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Abstract. In this announcement we describe the structure of an extended affine Lie algebra in terms of its
centreless core, which is a Lie torus with trivial centre. The paper is an extended version of the two papers
[28] and [27].

0. Introduction. Extended affine Lie algebras are a class of complex Lie algebras that includes
finite-dimensional simple Lie algebras, affine Lie algebras and toroidal Lie algebras. They are closely
related to Saito’s elliptic Lie algebras ([31]). Originally proposed by the physicists Høegh-Krohn
and B. Torrésani [20] under the name irreducible quasi-simple Lie algebras, extended affine Lie
algebras have been put on a sound mathematical footing in the AMS-memoirs [2] by Allison,
Azam, Berman, Gao and Pianzola. In particular, one can find there a detailed study of the root
systems appearing in extended affine Lie algebras. The structure and representation theory of
various classes of these Lie algebras has since been investigated in many papers, see section 4 for
a (probably incomplete) survey. In this note we will describe the structure of extended affine Lie
algebras in general.

Referring the reader to the main body of this note for precise definitions, we will only give a rough
sketch of the relevant structures in this introduction. Two important properties of an extended
affine Lie algebra are the existence of an invariant nondegenerate form and a finite-dimensional self-
centralizing ad-diagonalizable subalgebra H. Thus E has a root space decomposition E = ⊕Eξ and
a root system R, consisting of those ξ ∈ H∗ with Eξ 6= 0. The form on E gives rise to a partition
R = R0 ∪ Ran into isotropic roots R0 and anisotropic roots Ran, generalizing the decomposition
into imaginary and real roots in the affine case. Let Ec be the ideal generated by {Eξ : ξ ∈ Ran},
called the core of E. One assumes that E can be recovered from its core Ec in the sense that the
kernel of the natural representation E → DerEc : x 7→ adx|Ec lies in Ec. The core Ec may have
a non-trivial centre, and it turns out to be easier to describe its central quotient L = Ec/Z(Ec),
where Z(Ec) denotes the centre of Ec. The situation can thus be summarized by the following
diagram

Ec
- E

?
L

(0.1)

familiar from the affine case where Ec is the derived algebra and L a loop algebra. In general, the
Lie algebras L appearing in (0.1) can be characterized without any reference to extended affine
Lie algebras: they are Lie tori as defined in Yoshii’s recent preprints [36] and [32]. Moreover, it
is shown there that all centreless Lie tori appear as the “bottom algebra” in a diagram (0.1). The

1 Partial support by a NSERC (Canada) discovery grant is gratefully acknowledged
AMS subject classification: Primary 17B65; Secondary 17B67, 17B70

1



canonical approach to untangling the structure of an extended affine Lie algebra E is therefore to
describe (I) the centreless Lie tori L and (II) how to get from L to E.

Regarding (I), an important property of a Lie torus L is that L is graded by a finite irreducible
root system ∆. Although one knows the structure of root-graded Lie algebras in general (Allison-
Benkart-Gao [3], Berman-Moody [14], Benkart-Zelmanov [10] and Neher [25]), it is not obvious
which of them are in fact Lie tori. As of now, the precise structure of a centreless Lie torus L
has been worked out for the case of a reduced ∆ and in a special case for ∆ = BC1 (see section
4). Concerning (II), one knows how to go from L to E in case ∆ = Al, l ≥ 2 ([12], [13]). We
mention that there are also some constructions known, which associate to any centreless Lie torus
an extended affine Lie algebra, but which do in general not yield all extended affine Lie algebras
with a given centreless core ([2, Ch. III] and Azam [8]). In the same vein, Allison-Berman-Pianzola
[5] describe how one can obtain new extended affine Lie algebras through affinization of an extended
affine Lie algebra.

