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INTRODUCTION

It is well-known that every Jordan superpair and hence also every
Jordan superalgebra gives rise to a 3-graded Lie superalgebra, the
so-called Tits-Kantor-Koecher superalgebra (=TKK-superalgebra). This
connection between Jordan superstructures and Lie superalgebras is the
basis of the classifications of simple finite dimensional Jordan super-
algebras and Jordan superpairs over algebraically closed fields of charac-
teristic 0 by Kac (1977a) and Krutelevich (1997) which both are based
on Kac’s classification of finite-dimensional simple Lie superalgebras
(Kac, 1977b). This connection is also one of the motivations for classify-
ing simple Jordan superalgebras of growth 1 in the recent memoirs
by Kac et al. (2001): via the Tits-Kantor-Koecher construction these
correspond to superconformal algebras of type K.

The structure theory of Jordan superpairs covered by grids (Neher,
2000) did not make use of this connection to Lie superalgebras. But
in light of the fundamental importance of the Tits-Kantor-Koecher
construction the following question is of interest: What are the TKK-
superalgebras K(V') of Jordan superpairs V covered by a grid 4?

To answer this question is one of the goals of this paper. In general
is a direct sum of ideals V; covered by a connected grid ¥;, and corre-
spondingly K(V) is a direct sum of ideals K(V;) (2.2.5). It is therefore
enough to consider the case of connected grids. In Sec. 3 we will describe
a model of K(V) for each type of connected ¥, based on the classification
of V given in Neher (2000). To illustrate our results, we describe here the
situation of a rectangular covering grid 2(J, K) ={ey:jeJ, k€ K},ie.,a
family of idempotents ey, in V5 satisfying the multiplication rules of the
usual rectangular matrix units Ej such that V is the sum of all Peirce
spaces V>(ey). We note that J and K are arbitrary sets.

(i) |J] +|K| >4: In this case V is isomorphic to a rectangular matrix
superpair IM;x(A4) = (Mat(J, K; 4), Mat(K, J; A)) where A is an associa-
tive superalgebra and Mat(J, K; 4) denotes the J x K-matrices over A
with only finitely many non-zero entries. Conversely, every M x(A4) is
covered by the rectangular grid #(J, K) consisting of the idempotents
e = (Ej, Ep)). Let I=J>UK and put slfA4)={x € Mat(l, I; A): Tr(x) €
[A4, A]} where Tr is the usual trace map and [4, 4] is spanned by all super-
commutators [a, b]=ab — (—1)“"’lpa. Although sl,(4) is a 3-graded Lie
superalgebra, it is in general not the TKK-superalgebra of IM jx(A4) since
it may have a centre. But we have

KR(Myx(A)) 2= psly(4) = sl;(4)/Z (sl (A)). (1)
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Of course, M x(A) is a Jordan superpair covered by %(J, K) for any
non-empty J, K and (1) holds whenever |1] > 3. But for |J] 4 |K| < 3 more
general examples occur.

(i) A Jordan superpair V' is covered by a rectangular grid #(J, K)
with |J] 4 |K] =3 if and only if V=M x(A) for an alternative superalge-
bra 4. The TKK-superalgebra K(IM,x(A4)) is no longer given by (1).
Rather in 3.2 we provide a model which is the super version of a Lie alge-
bra previously studied by Faulkner in his work on generalizations of
projective planes (Faulkner, 1989).

(1) |[J]+|K|=2: Here V is covered by a single idempotent which is
equivalent to V'=(J, J) for a unital Jordan superalgebra J. The corre-
sponding TKK-superalgebra is described in 3.1.

Since a TKK-superalgebra K(J) is determined by the Jordan
superpair ¥V, one can expect that properties of K(V) are controlled
by V. Indeed, in Garcia and Neher (2001b) we will show that this is
so for the Gelfand-Kirillov dimension of {(7) and V. In this paper,
we will study the relation between ideals of K(V) and of V and this
naturally leads us to consider the question of semiprimeness, primeness
and simplicity of K(7) and V. For example, we prove the following
result in 2.6.

Proposition. Let K(V') be the TKK-superalgebra of a Jordan superpair
defined over a superring S containing % Then K(V) is simple if and only
if 'V is simple.

In Garcia and Neher (2001a) we have shown that a Jordan super-
pair V covered by a grid is simple if and only if its supercoordinate
system is simple. Combining this with the proposition above we
achieve the second goal of this paper, namely to determine the simple
TKK-superalgebras of Jordan superpairs covered by a grid. The result
is given in each case separately, see 3.2, 3.4, 3.6-3.10. For example,
in the case (i) above the Lie superalgebra pslfA4) is simple if and only
if 4 is a simple associative superalgebra, assuming that A is defined
over a superring S containing % After completion of this paper we have
learned that generalizations of classical Lie superalgebras and questions
of simplicity are also studied in a forthcoming paper by Benkart et al.
(in preparation).

It is surprising that many classical Lie superalgebras in the sense
of Kac (1977b) arise as TKK-superalgebras of simple finite dimensional
Jordan superpairs covered by a grid. Besides Lie algebras not of type
Es, F4 and G, we obtain the following simple Lie superalgebras in the
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notation of Kac (1977b):

(1) A(m, n) for m+1, n+ 1 not relatively prime, 3.4.
(i) B(m, n) for m > 0 and all types C(n) and D(m, n), 3.6, 3.7.
(iii) P(n) for even n, 3.6.
@iv) Q(n), 3.4.
(v) F(4) which is the TKK-superalgebra of the Jordan superpair
(K10, Kjp) where K is the 10-dimensional Kac superalgebra.

The main result of Neher (1996) was that Lie algebras graded by
3-graded root systems are exactly the central covers of TKK-algebras
of Jordan pairs covered by a grid. The third goal of this paper is to extend
this connection to the setting of superstructures. A Lie superalgebra L is
graded by a root system R if

L= @ Li [LiLyCLuy,
2€RU{0}

and this grading is induced by a semisimple split subalgebra g C Ly with
root system R (see 2.7 for the precise definition). Lie algebras graded by
root systems have been studied by several authors, among them Allison
et al. (2000), Benkart (1998), Benkart and Zelmanov (1996) and Berman
and Moody (1992). One of the reasons for studying these Lie algebras is
their connection to extended affine Lie algebras (Allison and Gao 2001;
Berman et al., 1996, 1995). One can expect that, similarly, Lie superalge-
bras graded by root systems will be of importance for the super version of
extended affine Lie algebras. The extension of the aforementioned result
to Lie superalgebras is the following result 2.8(d):

Theorem. A Lie superalgebra over a superring containing % and% is graded
by a 3-graded root system R if and only if it is a perfect central extension of
the TKK-superalgebra of a Jordan superpair covered by a grid with asso-
ciated root system R.

This theorem together with our description of TKK-superalgebras
determines Lie superalgebras graded by a 3-graded root system. A list
of all coordinatization results is given in 2.9. We point out that our meth-
ods allow us to include root systems of possibly infinite rank, as defined
in Loos and Neher (in preparation) and Neher (1990). This generality
seems to be of interest in view of the importance of the infinite rank affine
algebras for Virasoro and Kac-Moody algebras, see e.g., Kac (1990, 7.11,
Ch. 14). Certain completions of TKK-superalgebras as considered above
also arise in the work of Cheng and Wang (preprint) on Lie subalgebras
of differential operators on the supercircle.
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For example, for the root system R of type A the Jordan superpairs
arising in the theorem are covered by a rectangular grid, leading to the
following

Corollary. A Lie superalgebra L is graded by the root system A of rank
|| =1, |I| >4 if and only if L/Z(L)=psl(A) for some associative super-
algebra A.

1. REVIEW OF JORDAN SUPERPAIRS COVERED
BY GRIDS

In this paper we will study Lie superalgebras constructed from
Jordan superpairs covered by grids. For the convenience of the reader
we give a short review of all the definitions and facts needed from the
theory of Jordan superpairs. More details can be found in Garcia and
Neher (2001a) and Neher (2000).

1.1. Superalgebras

Unless specified otherwise, all algebraic structures are defined over a
base superring S, i.e., a unital supercommutative associative superring. S-
modules, sometimes also called S-supermodules, are assumed to be Z,-
graded, and in particular this is so for subalgebras, ideals, etc. We will
write M= My® M7 for an S-module where My and M7 denote the
even, respectively odd, part of M. Forme M, u€ Z,={0, 1} we denote
by |m| = p the degree (or parity) of m.

Recall that alternative, Jordan and Lie superalgebras can be defined
by requiring that the Grassmann envelope is, respectively, an alternative,
Jordan or Lie algebra. When considering Lie superalgebras we will often
assume % € S. All alternative, and hence in particular associative super-
algebras, as well as all Jordan superalgebras are assumed to be unital.

1.2. Matrices over Associative Superalgebras

Let A be an associative superalgebra over S. For two arbitrary sets
we denote by Mat(J, K; A) the A-bimodule of J x K-matrices with entries
from A but only finitely many non-zero entries. The S-supermodule
Mat(J, K; A) has a Z,-grading induced by the grading of 4, ie.,
Mat(J, K; 4),=Mat(/J, K; 4,) for p=0, 1. More generally, let J=M UN
and K= P U Q be two partitions. The S-supermodule Mat(M|N, P|Q; A)
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is defined by
) _ ( Mat(M,P;4,) Mat(M,0;4,,1)
Mat(M|N, P|Q; 4), = (Mat(N, Pid,y)  MaN,0:d,) ) (D

for =0, 1. With the usual matrix product
Matpig(4) := Mat(P|Q, P|Q; A) (2)

becomes an associative, but in general not unital, superalgebra. As in
Garcia and Neher (2001a), 3.8 one can show that the ideals of the super-
algebra Matp|p (A) are given by Matp|p (B) where B is an ideal of 4, and
hence Matpp(A) is semiprime, prime or simple if and only if 4 is semi-
prime, prime or simple. Following standard practice, we will replace the
sets M, N, P, Q in the notations above with their cardinality in case they
are all finite. Thus, we will write Mat,|, (4) =Matp|p(A4) if |[P|=p < oo
and ¢ =|Q| < oo. Note that in this case Mat,,(4) is unital.

