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LIE TORI 

ERHARD NEHER 

Presented by R. V. Moody, FRSC 

RÉSUMÉ. On annonce ici quelques résultats concernant les tores de Lie 
nécessaires à la construction des algèbres de Lie affines étendues dans (15]. 

ABSTRACT. We announce some results on Lie tori which are used in 
the description of extended affine Lie algebras in the foUowing article [15]. 

0. Introduction. Lie tori are a class of Lie edgebras that arise in the con-
struction of extended affine Lie edgebras; see the foUowing eurticle [15]. Examples 
of Lie tori are the loop algebras of finite-dimensioned split simple Lie edgebras; 
more examples are given in 4 below. 

An importemt property of a Lie torus L is that L is graded by a finite irre-
ducible root system A. Although one knows the structure of root-graded Lie alge-
bras in genered (AlUson-Benkart-Gao [2], Berman-Moody [11], Benkart-Smirnov 
[7], Benkart-Zelmanov [8] and Neher [16]), it is non-trivial to characterize those 
that eure Lie tori. As of now, the precise structure of a centreless Lie torus L has 
been worked out for the case of a reduced A emd in a specied case for A = BCi 
(see 4 for a summary). 

In this note we announce some results on Lie tori that are needed for the 
description of extended affine Lie algebras: A Lie torus L is finitely generated 
as Lie algebra emd the dimension of its homogeneous components are uniformly 
bounded (Theorem 5). The centroid Cent(L) of a centreless Lie torus L is always 
a Laurent polynomied ring, and if A is not of type A then L is a free Cent(L)-
module of finite rank (Theorem 7); the derivation edgebra of L is a semidirect 
product of the ideal of inner derivations and the subedgebra of centroided deriva-
tions (Theorem 9). 

Detedls of proofs will appear elsewhere. The author thanks Bruce Allison and 
Yoji Yoshii for having provided him with their preprints [5], [19] and [23]. 

1. Notations and terminology. All vector spaces and algebras considered 
in this note wiU be defined over a field F of characteristic 0, except when indicated 
otherwise. For an abelian group G emd a subset iî c G we denote by (iî) the 
subgroup generated by iî. Root systems will edways contedn 0. This has some 
notational advantages and follows the conventions in [1]. We will call A a finite 
root system if Ax := A\ {0} is a root system in the sense of [12, Ch.VI, §1-1]. In 
particular, A need not be reduced. For a, /î G A we denote by (a, /3V) the Cartan 
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integer of a, /3 (thus (a, Pv) = n(a, 0) in the notation of [12]) and by Q(A) = (A) 
the root lattice of A. We denote by Aind = {0} U {a G Ax : a/2 & A} the 
subsystem of indivisible roots of A. 

2. Definition. Let A be a finite irreducible root system and let A be a 
free abelian group of finite rank. A Lie fonts of type (A, A) is a Lie edgebra L 
satisfying the following axioms: 

(LT1) L has a (Q(A) ® A)-grading of the form 

L= © L*. [LlL$CL%$, andL^ = 0 i f a ^ A . (2.1) 
Q€Q ( A ) , A€A 

(LT2) For a G A* and A € A we have 

(i) dim L^ < 1, with dim L° = 1 if a € Aind, 
(ii) if dimLa = 1 then there exists (e^,/^) 6 L* x LI* such that 

^ = [e*, /*] G Lg acts on x^ e L^ (^ € A,/t G A) by [^ , xg] = 
(/?,av)xg. 

(LT3) For A G A we have Là = EaeA,<,M6A [Lg, Li ;"] . 
(LT4) A = ({A G A : L* ^ 0 for some a G A}). 

The rank of A is called the nullity of L. If (A, A) is not important or clear 
from the context, we will simply cedl L a Lie torus. Similarly, a Lie torus of type 
A and nullity n is a Lie torus of type (A, A) for some A of rank n. 

Examples of Lie tori will be given in 4 below. It will emerge that Lie tori 
can be constructed using certain A-graded edgebras, like Jordan, alternative or 
structurable edgebras, which have been cedled Jordan tori, edtemative tori or 
structurable tori respectively. This, together with the fact that toroidal Lie 
algebras are one of the medn examples of Lie tori, is the justification for the 
name "Lie torus". 