In this note we announce a solution of (II) in general (Thm. 14 and Thm. 16). Our construc-
tion, given in section 13, describes all extended affine Lie algebras with a given centreless core. It
resembles the construction of affine Lie algebras and gives a new interpretation to certain subal-
gebras appearing in the previously known solution for the case ∆ = A. They are described here
as subalgebras of skew centroidal derivations. The proof that our construction gives all extended
affine Lie algebras relies on several new results for a centreless Lie torus L: L is finitely generated
as Lie algebra and the dimension of its graded components are uniformly bounded (Thm. 5); the
centroid Cent(L) of L is always a Laurent polynomial ring, and if ∆ is not of type A then L is a
free Cent(L)-module of finite rank (Thm. 7); the derivation algebra of L splits the semidirect sum
of the ideal of inner derivations and the subalgebra of centroidal derivations (Thm. 9).

While the work on Lie tori can be done for Lie algebras over fields of characteristic 0, one has
up to now only considered complex extended affine Lie algebras since one of their defining axioms
is a topological (discreteness) condition. To remedy this discrepancy, we are proposing here a new
definition of an extended affine Lie algebra over an arbitrary field F of characteristic 0. Roughly
speaking, we are allowing more possibilities for the subalgebra H ⊂ E. In case F = C the algebras
satisfying the old axiom system are recovered as the discrete extended affine Lie algebras in our
sense (Thm. 16).

Some indications are provided for the proof of each announced result; details will appear else-
where. The author thanks Bruce Allison and Yoji Yoshii for having provided him with their
preprints [7], [36] and [32].

1. Notations and terminology. All vector spaces and algebras considered in this note will
be defined over a field F of characteristic 0, except when indicated otherwise. For a subset R of
a vector space V , spanQ(R) denotes the rational span of R. For an abelian group G and a subset
R ⊂ G we denote by 〈R〉 the subgroup generated by R. We note that if G is free, e.g. if G is the
underlying group of a vector space, then so is 〈R〉.

Root systems will always contain 0. This has some notational advantages and follows the
conventions in [2]. We will call ∆ a finite root system if ∆× := ∆\{0} is a root system in the sense
of [16, Ch.VI, §1.1]. In particular, ∆ need not be reduced. For α, β ∈ ∆ we denote by 〈α, β∨〉 the
Cartan integer of α, β (thus 〈α, β∨〉 = n(α, β) in the notation of [16]) and by Q(∆) = 〈∆〉 the root
lattice of ∆. We denote by ∆ind = {0} ∪ {α ∈ ∆× : α/2 6∈ ∆} the subsystem of indivisible roots of
∆.

2. Lie tori. Let ∆ be a finite irreducible root system and let Λ be a free abelian group of finite
rank. A Lie torus of type (∆,Λ) is a Lie algebra L satisfying the following axioms:
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(LT1) L has a (Q(∆)⊕ Λ)-grading of the form

L =
⊕

α∈Q(∆), λ∈Λ

Lλ
α , [Lλ

α, Lµ
β ] ⊂ Lλ+µ

α+β , satisfying Lλ
α = 0 if α 6∈ ∆. (2.1)

(LT2) For α ∈ ∆× and λ ∈ Λ we have
(i) dim Lλ

α ≤ 1, with dim L0
α = 1 if α ∈ ∆ind,

(ii) if dim Lλ
α = 1 then there exists (eλ

α, fλ
α) ∈ Lλ

α × L−λ
−α such that hλ

α = [eλ
α, fλ

α ] ∈ L0
0 acts

on xµ
β ∈ Lµ

β (β ∈ ∆,µ ∈ Λ) by

[hλ
α , xµ

β ] = 〈β, α∨〉xµ
β .

(LT3) For λ ∈ Λ we have Lλ
0 =

∑
α∈∆×, µ∈Λ [Lµ

α , Lλ−µ
−α ].

(LT4) Λ = 〈{λ ∈ Λ : Lλ
α 6= 0 for some α ∈ ∆}〉.

The rank of Λ is called the nullity of L. If (∆,Λ) is not important or clear from the context, we
will simply call L a Lie torus. Similarly, a Lie torus of type ∆ and nullity n is a Lie torus of type
(∆,Λ) for some Λ of rank n.

Examples of Lie tori will be given in section 4 below. It will emerge that Lie tori can be
constructed using certain Λ-graded, not necessarily associative algebras, like Jordan, alternative
or structurable algebras, which have been called Jordan tori, alternative tori or structurable tori
respectively. This, together with the fact that toroidal Lie algebras are one of the main examples
of Lie tori, is the justification for the name “Lie torus”.

