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Abstract. An Andersson-Perlman cone is a certain subcone Q(K) of the symmet-
ric cone () of a Euclidean Jordan algebra. We exhibit a subgroup of the automorphism
group of © which operates transitively on 2(K) and show that Q(fC) is a simply-connected
submanifold of 2.

1. Introduction. Andersson-Perlman cones in the setting of Euclidean Jordan alge-
bras (henceforth abbreviated as AP cones) were introduced by H. Massam and the author
in [MN] as a generalization of certain cones defined by the statisticians S. A. Andersson
and M. D. Perlman for real symmetric matrices [AP]. All mathematical results in [AP]
were generalized in [MN] to the setting of Euclidean Jordan algebras, except the existence
of transitive transformation groups which play a predominant role in the development in
[AP]. In fact, the paper [MN] stresses a different, perhaps more direct approach to the de-
scription of Andersson-Perlman cones by employing Peirce decompositions and Frobenius
transformations.

In this note we show that one can also generalize the results of [AP] on transitive
groups to the framework of Andersson-Perlman cones in Euclidean Jordan algebras. Our
interest in these groups is explained in the following remarks. An Andersson-Perlman cone
is a subcone Q(K) of the cone Q of an Euclidean Jordan algebra V' defined in terms of a
complete orthogonal system £ = (eq, ... ,e,) of idempotents of V' and a ring K of subsets
of I = {1, ... ,n}. (For our purposes it is of advantage to give £ here a different meaning
than the one used in [MN]; the exact difference is explained in 7. below). If §2; denotes
the symmetric cone of the Peirce-1-space V' (e;, 1) of e; then always

Qe - o, CQUK) CQ,

and both upper and lower bounds can be obtained by varying K. Thus, one may consider
Q(K) as an interpolation between Q and Q1 © Qo @ --- & Q,,. In the same spirit, the
transitive transformation group 7' (denoted T¢ < in the paper) of Q(K) interpolates various
well-known subgroups of the automorphism group G(Q2) = {g € GL(V); g2 = Q} of Q. In
general, T' is a semidirect product of a unipotent subgroup N of G(€2) (denoted Ng¢ - in
the paper) and the real reductive group

Me={9€G();92 =} =P(L S0 - &) Ke (1)
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where Kg = {f € AuwtV;fe; = e; for 1 < i < n}. Observe that (1) is the Cartan
decomposition of M¢. We always have

MgCT:Mg~NCG(Q), (2)

and both bounds are attained. For example, if Q(K) = Q and £ is a Jordan frame then N is
the so-called strict triangular subgroup [FK], while if £ = {e}(n = 1) then also Q(K) = €,
N = {Id} and Mg = G(2). In this case, (1) is just the standard Cartan decomposition of
G(Q).

2. Notation and review. Our basic reference for Jordan algebras is [FK]. Some of
the results and notations used are summarized below.

Throughout, V' denotes an Euclidean Jordan algebra with identity element e, left
multiplication L(u) defined by L(u)v = wv(u,v € V') and quadratic representation P given
by P(u)v = 2u(uv) — u?v. The linearization of P is

{uvw} = P(u,w)v := P(u+w)v — P(u)v — P(w)v = 2u(vw) + 2w(uv) — 2(uw)v

for (u,v,w € V). The Jordan triple system left multiplication L(u,v) (denoted u[Jv in
[FK]) is given by
L(u,v) = 2(L(uv) + [L(u), L(v)]),

and hence L(u,v)w = P(u,w)v. For any endomorphism ¢ of V, ¢* is the adjoint of ¢
with respect to the positive definite trace form of V.

We will use the term “Lie group” and “Lie subgroup” as defined in [B]. In particular,
any Lie subgroup of a Lie group is closed and has the induced topology. Closed subgroups
of a Lie group are always Lie subgroups in a unique way.