1.3. Doubles of Associative Algebras

Let B be an associative algebra. The double of B is the asso-
ciative superalgebra ID(B)=B@® Bu with ID(B);=B, ID(B)i=uB and
product - given by a-b=ab, a-bu=(abyu=au-b and au-bu=ab for aq,
b € B (Garcia and Neher, 2001a, 2.4). For B=Mat(n, n; k) this super-
algebra already occurs in Kac (1977a) where it is denoted Q,,(k) because
of its relation to the simple Lie superalgebras Q,. We have the canonical
isomorphism of superalgebras (Garcia and Neher, 200la, 2.4):
Matp o(ID(B)) =~ ID(Mat(P U Q, P U Q; B)).

Any ideal of ID(B) has the form ID(/) = I ® Iu where [ is an ideal of B.
Hence ID(B) is semiprime, prime or simple if and only if B is respectively
semiprime, prime or simple.

We recall the following characterizations of prime alternative and
simple associative superalgebras.

1.4. Theorem. (a) (Shestakov and Zelmanov, 1991) A4 prime alternative
superalgebra over a field of characteristic # 2, 3 either is associative or is a
Cayley-Dickson ring.

(b) (Wall, 1963, Lemma 3) An associative superalgebra A is simple as
superalgebra if and only if either A is simple as algebra or A =1D(Agp) and
Aqg is simple. In particular, an associative superalgebra A over an algebrai-
cally closed field k is finite dimensional and simple if and only if either
A=IDD(Mat(m, m, k)) or A=Mat, (k) for finite numbers m, p and q.
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1.5. Jordan Superpairs

Jordan superpairs over S are pairs V=(V", V) of S-modules
together with a pair Q=(Q", Q) of S-quadratic maps Q”:V° —
Homg(V ™7, V°), 6 =%, satisfying certain identities (Neher, 2000, 3.2).
By definition, we therefore have supersymmetric S-bilinear maps
0°(., .):V°x V?—=Homg(V 7, V° of degree 0 and Sy-quadratic maps
05 : Vi—Homg(V"° V% which are related by Q%(u, w)
= Qg(u+w) — Qg(u) — Qg(w) for u, we V” Since 207 (u) = Q°(u, u) the
maps Qo are determined by Q7 in case 2 € S. We will follow common
practise in Jordan theory and leave out the superscripts ¢ if no confusion
can arise. Also it is sometimes easier to define a Jordan superpair via
the (super) triple products which are S-trilinear maps {...}:
V°x V7 x V°— V° related to the maps Q by {uvw} = (— 1) O, w)o.
As for superalgebras there exists a Grassmann envelope G(V) for super-
pairs V, and a pair V'is a Jordan superpair over a S if and only if G(V) is
a Jordan pair over G(S).

Subpairs and ideals of Jordan superpairs are defined in the obvious
way (Neher, 2000, 2.3). A Jordan superpair is simple if it has non-zero
multiplication and if all ideals are trivial. For ideals 7, J of a Jordan
superpair V their Jordan product IoJ=(IoJ)", (IoJ)7)) is given
by (IoJ))”=Qu(I5)J +{I°, J°, I’}. We note that [oJ is in general
not an ideal. Then V is called semiprime if /¢ I#0 for any non-zero
ideal 7 of V, and is called prime if /oJ#0 for any two non-zero ideals
I and J of V (Garcia and Neher, 2001a, 3.1). Primeness can also be
defined in terms of the annihilator Anny(/)=(Ann(/); ®Ann(/)],
Ann(I); @ Ann(/)7) of an ideal I, where z€ Ann(J); for o == and
pe {0, 1} if and only if

0=D(,V ) =D(V°z) =0z, V°)
= Qy(I;°)z = Qy(I5)Qp(V; )z, and in addition for u =0
0= 0p(2)I" = Qp(Iy ) Qp(2)-

The annihilator is an ideal of V, and V is prime if and only if V is semi-
prime and the annihilator of any non-zero ideal of V" vanishes.

1.6. Basic Examples of Jordan Superpairs

An associative S-superal-gebra A gives rise to a Jordan superpair (4, 4)
by defining Qp(u)v=wuvu and {u v w}=wuvw+(— 1ylllelelllled gy,
Any Jordan superpair isomorphic to a subpair of some (4, A4) is called
special.
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A second class of examples are the quadratic form superpairs (M, M)
determined by a quadratic form ¢ on an S-supermodule M (Neher,
2000, 2.9). If b denotes the polar of ¢, the Jordan product is given by
{m n p}=bm, mp+mb(n, p)—(—D""b(m, pyn and Qyme)n=
b(my, n)my — go(mg)n. Under some mild assumptions, this class is in fact
also special (Jacobson, 1976, 2.2 and McCrimmon, 2001), at least in case
S=k.

Let U=(U", U") be a Jordan pair over k. Then Ug=(S®U",
S®rU") is a Jordan superpair over S, called the S-extension of U
(Neher, 2000, 2.6). Tts Jordan triple product satisfies {s,®u, s, ®v,
S, @ W} = (5,8,5,) ® {u v w}. The special case S=ID(k) will be important:
the double of U is the superextension ID(U):= Up(k)=D(k)®,U. It
is known (Garcia and Neher, 2001a, 3.2) that U is semiprime, prime or
simple if ID(U) is so, and the converse is true if % € k. We have
DB®U)=DB)®@p(BeU)=D(B)®;U for an extension B of k
(Garcia and Neher, 2001a, 3.2(2)).

1.7. Jordan Superpairs Covered by Grids

We will study Jordan superpairs V covered by a grid ¥ ={g,: « € R}
where (R, R;) is the associated 3-graded root system (see Neher, 2000, 3)
for the precise definition). Thus each g, € 4 C V5 is an idempotent giving
rise to a Peirce decomposition V= Vy(g,) D Vi(g.) ® V-(g,), and these
Peirce decompositions are pairwise compatible leading to a simultaneous
Peirce decomposition V=@.cr V. where V,=[\ger, Vip(gp) for i(p)
defined by g, € V,(/;)(g/;) (in fact, i(B)=(a, B*) is the Cartan integer of ,
B and hence (o, ) = 2(cx| B)/(B|p) for any invariant inner product (.|.)).

If (R R)=®ics(RY, R< )) is a direct sum of 3-graded root systems
(R?, R ) we have a correspondmg decomposition of V' =@,c; V' where

each V(’)—@ 4eRY V, is an ideal of ¥V covered by the grid %=

{gs 1 a€ R } (Neher 2000, 3.5). Since every 3-graded root system is a
direct sum of irreducible 3-graded root systems (Loos and Neher, in pre-
paration or Neher, 1990) this allows to reduce questions on Jordan super-
pairs covered by grids to the case where % is connected, i.e., the
associated 3-graded root system is irreducible. There are the following
seven types of connected grids (Neher, 2000, 4):

(1) Rectangular grid 2(J, K), 1 <|J| <|K], (R, R)) is the rectangu-
lar grading A{’K where JUK=TU{0} for some element 0 ¢/
and R is a root system of type A and rank |I|.
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(i) Hermitian grid # (1), 2<|I|, (R, R)) is the hermitian grading
of R= C].
(iii) Even quadratic form grid 2.(7), 3<|1|, (R, R)) is the even
quadratic form grading of R= Djqo;.
(iv) Odd quadratic form grid 2,(1), 2 < |I|, (R, R) is the odd quad-
ratic form grading of R= By ;.
(v) Alternating (= symplectic) grid </(I), 5<|1|, (R, R)) is the
alternating grading of R=D;.
(vi) Bi-Cayley grid 4, R=Eg.
(vii) Albert grid o/, R=E-.

1.8. Standard Examples

The coordinatization theorems of Neher (2000, Sec. 4), described in
(a)—(1) below can be summarized by saying that a Jordan superpair V is
covered by a grid ¢ if and only if ¥ is isomorphic to a standard example
(9, €) depending on ¥ and a supercoordinate system %.

(a) For the rectangular grading of R=A; with |J| =|K| =1 we have
|Ri| =1 and ¥ just consists of a single idempotent ¥ = {g} which covers V'
in the sense that V"= V,(g). Any such Jordan superpair is isomorphic to
the superpair J = (J, J) of a unital Jordan superalgebra J over S. In this
case ¢ =J.

(b) The standard examples for the remaining rectangular grids
R(J, K), |J|+ |K| >3, are the rectangular matrix superpairs IM x(A4) =
(Mat(J, K; A), Mat(K, J; A)) where A4 is an alternative superalgebra
in case R=A, and associative otherwise. In the alternative case the
product is described in Neher (2000, 4.4), in the associative case IM jx(A4)
is a special Jordan superpair canonically imbedded in (Mat(JUK; A),
Mat(JUK; A)). Here € = A. We have ID(IMx (B)) =2 M ;¢ (ID(B)) for an
associative coordinate algebra B (Garcia and Neher, 2001a, 3.2(3)).

(¢) The Jordan superpairs covered by a hermitian grid #(1), |I| =2
are exactly the J=(J, J) where J is a Jordan superalgebra with two
strongly connected supplementary idempotents giving rise to a Peirce
decomposition P of J in the form P:J=J;1BJ1,PB J». In this case,
the supercoordinate system of V'is € =(J, ).

(d) Examples of Jordan superpairs covered by hermitian grids
A (I) are the hermitian Jordan superpairs H/A4, A°, n)=(H/4, 4A°, =),
H/(4, A°, ), where Hf(A4, 4% mn)={x=(xj))eMat(l, I, A) : x=x"",
all x;€A4%, A is an alternative superalgebra which is associative
for |I|>4 and = is a nuclear involution with ample subspace A°
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(Neher, 2000, 4.10). We have A° C H(4, n)={a€ A : a" =a} and this is
an equality if % € S. For an associative 4 these are special Jordan super-
pairs, in the alternative case the product is described in Neher (2000,
4.11). The Z,-grading of Hy(4, A°, n) is induced form the Z,-grading
of A. Conversely, under a weak additional assumption which we will
assume to be fulfilled in the following (this is so as soon as § € S) any Jor-
dan superpair covered by a hermitian grid #(I), |I| > 3 is isomorphic to
some hermitian matrix superpair IH;(4, 4°, n). We put € = (4, A°, ).

