algebra L, K = Ker;B the kernel
of B, and V = (B,L/K) the subquotient of L relative to B.
(i) A ®-submodule of B is an inner ideal of L if and only if it is an inner ideal
of V.
(ii) If Cis an innerideal of L, then C = (C + K)/K is an inner ideal of V.
(iii) If L is nondegenerate (strongly prime), then V is nondegenerate (strongly
prime).
If L is nondegenerate, then,
(iv) V has nonzero socle if and only if B contains minimal inner ideals. In fact,
SocB = SocL N B, and
(v) B has finite length if and only if V is Artinian. In this case, B C SocL and
V = (B,I/Ker;B), where I is any ideal of L containing B.
(vi) IfLis strongly prime and B is nonzero and of finite length, then V is a simple

nondegenerate Artinian Jordan pair. ]
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Proof.

(i) is trivial.
(ii) is trivial.

(iii) Suppose that L is strongly prime. If {b,L/K,b’'} = 0 for some b,b’ € B, then
[[b,L],b’] = 0 and hence b = 0 or b’ = 0 by the elemental characterization
of strong prime Lie algebras in Remark 3.4. Suppose now that {@,B,c} =
0 for some a,c € L. i.e., [[a,B],c] C K. By Lemma 2.1 (iv), we have for any
beB

0= [b,b,a,c,B] D [b,b,a,c,b,b,L] =[b,b,al],[b,b,c|,L],

which, again by the elemental characterization of strong primeness in
Remark 3.4 implies [b, [b,a]] =0or [b, [b,c]] =0,i.e.,a=0o0rc =0. A sim-
ilar argument applies when L is nondegenerate to yield nondegeneracy
of V.

(iv) By (iii) V is nondegenerate, and by (i) the minimal inner ideals of V which
are contained in B are those minimal inner ideals of L which are con-
tained in B.

(v) By [[18]; Corollary 4.8], B has finite length if and only if V is Artinian. In this
case, B = SocB C SoclL, since Artinian nondegenerate Jordan pairs co-
incide with their socles. Let I be an ideal of L containing B. The injection
j: I — L induces the Jordan pair monomorphism (1,): (B,I/Ker;B) —
(B,L/Ker;B), but since Artinian nondegenerate Jordan pairs are von Neu-
mann regular, (1z,/) is actually an isomorphism: L/K = {L/K,B,L/K} =
[LB,I] =1

(vi) By (iii) and (v), V is a strongly prime Artinian Jordan pair. Hence, by the

socle structure theorem, see 2.5, V = SocV is a simple Jordan pair. |

3.2 Jordan algebras of a Lie algebra

In the recent paper [10], the first three authors of this article showed how to attach a
Jordan algebra Ly to any Jordan element x of a Lie algebra L (over a ring of scalars
® containing §). We will show that L, can be regarded as the x-homotope of the
subquotient of L relative to the abelian inner ideal B = (x) = ®x + [x,x,L]. To do so,

the following facts will be used.
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Remark 3.6.

(i) Let V. = (V', V) be a Jordan pair and x € V"7, ¢ = +. The ®-module V°
becomes a Jordan algebra with respect to the product a ¢ b := %{a,x, b},
called the x-homotope of V and denoted by V¥ [[16]; 1.9]. Its U-operator
is U, = Q. Q4.

(ii) Let B = (x) be the (abelian) inner ideal generated by a Jordan element x of L,
and put V = (B,L/Ker;B). Then V¥ is the Jordan algebra defined on the
®-module L/Ker;B with product @ e b = }[[a, x], b].

(iii) Actually, the definition of Jordan algebra at a Jordan element given in [10]
is slightly different from that of (ii): ker;x := {z € L : [x,[x,z]] = 0} is
used there instead of Ker;B. Nevertheless, both definitions agree in the

nondegenerate case.

Lemma 3.7. Let L be a nondegenerate Lie algebra and let x € L be a Jordan element. Then

Kery [x] = Kerp(x) = kery, x. O

Proof. Let z € Kery, [x]. By Lemma 2.1 (iii) we have for every a € L that
0 = [[x,x,a],[[x,x,a],z]] = adidiaz — ad?ad?ad’z

which implies Uzz = O for every a € Ly, the Jordan algebra of L at x. But Ly is
nondegenerate by [[10]; Proposition 2.15], and hence Uz z = 0 implies z = 0, i.e., ad%z = 0,
which proves the equality Ker; [x] = kery, x.

Let z € Kerp x. Forany A € ® and a € L, we have [\x + [x,X,a], [\x + [x,X,a],z]] =
Nx,x,2z] + 2)\[[x,x,4a],[x,2]] + [[x,x,4a],[x,x,a],z] where every summand is zero since
ad® = 0 and ad’z = 0. Thus, z € Ker,(x). The reverse inclusion Ker; (x) C Kery[x] is

trivial. [ |

4 Some results on 3-graded root systems

In this section we will state and prove some results on 3-graded root systems. The
first result holds for locally finite root systems as studied in [19] and deals with the
coroot system RV of R ([[19]; 4.9]), the root lattice Q(R) and the weight lattice P(R) of
R ([[19]; §7]). We will use special elementary configurations (triangles, quadrangles and
diamonds) defined in [[19]; §18]. Following the convention of [19] we will always assume
0cR.
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Proposition 4.1. Let (R, R;) be a 3-graded root system with coroot system R".
(a) Theroot lattice Q(RY) of RV is isomorphic to the abelian group presented by
generators X, « € R;, and relations
(i) X, = X3 + X, for all triangles («; 3,7) C Ry, and
(ii) % + Xy = X3 + X5 for all quadrangles (o, 3,7v,6) C R;.
(b) Afunctionw: R; — Z extends to a weight & of R if and only if w satisfies
(i) w(a) =w(B) + w(y) for all triangles («; 3,7) C Ry, and
(i) w(a)+ w(y) =w(B) + w(d) for all quadrangles («, 5,7v,d) C R;.
In this case, the extension & is unique and w also satisfies
(iii) 2w(a) +w(vy) = w(B) + w(0) for all diamonds («; 3,7,0) C R;. O

The proof is essentially an application of [[19]; Proposition 11.12] with P the
parabolic subset (Ry UR;)Y of RV, while (b) follows immediately from (a). Details will
be contained in [20].

Definition 4.2. Let (R, R;) be a finite 3-graded root system. Recall that any root « gives
rise to a unique weight & defined by &(3) = (a, 3Y) for 8 € R. We will identify & = . For
w € P(R) and for an orthogonal system O C R; we define

(W) = aer, (w,aV) and Tp(w)= Y wco {(w,aV).

Proposition 4.3. Let (R, R;) be a finite 3-graded root system. Then there exist a positive
integer n and a group homomorphism ¢: P(R) — Z such that
(i) ¢(a) =nfora € Ry, and
(ii) |¢(w)| < n for every w € P(R) satisfying |ro(w)| < 1 for every orthogonal
system O C R;. ]

If R is irreducible then 7 satisfies (i) and (ii) with n the Coxeter number of R.

We will first consider an irreducible R and show that ¢ = 7 satisfies (i) and (ii).
The general case will then be dealt with in 4.8. In the irreducible case we will use the
classification of irreducible 3-graded root systems, as given in [[19]; 17.8 and 17.9]. This
will also give us some more precise information about 7(w). We let h denote the Coxeter
number of R, which can be found in the tables of [[6]; VI].