We denote the symmetric cone of V by 2 = Q(V). This is an open convex cone
which is homogeneous with respect to the group G(Q2) = {g € GL(V);¢Q2 = Q}, the
automorphism group of €. The group G(Q2) is a Lie subgroup of GLr(V'). Its identity
component will be denoted by G. Moreover, G(£2) is an open subgroup of the structure
group of V', defined as the group of all invertible endomorphisms g of V' with the property

P(gx) = gP(z)g" (1)

for all x € V', or, equivalently,

gL(u,v)g~" = L(gu, 9" 'v) (1)

for all u,v € V ([FK; IIL.5 and VIIL.2]). The Lie algebra &(V') of the structure group of V'
coincides with the Lie algebra of G(2). It consists of all endomorphisms X of V satisfying
for all u,v eV

[X,L(u,v)] = L(Xu,v) —L(U,X*U) (2)

([FK; VIII.2.6]). The group of automorphisms of V' will be denoted AutV. For any
g € G(2) one knows ([FK; IIL.5] and [FK; VIII.2.4]):

ge=e & gg-=1d & ge AwtV (3)
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In particular, Aut V' is a maximal compact subgroup of G(f2).

Following [FK] we denote the Peirce spaces of an idempotent ¢ € V' by V(c,i) = {v €
Vi cv =iv},i € {0, %, 1}. The Peirce decomposition of an arbitrary y € V is written in
the form y = y1 +y12 +yo where y; € V(c, 1) for i = 0,1 and y12 € V (e, %) The symmetric
cone of the Euclidean Jordan algebra V (¢, 1) will be denoted Q.. For an idempotent ¢ and
z € V(c, 3) the Frobenius transformation on V is defined as 7.(z) = exp (L(z,¢))) € G. It

is straightforward to check that 7. : V(c,2) — G is a homomorphism, thus 7.(z + 2/) =
T(2)7.(2") and 7.(—2) = 7(2) 7. If & = 21 + 212 + 20 is the Peirce decomposition of x € V
with respect to ¢ then

Te(2)x = 21 @ 2221 + 212 B 2(e — ¢)[2(221) + 2x12] + 20 (4)
=121 D 2zx1 + 212 ® P(2)x1 4+ 2(e — ¢)(2212) + 0.

The adjoint of the Frobenius transformation operates as follows [MN; 2.7]:
Te(2)*x = (21 + 2¢(2212) + P(2)x0) @ (12 + 2220) © 0. (5)

Throughout, we fix a complete orthogonal system & = (eq, ... ,e,) of (arbitrary) idempo-
tents of V. Thus, e;e; = d;;¢; and eq +--- + e, = e. We denote by V;;, 1 <1,j < n, the
Peirce spaces of £ [FK IV.2] and define, for 1 <1i < n, subspaces

VO =@l Vi =V(en ) NV (eis1+...+en b

For x € V we let x = Ziq xij ,Ti; € Vij, be the Peirce decomposition of z € V. We
abbreviate 7; = 7, and ; = Q,, = Q(V;), 1 <i <n. By [MN; 2.8] the map

F:VvOx. o oxveDeg x---xQ, — Q
given by

F(Zh Ty Zn—1,Y1, " yn) : 271(21) Tn—l(zn—l)(yl ® - @yn)
=7(z1)y1 + 12(22)y2 + -+ + Tne1(2n—1)Yn—1 + Yn

is a bijection. Even more, we have:

3. Proposition. The map F is a diffeomorphism.

Proof. Tt follows from the definition of the Frobenius transformation that F' is differen-
tiable. Since both manifolds have the same dimension, it suffices to show that the tangent
map T¢F of F in a point ¢ = (21, -+, 2p—1,Y1, - - Yn) € M = VA 5o x V=D w0 x
.-+ X £y, is injective. For n = 2 and (uy,v1,v2) € Vig X Vi1 X Vag = T¢ M , the tangent
space of M at (, we have

TeF(ur,v1,v2) = v1 © 2(u1yr + z1v1) ® P(z1)v1 + {21 y1 w1} + va.

Hence, if T¢ F'(u1,v1,v2) = 0 we obtain v; = 0, then u; = 0 because 4y1_1(y1u1) = uy by
[MN; (2.6.7)] and finally vo = 0. In general, if w = (u1, - ,Un_1,01, -~ vy) € VI x
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e x VD) Vi X X Vi = T M lies in the kernel of T¢ F' then, since mo(22)y2 + - -+ +
Tn-1(2n-1)Yn-1 + yn € V(e1,0), it follows by considering the V1- and VW _component of
T¢Fw that v1 = 0 = uy, but then w = 0 by induction.

