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EXTENDED AFFINE LIE ALGEBRAS 
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Presented by R V. Moody, FRSC 

RÉSUMÉ. On décrit une construction qui permet de construire tous les 
algèbres de Lie affines étendues à partir des tores de Lie. 

ABSTRACT. We present a construction of all extended affine Lie alge-
bras in terms of Lie tori. 

0. Introduction. Extended affine Lie algebras eure a class of complex Lie 
edgebras that includes finite-dimensional simple Lie algebras, affine Lie algebras 
and toroided Lie edgebras. They are closely related to Sedto's eUiptic Lie edgebras 
[13]. Originally proposed by the physicists Hoegh-Krohn emd B. Torrésani [8] 
under the name irreducible quasi-simple Lie edgebras, extended affine Lie alge-
bras have been put on a sound mathematical footing in the AMS-memoirs [1] 
by Allison, Azam, Berman, Geio and Pianzola. In particular, one can find there 
a detailed study of the root systems appearing in extended affine Lie algebras. 
The structure and representation theory of various classes of these Lie edgebras 
has since been investigated in many papers. In this note we will describe the 
structure of extended affine Lie edgebras in general. 

Referring the reeider to the main body of this note for precise definitions, 
we will only give a rough sketch of the relevant structures in this introduction. 
Two important properties of an extended affine Lie edgebra eure the existence 
of an invariant nondegenerate form and a finite-dimensioned self-centralizing 
ad-diagonalizable subalgebra H. Thus E has a root space decomposition E = 
0 Ec and a root system i2, consisting of those £ G iî* with Et ^ 0. The form on 
E gives rise to a peurtition iï = iî0Uiîx into isotropic roots RP and non-isotropic 
roots i î x , generalizing the decomposition into imaginary and real roots in the 
affine case. Let Ec be the ideal generated by {Eç : Ç G Rx}, called the core of 
E. One assumes that E can be recovered from its core Ec in the sense that the 
kernel of the natured representation E —» Deri?c : x •-• eidx|.Bc Ues in Ec. The 
core Ec may have a non-trivied centre, and it turns out to be easier to describe 
its centred quotient L = EC/Z{EC), where Z{EC) denotes the centre of JBC. The 
situation can thus be summarized by the foUowing diagram 

Ec • E 

1 
L 
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feuniUar from the affine case where Ec is the derived edgebra emd L a loop edgebra. 
In general, the Lie algebras L appearing in (0.1) cem be characterized without 
emy reference to extended affine Lie algebras: they are Lie tori as defined in 
Yoshii's recent preprints [15] and [14] or in the preceding article [11]. Moreover, 
it is shown in [14] that edl centreless Lie tori appear as the "bottom algebra" 
in a diagreun (0.1). The canonical approach to untangling the structure of an 
extended affine Lie edgebra E is therefore to describe (I) the centreless Lie tori 
L and (II) how to get from L to E. 

Some results on (I) have been emnounced in the preceding article [11]. In this 
note we announce a solution of (II) in genered (Theorem 6 emd Theorem 8). Our 
construction, given in 5, describes edl extended affine Lie algebras with a given 
centreless core. It resembles the construction of affine Lie algebras and gives 
a new interpretation to certain subedgebras appearing in the previously known 
solution for the case A = An, n > 2. They are described here as subalgebras of 
skew centroidal derivations. 

While the work on Lie tori can be done for Lie algebras over fields of character-
istic 0, one has up to now only considered complex extended affine Lie algebras 
since one of their defining axioms is a topological (discreteness) condition. To 
remedy this discrepancy, we are proposing here a new definition of an extended 
affine Lie edgebra over an arbitreury field F of characteristic 0. Roughly speaking, 
we eure edlowing more possibilities for the subedgebra i î c -E. In case F = C the 
algebras satisfying the old axiom system are recovered as the discrete extended 
affine Lie algebras in our sense (Theorem 8). 

We continue with the terminology and notation of the preceding article [11]. 

1. A prelimineiry setting. Let E be a Lie algebra satisfying the following 
two axioms (EA1) and (EA2): 

(EA1) E has a nondegenerate invariant symmetric bilinear form ( | ). 
(EA2) E contains a nontrivial finite-dimensioned self-centralizing and ad-diago-

nalizable subedgebra H. 