It is natural to consider Lie tori for more genered groups A and with less 
restrictive conditions as (LT2i); see [21], [22] and [23] for some work in this 
direction. However, the results stated below require the axioms above. 

3. Some properties of Lie tori. Let L be a Lie torus of type (A, A). 
Then L has a A-grading 

L = 0 L \ L*:=0L * (3.1) 

as well as a Q(A)-grading 

L = Q7 LQ, , La := ^ LQ . (3.2) 
a€A A€A 
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The subalgebra g of L0 generated by {L° : Q G Ax} is a finite-dimensioned split 
simple Lie algebra of type Aind with spUtting Cartan subedgebra 

I, = E [L° . L0_J . (3.3) 
aeA* 

With respect to g, I) and the decomposition (3.2), L is a A-graded Lie edgebra; 
see [11], [8] or [16] for the case of a reduced A and [2], [7] for the case A = BC. 
It is then easily seen that our definition of a Lie torus is equivalent to the one 
given in [23] emd [19]. A Lie torus is called centreless if its centre Z{L) vanishes. 

Let G C Z{L) = ©A 6 A {Z{L) n LA) be a A-graded subspace of Z{L). Then 
L/C is cemonically a Lie torus of type (A, A). In particular, L/Z{L) is a centre-
less Lie torus. Conversely, the universal central extension of a Lie torus (more 
generedly, any A-cover of L in the sense of [17, 1.15]) is agedn a Lie torus. 

4. Examples, (a) Let g be a finite-dimensioned split simple Lie edgebra of 
type A, and let F[ff1,..., f^1] be the ring of Laurent polynomieds in n variables. 
Then g (gi F[f f1,..., f *1] is a centreless Lie torus of type A emd nulUty n. Hence, 
by 3, its universed central extension, i.e., the associated toroidal Lie algebra [14], 
is also a Lie torus of type A and nullity n. Conversely, by [9, Theorem 1.37], 
every Lie torus of type A = Dj, / > 4, or A = E/, Z = 6,7,8 and nullity n is a 
centred extension ofg®F[tf1,...,t*1], 

(b) The special case n = 1 and F = C of example (a) is worth pointing 
out. Then the loop algebra L{g) = fliSC^1] and its universed central extension 
L{g) aie Lie tori of nulUty 1. More generally, it foUows from the proof of [3, 
Theorem 1.19] that the complex Lie tori of nullity 1 are precisely the derived 
affine Lie edgebras and their central quotients. 

(c) Let q = {qij) G Mn(F) be a (nxn)-matrix over F satisfying qn = 1 = q^q^ 
for 1 < i, j < n, and let Fq be the associated quantum torus, which, by definition, 
is the united associative algebra with 2n generators tf*,...,t*1 and defining 
relations Ut^1 = I = t'hi and Utj = qifaU for 1 < i,j < n. Denote by 
[Fq,Fq] the spem of edl commutators [a,b] = ab — ba with a,6 G Fq. Then 
s/j+i(Fq) = {x G M/+i(Fq) : tr(x) G [Fq,Fq]} is a Lie torus of type At, I > 1, 
and nullity n. It is shown in [9, Theorem 2.65] that every Lie torus of type A/, 
I > 3, and nullity n is a central extension of sli+i (Fq) for some quantum torus 
Fq. 

(d) Lie tori of type A2 are classified in [9] and [10]. The centreless Lie tori of 
type Ai are precisely the Tits-Kantor-Koecher algebras of the so-cedled Jordan 
tori, classified in [20]. A description of the centreless Lie tori is given in [4] for 
A of type B;, C;, F4, G2 and, under eidditioned assumptions, in [5] for A = BCi. 
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5. Theorem. Let L be a Lie torus of type (A, A). 
(a) L is finitely generated as Lie algebra, and has uniformly bounded dimension 

with respect to the {Q{A)@A)-grading (2.1), i.e., there exists o M G N such that 
dimp L* < M for all a G A and A G A. 

(b) The Lie algebra DerpL of F-linear derivations of L is {0.{A)®A)-graded: 

DerFL= 0 (DerFL)*, (5.1) 
a€A,AeA 

where (DerpL)* consists of those derivations mapping L» to L a ^ . Moreover, 
Dei F L has uniformly bounded dimension with respect to the {Ù{A)(B A)-grading 
(5.1). 