4. Lemma. a) For z;; € Vi;,1 # j, and Ty € Viny the Frobenius transformation
7i(zij) operates as follows

237“'21']' D P(ZZJ)Q?” € ‘/ij @D ‘/jj form=n=1

(o ) 2ei(zimy) €V, for {m,n} = {4, j}
T’L(zzj)(xmn) Tmn = 2Z1szk c ijk for {m,n} _ {27 ]{7}, i g,k 7& (1)
0 for i & {m,n}

(b) For z; € Vi; and zp € Vig we have the following commutation formulas:

7i(2ig) Tk (2k1) = Th(2k) Ti(2i5) 0 ¢ {4, k, 1} and k ¢ {1,1, j}, (2)
Ti(2ij)Th (2hi) = Te(2hi + 22i5280)Ti(205) i, 5,k = 3, (3)
Ti(2i5)7i(z0) = 75 (20) Tizi5 — 2zi525) Wi, 4,1} = 3. (4)

Proof. a) is immediate from (2.4). The formulas in b) can be checked by using (1)
and a case-by-case analysis. An alternative proof for (2) and (3) goes as follows. Since
Te(2) = exp(L(z, ¢)) we have for any invertible endomorphism g of V'

97e(210)g " = exp(gL(zri, €x)g ™). (5)

By (2.17)

7i(2i) L2kt ex)7; (2i5) = L(7i(2i5) 20,77~ (25 ex)
where 7;(2ij) 2k = 2k + 012252, by (1) and 7;(2i5)* ter, = Ti(—2i5)%er = e by (2.5).
This, together with (5) for g = 7;(z;;) implies (2) and (3). One can prove (4) in a similar
fashion:

Tj(zjl)_lTi(Zij)Tj<Zij) = €exp L(Tj(_zjl)zij7Tj(zjl)*ei) = €xXp L(Zij — 223521, €i).

5. Transformation groups of () defined by £. We define

NBEWE DD, =w +o+ - Fwyw €Q,1<i<n}CQ,
As =P d - ®Q,) =expL(V11 ® Voo @ - @ Vi),
Ke={fcAutV; fe;=¢;,1 <i<n},
Mg ={m e G(Q);mV;; C Vi, 1 <i<n}.

The second equality in the definition of Ag follows from P(expx) = exp L(2x), see [FK;
I1.3.4], and Q2 = exp V, see the proof of [FK; II1.2.1]. Clearly, K¢ and Mg are Lie subgroups
of G(9).



Theorem. a) Mg = {g € G(Q);9Vi; = Vi; for alli,5} = {g € G(Q);gL(e;)g™! =
L(e;) for 1 <i<n}.

b) Mg operates transitively on Q1 & Qo @ ---®Q,, C Q. More precisely, Ae C Mg and
for every w € Oy & Qo @ -+ & Q,, there exists a unique a € Ag such that w = a(e).

c) K¢ is a subgroup of Mg satisfying

Ke=MgNAuwtV ={m e M;mm* =1d}. (1)

d) Any m € Mg can be uniquely written in the form m = ak where a € Ag and
k € Ke. Thus, we have a decomposition

Mg =Ag - Kem (V11 ® Voo @ ---® V) X Kg  (diffeomorphism). (2)

Proof. We abbreviate A = Ag, K = K¢ and M = Mg.
a) Let m € M. Since m is invertible, we have mV;; = Vj;. For i # j and z;; € V;; we
have z;; = {e; z;; e;} and hence, by (2.2’) and the Peirce multiplication rules,

mzi; = mie; zij e;} = {me; m* 1z me;} € {Viy V Vi;} C Vi,

whence the first equality in a). The second is then immediate since the Peirce spaces V;;
are the joint eigenspaces of the commuting endomorphisms L(e;),1 < i < n.