By (EA2), E has a root speice decomposition E = 0 f e / f . Eç with EQ = H, 
where, as usued, E^ = {e G E : [h,e] = Ç{h)e for all /t G i î } . The invariance of 
( j ) implies that {EçlErf = 0 for £ + C ^ 0. It follows that ( | ) restricted to 
HxH is nondegenerate. We can therefore transfer the restricted form ( | )\HxH 
to a nondegenerate symmetric bUineeur form on H* by setting ( | | 0 = {tç\tç) 
where tç G H is defined by {t^h) = Ç(/i) for all hGH. We define 

R = {ÇGH* -.Eç^O} (root system of E), 

R0 = {ÇGR: (£|£) = 0} (isotropic roots), 

Rx = {ÇGR: (£|£) ^ 0} (nonisotropic roots). 
The subalgebra Ec of E, generated by {Ec : (£|£) ^ 0} is called the core of 

E. It is in fact an ideed if JS is an extended affine Lie edgebra as defined below. 
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2. Definition. An extended affine Lie algebra of nullity n, or extended 
affine Lie algebra for short, is a Lie edgebra E satisfying (EA1), (EA2) of 1 and, 
in addition, the following axioms (EA3)-(EA6): 

(EA3) For Ç G Rx and Xç G Eç, the endomorphism adx^ G End^L is locally 
nilpotent. 

(EA4) R* is irreducible, i.e., R* = Ri\J R2 and (iîi|.R2) = 0 impUes Ri = 0 
or R2 = 0 . 

(EA5) E is tame in the sense that {eGE: [e, Ec] = 0} C Ec. 
(EA6) A := (iî0) c V is a free abeUan group of rank n. 

It is appropriate to immediately point out that this definition for F = C is 
more general than the usued definition of an extended eiffine Lie edgebra ([1] or 
7 below). The relation between the two definitions is discussed in 7 emd 8. As 
we will see, there is a close connection between extended affine Lie algebras and 
Lie tori. The following proposition is the first step in this direction. It can be 
proven using the techniques of [1, Ch. I] and [11, Thm. 5]. 

3. Proposition. Let E be an extended affine Lie algebra with root system 
R, and put A = (i î0). 

(a) There exists a finite irreducible root system A, an imbedding Ain<i <—> R 
and a family {Aa : a G A) C A such that 

V = spanQ(A) ©spemQ(iï0) ond R= [J {a® Aa). 
aeA 

The subspaces {Ec)x = Ecr\ Ea®x give Ec the structure of a Lie torus of type 
(A, A). 

(b) The root spaces Eç of E have uniformly bounded finite dimension. 

We note that the family (AQ : a G A x ) is a "reduced root system of type A 
extended by A" in the terminology of [15]. Theorem 2.4 of that paper gives the 
structure of this family, generalizing [1, II, Thm. 2.37]. 

4. Skew centroidal derivations. Let L be a centreless Lie torus. It foUows 
from [14, Thm. 2.2 and Thm. 7.1] that L has a non-zero invariant (necessarily) 
symmetric bUinear form ( j ), which is A-graded in the sense that (LA|L'1) = 
Oif X + pîÈ 0. Moreover, any such form is unique up to a non-zero scalar, and 
is nondegenerate since L is centreless. In the foUowing, we fix such a form ( | ). 

Recall the definition of the centroided derivations in [11, §8]. Let SCDerpL 
be the subalgebra of CDerpL consisting of skew derivations with respect to the 
form ( I ). Then SCDerjrL = 0 e r(SCDerFL)' i is F-graded with 0-component 
D. One can show that SCDerpiTis the semidirect product of the subedgebra 2) 
of degree derivations and the ideal D' = 0o=4M€r (SCDerpL)'1. 
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Proposition 3 associates a centreless Lie torus to every extended affine Lie 
edgebra E, namely L = EC/Z{EC). We will now describe a construction which, 
conversely, associates em extended affine Lie edgebra to any centreless Lie torus. 

5. Construction. Let L be a centreless Lie torus of type (A, A) and nullity 
n, and let ( | ) be a nondegenerate invariant A-graded symmetric bilineeir form 
on L. We denote by F the centroid grading group ([11, §6]). 

The second ingredient of our construction is a F-graded subalgebra of 
SCDerFL, 

17 = ® D-P ^ c (SCDer^L^, 

which has the property that Do induces the A-grading [11, (3.1)] of L, i.e., 
LA = {x G L : de{x) = éJ(A)x for all de G Do}. Equivalently, the cemonical 
eveduation map 

ev : A -> DS : A ^ ev(A), where (ev(A)) {de) = 0(A), (5.1) 

is injective. Let D 8 " = 0 7 € r D* be the graded dued speice of D. Thus, f G D* 
is extended to a linear form on D by /[Dj = 0 for ^ 7̂  7. We consider Dgr* as a 
F-graded vector space with 7-component (Dgr*)7 = D*. It is easily seen that 
ao: LxL —> D 8 " , crD{x,y){d) = (dxjy) is a 2-cocycle for L with values in the 
trivied L-module Dgr* which respects the gradings of L and £>gr*. 

The third ingredient of our construction is a 2-cocycle r : D x D —» Dgr* of D 
with vedues in D 8 " , considered a D-module via the contragredient action d-f, 
which is graded emd inveiriant, i.e., 

r{Di,Ds)c{D*r*)y+s = D*_1_s and r(d1,d2)(d3) = T(d2,d3)(d1) (5.2) 

for di,d2,d3 G D. Moreover, we suppose that 

r(Do,D) = 0. (5.3) 

Let D' = 0 o - t 7 e r Dy, an ideed of D. Because of condition (5.3), the map 
T i-» r |D' x D is a bijection between the 2-cocycles of D satisfying (5.2) and 
(5.3) and the 2-cocycles of D' with values in the D'-module D^* satisfying (5.2). 