4.1 Rectangular grading A7, 1 < p < [H1]

Here R = A; so the Coxeternumber h =1+ 1. Letq =1+ 1 — p. Up to isomorphism we can
assume that the 1-part R, of this 3-grading is given by R; = {¢; —¢;: 1 <i < p <j < h}.
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It is then easily seen that 7(3) = h for every § € R;. Moreover, R; is a disjoint union of
g orthogonal systems O; of length p, whence |7(w)| < Z?Zl IT0;(w)] < @ < hfor w as in
Proposition 4.3 (ii).

4.2 0dd quadratic form grading BY

Here R = B;,l > 2,s0 h = 2l. Up to isomorphism, the 1-part of R; of this 3-grading is
Ry ={e}U{ea £¢:2 <i<I} Each (e1;¢1 + €, €1 — ¢;) is a triangle. It then follows from
Proposition 4.1 (b.i) that 7(w) = lw,€’) for any w € P(R). In particular, 7(a) = 2I for
w=a € Ry and 7(w) € {0, £l} for any w € P(R) satisfying Proposition 4.3 (ii).

4.3 Hermitian grading Cher

Here R = C;, 1 > 3, so h = 2L. Up to isomorphism, the 1-part R; of this 3-grading is given
by Ry ={e¢+¢:1 <1i,j<I}. Fori# j, the family (¢; + ¢ : 2¢;, 2¢;) is a triangle, whence
(6 + €)Y = (26;)V + (2¢;)". It then follows that

!

T(w) =1 (Z {w, (2€i)v>>
i=1

holds for any w € P(R). In particular 7(5) = 2l for any § € R;, while 7(w) € {0, +l} for w

as in Proposition 4.3 (ii).

4.4 Even quadratic form grading D?f

Here R = D;,l > 4,and h = 2(l —1). Up to isomorphism R; = {¢; £ ¢ : 1 < i < [}.
Since (e; + €2,€61 + €,€1 — €2,€1 — €) is a quadrangle for 2 < i < [, we get 7(w) =
(I—=1)((w, (&1 +€2)V) + (w, (e1 — €2)V)) for every w € P(R). This easily implies (i) and (ii) of

Proposition 4.3.

4.5 Alternating grading D't

Here R = D;, 1 > 4 and h = 2(I — 1). We abbreviate (ij) = ¢ + ¢;. Up to isomorphism
we then have R; = {(ij) : 1 < i < j < I}. We first consider the case of an even l. Then
0 = {(12),(34),...(I—1,1)} is an orthogonal system such that R; = O U Uij O; where

each O; is an orthogonal system of two roots with the property that each O; together
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(w,aV). If
lis odd, we apply the previous considerations to the 3-graded subsystem with 1-part
{(i): 1 <i<j<l-1},and getthat 7(w) = (- 2)( X co (w,a")) + Zi: (w, (i)V). In both
cases, (i) and (ii) of Proposition 4.3 easily follow.

with two roots of O forms a quadrangle. This implies 7(w) = (I — 1)) .o

4.6 Bi-Cayley grading EX!

Here R = Eg and h = 12. By [23] the 1-part of this 3-grading is cog-isomorphic
with the 16 tripotents of a bi-Cayley grid 8B in a Jordan triple system as defined in
[[22]; 111, Section 3.1]. By definition, a cog-isomorphism is a bijection which preserves
the elementary relations (orthogonality, collinearity and governing) in R; and in 8.
In particular, it follows from [[22]; III, Section 3.1] that, letting e;" € B correspond to
of € Ry, the l-part R; = (af : 0 = £,1 < i < 8) is the union of the 1-parts of two Dgf—
gradings, namely (af : 0 = +,1 <i < 4)and (of : 0 = +,5 < i < 8). By 4.4 we therefore
have 7(w) = 4((w, (a])V) + (w, (7)) + (w, (ad)Y) + (w, (a5)V)) for any w € P(R), which
implies (ii) of Proposition 4.3. That also (i) holds then follows from the Peirce relations

in the bi-Cayley grid 8.

4.7 Albert grading E5

Here R = E; and h = 18. We will proceed as in 4.6. The 1-part R; of this 3-grading is cog-
isomorphic to the 27 tripotents of an Albert grid in a Jordan triple system. The structure
of the Albert grid ([[22]; III, Section 3.2]) then shows that R; contains an orthogonal
system (aj,az,a3) such that Ry \ {1, a2,a3} = Ugl O;, where each 0; = {g;",3; } is
an orthogonal system such that (3, oj, 5, ax) is a quadrangle for a unique pair j, k €
{1,2,3}. The Peirce relations in the Albert grid show that 7(w) = 937 (w, ;) for any
w € P(R) and that (i) and (ii) of Proposition 4.3 hold.

4.8 Proof of Proposition 4.3

We have seen in 4.1-4.7 that Proposition 4.3 holds for an irreducible root system. Let
R = Ji_,RY be the decomposition of R into its irreducible components, let n =
lcm(h,, ..., h,) where h; is the Coxeter number of the irreducible component R and let
7; be the function of Definition 4.2 for R®. We claim that

o) =3 ,%_n(w)
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fulfills (i) and (ii) of Proposition 4.3. Obviously ¢: P(R) — Z is a group homomorphism.
For 3 € Ry N RY we have (f) = fm(B) = n. For w as in (ii) note first that the
number of irreducible components on which w does not vanish is at most two. Indeed,
if (w,a)) # 0 for a;, i = 1,2,3, belonging to different components, then (o, az,as3)
is an orthogonal system. Because |(w, ;)| = 1 there exists {i,j} C {1,2,3} such that
(w,0") + (w, a]\/> = +2, contradiction. The same argument also shows that if w does not
vanish on two irreducible components then w has nonnegative values on one component,

say on R and nonpositive values on the second component, say on RY). We therefore get

5 Lifting of idempotents

From now on we assume that all modules, and hence all Lie algebras and Jordan pairs

are defined over a ring of scalars ® with ulgp € ®* for u = 2,3, 5.

Lemma5.1. Let S = {-2,-1,0,1,2}, let M be a ®-module and suppose H,F € EndeM
satisfy [ [,.s(H — o) = 0 and [H,F] = —2F, where we abbreviated H — 0 = H — oldy for
o €S.Then F® =0. O

Proof. If 0,7 € Swith o # 7 then 0 < |0 — 7| < 4, whence (¢ —7)1¢ € ©*. Therefore M
ves M, where M, = Ker(H — o) [[4]; Lemma 2.1].
From [H, F] = —2F we get F!M, C M,_y for any I € N. We claim

has an eigenspace decomposition M =

FIM 4 0=0=FM 45,5 forl<Il<S3. (5.1)

Indeed, F'M_4,9) C M_, and F'M_3. 5 C M _3. Since (S +4)1¢ = {2,3,...,6}1¢p C ®* and
(S+3)lep ={1,...,5}1¢p C @*, it follows that M_4 = 0 = M_3, proving (5.1). Because
any 0 € Sis of the form 0 = —4 + 2l or 0 = —3 + 2[ for suitable l € {1,2,3}, we get
F?M, = F*~'FIM, = 0 by (5.1), and F® = 0 follows. [ ]

Proposition 5.2. Let I" be an abelian group, L = @Ver L7 a I'-graded Lie algebra. If
0 # e € L%, «a € T, satisfies (ade)® = 0 and [[e, u],e] = 2e for some u € L™, then there
exists v € L~ N Kerad e such that (e, [e,f],f),f = u — v, is an sl,-triple with (ad f)® = 0.