(e) For a superextension 4 of S and a set I # () we denote by H(I, A)
the free 4-module with even basis {h+; : i € I} equipped with the hyper-
bolic superform ¢, satisfying q,;(hy;, h_;)=1 and q;(h+; h+)=0 for
i#j. The corresponding quadratic form superpair (H(I, 4), H(I, A))=
[EQ; (4, gy) is covered by an even quadratic form grid 2.(1). Conversely,
any Jordan superpair covered by an even quadratic form grid 2.(1),
[7]>3 is isomorphic to some IE®Q;(A4, gx) (Neher, 2000, 4.14).
Here ¢ = A4.

(f) Welet again 4 be a superextension of S and suppose that X is an
A-module with an 4-quadratic form ¢, with a base point e € Xj satisfying
gx(e)=1. For I # 0 we put M= H(I, A)® X, ¢=q;P qx. The correspond-
ing quadratic form superpair (M, M)=0Q;(A4, qx) is covered by an odd
quadratic form grid 2,(7). Conversely, any Jordan superpair covered
by an odd quadratic form grid 2,(7), |I|] >2 is isomorphic to some
OO, (A4, qy) (Neher, 2000, 4.16). We put € =(4, X, qy).

(g) Forasuperextension 4 of S we denote by Alt(Z, A) the A-module
of all alternating matrices x € Mat(/, I, A), i.e., xT'=—x and all dia-
gonal entries x; = 0. The alternating matrix superpair A;(A) = (Alt(Z, 4),
Alt(1, A)) is a subpair of IM;;(A); it is covered by an alternating grid .«/(1).
Conversely, any Jordan superpair covered by an alternating grid ./([1),
|7] > 4 is isomorphic to some A;(A4) (Neher, 2000, 4.18). We put € = 4.

(h) The examples (e) and (g) are superextensions of the correspon-
ding Jordan pairs which are split of type ¢ in the sense of Neher (2000,
3.9). This is also so for the remaining two standard examples. A Jordan
superpair over S is covered by a Bi-Cayley grid # if and only if it
is isomorphic to the Bi-Cayley superpair B(4)=A4 ®;IM (D), the
A-extension of the rectangular matrix superpair B(k)=IM;,(0y) for Oy
the split Cayley algebra over k& (Neher, 2000, 4.20). Here 4 = A.

(1) A Jordan superpair V over S is covered by an Albert grid .o if
and only if there exists a superextension A of S such that V' is isomorphic
to the Albert superpair AB(4) = 4 ®, AB(k), the A-extension of the split
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Jordan pair AB(k)=IH3(Oy, k-1, ©) where Oy is the split Cayley algebra
over k with canonical involution 7 (Neher, 2000, 4.22). Here again ¥ = 4.

1.9. Simple Jordan Superpairs Covered by Grids

We summarize here the main results from Garcia and Neher, (2001a,
Sec. 3) on simplicity of the standard examples (¥, ¥).

(a) J is simple if and only if J is simple.

(b) M,k (A), |J]+ |K| > 3 is simple if and only if 4 is a simple super-
algebra. In particular, by 1.4, a simple rectangular matrix superpair over
a field of characteristic # 2, 3 either has a simple associative coordinate
superalgebra or is of type IM;,(A) for 4 = Ay a simple Cayley-Dickson
algebra and hence has M, (A4); =0.

() Let V=MH,(4, A°, n) be a hermitian matrix superpair with
|[7] > 3. If Vis simple, then A is a n-simple superalgebra. Conversely, if 4
is 7-simple and A° is the span of all traces and norms, i.e., A°=A4%,, as
defined in Neher (2000, 4.10), then V'is simple. In particular, if % € A then
V is simple if and only if A4 is w-simple, and if S =k is a field of character-
istic # 2, 3 then there are exactly the following possibilities for a simple V-

(1) V=M (B) for a simple associative superalgebra B,
(i) A is a simple associative superalgebra, or
(ili)) A= Ap is a simple Cayley-Dickson algebra and hence V' = V5.

(d) Let V=0Q;(A4, gx) be an odd quadratic form superpair with
|1] > 2. If V is semiprime then gy is nondegenerate, equivalently, ¢;® gx
is nondegenerate. Conversely, if ¢y is nondegenerate and A is simple then
V' is simple. In particular, if % € A or A= Ay, then V is simple if and only
if ¢y is nondegenerate and A is a field.

(e) Let 4 be a superextension of S. If V=4 ®,U is the 4-extension
of a Jordan pair U over k which is split of type ¢, then V' is simple if and
only if A4 is simple. In particular, V is simple if and only if either 4 = Ay
is a field (and hence V'=1j is a simple Jordan pair) or 4; is a field of
characteristic 2 and V'=ID(45®,U).

2. TITS-KANTOR-KOECHER SUPERALGEBRAS

Unless stated otherwise, we retain the setting of the previous sections,
in particular S will denote an arbitrary base superring. Starting from 2.5
we will assume § € S.
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2.1. Derivations of Jordan Superpairs

Recall (Loos, 1975, 1.4) that a derivation of a Jordan pair U over k is
a pair A=(A", A7) : U— U of k-linear maps which satisfy for all x€ V'°
the equation A’Q°(x)= 0°(A°(x), x)+ Q°(x)A™°. Linearization of this
identity gives the more familiar condition A°{x y z}={A°(x) y z}+
{x A™°(y) z} + {x y A°(2)} for x, ze V°, ye V"7, or equivalently

[A”, D% (x, y)] = D”(A%(x), y) + D7 (x, A~ (y))

where D°(x, y) is defined by D°(x, y)z={x y z}. Conversely, this last
condition is enough for A being a derivation if % ek.

Let now V=(V™, V") be a Jordan superpair over S. Recall that
Endg V' xEndg V™ is an S-supermodule whose homogeneous parts
are given by (Endg V™), x (Endg V"), a€Z,. A pair A=(A", A):
V' — V of homogeneous S-linear maps is called a derivation of V if the fol-
lowing two conditions are satisfied for all xo € Vg and all homogeneous
(e, »)eVix V"

A°Qf(xo) = QF(A%(xp), Xp) + QF(x)A™  and

X
° D _ Al o (1
[A%, D% (x,p)] = D7(A°(x),y) + (=1)" D7 (x,A™"(y)),
where [.,.] is the supercommutator ([a, b]=ab—(— 1)!"ba) and |A|
denotes the common degree of A" and A~. The justification for these con-
ditions is the following criterion. If A is a pair of homogeneous S-linear
maps, then for any homogenous ga € G of degree |A| we have

A is a derivation of V' < ga ® A is a derivation of G(V). (2)

Each Endg V'’ is a Lie superalgebra, denoted I(V°), with respect to
the supercommutator, hence so is (V1) x (V' 7) with respect to the com-
ponentwise product. The set Der ) of all derivations of V'is a Z,-graded
subalgebra of (V1) x (V") and hence a Lie superalgebra over S, called
the derivation algebra of V.

For (x, y) € V we put

§(x,3) = (D" (x,»), —(=D)M" D~ (y,x)) € Ends V* x Endg V.

It follows from the super version of the identities (JP12) and (JP15) of
Loos (1975) that §(x, y) is a derivation of V, a so-called inner derivation.
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We denote by IDer V' the Z-span of all §(x, y). Because of sd(x, y) = d(sx, y)
this is in fact an S-submodule of DerV. Moreover, (1) implies

[A, 8(x,2)] = (AT (x),») + (=1)* M 5(x, A7 ()

which says that IDer ' is an ideal of Der) and hence itself a Lie
superalgebra, called the inner derivation algebra of V. In the Grassmann
envelope we have g.g, ® d(x, y) =0(g® X, g,®y) and therefore

IDer G(V) C G(IDer V). (3)

We note that IDer G(V') need not be equal to G(IDer V') since for odd
elements x, y the derivation 1® d(x, y) need not be an inner derivation
of G(V).

2.2. Tits-Kantor-Koecher Superalgebras

Let V' be a Jordan superpair over S and let © be a subalgebra of the
Lie superalgebra Der V containing IDer V. On the S-supermodule

KV, D)=V"eDa V"

we define an S-superalgebra by

Xt @cox,ytedey | =(ctyt — (=D gty
& ([ed]+6(xF,y7)— (—1)‘x7“y+|5(y+,x_))@(c_y_ _ (—l)ldH"F‘d—x_)

where of course x?, y° € V° and ¢, d€D. We put K(V)=K(V, IDer V).

Suppose for a moment that V'7=0, i.e., V' is a Jordan pair. Then
Der V' and hence D are Lie algebras, and it is well-known that the algebra
K(V, D) is a Lie algebra. For example, this is shown in Meyberg (1972,
Sec. 11) (note that the product is sometimes defined slightly different,
e.g., in Loos (1994, but the approach above is more suitable for our pur-
poses). For Jordan pairs associated to Jordan algebras these types of Lie
algebras were first considered by Tits (1962), Kantor (1964) and Koecher
(1967, 1968), and they are therefore called the Tits-Kantor-Koecher alge-
bra of (V, D), or the TKK-algebra of (V, D) for short. If ©=1IDer V' we
will call K(V') the TKK-algebra of V.

Coming back to the general situation of a Jordan superpair V we
observe that the Grassmann envelope of the algebra K(V, D) is the
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TKK-algebra of the Grassmann envelope of (V, D),
G(R(V,D)) = K(G(V), G(D)). (1)

Hence K(V, D) is a Lie superalgebra over S which we call the Tits-
Kantor-Koecher superalgebra of (V, D) or TKK-superalgebra of (V, D)
or TKK-superalgebra in case D =1Der V.