It is natural to consider Lie tori for more general groups Λ and with less restrictive conditions
as (LT2i), see [34], [35] and [36] for some work in this direction. However, the results stated below
require the axioms above.

3. Some properties of Lie tori. Let L be a Lie torus of type (∆, Λ). Then L has a Λ-grading

L =
⊕

λ∈Λ

Lλ , Lλ :=
⊕

α∈∆

Lλ
α (3.1)

as well as a Q(∆)-grading
L =

⊕

α∈∆

Lα , Lα :=
⊕

λ∈Λ

Lλ
α . (3.2)

The subalgebra g of L0 generated by {L0
α : α ∈ ∆×} is a finite-dimensional split simple Lie algebra

of type ∆ind with splitting Cartan subalgebra

h =
∑

α∈∆×
[L0

α , L0
−α] . (3.3)

With respect to g, h and the decomposition (3.2), L is a ∆-graded Lie algebra, see e.g. [3, Def. 1.2
and Def. 1.12]. It is then easily seen that our definition of a Lie torus is equivalent to the one
given in [36] and [32]. It thus follows from [32, Thm. 2.2 and Thm. 7.1] that L has a non-
zero invariant (necessarily) symmetric bilinear form ( | ), which is Λ-graded in the sense that
(Lλ|Lµ) = 0 if λ + µ 6= 0. Moreover, any such form is unique up to a non-zero scalar, and is
nondegenerate if L is centreless, i.e., the centre Z(L) vanishes.
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Let C ⊂ Z(L) =
⊕

λ∈Λ (Z(L) ∩ Lλ) be a Λ-graded subspace of Z(L). Then L/C is canonically
a Lie torus of type (∆,Λ). In particular, L/Z(L) is a centreless Lie torus. Conversely, the universal
central extension of a Lie torus (more generally, any Λ-cover of L in the sense of [26, 1.15]) is again
a Lie torus.

4. Examples. (a) Let g be a finite-dimensional split simple Lie algebra of type ∆, and let
F [t±1

1 , . . . , t±1
n ] be the ring of Laurent polynomials in n variables. Then g ⊗ F [t±1

1 , . . . , t±1
n ] is a

centreless Lie torus of type ∆ and nullity n. Hence, by section 3, its universal central extension,
i.e., the associated toroidal Lie algebra [24], is also a Lie torus of type ∆ and nullity n. Conversely,
by [12, Thm. 1.37], every Lie torus of type ∆ = Dl, l ≥ 4, or ∆ = El, l = 6, 7, 8 and nullity n is a
central extension of g⊗ F [t±1

1 , . . . , t±1
n ].

(b) The special case n = 1 and F = C of example (a) is worth pointing out. Then the loop
algebra L(g) = g⊗ C[t±1] and its universal central extension L̂(g) ([22, 7.2]) are Lie tori of nullity
1. More generally, it follows from the proof of [4, Thm. 1.19] that the complex Lie tori of nullity 1
are precisely the derived affine Lie algebras and their central quotients.

(c) Let q = (qij) ∈ Mn(F ) be a (n×n)-matrix over F satisfying qii = 1 = qijqji for 1 ≤ i, j ≤ n,
and let Fq be the associated quantum torus, which, by definition, is the unital associative algebra
with 2n generators t±1

1 , . . . , t±1
n and defining relations tit

−1
i = 1 = t−1

i ti and titj = qijtjti for
1 ≤ i, j ≤ n. Denote by [Fq, Fq] the span of all commutators [a, b] = ab− ba with a, b ∈ Fq. Then
sll+1(Fq) = {x ∈ Ml+1(Fq) : tr(x) ∈ [Fq, Fq]} is a Lie torus of type Al, l ≥ 1, and nullity n. Of
course, if all qij = 1 then Fq = F [t±1

1 , . . . , t±1
n ] and sll+1(Fq) = sll+1(F ) ⊗ F [t±1

1 , . . . , t±1
n ] is an

example considered in (a). It is shown in [12, Thm. 2.65] that every Lie torus of type Al, l ≥ 3,
and nullity n is a central extension of sll+1(Fq) for some quantum torus Fq.