6. Let L be a Lie torus of type (A, A). RecaU that the centroid of L, denoted 
Cent(L), is the set of edl x G EndfL satisfying [x, ewlx] = 0 for all x G L. Since L 
is perfect, Cent(L) is a united associative commutative algebra, and one cem thus 
consider L as a module or as a Lie algebra over Cent(L). Since L is A-graded, 
a x G Cent(L) leaves every root speice La inveuriemt. Moreover, x is uniquely 
determined by x|La for a short root a. It follows that Cent(L) is A-graded, 
Cent(L) = 0 A e A Cent(L)A with dimFCent(L)A < 1, where Cent(L)A consists 
of endomorphisms of degree A with respect to the A-grading (3.1) of L. We put 
F = {A G A : Cent(L)A ^ 0}. The foUowing residt justifies to cedl F the centroid 
grading group. 

7. Theorem. Let L be a centreless Lie torus of type (A, A). 
(a) F is a subgroup of A, and Cent(L) is isomorphic to the group ring F[T], 

hence to a Laurent polynomial ring in several variables. 
(b) L is a free Cent{L)-module. IfA^Ai, then L has finite rank as Cent(L)-

module. 

Remarks, (a) Let L = s/i+i(Fq) as in Example 4.(c). In this case, 
Cent(L) = Z(Fq)Id, where 2(Fq) denotes the centre of Fq, and L has finite 
rank over Cent(L) if emd only if Fq has finite rank over Z(Fq), equivalently 
[A : F] < oo. Using the description of Z(Fq) given in [9, 2.44], it is easy to 
construct examples for which rank(r) tedces on every value between 0 and n. In 
particuleir, L is in general not a finitely generated Cent(L)-module. 

(b) Let L be a centreless Lie torus. Then Cent(L) is an integral domedn, 
acting without torsion on L. Let K be the quotient field of Cent(L), and let 

L = L®Cent{L)K (7.1) 

be its central closure, where in this tensor product L is considered as Lie algebra 
over Cent(L). ThenL imbeds into L and is a Cent(L)-form of L. If L has finite 
remk over Cent(L)1 L is a simple finite-dimensioned Lie edgebra over K. 
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8. Centroidal derivations. Let L be a centreless Lie torus of type (A, A), 
nullity n and centroidal grading group F. RecaU the A-grading (3.1) of L. 
Any •d G Homz(A, F) induces a so-called degree derivation d^ of L, defined 
by 9tf(xA) = 7?(A)xA for xx G Lx. We put D = {^ : t? G Homz(A,F)} and 
note that ti <-* de is an isomorphism from Homz(A,F) onto 3), hence 23 = F". 
Moreover, S) induces the A-grading of L, i.e., 

LA = {x G L : ^ ( x ) = i9(A)x for aU 5tf G D}. (8.1) 

If X G Cent(L) then xd G Deip L for any ô G DerF L. It foUows that CDer^L = 
Cent(L)î) = (B^gr Cent(L)''2) is a F-graded subedgebra of Der/r L, called the 
algebra of centroidal derivations of L. It is a generedized Witt algebra in the 
sense of [18, 1.9]. 

9. Theorem. Let L be a centreless Lie torus. Denote by IDerL the ideal of 
inner derivations of L. Then 

Detp L = IDerL xi CDerpL (semidirect product). (9.1) 

In case L has finite rank as Cent(L)-module, this result can be proven by using 
that its central closure L, see (7.1), is a finite-dimensioned simple Lie iC-algebra 
and hence edl K-lineax derivations are inner. In the remaining case, where L is a 
Cent(L)-module of infinite remk, A is of type A by Theorem 7. Then the result 
foUows from [9, 2.17, 2.53], [10, Theorem 1.40] and [18, Theorem 4.11]. For A 
of type B or D the splitting (9.1) has also been proven in [13, CoroUary 4.9 and 
CoroUary 4.10] using different methods. We note that the decomposition (9.1) 
is not the one proven in [6, Theorem 3.12] for arbitrary A-graded Lie edgebras: 
the subedgebra Der,(o, 6) of [6] contains CDerf L but has in genered a non-zero 
intersection with IDerL. 
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