If V=&,er VIy] is a I'-grading (Neher, 2000, 2.3), define for y eI’

er, V=Y §(V*[a], V"[B]) (2)
y=0+p
K(V), == V)] @ Der, V& V [y (3)

v

Then K(V), is a Z,-graded S-submodule of K(}'). Moreover, 1Der, V'
consists of the inner derivations of degree y, hence IDer V=), IDer, V'
by Bourbaki (1970, Sec. 11.6) and therefore

KV =P K(v),. (4)

yel

It is an immediate consequence of the axioms for a grading that we also
have [R(V),, 8(V)5]C ](V),+s. Thus, (4) is a I'-grading of the Lie super-
algebra K(V).

If U is a subpair of V it is in general not true that IDer U imbeds
in IDer V, and hence {(U) is not necessarily a subalgebra of ](V), see
however (Neher, 1979, 3.2) where imbedding is shown in a special case.
Nevertheless, we have

V= EB v (direct sum of ideals)
icl
= K/(V) = @ K'Y (direct sum of ideals) (5)

iel
Indeed, in this case IDer V=@, 1Der VD is a direct sum of ideals. If
f:V— Wis an isomorphism of Jordan superpairs (Neher, 2000, 2.3) then

KU KRV) = KW) :xT edey —f (e ef (v7) (6

is an isomorphism of Lie superalgebras. Conversely, any isomorph-
ism K(V')— K(W) respecting the 3-gradings in the sense of 2.3 arises in
this way.
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2.3. 3-Graded Lie Superalgebras

A 3-grading of a Lie superalgebra L over S is a decomposition
L=L ®Ly®»L_; where each L; is a submodule, hence L;=L;y® L;
for i=0, 1, satisfying

[Lis L] C Liy; (1)

where L; ;=0 if i4+j#0, £1. In other words, L=L ®Ly®L_; is a
Z-grading with at most 3 non-zero homogeneous spaces. Because of this,
3-gradings are sometimes also called short Z-gradings, like in Zelmanov
(1985). A Lie superalgebra is called 3-graded if it has a 3-grading. If L
is a 3-graded Lie superalgebra its Grassmann envelope is a 3-graded
Lie algebra in the sense of Neher (1996, 1.5).

A 3-graded Lie superalgebra L=L; ® Ly® L_; will be called Jordan
3-graded if

() [L1, L1]= Lo, and
(i1)) There exists a Jordan superpair structure on (L;, L_;) whose
Jordan triple product is related to the Lie product by

{xyz} =[[xy]z] forall x,z€ Ly1,y € L_s1,0 ==+. (2)

In this case, V= (L, L_) will be called the associated Jordan superpair.

The prototype of a Jordan 3-graded Lie algebra is the TKK-super-
algebra of a Jordan superpair V. The relation between general Jordan
3-graded Lie algebras and TKK-superalgebras is described below. If L
is Jordan 3-graded, the subalgebra G(L,) ®[G(L,), G(L_,)]® G(L_;) of
the 3-graded Lie algebra G(L) is a Jordan 3-graded Lie algebra in the
sense of Neher (1996, 1.5).

If % € S the associated Jordan superpair is unique: its product is
given by (2) and by Qg(xq)y = %[[xg, ¥]xg]. Conversely, these two formu-
las define a pair structure on (L, L_;) which will be a Jordan superpair
in any situation where Jordan superpairs are defined by linear identities.
Hence, by Neher (2000, 2.2.1), a 3-graded Lie superalgebra L over S
with [L;, L_;]= L is Jordan 3-graded as soon as 2 and 3 are invertible
in S.

24.Lemma. Let L be a Jordan 3-graded Lie superalgebra with associated
Jordan superpair V.
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(@) K(M)=L/C, where C={xeLy:[x, L)]=0=[x, L]} is the
0-part of the centre of L. Moreover,

G(C)=Cq):={xcG(L)y:[x,G(L),]=0=[x,G(L)_]}. (1)
(b) Vs finitely generated if and only if L is so.

Proof. (a) Let f:L— K(V) be the surjective linear map defined by
fIL+1=1d and f(x) =(ad x|y, ad x|y )=>_;0(x;, y;) for x=> ;[x;, yil €
L. Tts kernel is C. Moreover, it is easy to check, using 2.3.2, that f is
a homomorphism. (1) is straightforward using that G is a free
k-module.

(b) If % is a finite generating set of V, it also generates L in view of
2.3.2and Lo=[V", V). Conversely, let Z be a finite generating set for L.
We can assume that the elements in % are homogeneous with respect to
the 3-grading, i.e., 8 =%,U%B,UAB_, where #,;C L,. The elements in 4,
are sums of commutators of ¥ and V', so all of them are generated by a
finite number of elements in V. These elements together with %, and %_,
form a finite generating set for V.

In the following we will study the interplay of ideals of a Jordan
3-graded Lie algebra L and ideals in the associated Jordan superpair
V. For TKK-superalgebras this will naturally lead to results relating
(semi)primeness and simplicity of 7 and K(}'). In order to express the
quadratic maps Qg(.) of ¥ by the Lie algebra product of L we assume
in the following that % € S. Then the triple product suffices to define ideals
for a Jordan superpair V' over S. Indeed, specializing the definitions
of Neher (2000, 2.3), an ideal U of V is a pair of S-submodules
satisfying {U°V °V°}+{V°U °V°}C U’ and V is semiprime if
and only if U*=({U" U U"}, {U U" U })#0 for any non-zero ideal
Uof V. ]

25. Lemma. Let L=L,® Ly® L_; be a Jordan 3-graded Lie superalge-
bra with associated superpair V= (L, L_;) and assume that % es.

(a) We denote by n,, 0 =11, the canonical projections of L onto L.
If I<L is an ideal of L, then INV=UNLy;, INL_) and
n(l)=(n.(I), n_(I)) are ideals of V with n(I)> C INV C n(I).

(b) Any ideal U=(U,, U_;) of V generates a split ideal I(U) of L,
given by

J0U)=U, & ([U, L]+ L, U ) U_;.
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If U=(U,, U_y)) and W=(Wy, W_,) are two ideals of V satisfy-
ing for a =11

(U, W] =0 and {U,L_,W,;} =0 (1)
then [3(U), I(W)]=0. In particular, if L is a TKK-superalgebra
then

[3(U), 3(Anny(U))] = 0. (2)

Proof. (a) For x,, z,€L,, y_,€ L_, and arbitrary /€ L we have
{x6V-67:(1)} =1s([[X6,V—0),1]) and {x,7_s(I)zs} =[[Xs,1],25] € Ly

These formulas imply that /N V and =(/) are ideals of V. The second
formula also proves {n,(I)n_,(I)n,(I)} CINL,.

(b) That J(U)< L is a straightforward verification. For easier
notation let Wo=[W,, L_{]+[L;, W_;] and similarly for U,. then

[3(U),3(W)] = ([Ur, Wo] + [Uo, W1]) @ ([Ur, W_i] + [U-1, Wi+
+ [Uo, Wo]) @ ([Uo, W_1] + [U_1, Wy]).

Here [Uy, Wol=[U\, [W1, La]+[Li, Wall={Ui L1 Wi} +[[L1, W_1]
U]=0 by (1). Since our assumptions are symmetric in U and W and
in o =%1, it now follows from (1) that [I(U), I(W)]=[U,, Wy]. But
by the Jacobi identity,

[Uo, Wo] = [Uo, [W1, L] + [L1, W_i]]
C [[Uo, Wi], L] + [Wh, [Uo, L] + [[Uo, L1, W-i]
+ [Ll, [Uo, W,lﬂ =0

since [Uy, W,]=0 by the first part of the proof, [W, [Uy, L_{]]C[W},
U_1]=0 by (1) and similarly for the term [[Uy, L], W_4]. Finally,
W= Anny (U) satisfies the assumption (1), whence (2).

2.6. Proposition. Let V be a Jordan superpair over S with % es.
(a) If V is semiprime then so is K(V).

(b) Vis prime if and only if K(V') is prime and V is semiprime.
(c) Vs simple if and only if R(V') is simple.
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For linear Jordan pairs, i.e., } and { € S, (¢) is proven in Krutelevich
(1997, Lemma 6). We will include a short proof here for sake of complete-
ness.

Proof. (a) Let V be semiprime, and let 071 K(V). If IN V=0 the
ideal 7(I) has n(1)>=0 by 2.5(a). Therefore n(I)=0 by semiprimeness
of V, which means that IC K(V')o=IDer V. But then [I, K(V)+]C
INK(V)+1=0 and hence /=0 since the representation of IDer V on V'
is faithful. This proves

V semiprime,0 # I < K(V)=INV #0. (1)

Using again the semiprimeness of V, we have 0£{INV°, INV 7,
INV?}CL, I, I1C[L, I], i.e., K(V) is semiprime.

(b) Suppose V is prime and let I, J be two non-zero ideals of
K(V). By (1), both InV and JN V are non-zero ideals of V. By prime-
ness of V, we have 0A£{INV?, JNV °, INV°}yC[lL, J], I1C[J, I,
proving primeness of K(V'). Conversely, let {(V) be prime and let
0+# U< V. Then I(Ann,(U))=0 by 2.5.2 and therefore Ann;(U)=0.
This and the semiprimeness of V' imply that V is prime Garcia and
Neher (2001a, 3.1).

(c) Suppose V is simple and let again 0#7<1K(V). Since V is in
particular semiprime we have /N V'#£0 by (1) above. But then IN V=171,
so I contains the generating set V@ V'~ of K(V) and hence I=K(V).
Conversely, if K(V) is simple and 0 U<V then the ideal J(U) of
K(V) is non-zero, hence I(U)=K(V) and U=V follows.

Remark. In the following Sec. 3 we will determine the TKK-super-
algebras of Jordan superpairs covered by a grid. They not only provide
examples for the general theory of TKK-superalgebras but, by (c)
above, also examples of simple Lie superalgebras by making use of
the classification of simple Jordan superpairs covered by a grid, see
1.9. Moreover, these TKK-superalgebras also are examples of root-
graded Lie superalgebras. In the remainder of this section we will
explain this connection.