Finally, for L, D and r as above we define 

E = E{L,D,T) = L® DeT* ® D. 

Then F is a Lie edgebra with respect to the product (xj G L,fi G Dgr*, dj G D) 

[Xi ® / l ® di , X2 © /2 © d2] = ([xi, x2] + di(x2) - d2(x1)) 

® i^Dixi,X2) + di-f2-d2-fi+ T{di, d2)) © [di, d2]. 
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Moreover, F has a nondegenerate invariant form ( | ) given by 

(xi © /i © di|x2 © /2 © ^2) = (a:i|x2) + /i(d2) + f2{di)-

LetH = ^©D5©Do for ^ as in [11, (3.3)]. We identify A = ev(A) C DJ and view 
A c iî* by letting A G A act by 0 on 1)©D5. Similarly, any Q G A Cl)* gives rise 
to a Unear form on H by putting a\DÔ © DQ = 0. With these identifications, i î 
becomes a self-centralizing, ad-diagonalizable subalgebra of E whose root speices 
are 

[L* ; o ^ 0 , 
a<BX \ L à ® D l A © D A ;o = 0. 

It is then easy to verify peurt (a) of the following theorem. 

6. Theorem, (a) The algebra E{L, D, r) constructed in 5 above is an ex-
tended affine Lie algebra of nullity n with respect to the form { \ ) and the sub-
algebra H. 

(b) Conversely, let E be an extended affine Lie algebra of nullity n and let 
L = EC/Z{EC), which by Proposition 3 is a centreless Lie torus of nullity n. 
Then there exists a unique subalgebra D C SCDerpL inducing the A-grading 
of L and a 2-cocycle r: D x D —* Dgr* satisfying (5.2) ond (5.3) such that 
E^E{L,D,T). 

For the proof of part (b) we note that tameness of E and Proposition 3(b) 
imply that E can be described in terms of a F-graded subedgebra D C Derp L 
with D n IDerpL = 0 and a 2-cocycle r. Because of [11, Thm. 9] one can take 
D c SCDerFL. 

Remarks, (a) The construction of the Lie algebra E{L, D, r) makes sense 
in the more general setting where L is just a Lie edgebra with a nondegenerate 
invariant form and D is a subalgebra of skew-symmetric derivations of L. For 
finite-dimensioned edgebras the Lie edgebra E{L, D, 0), called a double extension, 
has been used to classify finite-dimensioned solvable Lie algebras admitting a 
nondegenerate inveuriant form ([8], [9, Ex. 2.10, 2.11], [10]). The more genered 
construction with a possibly non-zero r appears in [6, §3]. In the setting of 
discrete extended affine Lie edgebras of type A = Aj, / > 2, the construction 
E{L,D,T) appears in [4] and [5]. 

(b) Since SCDer^L induces the A-grewiing ofL,D = SCDerpL is the maximed 
choice for D. In this case the subedgebra L © (SCDer/?L)* of E is the universed 
central extension of L. As pointed out in [4, Remark 3.71(b)], there do indeed 
exist non-trivied 2-cocycles r in this case, which first have appeared in the context 
of toroided Lie edgebras ([12], see also [3, (2.11), (2.12)]). 
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7. Definition. Let F be a Lie algebra over F = C. We call E a discrete ex-
tended affine Lie algebra if E satisfies the axioms (EA1)-(EA5) and the following 
axiom 

(DE) il is a discrete subset of if*. 

In view of [2, Lemma 3.62] a discrete extended affine Lie algebra as defined 
above is the same as a tame extended affine Lie edgebra in the sense of [1]. We 
have included tameness in our definition, i.e., the axiom (EA5), since our results 
apply to tame extended affine Lie algebras only. Moreover, as an example in 
[4, §3] shows, there is little hope to get a precise description of extended affine 
Lie edgebras that are not tame. Besides the mentioned example in [4], all of the 
known constructions yield tame extended affine Lie algebras. 

8. Theorem. Let F = C. (a) Let L be a centreless Lie torus and let D 
be a graded subalgebra of SCDercL such that the evaluation map ev : A —» DQ 
of (5.1) is not only injective but has also discrete image. Then, with r as in 
the construction 5, the Lie algebra E{L,D,T) is a discrete extended affine Lie 
algebra. 

(b) Conversely, every discrete extended affine Lie algebra arises from the con-
struction described in (a). 

We note that ev: A —* D* is always a discrete imbedding. Hence any complex 
Lie torus gives rise to a discrete extended affine Lie edgebra ([14, Cor. 7.3]). A 
construction of discrete imbeddings in terms of the maximed choice D = 33 is 
given in [7, §2] (although not in this language). 
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