b) Letw=w; @& - Bw, € Y &---BQ,. Then, by the Peirce multiplication rules,
P(w)Vi; = P(w;)Vi; C Vi; and hence A C M. Let Jw = /w1 & --- \/w, where \/w; €
is the unique square root in €; of w;. Then P(y/w) € A and P(y/w)e = w. If there exist
a,a’ € A with ae = d’e and a = P(z), '/ = P(z2') for z,2/ € Q1 @& --- ® Q,, we get
2?2 = P(x)e = P(y)e = y?, thus o = y by the uniqueness of the square root on 2, and
a = a'. Since gQ = Q for any g € G(), we have mQ; = m(QNVy) C QN V;; = Q; for
every m € M. Therefore M(Q1 & ---®Q,) C QY BB Q.

c¢) For any m € M N AutV we have m|V;; € AutV;; and hence me; = e;. Conversely,
any f € K C AutV C G(R2) has the property fV;; = fV(e;, 1) =V (fe;, 1) = V;; and thus
lies in M N AutV. The equality Mg N AutV = {m € M;mm* = Id} then follows from
(2.3).

d) For m € M there exists a unique a € A such that me = ae, i.e., k = a=1m € Aut VN
M = K in view of (2.3) and c¢). (2) follows from the fact that exp is a diffeomorphism.

Remarks. 1) Let Str(V) be the structure group of V. Since Str(V) = Str(V)*, it
is the group of real points of a reductive algebraic group, and G(€2) C Str(V) is a finite
covering of the (topological) identity component Str(V)°. More generally, Str(V )¢ := {g €
Str(V);mV;; = V;; for all 4,5} is invariant under * and hence the group of real points
of a reductive algebraic group. Since Str(V)% C Mg C Str(V)g it follows that Mg is
a real reductive group in the sense of [W; 2.1]. The decomposition (2) is the Cartan
decomposition of Mg in the sense of [W; 2.1.8]. In particular, K¢ is a maximal compact
subgroup of Mg.

2) If £ = {e} then (2) specializes to the well-known Cartan decomposition G(2) =
P(Q) - AutV ([BK; XI Satz 4.5]). The corresponding decomposition of the Lie algebra
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LieG(Q?) = g(V) is the Cartan decomposition g(V) = L(V) @ DerV. If £ is a Jordan
frame, i.e., every e; is primitive: V;; = Re;, A¢ is an abelian group and coincides with the
group A of [FK; VL3, p. 112]. In this case a = L(Vi; @ Voo & - -+ & Vi, ) is a maximal
abelian subspace of L(V) C g(V') so that Mg coincides with the group M of [W; 2.2.4].

6. Transformation groups of () defined by £ and a partial order. We let < be
a partial order on I = {1, ... ,n} which is weaker than the canonical order: i < j =i < j.
We put i < j < i < 7,7 # j and define

€<Z) = Zk%i €k 7-<7,> = Te(i) )
V(i] = Ok~i Vii = V<e(i>7 %) N V(ei, %) s V(H) = @i<j Vz‘j s
Vij< = (@<t Vi) @ (Bick<i Vi), (1 <9 < j < n), Vij< = Vij © Vij<.

Thus, V=) = V() in case < coincides with the canonical order. We will consider the
following subgroups of G(2):

Ne 2o ={ue G(Q);(u—-1d)V;; C V;j for all i < j},
Te<={t € G(Q); tVi; C Vi< for all i < j}.

Theorem. a) The group Ng < is a unipotent simply-connected Lie subgroup of Te <
and has the descriptions

Ne < ={m(z1) -+ T-1(zn-1); 2 € VI 1 <i<n} (1)
= {7ny(2n) =+ T2)(22) ;2 € Vg, 1 <i <n}. (2)

The Lie algebra of Ng 4 is
ne< = @75 {L(zi,6) 32 € VU = @i L(Vyj s €0).

b) The group Mg C Te < normalizes Ng <, and Tg < is a semidirect product: Tg < =
) Ke =Te NAutV = {g € Te; ge = e} = {g € Tr; 99" = 1d}.