2.7. Root-Graded Lie Superalgebras

Let R be a reduced, possibly infinite root system as defined in Neher
(1990) and let 2(R) =Z[R] be the Z-span of R. A Lie superalgebra graded

270 Madison Avenue, New York, New York 10016



Tits-Kantor-Koecher Superalgebras 3353

by R, also called a R-graded Lie superalgebra, is a Lie superalgebra L over
a k-superextension S of a base ring k together with a decomposition

L= P L, (1)

o RU{0}

where the L, = L,5® L,7 are S-submodules, and k-subalgebras hC gC L
such that the following conditions are satisfied:

(i) The decomposition (1) is a 2(R)-grading in the sense that
[L,, LglCL,.p, with the understanding that L,,;={0} if
o+ ¢ RU{0}.

(11) Ly= ZaeR [Loza L—zx]-

(ii1) There exists a family (x,:o € R) of non-zero elements x, € L

such that, putting s, = — [x,, x_,], we have
b = Z k : hrx ) (2)
2€R
a=beEP k-x,, and (3)
2€R
o, gl = (B, o) yp (4)

for all o€ R and yg€ Ly, f€ RU{0} (here (B, ") are the Car-
tan integers).

A Lie superalgebra will be called root-graded if it is graded by some
reduced root system R. The subalgebra g is called the grading subalgebra.

Remarks. (1) Suppose %,% € k. It is shown in Loos and Neher (in pre-

paration) that for Lie algebras (instead of superalgebras) the definition
above is equivalent to the one in Neher (1996, 2.1). The paper (Neher,
1996) contains a description of Lie algebras graded by 3-graded root sys-
tems. The super version of this result is described in 2.8 and 2.9.

Split semisimple locally finite Lie algebras are examples of root-
graded Lie algebras. Their classification has been published in Neeb
and Stumme (2001). Lie algebras over fields of characteristic 0 graded
by finite root systems have been introduced and described in Berman
and Moody (1992) for simply-laced root systems and in Benkart and
Zelmanov (1996) for the others. The papers by Berman and Moody
(1992), Benkart and Zelmanov (1996), and Neher (1996) describe root-
graded Lie algebras up to central extensions. The central extensions
of Lie algebras graded by finite reduced root systems were described in
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Allison et al. (2000) for Lie algebras over fields of characteristic 0. The
root gradings of finite-dimensional semisimple complex Lie algebras are
determined in Nervi (2000). Lie algebras graded by non-reduced root
systems are studied in Allison et al. (to appear).

(2) The Grassmann envelope of a root-graded Lie superalgebra is
in general not root-graded since condition (ii) need not be true. However,
the subalgebra generated by the union | J,er G(L,) of the Grassmann
envelopes of each L, is root-graded.

(3) Suppose k is a field of characteristic 0. As shown in Loos and
Neher (in preparation), R can be identified with a set of k-linear forms
on h such that

L,={xe€L:hx|=oa(h)x forallhebh} (5)

for all xe RU{0}. Moreover, b is a maximal abelian subalgebra and
{h, o€ R} is isomorphic to the dual root system of R.

In particular, if R is finite g is a finite-dimensional split semisimple
Lie algebra with splitting Cartan subalgebra §) and root system R. Thus,
in this case L is a Lie superalgebra with the following properties:

(a) Lg contains a subalgebra g which is a finite-dimensional split
semisimple Lie algebra whose root system relative to a splitting
Cartan subalgebra ) C g is RC b,

(b) L has a decomposition (1) where the L, are given by (5), and

(C) LO = ZxER [Low Lﬂx] .

The conditions (a), (b) and (c) = (ii) are the axioms used by Berman
and Moody (1992), and Benkart and Zelmanov (1996) for root-graded
Lie algebras. It is obvious that, conversely, (a), (b) and (¢) imply that L
is a R-graded Lie superalgebra as defined above. (This characterization
indicates an interesting generalization of the concept of a root-graded
Lie superalgebra: replace g by a classical simple Lie superalgebra and
R by its ““super root system”, i.e., the set of weights of the gg-module g
with respect to a splitting Cartan subalgebra b of gp.)

The results in Neher (1996, Sec. 2) on root-graded Lie algebras easily
generalize to root-graded Lie superalgebras as defined above. Since the
proofs remain the same, we only mention the following results.

2.8. Theorem. (a) (Neher, 1996, 2.2) Let L be a R-graded Lie
superalgebra and let CC Ly be a central ideal (that C C Ly is automatic
if % €k). Then L/C is R-graded. Conversely, if L is a perfect central
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extension of a R-graded Lie superalgebra L and if }, ,% € S then L is also
R-graded.

(b) (Neher, 1996, 2.3) Let R=R; URyUR_; be a 3-graded root
system and let L be a R-graded Lie superalgebra over S containing % and
L Put
3

L(:tl) = @ Lu and L(O) = @ L“.

2ERL o€ RyU{0}

Then L=Luy® Loy® L1y is a Jordan 3-graded Lie superalgebra. Its
associated Jordan superpair V' is covered by a standard grid 4 whose root
system is isomorphic to R. In particular, L is a central extension of K(V).

() (Neher, 1996, 2.6) Let V=@,cr, Vs, be a Jordan superpair
covered by a standard grid 4 ={g,: o € Ry} with associated 3-graded root
system R=R; URqgUR_,. Then K(V') is R-graded with respect to

V; o € Ry,
+ —
K(V), = “:%:H (Vg Vy) a€RoU{0}, (1)
V-, x e Ry,

and g the k-subalgebra generated by 9.

(d) (Neher 1996, 2.7) Let (R, R;) be a 3-graded root system and
assume % ,% € S. Then a Lie superalgebra L over S is R-graded if and only
if L is a perfect central extension of the TKK-superalgebra K(V') of a
Jordan superpair 'V covered by a grid whose associated 3-graded root

system is R.

2.9. C(lassification of R-Graded Lie Superalgebras
for a 3-Graded R

By Theorem 2.8(d) above, the classification up to central extensions of
Lie superalgebras graded by a 3-graded root system is reduced to determin-
ing TKK-superalgebras {(7") of Jordan superpairs ¥ covered by a stan-
dard grid. For the convenience of the reader we list below where one can
find these TKK-superalgebras for all irreducible 3-graded root systems.

(1) R=A;: These are the TKK-superalgebras of unital Jordan
superalgebras, see 3.1.
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(2) R=A, V=M ,(4), two models for K(}') are given in 3.2 and
3.3.

3) R=A, |I|>3: V=M, x(A) for A associative and JU{o0} =
JUK, o g[, R(V):DSI]UK(A), 34.

(4) R=B;and R=Cj5: K(V)=8K() for J described in 3.5.

(5) R=B, |I|>3: V=0Q, (4, qx) where I' =1\ {co} for some
ocoel, R(V)=¢eosp(q;P qx), 3.7.

(6) R=C,, |I|>4: V=H;(4, A° n) for A associative, R(V)=
psuz(A4, A°, m), 3.6.

(7) R=Dy, |I| > 4: there are two 3-gradings for these root systems,
the even quadratic form grading and the alternating grading
which are non-isomorphic for |7] > 5. For the first, V=EQ, (4)
where I’ is defined as in (5), and for the second V= A;(A).
Both superpairs have isomorphic TKK-superalgebras, namely
eosp(qy), 3.7 and 3.8.

(8) R=Egand E;: V=IB(A4) and V' = AIB(A) respectively, K(V) is
described in 3.9 and 3.10.

(9) R=Eg, F4, Gy: these root systems are not 3-graded.

2.10. Refined Root Gradings

Let A be an abelian group and let L = @, rujoy Ly be a R-graded Lie
superalgebra with respect to the grading subalgebra g. A refined root
grading of L of type A is a A-grading L =@),cx L of L which is compa-
tible with the root grading in the following sense:

(i) L'=P,e RU{0} (L“NL,) for every A€A, or equivalently
L,=@,cn(L,NL" for all xe RU{0}, and
() gc L’

Refined root gradings of Lie algebras have been introduced in Yoshii
(2001, 2). The paper (Yoshii, 2001) contains a classification of special types
of refined root gradings, so-called (pre)division gradings, for A=7Z" and R
simply-laced of rank > 3. The case R= A, is treated in Yoshii (to appear).

Let L be a R-graded Lie superalgebra with a refined root grading of
type A. We put Li =L*NL,. Then

Ly= ) [Ly, L. (1)

aER,KEA

IfC= @ieA,aeRU{o}(CﬂLi) is a central ideal, then L/C has a canonical
refined root grading of type A. In particular, this is so for L/Z(L).
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It is therefore natural to classify refined root gradings of L/Z(L) only.
For 3-graded root systems this means describing the refined root gradings
of TKK-superalgebras. The following result which is immediate from the
definitions translates this problem into a problem for Jordan superpairs.

2.11. Proposition. Let V be a Jordan superpair covered by a standard grid
94, and denote by g the k-subalgebra of ](V') generated by 4 C K(V).

(a) Suppose that (V, 9) has a refined root grading of type A with
homogenous spaces (V=(2):1.€ ), as defined in Neher (2000,
3.8). Then so has (R(V), g). The homogeneous spaces SK(V)*
are given by 2.2.2 and 2.2.3; in particular

KRV, =VEQ)NVE fora e Ry. (1)

(b) Conversely, suppose % € S and that K(V') has a refined root grad-
ing of type A. Then (1) defines a refined root grading of (V, g).

Refined root gradings for Jordan superpairs covered by a grid have
been classified in Neher (2000, Sec. 4). Hence, the proposition together
with the results of Sec. 3 gives the corresponding description of refined
root gradings of Lie superalgebras. Details will be left to the reader.

3. TKK-SUPERALGEBRAS OF JORDAN SUPERPAIRS
COVERED BY GRIDS

By 1.7 and 2.2.5, the TKK-superalgebra of a Jordan superpair V over
S covered by a grid is a direct sum of ideals, namely the TKK-superalge-
bras of ideals of V' covered by a connected grid. For the description of
TKK-superalgebras we can therefore assume that the covering grid is
connected. Hence V' is one of the standard examples of 1.8. In this section
we will give concrete models for their TKK-superalgebras, generalizing
the results of Neher (1996) in the non-supersetting. We will also describe
which of these Lie superalgebras are simple, using the simplicity criterion
2.6(c) and results from 1.9.