(d) Lie tori of type A2 are classified in [12] and [13]. The centreless Lie tori of type A1

are precisely the Tits-Kantor-Koecher algebras of the so-called Jordan tori, classified in [33]. A
description of the centreless Lie tori is given in [6] for ∆ of type Bl, Cl, F4, G2 and, under additional
assumptions, in [7] for ∆ = BC1. Our results described below are for the most part independent
of these classifications, see the discussion in section 7.

5. Theorem. Let L be a Lie torus of type (∆,Λ).
(a) L is finitely generated as Lie algebra, and has uniformly bounded dimension with respect to

the (Q(∆)⊕Λ)-grading (2.1), i.e., there exists a M ∈ N such that dimF Lλ
α ≤ M for all α ∈ ∆ and

λ ∈ Λ.
(b) The Lie algebra DerF L of F -linear derivations of L is (Q(∆)⊕ Λ)-graded:

DerF L =
⊕

α∈∆, λ∈Λ

(DerF L)λ
α, (5.1)

where (DerF L)λ
α consists of those derivations mapping Lµ

β to Lλ+µ
α+β. Moreover, DerF L has uni-

formly bounded dimension with respect to the (Q(∆)⊕ Λ)-grading (5.1).

In (a) the point is of course to prove dimF Lλ
0 ≤ M for all λ ∈ Λ. This can be done by using

that for each α ∈ ∆× the subset {λ ∈ Λ : Lλ
α 6= 0} ⊂ Λ is a reflection subspace of Λ, hence finitely

generated as reflection space ([29, 2.2]). It then follows that DerF L is (Q(∆)⊕Λ)-graded and has
uniformly bounded dimension. This in turn implies that in case Z(L) = 0 also L has uniformly
bounded dimension. The generalization to an arbitrary L uses the duality between H2(L) and
outer skew derivations, well-known in the finite-dimensional setting, but which can be extended to
the case of graded Lie algebras with finite-dimensional grading subspaces.
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6. Let L be a Lie torus of type (∆,Λ). Recall that the centroid of L, denoted Cent(L), is the
set of all χ ∈ EndF L satisfying [χ, adx] = 0 for all x ∈ L. Since L is perfect, Cent(L) is a unital
associative commutative algebra, and one can thus consider L as a module or as a Lie algebra over
Cent(L). Since L is ∆-graded, a χ ∈ Cent(L) leaves every root space Lα invariant. Moreover, χ is
uniquely determined by χ|Lα for a short root α. It follows that Cent(L) is Λ-graded,

Cent(L) =
⊕

λ∈Λ

Cent(L)λ , with dimF Cent(L)λ ≤ 1,

where Cent(L)λ consists of endomorphisms of degree λ with respect to the Λ-grading (3.1) of L.
We put Γ = {λ ∈ Λ : Cent(L)λ 6= 0}. The following result justifies to call Γ the centroid grading
group.

7. Theorem. Let L be a centreless Lie torus of type (∆,Λ).
(a) Γ is a subgroup of Λ, and Cent(L) is isomorphic to the group ring F [Γ ], hence to a Laurent

polynomial ring in several variables.
(b) L is a free Cent(L)-module. If ∆ 6= Al, then L has finite rank as Cent(L)-module.

Part (a) follows from the fact that L is simple as Λ-graded Lie algebra. Since every graded
module over a group ring is free, see e.g. [29, 2.8], it suffices in (b) to prove that L is finitely
generated as a Cent(L)-module. To do so, I use partial coordinatization theorems for various types
of ∆, which permit to prove (b) without knowing the precise structure of L. In more detail, if
∆ = BC1 and L is not A1-graded, L is the Kantor Lie algebra of a structurable torus (A,¯) that is
not a Jordan torus ([7, 5.6]). By [1, Prop. 8], the centroid of any Kantor Lie algebra is isomorphic
to the centre of (A,¯), so that it suffices to prove that (A,¯) is finitely generated over its centre,
which was done in [7, Thm. 8.8]. For ∆ = BCl, l ≥ 2, one can proceed in an analogous manner:
L is the Kantor Lie algebra of a certain structurable algebra (A,¯) (for general BC2-graded Lie
algebras this has already been established in [3, Thm. 6.19(i)]), and one then shows that for a Lie
torus this structurable algebra is finitely generated over its centre. For ∆ = Bl,Cl, F4 or G2 and
F = C, finite generation of the Cent(L)-module L can be inferred from the classification theorems
in [7, §4 and §5]. One can however prove partial coordinatization theorems in general, sufficient to
establish (b) without doing the detailed analysis of [6]. For ∆ = Dl, E6, E7 or E8, finite generation
is obvious from the easily established structure theorems for these types (see Example 4.a) and the
fact that the centroid of g⊗ F [t±1