(I
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For ' = {0} the result is proven in [[28]; Lemma V.8.2] (® a field) and in [[7];
Lemma 2.9]. Our proof is an easy adaptation of Seligman’s proof, which — as Seligman

states — “is really a summary of certain results of Jacobson”.

Proof. We puth = [e, u] € L° and thus have [h,e] = 2e. Let E = ade € EndgL and H = ad h.
Since E is homogeneous, KerE is a I'-graded submodule: KerE = P, . (KerE N L7). One
proves as in [[15]; p. 99] that H(Ker E) C Ker E and that H(H — 1)(H — 2)|Ker E = 0, whence
H(KerENL") C Ker ENLY and H(H—1)(H—2)|(Ker ENLY) = 0forally € . For0 < i #j < 2
we have (i — j)1o € ®*. Therefore H|(KerE N L") is diagonalizable with eigenvalues
0,1¢p and 2 - 1¢. It then follows that H + 2|(Ker E N L7) is invertible for all v € T. Since

[e, [h, u]] = —2[e, u] we have [h,u] + 2u € KerE N L~ “. Hence there exists v € L * N KerE
such that [k, u] + 2u = [h, v] + 2v. It follows that (e, h,f), f = u — v, is an 4l,-triple. Then
]_[?ZI(H —3+j) =0by [14]; Lemma 1]. Finally Lemma 5.1 shows (adf)® = 0. [ |

5.1 Compatible Families of Idempotents

We say that (e*,e”) € L x L is an idempotent in L if [[e?,e ?],e?] = 2e” for 0 = £, and
[eT,et, et L] = 0. For an idempotent e = (e, e"), we always let h, = [et, e ]. It is known
([[14]; Lemma 1)) that adp, is diagonalizable with eigenvalues 0, +1,+2, so by Lemma 5.1
also [e”,e~,e",L] = 0. Thus (e", h.,e ") is an 4/,-triple with (ad e’)® = 0, and

L=L ,®L ®LyPL; DLy, WhereLi :Li(he) = {X cL: [he,X] = lX} (52)

Following the concepts used in the theory of Jordan pairs, we define the Peirce spaces of

an idempotente = (e*,e”) € L =L x L by
Li=Li(he) = (Li,L;), forie {0,+1,+2}

and call (5.2) the Peirce decomposition of e. We note that it is a 3- or 5-grading with
e € Ly(he).

A family € = (es)aca of idempotents in L is called compatible if [h., hf] = 0 for
all e, f € €&, and Peirce-compatible if every e € € lies in a Peirce space of every f € £. A
Peirce-compatible family is easily seen to be compatible.

Any family & = (e, )aca of idempotents gives rise to joint Peirce spaces

L, =Ly(€) =NpeaLu(a)(ha) ={x € L: [ho,x] =w(a)x forall o € A},
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where w = (w(@))aeca € {0,£1,+2}4 and h, = [e/,e,]. For simplicity we will just write
w € ZA. A compatible family € is called toral if
L= @wezﬂ L. (5.3)

Since |w(a)| < 2 it follows that this decomposition is a Z4-grading of L. It is easily seen
that every finite compatible family is toral.

If L = @,rL” is a I'-graded Lie algebra, an idempotent e = (e*,e”) will be
called homogeneous if e* € L7 and e~ € L~ for some v € T. Since then h, € L° the
Peirce decomposition (5.2) of e is compatible with the given I'-grading. More generally,
the decomposition (5.3) of a toral family & of homogeneous idempotents of L is a ZA-
grading which is compatible with the given I'-grading. We will also use the analogous
concepts for a I'-graded Jordan pair V. For example, if V7 = @ .- V7 an idempotent

e = (e",e”) of Vis homogeneousife € V ande” € V_, forsomey € T.

Lemma 5.3. Let B be an abelian inner ideal of L, and let f = (f",f~) be an idempotent in
Lwith f* € B, thus L = @;_ , L;(hs). Then
(@) [f*,f".f,f ,x2] =4x, for any x, € Ly(hf), and
(b) Ker; BNL_3(hs) = 0. O
Proof.
(a) From the Jacobi identity we get [f*,f" f~,f ,x2] = [f" he,f ,x2] +
[f+’f7>f+>f7>x2] =0+ [f+)f7>hva2} = 2Lf+»f7»X2} = 4x», since Li(hf)
is the i-eigenspace of ad h,.
(b) Lety € KeryB N L_5(hf). Since L_5(hs) = [f,f,L2(f)], we can write y =

[f7>f7)X2] fOI' some X3 € L2(f) Theno = [f+vf+)Y] = [f+>f+>f7)f7»X2] =
4x, implies x, = 0, hence y = 0. |

Proposition 5.4. Let L = (P, .-L” be a I'-graded Lie algebra and let B be a I'-graded
abelian inner ideal of L. Suppose further that € = (e,)aca is a toral family of homoge-
neous idempotents such that all e} € B. We thus have a Z#-grading L = @ L., as defined
in (5.3) which is compatible with the given I'-grading.
(a) Put B, = BN L, forw € Z%. Then B = @,B,,, where each B, is a I'-graded
submodule. Moreover, B,, # 0 only when w(a) > 0 for all « € A, and if
w(a) = 2 for some o € A then B, = L,,.
(b) Let K = Ker; B and put K,, = KN L, for w € ZA. Then K = @,K,,, where each
K, is aT'-graded submodule and K,, = 0 if w(a) = —2 for some « € A.
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(c) Let V = (B,L/K),and put g, = €, = (e/,e,) € V.Then & = G = (gu)aca is a

compatible family of homogeneous idempotents in ¥V whose joint Peirce

spaces are
Vw(g) = (Bw»wa/wa)-

Hence V = @, (By,L_,/K_,).

(d) Letf = (f",f) € vi(9) = ((V))",(V,) ") be a homogeneous idempotent of
V. Then there exists a homogeneous idempotent e € (L7,L_))) such that
(e*,e~) =f. The extended family € U {e} is again toral. Moreover, if € and

G U {f} are Peirce-compatible families, then so is &€ U {e}. O

(a) We have [h,,B] = [[e},e,],B] = [e},[e,,B]] C B since B is an abelian inner
ideal of L. This implies B = &,B,, and that each B,, is homogeneous.
If w(a) < O for some o € A, for b € B, we have w(a)b = [h,,b] =
le), le,,b]] =0, since [e;,b] € L(hq)u(a)-2 = 0 because |w(a) — 2| > 3.
Ifw(a) =2,thenL, C Ly(h,) = [el, e}, L] C B.
(b) follows from [K,L,B| C K, using (3.1) and Lemma 5.3 (b).
(c) It is immediate from the definition of the Jordan triple product of V that &
is a family of homogeneous idempotents. Indeed, we have {g},g,,b} =

lel,e;],b] = [ha,b] and, {g},g,,X} = —[ha,x| for b € B and x € L. These
formulas also show that the left multiplication operators D(e7,e,) in V
are given by D(g/,g,) =adh, onB=V" and D(g},g,) = —canocad h, on
V~ forcan: L — L/K the canonical map. It follows that G is a compatible
family of idempotents of V. Forw € Z% and b € Bwe have b € B, &
[hayb] = w(a)bforalla € A & b € V:(a)(ga) for all « € A. Also for
X =) ,mX, X, €L, we get {g,,9,,X} = —>, v(e)X,. From this it
easily follows that V,(§) =L_,/K ..