3.1. TKK-Superalgebras of Unital Jordan Superalgebras

Let V=J=(J, J) be the Jordan superpair of a unital Jordan
superalgebra J over S, and denote by 1; its identity element and by U
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its quadratic representation (Neher, 2000, 2.11). Following the classical
theory, see e.g., Jacobson (1976, 1.8), the structure algebra of J is the
Z,-graded algebra Str J=(Str J)s& (Str J); where a homogeneous
se€(Endg J)j lies in (Str J) if and only if s and s’ =5 — Uy, ,, satisfy

sUp(x) = Ulsxg, xg) + Up(xg)s’ and

1
[s, U(x,9)] = Ulsx,y) + (=)™ U(x, 5'y) W
for all xp € Jp and homogenous x, y € J. The product on Str J is the super-
commutator. Str J is a Lie superalgebra since G(Str J) = Str G(J) is a Lie
algebra. The map

b: DerJ —StrJ : d = (d,,d_) —d., (2)

is an isomorphism of Lie superalgebras with inverse given by #:s+— (s, 5).
The derivation algebra Der J of J is the subalgebra of Str J consisting of all
s € StrJwith s(1;) =0. If we let Der (I, 1) be the subalgebra of Der J whose
elements annihilate (1, 1,), the restriction map b induces an isomorphism

b: Der(J, 1;) — DerJ

with inverse #:d— (d, d). Under the isomorphism b, the inner derivation
algebra IDer J maps onto the inner structure algebra 1Str J, the span of
all maps D(x, y), x, y € J for D(x, y)z={xyz}. The inner derivation algebra
IDer J of J is the annihilator of 1;in IStr J.

For the remainder of this subsection assume %6 S. Then J can be
viewed as a linear Jordan superalgebra with a bilinear supercommutative
product xy, (Neher, 2000, (2.11.3) and (2.11.4)). The Jordan triple pro-
duct and the bilinear product are related by

{xpz} = 2(xp)z + 2x(rz) — (=)MM2p(x2),  xp =x, 1, ¥}

In this case a homogeneous endomorphism d of J is a derivation if and
only if d(xy)=d(x)y+ (— D)/"™¥xd(y) for all homogeneous x, yeJ.
Denote by L, the left multiplication of J, and let L;={L,:xeJ}. We
then have

StrJ =L;@®DerJ ifles. (3)

Indeed, any s€ StrJ can be uniquely decomposed as s=L,+(s— Ly)
where x=s1; and s— L, € DerJ. (We note that this decomposition is
no longer true in characteristic 2, even in the classical case. For example,
let 4 be a finite-dimensional central-simple associative algebra over a field
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of characteristic 2 and let J=A4" be the corresponding Jordan algebra, so
U,y =xyx. By Jacobson (1976, Thm. 14) one knows that Str J consists
of all maps of the form s: x — ax + xb for arbitrary a, b € A. Hence Der
J=1Der J=V, for V.= xy+ yx in this case.)

All maps A, , =[L,, L,] are derivations of J. Since {xyz}=2L,,z+
2A, ,z we have

IDerJ =span{A,, : x,y € J} ifles. (4)
The TKK-superalgebra K(J) is therefore defined on the S-module
KW =J" @ (Ly®IDerJ)dJ

where J©=J =J as S-modules and the superscript indicates the posi-
tion, and has product

oL eocou ,y oL, oddv]
= (zy —xw+c(y) = (1) Ma(x) )*
® (2Lyomuy + Loy — (=D)L 00 )
& ([ed] + Az +2A,, +2A,,,)
& (uw — zo+ c(v) — (=) d(u) )~

where u, v, w, x, y, z€J and ¢, d € IDer J. An equivalent version of this
Lie superalgebra was given by Kac in (1977a, Sec. 3).

By 2.6(c) and 1.9(a), K(J) is simple if and only if J is simple. The simple
finite-dimensional Jordan superalgebras over algebraically-closed fields of
characteristic # 2 have recently been determined (Racine and Zelmanov,
1994; 2001; Martinez and Zelmanov, 2001) extending the earlier papers
(Kac, 1977a; Hogben and Kac, 1983) for characteristic zero. These papers
deal with Jordan superalgebras with non-zero odd part. For the classifica-
tion of simple Jordan algebras see McCrimmon and Zelmanov (1988).
Recall however 2.2.6 which implies that isotopic, but not necessarily iso-
morphic Jordan superalgebras give rise to isomorphic TKK-superalgebras.

3.2. TKK-Superalgebra of a Rectangular Matrix Superpair
M5 (A) for a Unital Alternative Superalgebra 4

A triple t = (¢4, t,, t3) of S-linear homogeneous endomorphisms of 4
is called a triality of A if |t;| =|t2| =|t3| =:]¢] and

t1(ab) = ty(a)b + (= 1)V gz (b) (1)
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for homogeneous elements ¢ and b in 4. We denote by 7} the set of all
trialities of degree 72 € {1, 0} and let 7 = .7 4@ 7 1. Our concept of triality
in an alternative superalgebra is compatible with that of triality in an
alternative algebra in the following way: given homogeneous S-linear
endomorphisms (#;, t,, t3) of A of the same degree we have

(t1,ta,t3) is a triality of A &
(g1 ®1,8 R h,g3R13) is a triality of G(A), (2)

where g, g» and g3 are elements of degree |f;| in the Grassmann
algebra G. Because of (2) we have that the Grassmann envelope of I~
coincides with the Lie algebra of trialities of the alternative algebra
G(A), whence 7 is a subalgebra of the Lie superalgebra I[g(A4) X
[s(4) x [5(4). We put

M= P AE; (c Mat(3,3; 4)),

1<i£j<3
Der M, = {h=(hy) € @ 1s(A4): (hy, hu,hy) € T

1<iA<3
for all i, j, k #},
Der M = Der My ®© DerMj .

By (2) and Neher (1996, 3.3) we have that Der M is a Lie superalgebra
with componentwise multiplication. Define a linear map

¢ :Der M — T : (hy)—(hi2, 3, h3).

Since the Grassmann envelope G(¢) is the isomorphism of Lie algebras
from Der G(M) to the set of trialities of G(A) defined in Neher (1996,
3.3(2)), we have that

¢: Der M — T is an isomorphism of Lie superalgebras. (3)

For homogeneous elements a, b€ A let L,p=ab, R,b=(—1)""ha
and define

X(a,b) = (LyLy + (-1)""'Ry, . L,L,, R,R;) and
Y(a,b) == (LLy, LoLy + (=D)VIR,,  —(=1)PIL,L,)

A direct calculation, using (2), shows that both X(a, b), Y(a, b) € T |41
for homogeneous elements a, b€ A. We denote by ®° the span of all
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X(a, b) and Y(c, d) where a, b, ¢, d are homogeneous elements in 4. On
FA) =DM

we define a superanticommutative product [-, -] by:
(i) For t=(t1, tr, ts), I = (&}, th, 15 € D*:
[.7] = ([, 4], [12, B3], 13, £5]).
(i) For r€ D with ¢~ (t)=(t;) € Der M and m=X,,;m;E; € M:
[t,m] = Z;t;j(m;)E; € M.
(iii) For homogeneous elements aE;, bE,, € M:

[aEyj, bEyg| = 6jpabEiy — (‘Ulaub“siqbaEn/ €M,
it [{i,j} N {p,q} =1,

[aEj, bE;] =0,
[aE\2,bEy] = X (a,b),
[aE\3,bEs] = Y(a,b),
[@aExs, bEy] = Y(a,b) — X(1,ab).

With the product defined above, &(A4) is a Lie superalgebra since its
Grassmann envelope G(§(A)) is the Lie algebra defined in Neher (1996,
3.3(4)). Moreover, §(A) is Jordan 3-graded by

F(A), = AE1; ® AE13 = Mat(1,2; A),
C5’("4)() = 30 S5 AE23 S5 AE32 and
F(A)_, = AEy ® AE3 = Mat(2,1; 4).

with associated Jordan superpair M, (4) and has 0 centre. Therefore, by
2.4(a)

§(4) = K(M13(4)). (4)

Since in the non-supercase F(A4) is a subalgebra of a Lie algebra first

studied by Faulkner (1989), we call §(A4) the Faulkner algebra of A.
Assume % € S. By 2.6(c) and 1.9(b) §(A) is simple if and only if 4 is

simple. Therefore, by 1.9(b) again, if S=k is a field of characteristic # 2, 3,
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either A is a simple associative superalgebra and hence F(A4) =2 psl;(A4),
see 3.4, or A=Ay is a simple Cayley-Dickson algebra and hence §(A4)
is a simple A,-graded Lie algebra.

3.3. Another Model for K(IM;, (A4))

We keep the setting and notations of 3.2. Under some assumptions
on S we will present another model for K(IM;,(A4)) which is the super
version of a Lie algebra recently studied in Berman et al. (1995) and
Yoshii (to appear). In order to do so, we start by decomposing the Lie
superalgebras 7 and ®°, analogous to Neher (1996, 3.3). For homo-
geneous «, b in 4 define

A((L b) = L[a,b] - 3[Laa Rb] - R[a,b]'

Then &,&, ® A(a, b) =Aga(E.®a, &, ®b), where &, and &, are elements
of G of degree |a| and |b| respectively and where Ag4(-,-) denotes
the (standard) inner derivation of the alternative algebra G(A4). There-
fore, A(a, b) is a derivation of A (of degree |a|+ |b|) which we will
call a (standard) inner derivation. Let Der(A4) denote the Lie superalgebra
of all derivations of 4 and let IDer(A) be the span of all inner deri-
vations A(a, b) for homogeneous elements ¢ and b in A. For d € Der A
we have

(d.A(a, b)) = A(d(a),b) + (=1)"“|A(a, d (b)) (1)
whence IDer 4 is an ideal of Der A. For every a € 4,

#a) = (Las Ly + Ry —Ly) and  pa) i= (Re,—Ry La + Ry)
are trialities and the same holds for

A7 = (A,A,A)  for A € Der 4.