1 , . . . , t±1
n ] is F [t±1

1 , . . . , t±1
n ].

Remarks. (a) Let L = sll+1(Fq) as in Example 4(c). In this case, Cent(L) = Z(Fq)Id, where
Z(Fq) denotes the centre of Fq, and L has finite rank over Cent(L) if and only if Fq has finite rank
over Z(Fq), equivalently [Λ : Γ ] < ∞. Using the description of Z(Fq) given in [12, 2.44], it is easy
to construct examples for which rank(Γ ) takes on every value between 0 and n. In particular, L is
in general not a finitely generated Cent(L)-module.

(b) The theorem above together with the results of [13] and [33] implies that any centerless
Lie torus over an algebraically closed field, which does not have finite rank over its centroid, is
isomorphic to an example sll+1(Fq).

(c) Let L be a centreless Lie torus. Then Cent(L) is an integral domain, acting without torsion
on L. Let K be the quotient field of Cent(L), and let

L̃ = L⊗Cent(L) K (7.1)

be its central closure, where in this tensor product L is considered as Lie algebra over Cent(L).
Then L imbeds into L̃ and is a Cent(L)-form of L̃. If L has finite rank over Cent(L), L̃ is a simple
finite-dimensional Lie algebra over K.
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8. Centroidal derivations. Let L be a centreless Lie torus of type (∆, Λ), nullity n and
centroidal grading group Γ . Recall the Λ-grading (3.1) of L. Any θ ∈ HomZ(Λ, F ) induces a
so-called degree derivation ∂θ of L, defined by ∂θ(xλ) = θ(λ)xλ for xλ ∈ Lλ. We put

D = {∂θ : θ ∈ HomZ(Λ,F )}

and note that θ 7→ ∂θ is an isomorphism from HomZ(Λ,F ) onto D, hence D ∼= Fn. Moreover, D

induces the Λ-grading of L, i.e.,

Lλ = {x ∈ L : ∂θ(x) = θ(λ)x for all ∂θ ∈ D}. (8.1)

If χ ∈ Cent(L) then χ∂ ∈ DerF L for any ∂ ∈ DerF L. It follows that

CDerF L = Cent(L)D =
⊕

µ∈Γ

Cent(L)µD

is a Γ -graded subalgebra of DerF L, called the algebra of centroidal derivations of L. Let m =
rank(Γ ), so 0 ≤ m ≤ n, and identify Cent(L) = F [t±1

1 , . . . , t±1
m ] =

⊕
µ∈Γ tµD where tµ = tµ1

1 · · · tµm
m

for µ = (µ1, . . . , µm) ∈ Zm. Then CDerF L =
⊕

µ∈Zm
tµD and the product of CDerL is given by

[tµ∂θ , tν∂ψ] = tµ+ν(θ(ν)∂ψ − ψ(µ)∂θ) . (8.2)

Thus CDerF L is a generalized Witt algebra in the sense of [29, 1.9], a generalization of the gener-
alized Witt algebras studied in [17]. One easily obtains from (8.2) that D is an ad-diagonalizable
subalgebra of CDerF L with weight spaces tµD.