Proof. For easier notation we abbreviate K = K¢, M = Mg, N = Ng o and
T="Te <.

a) Any u € N is of the form v = Id + n with n nilpotent, i.e., u is unipotent.
Transitivity of < implies that n = {n € EndV;nV;; C V;; for all i < j} is a nilpotent
subalgebra of End V. Therefore, u=* = Id + >_,o, (—n)" shows that N is closed under
taking inverses. Similarly, N is also closed under products and therefore a subgroup of
G(Q). It is a closed subgroup of G(2) and therefore a Lie subgroup of G(£2). It follows
from (1) that N is simply-connected (This is not so surprising since, by [B; §9.5, Cor. 2 of
Prop. 18], any unipotent group is simply-connected.) We are therefore left with proving
(1) and (2).



Proof of (1): For any ¢ < j we have 7,(z;;) € N by (4.1). Since 7i(3_,.; 2i5) =
[1;.i 7i(zi5), we also have {71(21) -+ Tn—1(2n-1); 2i € V(=<)} c N. Conversely, let u € N.

By definition, there exist unique z; € V(1<) and v € V(e1,0) such that ue; = ey + 21 +vg.
Observe that u*ry; = xq; for all z1; € Vi since (u—1d)V C Vit. Hence, by (2.4) and the
Peirce multiplication rules,

uri1 = uP(el)xn = P(uel)u*_lxn = P(61 +z1+ Uo)l‘ll
=z11 D{e1r11 21} O P(21)r11 = 211 © 221121 © P(21)211.

In view of (2.4) this shows ux1; = 71(21)711. Let @ = 71(21) "'u € N and put ¢ = e — e;.

Since V' = V(c,1) = V(e1,0) = @acr<i<n Vi it follows that @ leaves V' invariant.
Because 42 = Q and Q. = QN V (e, 1) we see that a|V”’ lies in the corresponding subgroup
N’ of G(2.) defined with respect to ENV(c,1) = (ea, ... ,e,) and the restriction of < to

{2, ... ,n}. By induction, a|V’' = 15(22) -+ Th—1(2n—1)|V’ for suitable z; € V=) (=1d if
n = 2). Then

u = (7'2(22) Tnfl(znfl))ilﬂ = Tn71(—2n71) T2(_Z2)ﬂ €N

has the property ux;; = x;; for all 1 <i <n. Thus, u = M NN = {Id}.
Proof of (2): We have for k <4
T4y (2ki) = exp L(zpi, €(s)) = exp L(zki, ex) = T (2k4), (4)
and hence for z; € Vi
T4y (2i) = H 76y (2ri) = H T (2hi)-
k=i k=i

This shows that
N/ = {T<n>(zn) e T<2>(z2)’21 - ‘/<’L]?1 < Z S n} C N

By (4), N’ contains the canonical generators of N. Hence N’ = N if N’ is a sub-
group of N. To prove this, it suffices to show that for ;7 < [ and i < j,k < [ we have
T(j>(zij)7'<l>(zkl) € N/. Since |{Z,j,l}| = 3 and T(j>(2ij)7'<l>(zkl) == Ti(Zij)Tk(Zkl) there
are two cases to be considered: if k = ¢ or k ¢ {4, 7,1} then, by (4.2), 7i(2i;) Tk (2r1) =
Tk (2r1)Ti(2i5) = Ty (211)75) (245) € N', while for k = j we have, by (4.4) and (4)

Til2i3) 7 (250) = 7 () 7i(zij = 22i5200) = Ty (20 Ty (= 2205250)7(5) (235)
= 7y (231 — 225521) 75y (255) € N'.

This finishes the proof of (2).