Let
Tr={la)e T :ac A} =4, T'={pla)cT :ac A} =~ 4,
T'={A; €7 :AcDer(4)} and

D0 ={As : A € IDer(4)} = IDer (4).
Then, repeating the proof of Neher (1996, (3.3.5)) shows

T=7"27"@7" and D'=5"0d"a7’ iflecs
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For the remainder of this subsection suppose that 2 and 3 are invertible
in S. On
pslz(A) = IDer A ® (A ®4 sl (k))
we define a superanticommutative product by
(1) IDer 4 is a subalgebra.
(i) For homogeneous d€1Der 4, a€ A and x € sl3(k): [d, a® x]=

d(a) ® x.
(iii)) For a, b€ 4 and x, y € sly(k):

la ® x,b®y] =1Tr(xy)A(a,b) & (4 (ab + (=D pa) @ [x, y]
+4(ab — (=1)"ba) @ (xy + yx — 3 Tr(xy) E3)

where Tr is the trace and Ej the 3 x 3-identity matrix.

The Grassmann envelope of this superalgebra is the Lie algebra
psl3(G(A4)) of Berman et al. (1995, 2.5), hence pslz(A) is a Lie super-
algebra. It is Jordan 3-graded by

psl3(A), = AE)»  AE); = Mat(1,2; 4),
DSI3(A)0 =1IDer A ® (A(Ell — Ezz)
@ A(Exy — E33) ® AEy; @ AE3;) and
psl3(4)_ = AE» & AE3; = Mat(2,1; 4)

with associated Jordan superpair M, (4) and has trivial centre, hence by
2.4(a)

F(A) 2= R(Ma(A)) 2 psly(A). (2)

This can also be seen directly. Indeed, it is easy to check that the linear
map ¢ : F(A) — psl; (4) defined by

aE!-,- eEM — aE,'j €A ®513(k),
1 1
X(a,b) € D §A(a,b) ®ab@ (En -3 Es)
) 1
— (—1) ba®(E22—§E3),

Y(a,b) € ®° — %A(a,b) @ ab® (E —éE3)

— (=1)"Plpg @ (B — %E3),
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provides an isomorphism from F(A4) to psl; (4). Notice that ¢p(X(a, b)) =
[a® E12, b® Ey] and that ¢(Y(a, b)) =[a® E13, b ® E3].

3.4. TKK-Superalgebra of a Rectangular Matrix Superpair
Mk (A) for a Unital Associative Superalgebra A

Put 7:=J UK. The associative superalgebra Mat(/, I, A) becomes
a Lie superalgebra, denoted gl;(A4), with the usual supercommutator
product. Put

gli(4), = {(g g) b e Mat(J,K;A)},

0
i {0 0) e maiksia)

c

0
al;(4), = {(a d) ca € Mat(J,J; A),d € Mat(K,K;A)},

Then gl;(A)=gl;(4A); D al;(A)oDgl;(4)_; is a 3-grading for gl;(A4).
Moreover,

sl (A) == gli(4); © [ali(4), 8l (4)_,] © glr(A4)_,

is Jordan 3-graded with associated Jordan superpair M x(A4). By 2.4(a)
we therefore have

R(MJK(A)) = SII(A)/C = DSII(A), (1)

where C={x €[gl;(A4)1, al;(A)_1]:[x, gl;(4)+1]=0}. Arguing as in Neher
(1996, 3.4(2), (3)), we get the following descriptions of sl;(4) and C:

sly(A) ={xeglj(4) : Tr(x) € [4, 4]} if |I| > 3,

where Tr is the usual trace map, [4, A] is spanned by all supercommuta-
tors [a, b] = ab — (— 1)/*"’/pa, and

Z(A)E, N sly(A) if n=|I| < oo,
= {@ T R ?

where Z(A)={z € A :[z, A] =0} denotes the centre of the superalgebra A,
E,, is the n x n-identity matrix and sl, (A4): = sl;(A) for |I| =n. We also put
psl, (A) = psl;(4) for |I|=n. Suppose § € S. It then follows from 2.6(c)
and 1.9(b) that

psl;(A) is simple if and only if A is a simple superalgebra (3€ S).  (3)
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Examples. (1) psl3(A) is isomorphic to the Lie superalgebras con-
structed in 3.2 and 3.3 for an associative 4.

2) s, (4)=psl,(4) if% € S and Z(A)N[A, A]=0. For algebras the
condition Z(A)N[A, A] =0 is for example fulfilled if 4 is a quantum torus
(Berman et al., 1996) or, more generally, a so-called G-tori (Neher and
Yoshii, to appear). In the first case the Lie algebras sl,(4) appear as
centre-less core of extended affine Lie algebras of type 4,_;.

(3) Suppose %6 S and A=IDD(A4p) as in 1.3. Then [4, A]=A4p®
u[As, Agl, Z(A) = Z(Ap) C Ap and hence with obvious notation

sl (A4) = gli(4g) ® usl;(4p)
psly (A) = ngI(A()) Du SII(A()) where
gli(4g)/Z(A)E, if I|=n< o0
pali(4p) = { 0 0 .
ol (4p) if 1] = oo.

We have the following matrix realization of sl;(A4) in 2Ix 2]
matrices:

sl (A) = {(Z 2) ca€gli(4g), b e sII(AO)}.

It follows from (3) and 1.4(b) that psl{ID(A4p)) is simple if and only if
Ap is a simple (associative) algebra.

An interesting special case is 4g = Mat(M, M ; B) for a unital associa-
tive algebra B. Then 4 =Mat(M, M ;ID(B)) by 1.3 and

sly(Mat(M, M;ID(B))) = slu (ID(B)), (4)
pgl;(Mat(M, M;ID(B))) = pglyxy (D(B)). (5)

In particular, for B =k an algebraically closed field of characteristic 0
we obtain the Lie superalgebras sl,,(ID(k)) = Q,_; and its simple quotient
psl,(ID(k)) = Q,,—; in the notation of Kac (1977b, 2.1.4).

(4) In the notation of 1.2.2, suppose 4 = Matp|o(B) for a unital
commutative associative algebra. To have a proper superalgebra we
assume |P|, |Q| > 1 in the following. Then by straightforward matrix mul-
tiplication

4, 4] = {(i 2) € Matpp(B) : Tr(a) = Tr(d)} and

Z(4) = (Z(Mat(P, P;B)) 0 )

0 Z(Mat(0, 0: ) ) = Z)
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where Z(Mat(P, P; B)) has the same description as C above in (2). We
have a canonical isomorphism

al;(Matpp(B)) = (Mat, pi1.o(B))"”

where 7 indicates that the associative superalgebra on the right hand
side is considered as Lie superalgebra with respect to the supercommuta-
tor. Under this isomorphism

sly (Matpio(B)) = {(‘C‘ Z) € Maty, prxo(B) : Tr(a) = Tr(d)}

The description of C in this case depends on the cardinalities of 7, P,
Q and also on the “characteristic”” of B. It is straightforward and will be
left to the reader.

The Lie superalgebra psl; (Matp|p(B)) is simple if and only if B is
simple. In particular, if B=k is a field of characteristic 0 and |I|=n,
|P| =p and |Q| = ¢ are finite, then psl,(Mat,, (k)) is the simple Lie super-
algebra A(np, ng) in the notation of Kac (1977b), 2.1.1.

We point out that by 1.4(b) any finite-dimensional simple associative
superalgebra over an algebraically closed field & is isomorphic to
Mat,,, (k) as above or to Mat(m, m ;ID(k)) as in (3).

3.5. TKK-Superalgebras of Jordan Superpairs Covered by a
Hermitian Grid of Rank 2 or 3

The Jordan superpairs in question are all of the form V'=J for a spe-
cific unital Jordan superalgebra J (see 1.8(c) and (d)) and hence 3.1 pro-
vides a description of R(¥). Note however that in case J=1H;(4, 4°, 1)
for |I]=2, 3 and A associative the corresponding TKK-superalgebra is
described in 3.6 below.

3.6. TKK-Superalgebra of a Hermitian Matrix
Superpair H; (A4, A°, n) for an Associative
Superalgebra 4 and |I| >3

We will use the notation of 1.8(d), denote by A’ the S-span of
{ab+d™b":a, b€ A} U{aghy: ay, by € A°} and define the Lie superalgebra

b
sup(A, A%, n) = {(a ( n)T) :a € Mat(1,I; A) with Tr(a) € 4,
¢ —(a

b,c € Hi(A,4° n)}.
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It has a natural Jordan 3-grading for which H; (4, A°, 7) is the associated
Jordan superpair, whence

KR(H; (A4, A%, 7)) 2 sur(A, A%, 1)/ C := psul; (4, A°, 7).
Here C={x € su;(4, A°, 1)y : [x, su; (4, A°, m)+,]=0} satisfies

C— {zEy :z€ Z(A),z" = —z,nz € A'} if n=|I] < o0,
1 {0} if |7] = o0

where E,, is the 2n x 2n-identity matrix and Z(A4) denotes the centre
of A.

For the remainder of this subsection we assume %6 A. Then A°=
H(A, n) and A'=H(A4, n) & (4, A]NS(4, n)) where S(4, n)={a€ A:
a"=—a}. Therefore in this case we have for su;(4, m):=su;(4,
H(4, =), ) that

sur(A,n) = {x = (Z _(ZI)T

aeMat(z,z;A),b,ceH,(A,n),} if led
C={zEy:z€ Z(A)NS(4,rn),nz € [4, A]}
if fedand|I|=n<oo

> © Tr(x) € [4, ]

Moreover, it follows from 2.6(c) and 1.9(c) that
psuly(A4,n) is simple if and only if (A,n) is a simple superalgebra, (1)

Examples. We will consider two classes of examples of associative
superalgebras with involutions. By Racine (1998, Prop. 13, 14) they
include finite-dimensional superalgebras 4 with involutions over an
algebraically closed field k& of characteristic 0.