Let SCDerF L be the subalgebra of CDerF L consisting of skew derivations with respect to a
nondegenerate invariant Λ-graded form ( | ) on L, cf. section 3. Then

SCDerF L =
⊕

µ∈Γ

(SCDerF L)µ =
⊕

µ∈Γ

tµ{∂θ ∈ D : θ(µ) = 0}

is Γ -graded with 0-component D. It follows from (8.2) that SCDerF L is the semidirect product of
the subalgebra D and the ideal

D′ =
⊕

0 6=µ∈Γ

(SCDerF L)µ.

9. Theorem. Let L be a centreless Lie torus. Denote by IDerL the ideal of inner derivations
of L. Then

DerF L = IDerLo CDerF L (semidirect product). (9.1)

In case L has finite rank as Cent(L)-module, this result can be proven by using that its central
closure L̃, see (7.1), is a finite-dimensional simple Lie K-algebra and hence all K-linear derivations
are inner. In the remaining case, where L is a Cent(L)-module of infinite rank, ∆ is of type A by
Thm. 7. Then the result follows from [12, 2.17, 2.53], [13, Thm. 1.40] and [29, Thm. 4.11].

For ∆ of type B or D the splitting (9.1) has also been proven in [18, Cor. 4.9 and Cor. 4.10]
using different methods. We note also that the decomposition (9.1) is not the one proven in [9,
Thm. 3.12] for arbitrary ∆-graded Lie algebras: the subalgebra Der∗(a, S) of [9] contains CDerF L
but has in general a non-zero intersection with IDerL.
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We will now turn to extended affine Lie algebras. Their definition requires some notation, which
we shall establish in the next section.

10. A preliminary setting. Let E be a Lie algebra satisfying the following two axioms (EA1)
and (EA2):
(EA1) E has a nondegenerate invariant symmetric bilinear form ( | ).
(EA2) E contains a nontrivial finite-dimensional self-centralizing and ad-diagonalizable subalgebra

H.
By (EA2) E has a root space decomposition

E =
⊕

ξ∈H∗
Eξ , E0 = H,

where, as usual, Eξ = {e ∈ E : [h, e] = ξ(h)e for all h ∈ H}. The invariance of ( | ) implies that
(Eξ|Eζ) = 0 for ξ + ζ 6= 0. It follows that ( | ) restricted to H × H is nondegenerate. We can
therefore transfer the restricted form ( | )|H ×H to a nondegenerate symmetric bilinear form on
H∗ by setting (ξ|ζ) = (tξ|tζ) where tξ ∈ H is defined by (tξ|h) = ξ(h) for all h ∈ H. We define

R = {ξ ∈ H∗ : Eξ 6= 0} (root system of E),

R0 = {ξ ∈ R : (ξ|ξ) = 0} (isotropic roots),
Ran = {ξ ∈ R : (ξ|ξ) 6= 0} (anisotropic roots).

The subalgebra Ec of E, generated by {Eξ : (ξ|ξ) 6= 0} is called the core of E. It is in fact an ideal
if E is an extended affine Lie algebra as defined below.

11. Definition. An extended affine Lie algebra of nullity n, or extended affine Lie algebra
for short, is a Lie algebra E satisfying (EA1), (EA2) of section 10 and, in addition, the following
axioms (EA3) – (EA6) (see section 10 for unexplained notation):
(EA3) For ξ ∈ Ran and xξ ∈ Eξ, ad xξ ∈ EndF L is locally nilpotent.
(EA4) Ran is irreducible, i.e., Ran = R1 ∪R2 and (R1|R2) = 0 implies R1 = ∅ or R2 = ∅.
(EA5) E is tame in the sense that {e ∈ E : [e,Ec] = 0} ⊂ Ec.
(EA6) Λ := 〈R0〉 ⊂ V is a free abelian group of rank n.

It is appropriate to immediately point out that this definition for F = C is more general than the
usual definition of an extended affine Lie algebra ([2] or section 15 below). The relation between
the two definitions is discussed in sections 15 and 16. As we will see there is a close connection
between extended affine Lie algebras and Lie tori. The following proposition is the first step in this
direction. It can be proven using the techniques of [2, Ch. I] and Thm. 5.