(d) Put e = f. We have (ade')’L = [e*,(ade')?L] C [e",B] = 0 since B is
an abelian inner ideal. Let u € L_}(€) such thatw = f~ € V,(9) .
Then [[e*,u],e"] = [[et,f],e"] = 2e". By Proposition 5.2 there exists
v € L] (&) NKerade' such that (e",[e*,e"],e"),e” = u—v,is an sl,-
triple with (ade~)® = 0, i.e., e = (e*,e ") is a homogeneous idempotent

of L. Since h, = [e",e”] € LY, the extended family is again toral. Also,
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[[e",ul],e’] € Kery B, so

2f7 = [Lf7>f+]>f7} = [[u>e+]> u] = Hei’eﬂ’ u] = [[eiv u],e*] + [ei> [€+, u]]
=[le,et],e ] = —[he,e | = 2e.

Hence f~ = e, and e is indeed a lift of f.
By construction e € L}, (€). For the second part of (d) it therefore remains to prove
that (el,e,), « € A, lies in the Peirce space of e, i.e., [h,e9] = cuef for h = [eT, e,
o = =+, and some p € {0,+1,+2}. But we know that there exists p € {0,+1,+2} such
that {f?,f77,92} = ngq, so in particular [h,e;] = [[e*,e"],e;] = [[f".f7].90] = nga,

while [h,e;] = —[le",efl,e;] = —{f ,f",9,} = —npey, so [h,e;] + ue, € K,. Since

[e3 )

& is Peirce-compatible, e, € L, for some w € Z# whence K,, = 0 by (b). Therefore

[hve(;] = —[Le; u
5.2 Weight-graded Lie algebras

Let R be a root system. A P(R)-graded Lie algebra L = (D5, L. is called an R-weight-
graded Lie algebra [27] if it has the following properties:
(i) For every @ € R* = R\ {0} there exists a non-zero pair (e,,fn) € Lo X L_4
such that h,, = [e,,f.] acts on L,, by [h,, x,] = (w,a")x,, where x,, € L.
(ii) Lo = ZO;éwefP(R) Loy L]
(iii) For all o,7 € suppL = {w € P(R) : L, # 0} there exists « € R such that
(o —7,aY).1p € O*.
In this case, we will call § = (e,,f. : @ € R*) a splitting family and simply write
8 = (e, : @ € R*) in case § is normalized in the sense that f,, = e_,. An R-graded Lie
algebra as defined in [26] is an R-weight-graded Lie algebra with supp L = R a reduced
root system.

We note that (iii) is of course automatic if @ is a field of characteristic 0. Also, if L
is R-graded, (iii) just means 2,3 € ®* and hence is always fulfilled under our assumption
on @. For R a finite root system and @ a field, the notion of an R-graded Lie algebra has
been introduced and studied by Berman-Moody in case R is simply-laced and # A; [2],
and by Benkart-Zelmanov in the remaining cases [5].

If L only satisfies (i) and (iii), it is easily checked that then

Le= (Y [Lul ol @ |EP L (5.4)

04w 0#£w

is an ideal of L, called the core, which is R-weight-graded.
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The next theorem uses the concept of standard grids in Jordan pairs for which
the reader is referred to [[23]; 3.5] or [[25]; 1.7]. We note that every covering grid can be
changed to a covering standard grid with the same Peirce spaces and the same associated
3-graded root system. We also recall our basic assumption for this section: All algebraic

structures are defined over ® in whichi-1¢,i = 2, 3,5, is invertible.

Theorem 5.5. Let Bbe an abelian innerideal in a Lie algebra L, and suppose that the sub-
quotient V = (B, L/Kery, B) is covered by a standard grid § with associated 3-graded root
system (R, R;), hence § = (9o )acr, for idempotents g, = (g}, g, ) in V. Let € = (e4)acr, b€
a toral family of Peirce-compatible idempotents in L such that e, = (e}, e, ) = g, for all

a € R;. We put h, = [e}, e, ] and denote by L., w € Z%1 | the joint eigenspaces of (hy)acr,:
L,={x€L:h, x] =w(a)xforall « € R;}. (5.5)

We let supp L = {w: L, # 0}.

(a) Every w € supplL has a unique extension to a weight of R, also denoted w,

such that w(a) = (w,aV) for all & € R;. Moreover, putting L, = 0 for

w € P(R) \ supp L, the decomposition L = P,y g, L. is a grading by the
abelian group P(R).

(b) Every w € suppL has the property that Y., (w,a") € {0,+1 + 2} for every
finite orthogonal system O C R;. Moreover, for o = + we have w € R,
if and only if there exists a finite orthogonal system O C R; such that
Zaeo <w’a\/> =02

(¢) B=@,cr, Lo andKer,B=@D, g , Lo-

(d) For O # uu € Ry, written as y = o — F with a, § € Ry, the element e, = [, ;]
is well-defined up to sign. Moreover, L satisfies the conditions (i) and
(iii) of 5.2 with respect to the family § = (e,,: @ € R*) where e, = e/,
e_, = e, fora € R; and e, as defined above for some chosen decomposi-

tion 0 # 1 = a — 8 € Ry. Hence the core

Lc = (Eo;&w [LW’L*W]) ® (@0;&» L"")

of L, cf. (5.4), is an R-weight-graded ideal of L.
e) Leth = ®h, C Lo. Then h is an abelian subalgebra of L, and
aEeR,

9= (Bocr, el) @ (Ho 20 4ueR, De,) D (Docr , Pes)
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is a subalgebra of L which is R-graded and hence in particular 3-graded.
If ® is afield of characteristic O, then g is the Tits-Kantor-Koecher algebra
of the Jordan pair spanned by §. In particular, if ® is a field of character-
istic 0 and R is finite then g is a finite-dimensional split semisimple Lie

algebra with splitting Cartan subalgebra b. O

The proof of the theorem will be given in 5.3. In the Lemmas 5.6-5.9 we will
establish some additional results on the structure of L which are of independent interest.
Throughout the assumptions of Theorem 5.5 are assumed to hold, except that we do not

assume (nor use) that G covers V.

Lemma 5.6. Let o, 3,7 € R;. Then for 0 = + we have [[e],e,’] 3] = (ﬂ,a\/)eg =
[[e5,e,7],e2], while for o # 8 # yand a — f+v = § € R, there exists u € {+£1,2}
such that [[e7,e;7],e]] = ne§ = [[e],e;7],e7] foro = &, where p is determined by the
corresponding equation for §, i.e., {92, 957,95 } = ngg. O

Proof. By [[23]; 3.5] all equations hold for g” in place of e?. Since [le,,e;],e;] =
{94,95,94 }, the claim holds for o = +. Foro = —weget|[[e,,e;],e;] = {g,,95,97 } = vg5,
where v = (3,a") for the first formula and v = p for the second. By grading properties,

llen,esl,e;], e5 € Ly, for a suitable w, where gs € V_, = (L, L) by Proposition 5.4 (c).