Since 7;(z;) = exp L(zi,e;) we have n’ := >°1" | L(V@<) ¢;) C n:= LieNg 4 by (1).
That the sum is direct follows from L(z; ,e;)e; = d;;z;. To conclude n’ = n it is sufficient
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to prove that n’ is a subalgebra. Indeed, the Lie subgroup N’ of N corresponding to n’
contains 7;(V <)), hence N’ = N by (1) and therefore n’ = n. That n’ is a subalgebra of
n follows from the following calculations. Let z; € V(i),wj € VU, If i = j then, by (2.2),

[L(ZZ s 61'), L(wz ,ei)] = L({Zl €; ’LUZ'}, ei) — L(wz, {62' Zi 61}) =0

since {e;z;e;} = 0, {z;e;w;} € V(e;,0) and L(V(e;,0),V(e;,1)) = 0. If i < j then
w; € V(e;,0) and so {z; e; w;} = 0. Hence, (2.2) shows

[L(zi,€:), L(wj , €5)] = —L(w; , {e; zi €;}).
Here {e; zi €} = z;; € Vi and so {e; e; z;} = 2;;. A second application of (2.2) then yields
—L(wj, zij) = [L(ei, €:), L(wy, 2i5)] = —[L(wj, zi5), L(e;, €)] = —L({wjzije; }, )

where {w;z;;e;} = 2j<k{wjk zij€;}. BEach term {wji 2;;€;} € Vi with @ < j < k since
z;; = 0 unless i < j. This proves [L(z; ,e;), L(w;, e;)] € L(VE=) e;).

b) It follows from Theorem 4.a) that M C T. Moreover, M normalizes N since for
m € M and u € N we have

(mum™! —1d)V;; = m(u — Id)m~'V;; = m(u — 1d)V;; C mVij< = Vij.

Because M NN = {Id} it is clear that MN = {mn;m € M,n € N} C T is a semidirect
product. To prove the other inclusion, let ¢ € T'. We will construct inductively an n € N
such that nt € M. Assuming that tV;; = Vj; for 1 < j <7 we will find n; € N such that
n;tVj; = Vj; for 1 < j <. Let te; = x4 + x,< + b where b is an element of

B =®ick<i<n Vi =V(eix1+---+en,1) C Ve, 0).

We claim that z;; € Q;. Indeed, te =tey +---+te;j+---+te, =11+ +Tg + T2 + b
for suitable z;; € Vj; and b € B, and therefore z;; = P(e;)te € P(e;)Q = Q; by [MN; 3.2].
For any z € V=) we have 7;(2)te; = xi; @ 2zxy; + x;4 ® b for a suitable ¥’ € B. Since
zi; € §; is invertible in Vj;, we can find 2/ € V(=) such that 22'z;; + x;~ = 0. Thus,
replacing ¢ by 7;(2")t, we can assume te; = x;; + b’ and, by (2.4), still have tV}; C V}; for
j <1. Let

C = (@®ici<n Vit) ® (Bick<i Vir) = (Bici<n Vi) ® B.

Since t71C C C we have t*"'V;; € D := Ct = V;; & (B1<k<ik<i Vi), the orthogonal
complement of C' with respect to the trace form. Because of P(B)D =0 = {V;; D B} it
now follows for arbitrary v;; € Vi;
tvg; = tP(e;)vi; = Plte;)t* vy € P(xy +b')D
= P(xy)D + P(V')D + {z; DV'} = P(zi;)D = Vi,

which completes the induction process.



c¢) With respect to a suitable orthonormal basis of V| any g € T is represented by an
upper triangular block matrix whose block structure is determined by the Peirce spaces V.
If such a g is also orthogonal, the matrix is in fact a diagonal block matrix. It follows that
ge; € Vi; is an idempotent of the same rank as e; and hence ge; = e¢;. Thus TNAutV C K,
and the other inclusion is obvious. The remaining equalities then follow from (2.3).

Remarks. 1) Since Ng . is unipotent it does not contain any non-trivial compact
subgroup, and thus K¢ is also a maximal compact subgroup of Tg¢ <, see the remark in 5.
2) The map

VI o (I N (21, ooy Zn—1) — 711(21) - Th1(2n-1)

is in fact a diffeomorphism. Indeed, that the map is a bijection follows from (1) and
Proposition 3. As a product of exponentials, it is obviously differentiable. That its inverse
is differentiable too, can be shown inductively, following the method of the proof of (1).
Of course, since N is nilpotent this is also a special case of a general result on canonical
coordinates of solvable Lie groups ([B; §9.6, Prop. 20]).