12. Proposition. Let E be an extended affine Lie algebra with root system R, and put
Λ = 〈R0〉.

(a) There exists a finite irreducible root system ∆, an imbedding ∆ind ↪→ R and a family
(Λα : α ∈ ∆) ⊂ Λ such that

V = spanQ(∆)⊕ spanQ(R0) and R =
⋃

α∈∆

(α⊕ Λα).

The subspaces (Ec)λ
α = Ec ∩ Eα⊕λ give Ec the structure of a Lie torus of type (∆,Λ).
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(b) The root spaces Eξ of E have uniformly bounded finite dimension.

We note that the family (Λα : α ∈ ∆×) is a “reduced root system of type ∆ extended by Λ” in
the terminology of [36]. Thm. 2.4 of this paper gives the structure of this family, generalizing [2,
II, Thm. 2.37].

The proposition associates a centreless Lie torus to every extended affine Lie algebra E, namely
L = Ec/Z(Ec). We will now describe a construction which, conversely, associates an extended
affine Lie algebra to any centreless Lie torus.

13. Construction. Let L be a centreless Lie torus of type (∆,Λ) and nullity n, and let ( | )
be a nondegenerate invariant Λ-graded symmetric bilinear form on L. We denote by Γ the centroid
grading group (Thm. 7) and by SCDerF L =

⊕
γ∈Γ (SCDerF L)γ = D ⊕ D′ the skew centroidal

derivations (section 8).

The second ingredient of our construction is a Γ -graded subalgebra of SCDerF L,

D =
⊕

γ∈Γ

Dγ , Dγ ⊂ (SCDerF L)γ ,

which has the property that D0 induces the Λ-grading (3.1) of L, i.e., Lλ = {x ∈ L : ∂θ(x) =
θ(λ)x for all ∂θ ∈ D0}. Equivalently, the canonical evaluation map

ev: Λ → D∗
0 : λ 7→ ev(λ), where

(
ev(λ)

)
(∂θ) = θ(λ), (13.1)

is injective. Let Dgr∗ =
⊕

γ∈Γ D∗
γ be the graded dual space of D. Thus, f ∈ D∗

γ is extended to
a linear form on D by f |Dδ = 0 for δ 6= γ. We consider Dgr∗ as a Γ -graded vector space with
γ-component (Dgr∗)γ = D∗

−γ . It is easily seen that

σD: L× L → Dgr∗, σD(x, y)(d) = (dx|y)

is a 2-cocycle for L with values in the trivial L-module Dgr∗ which respects the gradings of L and
Dgr∗.

The third ingredient of our construction is a 2-cocycle

τ : D ×D → Dgr∗

of D with values in Dgr∗, considered a D-module via the contragredient action d ·f , which is graded
and invariant, i.e.,

τ(Dγ , Dδ) ⊂ (Dgr∗)γ+δ = D∗
−γ−δ and τ(d1, d2)(d3) = τ(d2, d3)(d1) (13.2)

for d1, d2, d3 ∈ D. Moreover, we suppose that

τ(D0, D) = 0. (13.3)

Let D′ =
⊕

0 6=γ∈Γ Dγ , an ideal of D. Because of condition (13.3), the map τ 7→ τ |D′ × D′ is a
bijection between the 2-cocycles of D satisfying (13.2) and (13.3) and the 2-cocycles of D′ with
values in the D′-module Dgr∗ satisfying (13.2).
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Finally, for L, D and τ as above we define

E = E(L,D, τ) = L⊕Dgr∗ ⊕D.

Then E is a Lie algebra with respect to the product (xi ∈ L, fi ∈ Dgr∗, di ∈ D)

[x1 ⊕ f1 ⊕ d1 , x2 ⊕ f2 ⊕ d2] =
(
[x1, x2] + d1(x2)− d2(x1)

)

⊕ (
σD(x1, x2) + d1 · f2 − d2 · f1 + τ(d1, d2)

)⊕ [d1, d2].

E has a nondegenerate invariant form ( | ) given by

(x1 ⊕ f1 ⊕ d1|x2 ⊕ f2 ⊕ d2) = (x1|x2) + f1(d2) + f2(d1).