Since w(d) = —2, we have K; = 0 by Proposition 5.4 (b), whence [[e,,e}],e;] = ve;. We
also get [le,, ej],e;] — [[e;,e5],e,] € K5 =0. [ ]
Lemma 5.7. For o, 8 € R, with oL 3 we have [e;,e;] =0and [[e7,e;7], €] = [[e7,e57], €3]
=0forall v € R;. O
Proof. It is immediate from the definitions that [hs,e}] = [[e},e;] el] = (a,8V)el =0
and [hg,e;] = —2e;. Hence [hg, [e), e5]] = —2[e,,e;] € L_2(hg). Thus [e;, e;] € L, where
w(B) = —2. But [e},e;] € [B,L] C K by Lemma 3.2 (c). Since K,, = 0 by Proposition 5.4 (b),
we have [e},e;] = 0. The second equation is clear for o = +, since it holds in V, cf.
Lemma 5.6. For 0 = —, we have [[e,, e}],e;]| = 0 since [e,,, e;] = 0 by what we just proved.
Moreover, [[e7,e5],e;] € L v, (ha) by Theorem 5.5 (a), whence [[e7, e;],e;] = 0
when (v,av) > 0, while lle;,e5l,e5] € L z(ha) N K for yLla, which again implies
le;,e5],e.] = 0. (]
Lemma 5.8.

(a) Let (o;3,7) C Ri be a triangle. Then h, = hs + h, and [}, e5] = [e7, €;].
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(b) Let (o, 3,7,0) C R; be a quadrangle. Then h, + h, = hg + h;. More-
over, [ej,e,] = e[e],e;] where the sign ¢ € {+} is determined from
19%,95°,95} = €93.

(c) Let (¢ /3,7,9) C R; be a diamond. Then 2h, + h, = hs + h; and (e}, e,] =

[e?,eg]. |

Proof. In Lemma 5.6 and Lemma 5.7 we have established all necessary equations so that
the proof of [[23]; Lemma 2.2] works in our more general situation. Details will be left to
the reader. |

Lemma5.9. Let O C R; be a finite orthogonal system and define e, = )" ., eZ. Then
eo = (e},ey) is an idempotent of L with [e),e,] = Y .coha and 3 o (w,aV) €
{0,+1,+2} for any w € supp L. O

Proof. It is immediate from Lemma 5.6 and Lemma 5.7 that ho = [e],e5] = > colel, e,]
and that [ho, 3] = 02e3. Since (ad e™)® = 0 it then follows that (e, e,)) is an idempotent.
For 0 # x € L, we have [ho,x] =Y co[ha,X] = (3 co(w,aV)) x. Now, if [} o (w,aV)| >
(w,aV) = {£3,+4}.
Hence [h',x] = pux for p € {+3,44}. However, since f = (3> ,co €4, 2 aco €o) is an
idempotent of L with [f*,f ] = h/, the eigenvalues \; of adh’ lie in {0,+1,+2}. Since for
e {£3,+4} wehave \; —p € {£1,+2,+3,4+4,£5,+6}-1¢ C ®*, the equation [h’, x] = ux

implies x = 0, contradiction. |

3 there exists a subsystem O’ C O of cardinality 2or3suchthat )" ..,

5.3 Proof of Theorem 5.5

(a) For the proof of Theorem 6.3 below we point out that we will not use in the proof of
(a) that G covers V.

By Proposition 4.1 (b) it suffices to check that for w € supp(L) we have:

(i) w(a) =w(f)+ w(v) for any triangle (o; 3,7) C Ry, and

(ii) w()+w(y) =w(B) + w(0) for any quadrangle («, 3,7,0) C R;.

Let 0 # x € L, and let (o;8,v) C R; be a triangle. Thus, by Lemma 5.8 (a),
w(a)x = [ha,x] = [hg+h,, x| = (w(B)+w(d))x,i.e., (w(a)—w(F)—w(d))x = 0. Since lw(p)| < 2
for any i € R;, we have that w(a) — w(8) —w(d)| < 6. Hence, if w(a) —w(F) —w(d) # 0,
then w(a) — w(f) — w(d) is invertible in @, so x = 0 follows. Thus (i) holds. Similarly,
if (o, 8,7,0) C R; is a quadrangle, we obtain from Lemma 5.8 (b) that (w(«) + w(vy) —
w(B) — w(d))x = 0. We apply Lemma 5.9 to the orthogonal systems (a, ) and (3, d) and
we get |w(a) + w(y) — (w(B) + w())| < lw(a) +w)| + lw(B) + w(d)l < 2+ 2 = 4, hence if
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w(a) +w(y) —w(f) —w(d) # 0, then w(a) + w(y) — w(H) — w(0) is invertible in ® and x = 0
follows. Because L,, # 0 we obtain w(a) +w(y) —w(f) —w(d) = 0, i.e., (ii). Thus w € supp L
uniquely extends to a weight, also denoted by w. That L = €D,,cp) Lo is a P(R)-grading
is now immediate from (5.5).

(b) If w(ex) = 2 for some o € Ry, then L,, C Ly(h,) C B by Proposition 5.4 (a), in
particular @ L, C B. Conversely, if B,, # 0 then, by Proposition 5.4 (c), B, = V.}(9)
is a Peirce space of V with respect to G. Since G covers V, we get w = o for some o € R;.
Thus B = @ g, La-

We know from Proposition 5.4 (b) that K = @ K., where K,, = KNL,,and K,, =0
if w(a) = —2 for some @ € Ry, whence K = @,z , Ko C D, yr, Lo Conversely, by

aEeR;

Proposition 5.4 (c) any L, /K, C V~ is a Peirce space of G. Since the Peirce spaces of §
inV~ areV,,«a € R;,wehavelL,/K, =0ifw ¢ R_,,1i.e., L, = K, for those w.

(c) The first part of (b) was proven in Lemma 5.9. For the second part, the
condition is obviously necessary: If v = a € R,1, 0 = =, then o« is an orthogonal
system in R; with (w, (ca)Y) = o{a,aV) = 20. Conversely, if O C R, is an orthogonal
system with Y o (w,aY) = 20, let eg = (e}, e,) be the idempotent of Lemma 5.9, and
put ho = [ef,ey]. If 0 = + then L, C Ly(ho) = [[ef,ef], L] C B,so L, C V' is a Peirce
space with respect to § and therefore of the form L, = Lg for some 5 € R;. If 0 = — then
L, C L_3(ho). Since e/ € B, Lemma 5.3 (b) shows K., = 0, whence L, C V™ is a Peirce
space with respect to G, and therefore of the form L for some 5 € R_;.

(d) Thate,, 0 # 1 € Ry, is well defined can be proven in the same way as [[25];
Lemma 2.4] by using Lemma 5.8 and [[19]; Prop. 18.9] in place of the results quoted in the
proof of [[25]; Lemma 2.4].

Condition (i) of 5.2 for @ € R; follows from (5.5) since [e,,f.] = h, as defined
in the theorem. It then also holds for « € R_;. For 0 # u = a — (3 € Ro we have
lewrel = lleses)lefeal] = lleesles],eq] — lef, llegelleal] = (a8 )ha — (5,a%)hg by
Lemma 5.6. Since 1V = (a, 3Y)aY — (8,a")3Y by [[19]; A.4], condition (i) of 5.2 also holds
for i € Ry. Condition (iii) of 5.2 holds because of (b) and our assumption on ®. As already
mentioned in 5.2, the core of L is then R-weight-graded.