(a) First, for B an associative algebra and 4 = Matg (B) we have
the supertranspose involution

w X ZT —XT
Aa(y Z)’L)<yT WT>€A, (2)
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where z' is the usual transpose of z (Racine, 1998, Prop.13). As fixed
point set of an involution,

a

b
H(Matgjp(B),1) = {(c aT> € Matgp(B) : b skew, ¢ symmetric}

=: Po(B) (3)

is a Jordan superalgebra. We have a canonical isomorphism H;
(Matg|p (B), 1) =P, o(B). As is already proven in Kac (1977a, Thm. 2)
for finite Q, the TKK-superalgebra of the Jordan superpair associated
to H(Matgp (k), 1) =Py (k) is

R(PQ(k)) = { (x yT> S Matzg‘zQ(k) : TI'(X) =0,

y=yTz— —ZT} — Pso(k) @)

where we put 20 = Q x {1, 2}. Replacing H(4, 1) by H;(4, t) then leads
to

K(Prxo(k)) = Py (k) (5)

(b) Similarly, let s be the block diagonal matrix inducing the sym-
plectic involution d+— sd'sT) ie.,

(5 D (1)) ©

For B an associative algebra and 4 = Matp|p (B) the orthosymplectic
involution is given by

a b o, at  TsT (7)
c d bt sdTsT )’

where Q is either of finite even order or infinite. The fixed point superal-
gebra

b
H(Matpop(B),0) = {(SZT d) € Matpop(B) : a = a',d = sdeT}

: OSPy(B) (8)

is called the orthosymplectic (Jordan) superalgebra and denoted BC in
Kac (1977a). We have

H;(Matpo(B)) = OSP;, prxo(B) 9)
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which is a simple Jordan superalgebra if |I| > 3 and B is simple over a ring
k containing % For the TKK-superalgebra of the Jordan superpair asso-
ciated to the orthosymplectic superalgebra OSPpo(k) we have (see the
proof of Kac (1977a, Thm. 2)

R(OSP (k) = cosn(qh  g7) (10)

where the Lie superalgebra on the right is the elementary ortho-
symplectic Lie superalgebra (3.7) of the quadratic form which is the
orthogonal sum of the standard symmetric form ¢; on the even space
k® and the standard skew-symmetric form on the odd space (ITk)".

In terms of the canonical matrix representation, eosp (qJé & qp) con-
sists of matrices

a b w
. 47 b, ¢ skew-symmetric
C a y z ) Y
T T J S MatzQ‘zp(k), . .
z x e,/ symmetric
T Wt T

(11)

where each matrix a, b, cis Q x Q, each w, x, y, zis @ x P and each d, ¢, [

is Px P (Kac, 1977b, 2.1.2). The 3-grading realizing eosp(qg@q;) as
TKK-superalgebra of OSPp (k) is given by

0 -1 0 -1
1 0 1 0
0 -1 0 -1
1 0 1 ©0

where the matrix indicates membership in the corresponding homo-
geneous parts for a matrix X € eosp(qJQrEBq,T) written as in (11). Thus
for finite P, Q the simple Lie superalgebra R(OSPpp) is of type D(g, p)
if ¢ > 1 or of type C(p+ 1) if ¢=1 in the notation of Kac (1977b, 2.1.2).

3.7. TKK-Superalgebras of Quadratic Form Superpairs

For the description of the TKK-superalgebras of even and odd quad-
ratic form superpairs, we first need to establish some general notions
regarding quadratic forms. For a quadratic form ¢: M — A, A a super-
extension of S and M an 4-module, we define the orthosymplectic Lie
superalgebra of q as

osp(q) = {x € End, M : g(xm,n) + (—I)WHan(xn,m) =0,
for all m,n € M}.

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

MARCEL DEKKER, INC. ﬂ
270 Madison Avenue, New York, New York 10016 0



Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

) 1

MarceL DEKKER, INc.

3370 Garcia and Neher

Its Grassmann envelope coincides with the orthogonal Lie algebra of the
quadratic form G(q). For n € M let n* be the 4-linear form on M given by
n*(p) = q(n, p). Moreover, for m, n € M we define an endomorphism mn*
of M by mn*(p) =mq(n, p). Finally, let

eosp(q) = span  {mn* — (—=1)""nm* : m,n € M homogeneous}.

This is an ideal of osp(q) and will be called the elementary orthosym-
plectic Lie superalgebra of q since G(eosp(q)) = en(G(q)) is the elementary
orthogonal Lie algebra of G(g). More information on the superalgebras
eosp(q) is given in Duff (2002). In particular, we mention: if 4 is a
field of characteristic#2, dimyM < oo and ¢ is nondegenerate then
0sp(g) = eosp(q).

We need eosp for the special case of the orthogonal sum of (M, g)
and the hyperbolic superplane (H(A),q,) over A, i.e., the hyperbolic
superspace of rank 2 over 4 in the sense of Neher (2000, 4.13):

My :=HA) M =Ahoe DM & Ah_ro, ¢ :=¢q1 Dq. (1)

With respect to the decomposition (1), every element of ensp(g..) can be
represented by a matrix B, and it is straightforward from the results in
Neher (1996, 5.1) that for a homogeneous B we have

o —m" 0
Beeosp(g) <= B=|n x m | = M(a,m,n,x),
0 —n" -«

where o € A, m, n€ X and x € eosp(q) all are homogenous of the same
degree. The description of the Lie algebra product in the non-supercase,
given in Neher (1996, (5.1.4)), also holds in the super setting. In particu-
lar, eosp(g..) is 3-graded by

e05P(goo )y = {M(0,m,0,0) :me M} = M,
e05P(goo)g = {M(,0,0,x) : o0 € A,x € ensp(gy)}
e0sP(goo) | = {M(0,0,n,0) :ne M} =M

and  e0sp(goc)1 D [€05P(Go0)1,  €05P(goc) 1] B e0sp(goc) 1 18 a Jordan
3-graded Lie superalgebra whose associated Jordan superpair is the
quadratic form superpair V= (M, M) of ¢ as defined in Neher (2000,
2.9). By Neher (1996, (5.1.6)) we have

if there exists my € My such that q(mg, mg) is invertible in S
then K((M, M)) = e05p(go)- (2)
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Since qfhy;i+h_,h ;+h_)=2 we can use (2) to describe the TKK-
superalgebras of the even and odd quadratic form superpairs EQ;(A)
and OQ,(4, gy) as described in 1.8:

if %6 S then K(EQ;(A)) = eosp((q1),) = eosp(q,u{oo}) and  (3)

K(OQ;(4,gx)) = eosp((qru{ecy © gx))- 4)

Examples. (a) If A= Apthen EQ;(A) is a Jordan pair and the TKK-
superalgebra K(IEQ;(A4)) is a Lie algebra. In particular, for% € S we have
KEQ,(A4)) = e0sp(g7{s0y) is prime or simple if and only if 4= Ap is an
integral domain or a field.

(b) Suppose again % € S. Then K(OQ;(4, gx)) is simple if and only
if A= Apis afield and ¢y is nondegenerate. In this case, R(OQ;(4, ¢x)) is
the elementary orthosymplectic Lie superalgebra of a quadratic form on
the space M = My® M; where Mj is the orthogonal sum of the hyper-
bolic space H;();} (4) and the quadratic space (X, ¢|Xp) and where
M= X7 with the skew-symmetric form ¢| X7 x X7. In particular, for
finite 7 and finite-dimensional X we obtain the orthosymplectic Lie super-
algebras osp(2 + 2 | I| + dim Xp, dim X7) of type B(m, n) = osp(2m + 1, 2n),
m>0,n>0, Cn)=o0sp(2,2n—2), n>2 and D(m,n)=osp(2m,2n),
m>2,n>0 of Kac (1977b,2.1.2). Thus, among all orthosymplectic
Lie superalgebras only B(0, n) =osp(1, 2n) is missing.

3.8. TKK-Superalgebra of an Alternating Matrix Superpair

To describe the TKK-superalgebra of A;(A4)=(Alt(l; 4), Alt(f; A))
for a super extension A4 of S (see 1.8) we will use eosp(q;) where ¢
is the hyperbolic form on the hyperbolic superspace over A of rank
2|1]. Recall from Neher (2000, 4.13) that H(I, A) has a decomposition
H(I, A)=H. (I, A)® H_(I, A) where H+(I, A)=.c; Ah+;. With respect
to this decomposition every B € eosp(g;) can be represented as a matrix
such that eosp(g;) can be identified with

eosp(qr) = {(i _I;T> ta € Mat(I,I;A),b,ceAlt(I,A)}

with Z,-grading given by the Z,-grading of A. This Lie superalgebra has
a canonical Jordan 3-grading with associated Jordan superpair A;(A4).
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An application of 2.4.1 then shows:
if $€ S then K((A)) = eosp(q). (1)

Assuming% € S, we conclude from 1.9(e) and 2.6(c) that eosp(g;) is simple
if and only 4 = Aj is a field, in which case eosp(g;) is a simple Lie algebra.

If % ¢ S, the description of K(A;(A4)) is more complicated. The results
of Neher (1996, 6.2) for the non-supercase also hold in the super setting
with obvious modifications.

3.9. TKK-Superalgebra of a Bi-Cayley Superpair

The TKK-superalgebra of the Bi-Cayley superpair B(A4) (1.8) is a
special case of 3.2 and 3.3: K(IB(4)) = F(IM»(D4)). As in Neher (1996,
(7.2.2)) one can show that in case 1€ S we have R(B(4)) = ARy
?;((DZ[%]). It follows as in 3.8 above that in case § € S the Lie superalgebra

K(B(A)) is simple if and only if 4 = Ag is a field.

3.10. TKK-Superalgebras for an Albert Superpair

Since Neher (1996, Lemma 7.1) also holds in the supersetting,
the TKK-algebra of an Albert superpair AB(A) (see 1.8) is
R(AB(A)) = A By K(AB(Z[Y])) if 1€ S. In this case, R(AB(A)) is
simple if and only if 4= A4j is a field.
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