Let H = h ⊕ D∗
0 ⊕ D0 for h as in (3.3). We identify Λ = ev(Λ) ⊂ D∗

0 and view Λ ⊂ H∗ by
letting λ ∈ Λ act by 0 on h ⊕D∗

0 . Similarly, any α ∈ ∆ ⊂ h∗ gives rise to a linear form on H by
putting α|D∗

0⊕D0 = 0. With these identifications, H becomes a self-centralizing, ad-diagonalizable
subalgebra of E whose root spaces are

Eα⊕λ =
{

Lλ
α ; α 6= 0,

Lλ
0 ⊕D∗

−λ ⊕Dλ ; α = 0.

It is then easy to verify part (a) of the following theorem.

14. Theorem. (a) The algebra E(L,D, τ) constructed in section 13 is an extended affine Lie
algebra of nullity n with respect to the form ( | ) and the subalgebra H.

(b) Conversely, let E be an extended affine Lie algebra of nullity n and let L = Ec/Z(Ec),
which by Prop. 12 is a centreless Lie torus of nullity n. Then there exists a unique subalgebra
D ⊂ SCDerF L inducing the Λ-grading of L and a 2-cocycle τ : D×D → Dgr∗ satisfying (13.2) and
(13.3) such that E ∼= E(L,D, τ).

For the proof of part (b) we note that tameness of E and Prop. 12(b) imply that E can be
described in terms of a Γ -graded subalgebra D ⊂ DerF L with D ∩ IDerF L = 0 and a 2-cocycle τ .
Because of Thm. 9 one can take D ⊂ SCDerF L.

Remarks. (a) The construction of the Lie algebra E(L, D, τ) makes sense in the more general
setting where L is just a Lie algebra with a nondegenerate invariant form and D is a subalgebra of
skew-symmetric derivations of L. For finite-dimensional algebras the Lie algebra E(L, D, 0), called
a double extension, has been used to classify finite-dimensional solvable Lie algebras admitting a
nondegenerate invariant form ([21], [22, Ex. 2.10, 2.11], [23]). The more general construction with
a possibly non-zero τ appears in [15, §3]. In the setting of discrete extended affine Lie algebras of
type ∆ = Al, l ≥ 2, the construction E(L,D, τ) appears in [12] and [13].

(b) Since SCDerF L induces the Λ-grading of L, D = SCDerF L is the maximal choice for D. In
this case the subalgebra L⊕ (SCDerF L)∗ of E is the universal central extension of L. As pointed
out in [12, Remark 3.71(b)], there do indeed exist non-trivial 2-cocycles τ in this case, which first
have appeared in the context of toroidal Lie algebras ([30], see also [11, (2.11), (2.12)]).

15. Definition. Let E be a Lie algebra over F = C. We call E a discrete extended affine Lie
algebra if E satisfies the axioms (EA1) – (EA5) and the following axiom
(DE) R is a discrete subset of H∗.
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In view of [5, Lemma 3.62] a discrete extended affine Lie algebra as defined above is the same as a
tame extended affine Lie algebra in the sense of [2]. We have included tameness in our definition,
i.e., the axiom (EA5), since our results apply to tame extended affine Lie algebras only. Moreover,
as an example in [12, §3] shows, there is little hope to get a precise description of extended affine Lie
algebras that are not tame. Besides the mentioned example in [12], all of the known constructions
yield tame extended affine Lie algebras.

16. Theorem. Let F = C. (a) Let L be a centreless Lie torus and let D be a graded subalgebra
of SCDerCL such that the evaluation map ev: Λ → D∗

0 of (13.1) is not only injective but has also
discrete image. Then, with τ as in the construction 13, the Lie algebra E(L,D, τ) is a discrete
extended affine Lie algebra.

(b) Conversely, every discrete extended affine Lie algebra arises from the construction described
in (a).

We note that ev: Λ → D∗ is always a discrete imbedding. Hence any complex Lie torus gives
rise to a discrete extended affine Lie algebra ([32, Cor. 7.3]). A construction of discrete imbeddings
in terms of the maximal choice D = D is given in [19, §2] (although not in this language).
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[16] N. Bourbaki, Groupes et algèbres de Lie, chapitres 4–6, Masson, Paris, 1981.
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[23] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. (4) 18
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