(e) h is abelian by compatibility of £. To check that g is a subalgebra of L, we put
gc = g N L. and thus have g = @z g with

b for e =0,
ge = ®e. for 0 +# ¢ € Ry,

®et for +ac€ Ry,.

[e3%
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Clearly [h,g] C g. In the following we will consider the products [g.,g,] for 0 # ¢, € R
and distinguish the cases (1) ¢,v € Ry, (2) ¢,v € R_1,(3) e € R;,v € R_1,(4) 0 # ¢ € Ry,
veER;,(5)0#£e€Rg,veR_1and (6)0+#¢,v € Ry

(1) Lete =a € Ry and v = (3 € R;: We have [e}, e;] = 0 since B is abelian.

(2) Lete=—a € R jandv=—-3€R;:Ifa f Fthen[e,,e;] € L, 3 = 0because
of {(a + B,aY) > 3 and (c). If « L 3 the assumption L_, 5 # O together
with —(a + 8,aY) = —2 implies the contradiction o + 3 € R;, whence
again le,,e;] =0.

(3) Lete=a € Ryandv =—f € R1:Ifa = Fthen [e;,e;] = hy € h. If a # Fbut
a [ fthen0 # pu=a—3 € Roand [e},e;] = +e, € g. Finally,if o | 3 then
le,,e5] =0by Lemma 5.7.

(4) Let0 # e € Rpand v =y € R;: We can write e in the form ¢ = o— 3 for suitable
o, € Ri,a [ Bsuchthat e, e]] = [[e;,e;],e;] = {9.,95,95} By [[23];
3.5] this element is zero if « — 3+~ = § ¢ Ry, and lies in ®e] if 6 € Ry, cf.
Lemma 5.6.

(6) Let0 # ¢ € Rpand v = —y € R;: As in case (4) we let 4 = o — [ so that

— +
eH - [e(meu

] Since then [e,,e)] = —[[e;,e,], e;] we are again done by
Lemma 5.6 in case w = 3 —a + 7 € R;. Let us therefore assume w ¢ R;. We
claim than then [[e;, e;] e;| = 0. Because {g;,9,,9, } = 0 we get at least
les,es],ey] € K. We can of course assume K, # 0. By Lemma 5.8 and
Proposition 5.4 (c¢) we then have (w,§") < 1forall § € Ry, in particular
for§ = Band § = yweget 1 + (v,3Y) < (\,pY)and 1 + (3,7V) < {a,7V).
By Lemma 5.7 we can also assume § [/ « [/ . The inequalities above
together with (Ry,RY) < 2thenimply 8+ a -~ T 3.Butthen (o; 3,w,7) is
a diamond by [[19]; 18.4] with w € R;. This contradiction proves [e,,e,] =
0 in this case.

(6) Finally, let 0 # €,v € Rp: We write again € as in (4) and can assume that
v =~ —d forsuitabley,d € R,. Then [e,,e,] = [e,,[e], e5]] = [[eu, el], e5] +
lef, [eu, e5]] € g by what we have already proven. This finishes the proof
that g is a subalgebra.

That g is R-graded is now immediate from (d) and the definition of
an R-graded algebra. Since R is a 3-graded root system, g is a 3-graded
Lie algebra. The last statements then follow from [[25]; Theorem 3.3 and

Theorem 3.4].



26 Antonio Fernandez Lopez et al

6 Consequences and Examples

In this section we will draw some consequences of Theorem 5.5. As in the previous
section we assume that all Lie algebras and Jordan pairs are defined over a ring of
scalars ® with ulgp € ®* for u = 2,3, 5.

Following [11] we will say that an abelian inner ideal B of a Lie algebra L is
complemented by an abelian inner ideal if there exists an abelian inner ideal C of L such
that L = B® Ker; C = C @ Kery, B.

Theorem 6.1. Let L be a I'-graded Lie algebra, and let B be a graded abelian inner ideal
such that the subquotient V = (B, L/Ker;, B) is covered by a finite grid § of homogeneous
idempotents. Let R be the finite 3-graded root system associated to G.
Then the assumptions of Theorem 5.5 are fulfilled. In particular, the P(R)-
grading L = @we?(R) L, of L is compatible with the given I'-grading of L. Moreover:
(a) Lhas afinite Z-gradingL=L ,®---®Lo®- - -® L, which is compatible with
the I'-grading of L and satisfies

Ly=B, Ker,B=L n1® - ®Lo® - ®Ly. (6.1)

If Gis a connected grid, then nin (6.1) can be taken as the Coxeter number
of R.

(b) C =L_, is also a graded abelian inner ideal of L with Ker,C =L , & --- &
Ly ---L, 1.Inparticular, Bis complemented by C. O

Proof. If V is covered by a finite grid of homogeneous idempotents, it follows from
[[23]; Theorem 3.7] that V is also covered by a finite standard grid of homogeneous
idempotents, say § C V. By repeated application of Proposition 5.4 (d) we can construct
a finite Peirce-compatible family £ of homogeneous idempotents of L such that the
assumptions of Theorem 5.5 are fulfilled. In particular, L = P .5, L. is graded by P(R).
Since all h,, a € Ry, lie in LY this P(R)-grading is compatible with the given I'-grading.
(a) Let p: P(R) — Z be the homomorphism of Proposition 4.3. We regrade L via

¢, i.e., we define L; = @, _; L for i € Z. The remaining statements

of (a) then follow from T}ﬁ(e(;rem 5.5 (c) and Proposition 4.3, keeping in
mind for the last part that G is connected if and only if R is irreducible
[[23]; Theorem 3.4].

(b) That also Cis an abelian innerideal is obvious, cf. Lemma 2.3. We have L_,, =

@D.cr_, Lo, and hence C also fulfills the assumptions of Theorem 5.5 with
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V replaced by V°P and +/— exchanged in § and €. Then Theorem 5.5 (c)
shows that Ker; C is as claimed in the theorem. It then follows that L =
B ® Kery, C = C @ Kery, B, i.e., B is complemented by C. [ |

Corollary 6.2. Let L be nondegenerate. Then every nonzero abelian inner ideal B of finite
length of L is complemented by an abelian inner ideal. In fact, there exists a finite Z-
gradingL=L_, @ ---® L, such that B = L,. O

Proof. If L is nondegenerate and B is an abelian inner ideal of finite length, the sub-
quotient V = (B,L/Kery, B) is nondegenerate and Artinian by Proposition 3.5 (iii)(v). By
[[18]; Theorem 5.2], V is covered by a finite grid, hence there exists a finite Z-grading
L=L,®- &Ly, suchthat B = L, and B is complemented by the abelian inner ideal
L_,, see Theorem 6.1. u

Theorem 6.3. Let £ be a grid in a Jordan pair V with associated 3-graded root system
(R,R;). We enumerate & = {e, : @ € R1 }. For w € ZF we define V(&) = (V[ (€),V (€)) by

VEE) = Nacry Vi (9a) and V(€)= Mach, Vo (9a)- (6.2)

(a) Everyw € supp V = {w € Z% : V(&) # 0} has a unique extension to a weight
of R, also denoted w, such that w(a) = (w,a") holds for all « € R;.

(b) Assume V =, V,,(€), which always holds if € is finite. Then, putting V,, = 0
for w € P(R) \ supp V, the decomposition V = P .pr) V() is a P(R)-
grading of V.