3) If < is the minimal order, i.e., i = j < i = j, we have Ng - = {Id} and T¢ < = M.
For example, this is the case if £ = {e}. On the other extreme, if £ is a Jordan frame
and = is the canonical order, the group Ng - coincides with the so-called strict triangular
subgroup N of [FK; VL.3]. By (3) it is also the group N of [W; 2.1.8]. In this case, Ag - Ng <
is a subgroup of T¢ -, the so-called triangular subgroup T of [FK; VIL.3].

7. The AP cone ([MN]). An AP cone Q(K) C € is defined in terms of an orthogonal
system (cy, ..., cs) of primitive idempotents ¢; € V' and a unital ring IC, i.e., a set of subsets
of {1,...,s} which is closed under union and intersection: K,L € K = K UL € K and
K N L € K, and which moreover has the property that § € K and {1,...,s} € K. To
describe () we need the following notations. For any K C {1,...,s} and = € V we put
Ck = ) pex Ck and xx = P(ck)z, the V(ck,1)-component of z. If x € Q and K # 0
then zx € P(ck)Q, and one knows that this is the symmetric cone of the Euclidean
Jordan algebra V(ck,1). In particular, xx is invertible in V(cx,1). We denote by x 5"
the inverse of zx in V(ck, 1) and view xl_(l as an element of V. We note that in general
x5 # P(ex)(x™ ). For K =) we put ¢y = 0 and 2 = 07! = 0. The AP cone Q(K) is
then defined as the set of all x € 2 satisfying

—1 -1 1 —1
T TP =T T2

for all K, L € K. Equivalent characterizations of Q(K) are given in [MN; Thm. 2.4].

The link with the results obtained so far in this paper is property (1) below. To explain
it, we recall that () £ K € K is join-irreducible if K is not a union of proper subsets of K
belonging to K. Thus, if we put (K) := U{K' € K; K’ C K} and [K] := K\ (K) then K is
join-irreducible if and only if [K] # (). We denote by J(K) the set of all join-irreducible sets
in K. One knows [AP; 2.1] that any K € K is partitioned by {[L]; L € J(K) and L C K}.
Moreover, by [AP; 2.7], one can always find a never-decreasing listing of J(K), i.e., an
enumeration J(K) = (K1,...,K,) with the property ¢ < j = K; ¢ K,;. We fix such a
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listing and define a partial order < on {1,...,n} by i <j & [K;]C K;. For1 <j<s
we put e; = ZHJ. ¢; and obtain in this way an orthogonal system £ = (eq,...,e,). After
renumbering, we may assume that < is weaker than the canonical order, so that we are in
the setting of 6. Then, by [MN; 2.14], the map

Fic : VOO oo VO 0y x - x Q, — Q(K)
given by

Fic(z1, -y 2n—1,Y1, - - »Un) =T1(21) - Tne1(Zn—1) (Y1 ® -+ B yn)

is a bijection. Thus,
QL) =Ne (1 @--- @ Q) (1)

We transport the obvious manifold structure of VO %o x Vr=12) 0 Q) x --- x Q,, to
Q(K) via Fx. By Proposition 3, (K) is then a simply-connected closed submanifold of 2
(with the induced topology). Also, Proposition 3 implies,

Q(K) = Q < = is the canonical order. (2)
QL) =N & dQ, & = is the minimal order. (3)

8. Theorem. Tg < is a transitive Lie transformation group of Q(K). For this
operation, the isotropy group of e € Q(K) is K¢, and we have an isomorphism of manifolds

Q(IC) %Tg’j/Kg. (1)

Proof. For easier notation we abbreviate K = K¢, M = Mg, N = Ng s and T = T¢ <.
By Theorem 5.b, we know that M operates transitively on Q; @ - -- @ €,,. Thus, by (7.1),
Q(K) = NMe. But this implies that both M and N leave Q(K) invariant: NQ(K) =
NNMe = Q(K) and, since M normalizes N, MQ(K) = MNMe = NMMe = Q(K).
Therefore, T operates transitively on Q(K). By Theorem 6.c¢), the isotropy group of e in
T is K¢, and hence (1) follows from ([B; §1.7 Prop. 14]).
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