(c) Suppose ¢ is finite. Then there exists a finite Z-grading of V, say V =
@r . V,, satisfying

l=—n

Vi=@', VS, VvV =@ ,V;, and ejcV forallacR,. (6.3)

i=—n i
If £ is connected, n can be taken as the Coxeter number of R. O

Proof. (a) and (b) can be proven in the same way as the proof of Theorem 5.5 (a) in 5.3,
i.e., one verifies the conditions (i) and (ii) of Proposition 4.1 (b), see [20] for details. As in
the proof of 6.1, the Z-grading in (c) is then constructed from the P(R)-grading using the
homomorphism ¢: P(R) — Z of Proposition 4.3. The properties mentioned in (6.3) are

immediate from the definition (6.2). |

Corollary 6.4. Let V be a Jordan pair, and let B C V' be an inner ideal of V whose

subquotient is covered by a finite grid §.
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Then § lifts to a finite grid € in V such that the finite Z-grading of V constructed
in Theorem 6.3 satisfies B = V,/. Moreover, C = V_, is an inner ideal of V which

complements B in the sense of [18]. O

Proof. Let L be the Tits-Kantor-Koecher algebra of V. We recall that L = L' @ L° ® L~ ! is
a 3-graded Lie algebra with L*! = V*. We will view V as a Z-graded Jordan pair with
respect to the grading induced from L, i.e., V! = (V*,0) and V-1 = (0, V™).

By Proposition 3.3 every inner ideal of V contained in V* is an abelian inner
ideal of L with Ker; B = V' @ L° @ KeryB, whence B is a graded inner ideal of the 3-
graded Lie algebra L whose subquotient S = (B,L/Ker;B) = (B,V /KeryB) is covered
by a finite grid of (obviously) homogeneous idempotents. By repeated application of
Proposition 5.4, the grid § lifts to a finite Peirce-compatible family € of idempotents
of L which are homogeneous with respect to the 3-grading of L, whence e € V7 for
c = +ande = (ef,e) € &. By Lemma 5.6, £ is a grid in V. We can then apply
Theorem 6.3 and in particular get B = @,z Va(€) = V', Vo, = @ g, V_o(€) and
KeryB = @ yr , Vo (&) =V, ® - @ V. Itis obvious that C = V-, is an inner ideal of
V. Applying what we just proved to C and V°P shows KeryC =V, @& ---V, ;. [ |

6.1 Abelian Inner Ideals in Simple Finite-Dimensional Lie Algebras

By Corollary 6.2, a description of abelian inner ideals in nondegenerate Artinian Lie al-
gebras can be deduced from a classification of finite Z-gradings of these Lie algebras.
Although this is not very efficient since nonisomorphic Z-gradings can lead to isomor-
phic abelian inner ideals, it nevertheless provides a quick classification of abelian inner
ideals of those Lie algebras for which the finite Z-gradings are known.

As an example, we consider in this subsection a finite-dimensional split simple
Lie algebra L over a field @ of characteristic 0, and let B C L be an abelian inner ideal. By
Corollary 6.2, L has a finite Z-grading, say a (2n + 1)-grading, with L, = B. It is folklore
that the Z-gradings of L are obtained as follows: There exists a splitting Cartan subal-
gebra h of L and a Z-grading of the root system R of (L,h), say R = [J__,, Rn such that
L; = @,cr, Lo, where the L, are the root spaces of (L, ), in particular L, =B = > .z La-
It is therefore enough to determine R,. This can be done as follows, see e.g. [[19]; 17.4,
17.5]: Any Z-grading (R;);cz of R is given by a coweight g of R, i.e. a Z-linear map Q(R) —
Z,via R; = {a € R : q(«o) = i}, and any coweight g is uniquely determined by its values
qi = q(B;), where (31, ..., ) is a root basis of R. One then discusses the possibilities for
the family (g;) keeping in mind that the highest root with respect to (5i,..., ) lies in
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R,. As an example, we will give the classification for R = Eg below. Before doing so, we
mention some general facts for L:
e By [[4]; Lemma 1.13] every proper inner ideal of a simple nondegenerate
Artinian Lie algebra is abelian, hence in particular this is so for proper
inner ideals of L.
e The inner ideals coming from a 3-grading of L are well known: They are the
V' -spaces of simple Jordan pairs V whose Tits-Kantor-Koecher algebra
is (isomorphic to) L. Moreover, by Lemma 2.3 (a), a submodule B C V't is
an inner ideal of the Lie algebra L if and only if B is an inner ideals of the
Jordan pair V. The latter are well known, see e.g. [21] or [[24]; Section 3].
e If 8 C R is a family of pairwise collinear long roots, then B = P, 5 Lg is
an abelian inner ideal. This is easily proven using standard facts from
root systems. We note that with b = || the corresponding subquotient is
isomorphic to the rectangular matrix pair (Mat(1,b, ®),Mat(b, 1;®)) =
(Ip in the notation of [16]), and hence the subalgebra g of Theorem 5.5 is
isomorphic to sl (D).

Example R = Eg: We will use the enumeration of the simple roots 3; as in [[6];
Planche VII|, and let B be the abelian inner ideal associated to R, with n as in (6.1).
To arrive at the following list of isomorphism classes of abelian inner ideals in Eg one
considers the possibilities for g;, 1 <1i < 8, starting with gg. If gg > 0, then in view of the
known coefficients (m;) of any positive root o = 37 | m;(; (see [[6]; Planche VII]) we have
IR,| = 1.If gg = 0 < g7 then |R,| = 2. Continuing in this way one arrives at the following
list:

(1) R, is afamily of pairwise collinear roots, 1 < |R,| < 8. For example, |R,| = 8
is obtained from g, > 0=g3 =--- = gs.

(2) R, is a family of 14 roots, obtained from qg; > 0 = g, = --- = gg. Two
distinct roots in R, are either orthogonal or collinear, and there exists
a bijection between R,, and the idempotents in an even quadratic form
grid of 14 idempotents, that preserves orthogonality and collinearity.
The corresponding subquotient is therefore a quadratic form pair of
dimension 14 (IV;4 in the notation of [16]), and the Lie algebra g of
Theorem 5.5 is of type Dg. The corresponding grading of L is a 5-grading.
R; consists of those roots whose 3;-coefficient is i; we have |R;| = 64 and
|Ro| = 84. (L1,L_;) is the Kantor pair of the structurable algebra O ® O,

where O is a split octonion.
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6.2 Abelian Inner Ideals of Finite Length in Simple Infinite-Dimensional Lie Algebras.

In the previous subsection we have seen the relationship between abelian inner ideals (of
finite length) and finite Z-gradings in a finite-dimensional split simple Lie algebra L over
a field @ of characteristic 0. Let us now analyze this relation in the case of an infinite-
dimensional simple Lie algebra L over a field @ of characteristic 0. Let B be a nontrivial
abelian inner ideal of finite length of L. Then L has abelian minimal inner ideals, so (see
[7]) L = Soc(L) is b-graded and there exists a simple associative algebra A with nonzero
socle such that

(i) L =[A,A]/(JA,A]NZ(A)) with the induced product of A, or

(ii) L = [K,K]/Z(A) N [K, K], where * is an involution of A, K = Skew(A4, %) and

either Z(A) = 0 or the dimension of A over Z(A) is greater than 16.

On the other hand, by Corollary 6.2, L has a finite Z-grading L=L_, & - -- & L, for which
B = L,. Let us now see that Corollary 6.2 indeed holds for n = 2, i.e., there exists a 5-

grading of L for which L, = B.

Proposition 6.5. Let A be an associative algebra and let L = [A, A]/([A,A] N Z(A)).

(a) Let e,f € A be idempotents satisfying fe = 0. Then B = eAf is an abelian
inner ideal of A(~), which is contained in [A,A] and which satisfies B N
Z(A) = {0}. Hence B imbeds into the Lie algebra L = [A,A]/([A,A] N Z(A))
and is an abelian inner ideal in L. Moreover:

(i) ¢ = f — ef is an idempotent of A which is orthogonal to e and also satisfies
B =eAc.

(i) There exists a 5-grading of A as associative algebra, A = @?__, A;, such that

B=A, and
KeryB={x€A ;:bxb=0forallbe B} © P, A

Assume that A is semiprime or that there exist uy; € Ay andv_, € A ,
satisfying u,v_, = eand v_ju; = c. Then Kery B = @iqui and the
subquotient of B is isomorphic to the Jordan pair V = (A;,A_5) with
triple product {a, b, c} = abc + cba.

(b) Conversely, if A is simple then every abelian inner ideal B C L of finite
length is of the form B = eAf, where e, f are orthogonal idempotents.
Moreover, the Jordan pair V = (A;,A_5) described in (a) is simple and

Artinian. U
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Proof.

(a) Clearly B?> = 0, and this easily implies that B = eAf is an inner ideal of A",
It is also straightforward to check that ¢ is an idempotent of A which
is orthogonal to e and satisfies ef = efc. From this one deduces that
B = eAc and then that eac = [e,eac] for any a € A. Hence B C [A,A]
and BN Z(A) = 0. Let A = ®1 & A be the associative algebra obtained
from A by adjoining a unit element 1. Then (e, e3,€3) = (e,1 —c — e, ) is
a complete orthogonal system in A. Let lek be the corresponding Peirce
spaces, hence A= @lgijgs ﬁjk. Since AA + AA C A all Peirce spaces ﬁjk
with (jk) # (22) are in fact contained in A and can be defined in A, e.g.
A, = {a€cA:ea=a-= ae},ﬁlz ={acA:ea=a0=a(e+c)}. For
(jk) = (22) we have Ayy = Dey @ Ayy where Ay — {a e A:(e+cla=
0 = a(e + c)}. We therefore get a decomposition A = P,_; ;-5 Ajx With
Aji = Aj for (jk) # (22) which behaves like a Peirce decomposition. Put
Ai = Py jApfor —2 < i < 2. Then A = @7 ,A;is a 5-grading of A
with B = eAc = A;3 = A,. The remaining claims of (a) can now easily be
checked.

(b) That in a simple Artinian associative algebra A every abelian inner ideal of
L has the form eAf with fe = 0 is shown in [[4]; Theorem 5.1]. Let us then
suppose that L is not Artinian and let B be a nonzero abelian inner ideal
of finite length. By socle theory for Lie algebras [[7], Theorem 4.5], A has
nonzero socle (as an associative algebra), and since it is not Artinian,
Z(A) = 0. Therefore L = [A, A]. By [[3], Lemma 3.14], b> = 0 for any b € B.
Hence, forany b, c € Band a € A, we have [[b, al, c|] = bac+cab € A, which
implies that B is an inner ideal of the Jordan algebra A(*). But inner
ideals of finite length of A(*) are of the form eAf with e, f idempotents
of A [[8], (16)]. Since b* = 0 for any b € B, we have fe = 0. Indeed, b* = 0
for any b € B implies bc + ¢cb = 0 for any b,c € B; on the other hand,
bc—cb = 0forany b, ¢ € Bsince Bis abelian, hence B> = 0. Then it follows
by simplicity of A that fe = 0 (otherwise, fe # 0 would imply A = AfeA,
and hence B = eAf = eAfeAf = B> =0). [ ]

Remark 6.6. Recall [13] that a simple associative algebra A with an involution * has

nonzero socle if and only if it is x-isomorphic to the algebra of finite rank continuous
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operators (F(X), ), where X is a left vector space endowed with a nondegenerate skew-

Hermitian or symmetric form h over a division algebra with involution (A, —), and where

x denotes the adjoint involution. In the last case, A is commutative with the identity

as involution and K = Skew(A, x) is the finitary orthogonal algebra fo(X,h) [1]. Given

x,y € X, we write x*y to denote the linear operator defined by x*y(x’) = h(x’, x)y for all

x’ € X. Then x*y € F(X) with (x*y)* = y*x. Hence [x,y] := X"y — y*x € fo(X, h).

Proposition 6.7. Let A be a simple associative algebra with involution * such that either
Z(A) = 0 or the dimension of A over Z(A) is greater than 16. Put K = Skew(A, ) and
L =[K,K]/Z(A) N [K,K].

Proof.

(a) If Bis an abelian inner ideal of L of finite length, then either

(i) B=eKe* fore € A an idempotent such that e and e* are orthogonal, or

(ii) L = fo(X,h) as in Remark 6.6 and there exist a hyperbolic plane H C X and
a nonzero isotropic vector x € H such that H* does not contain infinite
dimensional totally isotropic subspaces and B is given by B = [x,H'] :=
{[x,2] : z€ H*}.

(b) If B = eKe* as in (i), then A has a 5-grading as an associative algebra,
A=A ,DA DAy DA ® Ay, which is induced by the idempotents e
and e*, cf. Proposition 6.5. Moreover, L is 5-graded with B = eKe* = L,.

If B = [x,H'] C L = fo(X,h) as in (ii), then L admits a 3-grading,

L=L ;®Ly® Ly, suchthatB = [x,H'] =L,. O

(a) We may assume B # 0, and therefore that L has nonzero socle. Then, by [[7];
Theorem 5.16], A coincides with its socle. We consider two cases.

(1) b* =0 forany b € B. If A is Artinian, then we have by [[3]; Theorem 5.5]
that B = eKe* for some idempotent e in A satisfying e*e = 0. As in
Proposition 6.5 we may assume that the idempotents e and e* are
orthogonal. If A is not Artinian, then Z(4A) = 0 and L = [K,K]. It
then follows from [[9]; Prop. 3.6] that B = eKe* as before.

(2) b* # 0 for some b € B. Then we have by [[9]; Proposition 3.8] that A
is a field with the identity as involution and B = [x, H']. Moreover,
by [[9]; Lemma 3.7], H' cannot contain infinite dimensional totally
isotropic subspaces.

(b) The case B = eKe* follows as in the proof of Proposition 6.5 (note that

A; = A;). If B = [x,H"] = L, as in (ii), let e, e1, e, be the canonical
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projections of X = Fx, ©® H* @ Fx_ onto Fx,, H-, Fx_, respectively. It
is easy to see that eg, e;, e, are idempotents in L£(X), the algebra of all
continuous operators, with e; = e, and e] = e;, which induce a 5-grading
A=A, A, @A B A ; A _,of the simple associative algebra A = F(X).
Moreover, each A; is invariant under * and Skew(Ay, ¥x) = Skew(A_5,*) =
0. Hence fo(X, q) = Skew(F(X),*) = L; @Lo & L_; with L; = Skew(4;, ) and
B=1,. |
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